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Abstract

In this report, we review the models for describing the motion of a ship in four degrees of freedom
suitable for control applications. We present the hydrodynamic models of two ships: a container and a
multi-role naval vessel. The models are based on experimental results in the four degrees of freedom roll
planar motion mechanism (RPMM) facility at the Danish Maritime Institute, and have also been validated
via extensive full scale trials. Based on the RPMM hydrodynamic models, we also present non-linear and
linearized state space models suitable for simulation and control applications. Finally, we evaluate the
quality of the linearized models with respect to their nonlinear counterparts and analyze sensitivity to
parameter variations.

1 Introduction

Essential to any control design is the knowledge of the dynamic characteristics of the plant or physical system
to be controlled. Experimental work in the area of maneuvering and control of ships suggests that it is difficult
to predict the maneuvering characteristics of a ship from model test due to the lack of precise knowledge of
the steering and roll interaction (Blanke and Jensen, 1997). Thus, a great research effort has been made to
analyze the dynamic involved in this interaction. The knowledge of the dynamics associated with roll, yaw and
sway is not only useful to improve maneuvering models but also, for example, essential to the the application
of rudder roll damping since the performance of this technique relies to a great extent on dynamic couplings
between roll, yaw, and sway.

Although, the four degrees of freedom models for describing the motion of ships are well known, see for
example (Abkowitz, 1975) and (Chislett and Støm-Tejsen, 1965), the magnitudes of the couplings to roll have
been less well established (Blanke et al., 1989). Therefore, models describing the interaction between roll sway
and yaw have only been scarcely studied. For example, results published by Son and Nomoto (1982) present
a model obtained by combining planar motion mechanism (PMM) test data for lateral motion, using different
values of static heel for the model under test, with independent roll motion tests. Kälström and Otterson
(1983) obtained a model by combining a lateral PMM model with theoretical estimates of roll coefficients,
using free sailing model tests to calibrate the roll parameters. In this report, we present models based on
experimental results in the unique 4-DOF roll planar motion mechanism (RPMM) facility at the Danish Mar-
itime Institute that allow model testing with full dynamic interaction between motions in roll, sway, yaw and
surge. This models capture the tight steering and roll interaction experienced in the vessels making them a
valuable tool for the design of control strategies. The models have also been subject to validation via full-scale
sea trials (Blanke et al., 1989), (Blanke and Jensen, 1997).

Although parts of these models have been previously presented in different publications (Blanke, 1981) (Blanke
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and Christensen, 1993) (Blanke and Jensen, 1997), it is still difficult to find in the literature fully-parameterized
models. Therefore, the main contribution of this report is to revise the previously published material and to
provide a self-contained document with detailed and fully-parameterized non-linear and linear state space
models that can be utilized as a basis for analysis and design of ship motion control strategies. In addition,
we present some simulation results to access the quality of the obtained linearized models, and perform a
numerical analysis of the sensitivity of the models to parameter variations.

The rest of the report is organized as follows. In section 2, the ship dynamics in four degrees of freedom
are reviewed. In section 3, the hydrodynamic models for forces and moments on the hull based on the RPMM
are given. In section 4, the essentials of propulsion effects modelling and resistance are reviewed. In section 5,
models describing the rudder produced forces and moments are given based on both physical modelling and
RPMM. The results are then generalized to any movable fin on the hull. In section, 6, a simplified model for
the steering machinery commonly utilized in control applications is reviewed. In section 7, the non-linear and
linearized state space models for a container ship and a multi-role naval vessel are given. In section 8, some
simulation results are presented to access the performance linear models obtained from the RPMM non-linear
models, and numerical analysis of the sensitivity of the models to parameter variations is given. Finally, In
section 9, we summarize and discuss the presented material.

2 Ship Dynamics: Newtonian approach

In this section, we review the mathematical models for describing the ship dynamics in four degrees of freedom.

The motion of a ship in six degrees of freedom is considered as a traslation motion (position) in three

O
xφ

θ

y
ψ

z

δ

O0

Body-fixed frame

Inertial Frame

Roll
p,K

Surge
x0, u,X

Pitch
q,M

Sway
y0, v, YYaw

r,N

Heave
z0, w, Z

Figure 1: Standard notation and sign conventions for ship motion description (SNAME, 1950).

directions: surge, sway, and heave; and as a rotation motion (orientation) about three axis: roll, pitch and
yaw. To determine the equations of motion, two reference frames are considered: the inertial or fixed to
earth frame O that may be taken to coincide with the ship-fixed coordinates in some initial condition and the
body-fixed frame O0— see figure 1. For surface ships, the most commonly adopted position for the body-fixed
frame is such it gives hull symmetry about the x0z0-plane and approximate symmetry about the y0z0-plane,
while the origin of the z0 axis is defined by the calm water surface (Price and Bishop, 1974).

