Simple control strategy for mitigating N2O emissions in phase isolated full-scale WWTPs

Ekström, Sara Elisabet Margareta; Vangsgaard, Anna Katrine; Lemaire, Romain; Valverde Pérez, Borja; Benedetti, Lorenzo; Jensen, Marlene Mark; Plósz, Benedek G.; Thornberg, Dines; Smets, Barth F.

Published in:
Proceedings of 12th IWA Specialized Conference on Instrumentation, Control and Automation

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Simple control strategy for mitigating N\textsubscript{2}O emissions in phase isolated full-scale WWTPs

Sara Eskström1*, Anna Katrine Vaansgard2, Romain Lemaire3, Borja Valverde-Pérez1*, Lorenzo Benedetti4, Marlene M. Jensen1, Benedek G. Plósz1, Dines Thornberg5 and Barth F. Smets1*

1Department of Environmental Engineering, Technical University of Denmark, Denmark
2Krüger A/S, Denmark
3Technical & Performance Department, VEOLIA, France
4Waterways d.o.o., 44272, Lekenik, Croatia
5BIOFOS, Denmark

*Corresponding author: sarek@env.dtu.dk, bvape@env.dtu.dk; bfsm@env.dtu.dk

Abstract

Nitrous oxide (N\textsubscript{2}O) is a strong greenhouse gas (GHG) and ozone depleter, with a warming potential 300 times higher than carbon dioxide (CO\textsubscript{2}). 1.2% of the total anthropogenic N\textsubscript{2}O emissions are believed to originate from the wastewater treatment (WWT) sector. Conventional biological nutrient removal processes relying on nitrification and denitrification are known to produce N\textsubscript{2}O. A one year long-term study of N\textsubscript{2}O production and emissions was performed at Lynetten, Denmark’s largest WWTP. Nitrification and denitrification take place by alternating process conditions as well as influent and effluent flows in 20 pairs of interconnected and surface aerated reactors. The long-term data revealed that the N\textsubscript{2}O emissions contribute to as much as 30% of the total CO\textsubscript{2} footprint from the WWTP. High ammonium concentrations and long aeration phases lead to high N\textsubscript{2}O production and emissions rates. Nitrification phases were identified to produce and emit most of the N\textsubscript{2}O. High production and emissions were also associated with the afternoon loading peaks at the WWTP. During denitrification phases N\textsubscript{2}O was produced initially but consumed consequently. An effective control strategy was implemented, whereby N\textsubscript{2}O emissions were reduced from 0.8% to 0.3% of the nitrogen load during the mitigation period.

Keywords: nitrous oxide emissions, mitigation strategies, biological nitrogen removal

INTRODUCTION

Nitrous oxide (N\textsubscript{2}O) is a strong greenhouse gas with a warming potential 298 times higher than that of carbon dioxide (IPCC, 2013). Additionally N\textsubscript{2}O is a potent ozone depleter and the major current anthropogenic threat to the stratospheric ozone layer (Kanter et al., 2013). Globally, anthropogenic N\textsubscript{2}O emissions account for 6% of the total greenhouse gas emissions and 1.2% of the total N\textsubscript{2}O emissions are assumed to originate from the wastewater treatment (WWT) sector (U.S. EPA, 2016). The Intergovernmental Panel on Climate Change (IPCC) recommends to use a N\textsubscript{2}O emission factor of 0.0032 kg N\textsubscript{2}O-N person-1 year-1 equivalent to 0.035% of the nitrogen load to estimate N\textsubscript{2}O emissions from domestic wastewater treatment plants (WWTP) (IPCC, 2006). However full-scale N\textsubscript{2}O measurement campaigns have revealed that emissions can range from 0 - 14.6% of the influent nitrogen load (Kampschreur et al., 2009). These findings suggest that IPCC emission factor may underestimate true emissions and there is a need to control and reduce N\textsubscript{2}O emissions originating from WWT operations. Process models are established tools for process optimisation, evaluation and prediction of operational strategies – even though there is so far no consensus on how to model N\textsubscript{2}O dynamics. The objectives of this study is therefore to i) quantify the N\textsubscript{2}O emissions over long-term at a full-scale phase isolated WWTP (Lynetten WWTP); ii) develop a simulation model for the WWTP and calibrate it to predict N\textsubscript{2}O emissions; and iii) develop, implement and evaluate...
potential mitigation strategies based on model-based assessment and empirical knowledge gained from analysis of the long-term data set.

