Draft genome sequence of the yeast Starmerella bacillaris (syn., Candida zemplinina) FRI751 isolated from fermenting must of dried Raboso grapes

Lemos Junior, Wilson Jose Fernandes; Treu, Laura; da Silva Duarte, Vinicius; Campanaro, Stefano; Nadai, Chiara; Giacomini, Alessio; Corich, Viviana

Published in: Genome Announcements

Link to article, DOI: 10.1128/genomeA.00224-17

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Draft Genome Sequence of the Yeast *Starmerella bacillaris* (syn., *Candida zemplinina*) FRI751 Isolated from Fermenting Must of Dried Raboso Grapes

Wilson José Fernandes Lemos Junior, Laura Treu, Vinicius da Silva Duarte, Stefano Campanaro, Chiara Nadai, Alessio Giacomini, Viviana Coricha

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy; Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Biology, University of Padova, Padua, Italy; Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, Conegliano, Italy

ABSTRACT *Starmerella bacillaris* is an ascomycetous yeast commonly present in enological environments. Here, we report the first draft genome sequence of *S. bacillaris* FRI751, which will facilitate the study of the characteristics of this interesting enological yeast.

The ascomycetous yeast *Starmerella bacillaris* (syn., *Candida zemplinina*) is frequently found in spontaneous must fermentation, usually at a relatively high population level of 10^4 to 10^6 cells/ml (1), in grape marc (2), and it is also normally present on botrytized grapes. This species was isolated for the first time in Napa Valley (CA) in 2002 (3), and 1 year later, Sipiczki (4) assigned this *Candida* sp. to a novel species under the name *Candida zemplinina*, due to the significant differences observed in the rRNA sequence from that of the related species *Candida stellata* (5). For a long time, *C. zemplinina* has been confounded with its close species *C. stellata*, which shares similar ecological niches, particularly in grape and wine environments. Finally, it was established as *Starmerella bacillaris* (6).

S. bacillaris is able to ferment glucose, sucrose, and raffinose but not galactose, maltose, or lactose (6). Unable to grow in vitamin-free medium, it develops well in the presence of high glucose concentration, up to 50% (wt/vol) (6). It is highly fructophilic and a high-glycerol producer (7).

S. bacillaris is a psychrotolerant and osmotolerant species (4), and among the non-*Saccharomyces* yeasts of enological interest, *S. bacillaris* is considered one of the most promising species to satisfy modern market and consumer preferences. In particular, it produces less ethanol from must fermentation than *Saccharomyces cerevisiae*, low levels of biogenic amines, and average volatile acidity (8). It is also being tested in association with *S. cerevisiae* in mixed or sequential fermentations to reduce alcohol content and to increase the organoleptic properties of wines (7), and its possible use in the vineyard as an antifungal agent against *Botrytis* is under study (8).

In this work, the first genome sequence for an *S. bacillaris* strain is released. Strain FRI751 was isolated from fermentation of dried grapes of Raboso wine, a vine variety cultivated mainly in the Northeast of Italy for the production of passito wines.

S. bacillaris FRI751 genomic DNA was prepared by zymolyase digestion, followed by standard phenol-chloroform extraction, as described by Vaughan-Martini and Martini.
(9). The genome sequence was generated using an Illumina NextSeq 500 platform (1-kb mate-pair libraries) at the Ramaciotti Centre, Sydney, Australia. The sequencing generated 45-fold coverage with 1,435,554 paired-end (2 × 150 bp) and 102,368 unpaired reads (after quality filtering) that were used for the de novo assembly by SPAdes 3.10 software (10) (with option -k 21,33,55,77,99,127). The genome size of *S. bacillaris* FRI751 was 9.3 Mbp, divided into 106 contigs longer than 100 bp (N50 length, 208,744 bp), and the G+C content was 39.4%. Protein-coding gene (CDS) prediction was performed using GeneMark-ES (11) and resulted in 4,028 CDSs and a total of 4,315 exons. Gene annotation was obtained combining two strategies: (i) BlastKOALA (12) was used to search against a nonredundant set of KEGG genes, selecting Saccharomycetaceae as the taxonomy group; and (ii) RPS BLAST was used to compare protein sequences with Eukaryotic Orthologous Groups of proteins (KOG) (13).

The data reported here represent a useful resource to increase the knowledge of *S. bacillaris* metabolism and of its potential technological characteristics as applied to enology.

Accession number(s). The whole-genome shotgun project of *S. bacillaris* FRI751 has been deposited in DDBJ/ENA/GenBank under the accession no. MWSF00000000. The version described in this paper is the first version, MWSF01000000.

ACKNOWLEDGMENTS

This research was funded in part by Ministero dell’Istruzione, Dell’Università e della Ricerca (MIUR) project numbers 60A08-4840/13 and 60A08-9152/11. W.J.F.L.J. was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

We thank Consorzio Vini D.O.C. Bagnoli for providing must samples.

REFERENCES