The magnitudes describing the position and orientation of the ship are usually expressed in the inertial frame
and the coordinates are noted: [x y z]t and [φ θ ψ]t respectively, whilst the forces [X Y Z]t, mo-
ments [K M N ]t, linear velocities [u v w]t, and angular velocities [p q r]t are usually expressed in
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the body-fixed frame– see figure 1. We have used the standard notation given in SNAME (1950).

Let us define the position-orientation vector η with respect to the inertial frame as

η �
[
x y z φ θ ψ

]t (1)

and the linear-angular velocity vector ν with respect to the body-fixed frame as

ν �
[
u v w p q r

]t (2)

Then, the position-orientation rate vector η̇ is related to ν via:

η̇ = J(η) ν , (3)

where J(η) is a transformation matrix that depends on the Euler angles (φ , θ , ψ ) and is of the form (Fossen,
1994):

J(η) =
[
J1(φ , θ , ψ) 03×3

03×3 J2(φ , θ , ψ)

]
(4)

where

J1(φ , θ , ψ) =


c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)c(φ)s(θ)

s(ψ)c(θ) c(ψ)c(φ) + s(φ)s(θ)s(φ) −c(ψ)s(φ) + s(ψ)c(φ)s(θ)
−s(θ) c(θ)s(φ) c(θ)c(φ)


 (5)

and

J2(φ , θ , ψ) =


1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)
0 s(φ)/c(θ) c(φ)/c(θ)


 (6)

where s(·) = sin(·), c(·) = cos(·) and t(·) = tan(·).

Using the Newtonian approach, the equations of motion of vehicle in the body fixed frame are given in a
vector form by:

MRB ν̇ = τ(ν̇, ν, η) − CRB(ν)ν
η̇ = J(η)ν,

(7)

where MRB is the matrix mass and inertia due to rigid body dynamics, the term CRB(ν)ν arise from the
coriolis and centripetal forces and moments also due to rigid body dynamics, and J(η) is given in (3). The
forces and moments vector τ is defined as

τ =
[
X Y Z K M N

]t
, (8)

and these magnitudes are generated by different phenomena and can be separated into components according
to their originating effects:

τ = τhyd + τcs + τprop + τext, (9)

where

• hyd: These forces and moments arise from the movement of the hull in the water.

• prop: These forces and moments come from the propulsion system, e.g., propellers and thrusters.

• cs: These forces and moments arise due to the Control Surfaces (CS) like rudder, fins, etc. movement.

• ext: These are the forces and moments acting on the hull due to the environmental disturbances, e.g.,
wind, currents and waves.

Motions in pitch and heave can generally be neglected in comparison with the other motions for conventional
surface ships; thus, ship motion modelling can be considered only 4-DOF: surge, sway, yaw and roll. Therefore,
from (6) the following approximations can be made:

φ̇ = p ψ̇ = rcos(φ). (10)
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In the sequel we treat only the motion in four degrees of freedom (4-DOF.) For this case, the equations of
motion (7) are 


m 0 0 0
0 m −mzG mxG

0 −mzG Ixx 0
0 mxG 0 Izz







u̇
v̇
ṗ
ṙ


 =




X
Y
K
N


 +




m(vr + xGr2 − zgpr)
−mur
mzGur
−mxGur


 , (11)

where m is mass of the ship, Ixx and Izz are the inertias about the x0 and z0 axes, and xG and zG are the
coordinates of the the center of gravity CG with respect to the body-fixed frame, i.e., CG = [xG, 0, zG].

All the different force and moment components acting on the hull and their models shall be described in
the following sections, except for the environmental disturbances that have been thoroughly treated for exam-
ple in (Price and Bishop, 1974), (Blanke, 1981) and more recently in (Fossen, 1994).

3 Hydrodynamic forces and moments.

The hydrodynamic forces and moments can be studied by considering two problems. In the first, the movement
of the hull when there are no incident waves is considered; while in the second one, the hull is restrained from
moving and there are incident waves (Fossen, 1994). The second problem involves environmental forces like
waves, wind and currents and is not considered here.

The hydrodynamic forces and moments arising from the first problem have dynamic and static origins and
can be studied by analyzing different originating effects:

• Motion in an ideal fluid with no circulation: In this analysis, only the displacement is considered, and it
reveals the so-called added mass and inertia forces and moments and Munk moment.

The added mass and inertia reflects the build-up of kinetic energy of the fluid as the hull moves through
it. The motion of the fluid associated with the accelerations produces the ship to move with an equivalent
added mass and inertia, although the fluid do not move along with the ship. In the model, this effect is
described by terms proportional to the accelerations.