MATERIALS AND METHODS
A one-year long N\textsubscript{2}O quantification campaign was performed at Lynetten WWTP, Denmark’s largest WWTP, with a design load corresponding to 1,000,000 population equivalents. The WWTP is configured as a phase isolated activated sludge system for biological removal of COD, phosphorous and nitrogen. Nitrification and denitrification take place by alternating process conditions as well as influent and effluent flows in 20 pairwise interconnected and surface aerated reactors (total volume: 147,000 m3; Figure 1). Quantification of N\textsubscript{2}O emission rates were performed through N\textsubscript{2}O measurements in one of the phase isolated reactors. Electrode and flux-chamber techniques in combination with an infrared off-gas analyser were used to determine both liquid and gaseous phase N\textsubscript{2}O concentrations, respectively. Off-gas measurements were performed during campaigns lasting for up to a month whilst liquid phase measurements were continuously taken during a whole year from May 2015 until May 2016. Nitrogen mass balances were based on results from the regular monitoring program at the WWTP and used to calculate N\textsubscript{2}O emission factors. A wastewater fractionation campaign was performed and used as input for model calibration of the ASM2d model extended with the ASM-N (Hiat and Graddy, 2008) and the NDHA models (Domingo-Felez and Smets, 2016) to describe N conversions and N\textsubscript{2}O dynamics in detail. After experimental data assessment and model-based analysis, two different control strategies were applied and compared to normal operation conditions.

Figure 1A) BioDeniphoTM reactor configuration with i) influent distributor, ii) interconnection in reactor wall, iii) submerged mixers, iv) surface aerators, v) effluent weirs vi) discharge, ●) DO sensors, ■) NH\textsubscript{4}-N and NO\textsubscript{3}-N sensors, ▲) N\textsubscript{2}O sensors. B) Illustration of alternating influent flows and reactor conditions through a phase cycle.

RESULTS AND DISCUSSION
The long-term data set showed consistent daily dynamics, which strongly related to nitrogen loading rate (NLR), operational phase, and bulk phase NH\textsubscript{4}-N concentrations. As illustrated in Figure 2, the dissolved N\textsubscript{2}O concentration increased towards the second half of the day. This was also accompanied by increased duration of the operational phase lengths, ie. longer time intervals between the shifts regarding influent flow as well as between anoxic and aerobic conditions in the reactors. Liquid N\textsubscript{2}O concentrations were mainly increasing during the nitrification phase, whilst N\textsubscript{2}O was consumed after an initial increase during the denitrification phase.
Figure 2. Daily dry weather dynamics during normal operation, **Up:** Liquid phase N$_2$O (---) concentration (mg L$^{-1}$); **Middle:** reactor concentrations of NH$_4$-N (---) and NO$_3$-N (mg L$^{-1}$) (---); **Bottom:** bulk DO (---) (mg L$^{-1}$), the current operation phase (---) is displayed in all graphs.

Based on these results a mitigation strategy was developed. Figure 3 and Figure 4 show a three day period of normal operation and operation with the mitigation strategy, respectively. As can be seen from these graphs the nitrogen loading rates during these days were similar corresponding to $5.1 \cdot 10^{-3}$ and $5.0 \cdot 10^{-3}$ (kgN m$^{-3}$ d$^{-1}$) respectively. Effluent ammonium concentrations was reduced from an average of 2.3 to 1.8 (mg L$^{-1}$). N$_2$O emissions corresponded to 0.3% of the nitrogen load during the mitigation period compared to 0.8% during normal operation conditions.
CONCLUSIONS
In this work we revealed that, during dry weather conditions, mitigation strategies can reduce \(\text{N}_2\text{O} \) production and emissions from a phase isolated full-scale WWTP. In addition, the liquied effluent quality from the biological reactor improved while the mitigation strategy was in operation.
Aknowledgement
This work has been funded by the Innovation Fund Denmark (IFD; Project LaGas, File No. 0603-00523B).

REFERENCES