The Munk moment arise from the fact that in an ideal fluid, and elongated three-dimensional body
at an angle of attack experiences a pure moment that tends to increase the angle of attack due to the
change in direction of the fluid. This moment is composed of equal and opposite forces so there is no
resultant force on the body (Lewis, 1988c). In the model, the Munk moment is described by terms
proportional to the product of speeds uv.

• Motion in an ideal fluid with circulation: In this analysis the shape of the hull is relevant. For a body
with a profile, like an air wing, there is a net force acting on it when it moves in the fluid with an angle of
attack. This reveals the existence lift forces acting on the centre of preasure of the hull. Since the centre
of preasure in sway motion is forward to the CG, there exist a moment that add to the Munk moment
and tends to increase the angle of attack. The forces and moment are porportional to the products uv
and ur.

• Motion in a viscous fluid : This analysis reveals the presence of hydrodynamic resistance. This resistance
is made up of a number of different components caused by a variety if phenomena interacting in a very
complex way. For instance, the total calm-water resistance can be assumed to be made up of three
components (Lewis, 1988b):

– The frictional resistance, due to the motion of the hull in viscous fluid.

– The wave-making resistance, due to the energy carried away by the generated waves created on the
surface.

– Eddy resistance due to energy carried away by eddies shed from the hull and appendages.

In the model, these effects are reflected by non-linearities of the kind |u|u, |v|v, |r|v, |v|r and |r|r.
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• Gravitational and buoyancy forces: These are the restoring forces and moments that depend on the Euler
angles and act on the center of gravity CG and the center of buoyancy CB. These components can be
considered as an equivalent to the spring forces in a mass-damper-spring system (Fossen, 1994).

The Hydrodynamic forces and moments are modelled as a nonlinear function of the accelerations ν̇, velocities
ν, and the Euler angles included in η:

τhyd = f(ν̇, ν, η),

and can be expressed in a series expansion that is affine in the parameters or coefficients. For example, for
Yhyd force:

Yhyd ≈ Yv̇ v̇ + Yvvv
2 + Yr|v|r|v| + . . . (12)

where the constant coefficients

Yv̇ =
∂fY

∂v̇
Yvv =

∂2fY

∂v2
Yr|v| =

∂2fY

∂r∂|v|
are referred to as hydrodynamic derivatives. The first term in (12), for example, is interpreted as the force
along the y0-axis due to the acceleration v̇ in the y0-direction (see figure 1).

To determine the hydrodynamic derivatives, there are both theoretical methods like strip theory and ex-
perimental methods based on system identification and captive models. In the latter, a model is forced to
move by a device called planar motion mechanism (PMM) (Goodman and Gertler, 1962). The PMM forces
the body to move while the loads exerted on the model, positions, velocities and accelerations are measured.
Analysis of the acquired data yields the values of the coefficients, see for example Jensen (1997).

We next review the model for the hydrodynamic forces of a container ship first presented in (Blanke and
Jensen, 1997) and a multi-role naval vessel (Blanke et al., 1989). These models were obtained using the four
degrees of freedom Roll Planar Motion Mechanism (RPMM) facility at the Danish Maritime Institute.

3.1 Container hydrodynamic model

The structure of the RPMM model is shown below, in equations (15) to (19). The results are given as
non-dimensional quantities using the prime system (SNAME, 1950)— see appendix A. In this model, the
non-dimensional relative surge speed

u′
a � U − Unom

U
(13)

is used in hydrodynamic terms, where U is the ship’s absolute speed,

U �
√

u2 + v2 (14)

It should be noted that u′
a is different from non-dimensional surge velocity u′ = u/U which is involved when

fictitious accelerations of equation 11 are calculated— see appendix A.

The non-dimensional relative surge speed is

X ′ = X ′
u̇u̇′

a + X ′
uu′

a + X ′
uuu′

au′
a + X ′

uuuu
′3
a

+X ′
vrv

′r′ + X ′
rrr

′2

+X ′
vv′ + X ′

vvv
′2

+X ′
vφv′φ′ + X ′

φφ′ + X ′
φφφ

′2

+X ′
pp p

′2 + X ′
ppu p

′2u
′
a

(15)

If the absolute speed is desired, a large signal model is employed instead where X ′(u′) is the ship resistance,
T ′ is the propeller thrust, and t is the thrust deduction factor (see section 4.)

X ′ = X ′
u̇u̇′ + X ′(u′) + (1 − t)T ′ + X ′

vrv
′r′ + X ′

rrr
′2+

+X ′
vv′ + X ′

vvv
′2

+X ′
vφv′φ′ + X ′

φφ′ + X ′
φφφ

′2

+X ′
pp p

′2 + X ′
ppu p

′2u
′

(16)
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The non-dimensional sway equation is

Y ′ = Y ′
v̇ v̇′ + Y ′

ṙ ṙ′ + Y ′
ṗ ṗ′

+Y ′
vv′ + Y ′

vvv
′2 + Y ′

v|v|v
′ |v′| + Y ′

v|r|v
′ |r′| + Y ′

vrrv
′r

′2

+Y ′
rr′ + Y ′

r|r|r
′ |r′| + Y ′

rrrr
′3 + Y ′

r|v|r
′ |v′| + Y ′

rvvrv
′2

+Y ′
pp′ + Y ′

pppp
′3 + Y ′

pup′u′
a + Y ′

pu|pu|p
′u′

a |p′u′
a|

+Y ′
φφ′ + Y ′

vφv
′
φ′ + Y ′

vφφv′φ
′2 + Y ′

φvvφ′v
′2 + Y ′

0 + Y ′
0uu′

a

(17)

The non-dimensional roll equation is

K ′ = K ′
ṗṗ

′ + K ′
v̇ v̇′ + K ′

ṙ ṙ
′

+K ′
vv′ + K ′

vvv
′2 + K ′

v|v|v
′ |v′| + K ′

v|r|v
′ |r′| + K ′

vrrv
′r

′2

+K ′
r|r|r

′ |r′| + K ′
rrrr

′3 + K ′
rvvr′v

′2 + K ′
r|v|r

′ |v′|
+K ′

pp
′ + K ′

p|p|p
′ |p′| + K ′

pppp
′3 + K ′

pup′u′
a + K ′

pu|pu|p
′u′

a |p′u′
a|

+K ′
vφv

′
φ′ + K ′

vφφv′φ
′2 + K ′

φvvφ
′v

′2

+K ′
0 + K ′

0uu′
a

+K ′
r r′ − (ρg∇Gz(φ))′

(18)

The non-dimensional yaw equation is

N ′ = N ′
v̇ v̇′ + N ′

ṙ ṙ
′ + N ′

ṗṗ
′

+N ′
vv′ + N ′

vvv
′2 + N ′

v|v|v
′ |v′| + N ′

v|r|v
′ |r′| + N ′

vrrv
′r

′2

+N ′
rr

′ + N ′
r|r|r

′ |r′| + N ′
rrrr

′3 + N ′
rvvr′v

′2 + N ′
r|v|r

′ |v′|
+N ′

pp
′ + N ′

pppp
′3 + N ′

pup′u′
a + N ′

pu|pu|p
′u′

a |p′u′
a|

+N ′
φφ′ + N ′

vφv
′
φ′ + N ′

vφφv′φ
′2 + N ′

φvvφ′v
′2 + N ′

0 + N ′
0uu′

a

(19)

where the last term of (18) corresponds to the restoring roll moment, in which ∇ denotes the ship displacement,
g the gravity constant, ρ the mass density of the water and Gz(φ) is the buoyancy function for heel that can
be approximated as (Lewis, 1988a),

Gz(φ) =
(

GM +
1
2
BM tan2 (φ)

)
sin(φ) (20)

where GM is the metacenter height, and BM is the distance from the center of buoyancy to the metacenter.
The correct Gz curve is needed to get accurate results for large values of heel.

This ship was the first investigated with the RPMM experimental facility and subsequent experience from
five later model tests have given certain amendments to finally yield the list of nonlinear hydrodynamic terms
to cover a wider range of ship types (Blanke and Jensen, 1997).

3.2 Multi-role naval vessel hydrodynamic model

The structure of the RPMM model is shown below, in equations (21) to (25). The results are given in dimen-
sional quantities.

The surge equation is
X = Xu̇u̇ + X(u) + Xvrvr + (1 − t)T, (21)

where the resistance X(u) is given by 1

X(u) = Xu|u|u|u| (22)

The sway equation is

Y = Yv̇ v̇ + Yṙ ṙ + Yṗṗ
+Y|u|v |u| v + Yurur + Yv|v|v |v| + Yv|r|v |r| + Yr|v|r |v|
+Yφ|uv|φ |uv| + Yφ|ur|φ |ur| + Yφuuφu2

(23)

1The RPMM test gave other terms; however, for this particular vessel, those terms are not available for publication.
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The roll equation is

K = Kv̇ v̇ + Kṗṗ
+K|u|v |u| v + Kurur + Kv|v|v |v| + Kv|r|v |r| + Kr|v|r |v|
+Kφ|uv|φ |uv| + Kφ|ur|φ |ur| + Kφuuφu2 + K|u|p |u| p
+Kp|p|p |p| + Kpp + Kφφφφ3 − ρg∇Gz(φ)

(24)

The yaw equation is
N = Nv̇ v̇ + Nṙ ṙ

+N|u|v |u| v + N|u|r |u| r + Nr|r|r |r| + Nr|v|r |v|
+Nφ|uv|φ |uv| + Nφu|r|φu |r| + Nφu|u|φu |u|

(25)

This completes the non-linear hydrodynamic models.

4 Propulsion System and Resistance

In this section, we review the basic elements to model the propulsion effects and resistance. Let us consider as
a propulsion device a propeller. The main task of the propeller system is the generation of available thrust Ta.
This thrust is necessary to compensate the resistance forces X(u) acting on the hull. Thus, in static conditions
with the ship sailing at at a given forward speed in calm water, the resistance and the thrust balance, i.e.,

0 = X(u) + Ta (26)

As previously mentioned, the resistance is made up of a number of different components caused by a variety if
phenomena interacting in a very complex way. The simplest way to model the resistance effect is by a single
term of the form

X(u) = Xu|u|u|u|. (27)

An important effect produced when the ship moves in real fluid, is that the water around the stern acquires
a forward motion in the direction of the motion of the hull. This forward-moving water is called the wake,
and one of the effects it produces is a difference between the forward speed of the ship U and the average flow
velocity over the propeller Va, called the speed of advance. This difference, called the wake speed, is expressed
as a fraction of the speed U as,

w =
U − Va

U

and
Va = (1 − w)U (28)

The wake fraction is determined by a combination of propulsion tests to derive the thrust and the use of the
open water propeller characteristics– see (Lewis, 1988b). The wake is generally positive in the majority of
the cases. Exceptions occur in high speed vessels, like destroyers and power boats, in which the wave pattern
generated at high speed presents a through at stern. In those cases the wake could either be zero or negative
(Lewis, 1988b).

There is another important effect due to the interaction between propeller and hull. When the ship is towed,
there is an area of high pressure over the stern which reduces the total resistance since it partly compensates
forces produced by the high pressure area in the bow. With a self-propelled hull, the pressure over some of
the area over the stern is reduced due to the propeller action that accelerates the water, thus the resistance
is increased and so the trust necessary to move the ship. The common practice it to view this increase in
resistance as a deduction from the thrust generated by the propeller. This is described by a thrust deduction
number t— typically 0.05-0.2 (Fossen, 1994)— such that the thrust available for the propulsion is

Ta = (1 − t)T , (29)

where T is the propeller generated thrust. This available thrust may be regarded as independent of ship speed.

5 Rudder forces and moments

In this section, we give a model to calculate the force on the rudder, and then according to its position and
orientation on the hull, geometrically relate this force to the generated forces and moments that produce
motion of the ship. The results can be generalized to any moving fin.
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5.1 Modelling using physical laws

The total resulting hydrodynamic force acting on the rudder in a real fluid acts on a single point on the rudder
called center of pressure CP with coordinates CP = [xcp ycp zcp]t expressed in the fixed body frame . In
contrast to the resultant force described by two-dimensional wing theory, in which the force would be normal
to the direction of the flow, the total resultant force in a real fluid is nearly normal to the center plane of the
rudder (Lewis, 1988b). The magnitude of resulting force considered normal to the rudder can be expressed as

F =

{
1
2ρCF ArV

2
avsin(π

2
δattack

δstall
) if |δattack| < δstall ,

1
2ρCF ArV

2
avsign(δattack) if |δattack| ≥ δstall ,

(30)

where CF is the lift coefficient, Ar is the rudder area, Vav is the average flow passing the rudder and δstall is
the rudder stall angle. The angle of attack δattack is the relative angle between the rudder and the flow. This
angle is calculated using the rudder angle δ the sway velocity v, the surge velocity u and the sway velocity at
stern produced by the turn rate of the ship (xcp − xG)r as

δattack = δ − δflow

= δ − arctan(
v + (xcp − xG)r

u
),

(31)

where the magnitudes are according to the adopted convention (SNAME, 1950), see figure 2. The forces due

δ

δflow

δattack CP

F

Flow direction

Figure 2: Rudder angles definition and convension.

to the rudder acting on the hull are then given

Xrudder = −F (u, Vav, , v, r, δ) sin(δ),
Yrudder = F (u, Vav, v, r, δ) cos(δ),
Zrudder = 0.

(32)

and the moments are

[Krudder Mrudder Nrudder]t = (CP − CG) × [Xrudder Yrudder Zrudder]t. (33)

Since the rudder is located behind the propeller, the flow passing the rudder Vav is very much influenced
by the propeller. van Berlekom (1975) proposed a series of models test and expressed the average flow as

V 2
av = V 2

a + CT T, (34)

where
CT ≈ 6.4

πρhDp
,

in which h is the rudder span and Dp is the propeller diameter. Using the static condition between effective
thrust and resistance (26) together with (28) and (34), Vav can be expressed as

V 2
av =

[
(1 − w)2 − C2

T

Xuu

(1 − t)

]
U2. (35)
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5.2 Generalization to any fin

The results presented in the previous section can be generalized to any fin by proper geometrical relations.
The forces acting on the fin, can be expressed in a fin reference frame. This frame is defined with origin in the
CP, and it moves with the CP mantainig its orientation. The orientation of the fin frame is defined when the
relative angle between the fin and the flow is zero by rotating the body-fixed frame an angle θtilt about the
unitary vector λ = [λ1 λ2 λ3]t. For example, a centered rudder will be described by: CP = [xcp 0 zcp]t,
λ = [1 0 0]t and θtilt = 0, while a horizontal stabilizing fin on the starboard side by: CP = [xcp ycp zcp]t,
λ = [1 0 0]t and θtilt = −π/2. The forces on the fin frame are given by

Xf = −F sin(δr),
Yf = F cos(δr),
Zf = 0,

(36)

where F is given by a similar form of expression (30). We say ‘in a similar form’ since depending on the
position of the fin, other components of motion like roll may be considered to determine the angle of attack.

The forces acting on the center of gravity are obtained via the following rotation matrix (Fossen, 1994):

[X Y Z]t = Rot(λ, θtilt)[Xf Yf Zf ]t, (37)

where
Rot(λ, θtilt) = cos(θtilt)I + (1 − cos(θtilt))λλt − sin(θtilt)S(λ) (38)

and

S(λ) �


 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0


 (39)

Finally, the moments are given by

[K M N ]t = (CP − CG) × [X Y Z]t. (40)

5.3 RPMM rudder forces model

Another option to model the forces and moment produced by the rudder is to use the RPMM facility to obtain
this model. For example, for the container ship we have (Blanke and Jensen, 1997)

Xrudder = X ′
δδ

′ + X ′
δδδ

′2 + X ′
δuδ

′
u

′
a + X ′

δδuδ
′2u

′
a

+ X ′
vδv

′
δ
′
+ X ′

vδδv
′
δ
′2

Yrudder = Y ′
δ δ′ + Y ′

δδδ
′2 + Y ′

δδδδ
′3

+ Y ′
δvδ′v′ + Y ′

δvvδ′v
′2 + Y ′

δuδ′u′
a + Y ′

δδuδ
′2u′

a + Y ′
δδδuδ

′3u′
a

Krudder = K ′
δδ

′ + K ′
δδδ

′2 + K ′
δδδδ

′3

+ K ′
δvδ′v′ + K ′

δvvδ′v
′2 + K ′

δuδ′u′
a + K ′

δδuδ
′2u′

a + K ′
δδδuδ

′3u′
a

Nrudder = N ′
δδ

′ + N ′
δδδ

′2 + N ′
δδδδ

′3

+ N ′
δvδ′v′ + N ′

δvvδ′v
′2 + N ′

δuδ′u′
a + N ′

δδuδ
′2u′

a + N ′
δδδuδ

′3u′
a .

(41)

6 Rudder Machinery

The mathematical model of the rudder mechanism most commonly used in computer simulations and autopilot
design is the simplified model presented by van Amerongen (1982). In figure 3, we see a block diagram
representation of the model. This model captures the essential effects produced by the rudder machinery:

• Magnitude saturation: the rudder motion is constrained to move within certain maximum angles, i.e.,
−δmax ≤ δ ≤ δmax (rad).

• Slew rate saturation: The rate of rudder movement is limited by a maximum value δ̇max (rad/sec).
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Figure 3: Simplified block diagram of the steering machine model.

• Time delay: the main servo is the responsible of producing most of the delay between the ruder command
δc and the actual rudder angle δ. In the linear zone, the delay is represented by a first order system with
a time constant

τδ =
δ̇max

δpb

where δpb is the so-called proportional band.

7 Non-linear and linearized state space models

7.1 Non-linear models

The non-linear state space models are based on (11), and the models for the forces and moments given in the
previous sections. The non-linear state space model has the general form

ẋ = H−1f(x, δ) . (42)

where
x =

[
u v r p φ ψ

]t
, (43)

The model (42) can be treated either in a dimensional or non-dimensional manner according the given hy-
drodynamic model. A special care should be taken when when using models with the normalized variable u′

a

given in (13) and u′ together as we will show in this section. We now describe the elements of (42).

Incorporating the time derivatives of the roll and yaw angles given in (10), Newton’s equations of motion
given in (11) can be re arranged as follows

(m − Xu̇)u̇ = X∗
hyd(x) + Xrudder(x, δ) + m(vr + xGr2 − zGpr)

(m − Yv̇)v̇ − (mzG + Yṗ)ṗ + (mxG − Yṙ)v̇ = Y ∗
hyd(x) + Yrudder(x, δ) − mur

−(mzG + Kv̇)v̇ + (Ixx − Kṗ)ṗ − Kṙṗ = K∗
hyd(x) + Krudder(x, δ) + mzGur

(mxG − Nv̇)v̇ − Nṗṗ + (Izz − Nṙ)ṙ = N∗
hyd(x) + Nrudder(x, δ) − mxGur

φ̇ = p

ψ̇ = r cos(φ)

(44)

where the terms X∗
hyd(x) Y ∗

hyd(x), K∗
hyd(x) and N∗

hyd(x) correspond to the hydrodynamic models given in
section 3 and are either the set of equations (15) to (19) or (21) to (25) without the terms that proportional
to the accelerations. The matrix H is given by

H =




(m − Xu̇) 0 0 0 0 0
0 (m − Yv̇) −(mzG + Yṗ) (mxG − Yṙ) 0 0
0 −(mzG + Kv̇) (Ixx − Kṗ) −Kṙ 0 0
0 (mxG − Nv̇) −Nṗ (Izz − Nṙ) 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(45)
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and

f(x, δ) =




X∗
hyd(x) + Xrudder(x, δ) + m(vr + xGr2 − zGpr)

Y ∗
hyd(x) + Yrudder(x, δ) − mur

K∗
hyd(x) + Krudder(x, δ) + mzGur

N∗
hyd(x) + Nrudder(x, δ) − mxGur

p
r cos(φ)




(46)

When we consider a non-dimensional model in which the state is given by x′ =
[
u′

a v′ r′ p′ φ′ ψ′]t
,

expression (46) should be modified as follows

f ′(x′, δ′) =




X ′∗
hyd(x

′) + X ′
rudder(x

′, δ′) + m′(v′r′ + x′
Gr′2 − z′Gp′r′)

Y ∗′
hyd(x

′) + Yrudder(x′, δ′) − m′h′(x′, u′
a)r′

K∗′
hyd(x

′) + K ′
rudder(x

′, δ′) + m′z′Gh′(x′, u′
a)r′

N∗′
hyd(x

′) + N ′
rudder(x

′, δ′) − m′x′
Gh′(x′, u′

a)r′

p′

r′ cos(φ′)




, (47)

where we have used the following relations

U =
Unom

(1 − ua′) (48)

and

u′ = h′(x′, u′
a) =

1
U

√
U2

nom

(1 − u′
a)2

− (Unomv′)2 (49)

that has been derived from the definitions of u′
a (cf., (13)) and u′ (see appendix A).

7.2 Linearized models

It is a common practice to decouple the surge equation from the others to analyze the linearized models. Thus,
we consider a given service speed u (or the approximation u′

a ≈ (u−Unom)/Unom) and the reduced state vector
z =

[
v r p φ ψ

]t
.The linearized models are obtained straightforward from (42) as

ż = H−1

[
∂f(z, u, δ)

∂z

∣∣∣∣
z,u,δ

z +
∂f(z, u, δ)

∂δ

∣∣∣∣
z,u,δ

δ

]

= H−1A z + M−1B δ.

(50)

The matrix H is now given by (45) without the first row and first column, and to obtain the matrices A and
B, the Jacobians in (50) are evaluated at z = [0 0 0 0 0]t and δ = 0.

For the container ship, from (15) to (19) and from the RPMM rudder model (41), the non-dimensional
matrices F and G are are as follows

A =




Y ′
v Y ′

p + Y ′
puu′

a Y ′
r − m′u′ Y ′

φ 0
K ′

v K ′
p + K ′

puu′
a K ′

r + m′z′Gu′ −(ρg∇GM)′ 0
N ′

v N ′
p + N ′

puu′
a N ′

r + m′z′Gu′ N ′
φ 0

0 1 0 0 0
0 0 1 0 0


 , B =




Y ′
δ

K ′
δ

N ′
δ

0
0


 . (51)

The naval vessel has two rudders, and their effect is accounted using the model obtained by physical laws
presented in section 5. Therefore, we have

A =
∂fhyd(z, u, δ)

∂z

∣∣∣∣
z,u,δ

+
∂frudder(z, u, Vav, δ)

∂z

∣∣∣∣
z,u,V av,δ

(52)

B =
∂frudder(z, u, Vav, δ)

∂δ

∣∣∣∣
x,u,V av,δ

, (53)
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where in the function fhyd(z, u, δ), we have included the terms corresponding to the coriolis and centripetal
accelerations. Then from (23) to (25), and (46) we obtain

∂fhyd(z, u, δ)
∂z

∣∣∣∣
z,u,δ

=




Y|u|v|u| 0 (Yur − m)u Yφuuu2 0
K|u|v|u| Kp + K|u|p|u| (Kur + mzG)u Kφuuu2 − ρg∇GM 0
N|u|v|u| 0 N|u|r|u| − mxGu Nφu|u|u|u| 0

0 1 0 0 0
0 0 1 0 0


 . (54)

To simplify the linear model of the rudder, we assume that the rudders has no tilt angle (they have a tilt angle
of 6deg, see appendix C), and that the angle of attack is small. Under these assumptions, we obtain

∂frudder(z, u, Vav, δ)
∂z

∣∣∣∣
z,u,V av,δ

=
YδuuV

2

av

u




−1 0 (xcp − xG) 0 0
(zcp − zG) 0 (zcp − zG)(xcp − xG) 0 0
−(xcp − xG) 0 −(xcp − xG)(xcp − xG) 0 0

0 0 0 0 0
0 0 0 0 0


 , (55)

∂frudder(z, u, Vav, δ)
∂δ

∣∣∣∣
z,u,V av,δ

=




YδuuV
2

av

−(zcp − zG)YδuuV
2

av

(xcp − xG)YδuuV
2

av

0
0


 , (56)

and
Yδuu =

πρCF Ar

4 δstall
.

8 Simulation results

8.1 Response to different rudder commands

In this section, we present some simulation results using the given models for the naval vessel and the container
ship. In the simulations, we perform two different tests. In the first test, a step of 10 deg is applied in the
rudder towards port, while in the second, a sinusoidal rudder command is applied. In the later, the period of
the sinusoidal is varied linearly between values close to the roll natural period so as to excite the roll modes.
The roll natural period of the ship is estimated by

T0 = 2π

√
Izz − Kṗ

ρg∇GM
.

In figure 4, we can see the response of the states for the linear (dash-dot) and non-linear (cont.) models.
The non linear model has been validated via full-scale trials; however, in this report only the parameters at a
project stage are given in the appendix C. In figure 5, we can see the response of both models for the sinusoidal
rudder command with linearly varying frequency.

From figures 4 and 5 it can be appreciated that the linear model performs well in general. The response
shown in figure 4 depicts a small difference between the linear and non-linear models at low frequencies. Other
simulation results, not shown here, indicate that the cause of this difference can neither be considered due to
the linearization of the hydrodynamic nor the rudder models alone, but a combination of both. Specifically,
the particular kind of non-linearities of the form v|r|, r|r|, v|v| and the like not described by the linear ap-
proximation in hydrodynamic model and the non linear effect of the rudder combined are the cause of this
differences in response at low frequency.

In figures 6 and 7, we can see the results of the same type of tests for the container ship model. Similar
comments to the ones made for the naval vessel apply to this model. In this case, the linear model has
stable pole at very low frequency that produce a significant difference at low frequencies. Nevertheless, the
performance of the linear model at high frequency is deemed satisfactory.
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Figure 4: Response of linear (dash-dot) and non-linear (solid) models for a naval vessel for a 10 deg port
rudder step.
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Figure 5: Response of linear (dash-dot) and non-linear (solid) models for a naval vessel for a 5 deg chirp signal
rudder command.
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Figure 6: Response of linear (dash-dot) and non-linear (solid) models for a container ship for a 10 deg port
rudder step.
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Figure 7: Response of linear (dash-dot) and non-linear (solid) models for a container ship for a 5 deg chirp
signal rudder command..
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8.2 Parameter sensitivity study

In this section, we perform a study of sensitivity via numerical simulation. Specifically, we perform single
parameter variations for the non-linear state space model of the naval vessel. To evaluate the sensitivity of
the model, we define the following sensitivity cost functionals

Jroll(θ̃) =

∣∣∣∣∣100
∑N

t=0 p(t, θ̃)2 + φ(t, θ̃)2 − ∑N
t=0 p(t, θ)2 + φ(t, θ)2∑N

t=0 p(t, θ)2 + φ(t, θ)2

∣∣∣∣∣ , (57)

Jsteering(θ̃) =

∣∣∣∣∣100
∑N

t=0 v(t, θ̃)2 + r(t, θ̃)2 − ∑N
t=0 v(t, θ)2 + r(t, θ)2∑N

t=0 v(t, θ)2 + r(t, θ)2

∣∣∣∣∣ , (58)

where for example, p(t, θ̃) is the time response of the roll rate when the perturbed parameter value θ̃ with
respect to the original parameter value θ is is used, and N is the simulation time. The use of two different
functions separating the roll part from the steering part allows us to evaluate the sensitivity of the couplings
between roll, sway and yaw.

In the first test, a step signal of 10deg is applied in the rudder command, and the simulation is done for
a period of time of 150sec. All the parameters in the non-linear models are varied −50%, −10%, +10%, +50%
from its nominal values. The results are shown in table 1.

Jroll Jsteering

Parameter ±50% ±10% ±50% ±10%

N|u|v 61 11 8 1.5
N|u|r 200 23 23 3
Nr|r| 12 2 2 0.3
Kr|v| 26 4 4 1
Nφ|uv| 0.2 0.05 0.05 0.01
Nφu|r| 3 0.7 0.5 0.1
Nφu|u| 2 0.4 0.3 0.07
K|u|v 40 7 2 0.3
Kur 15 3 0.7 0.1
Kv|v| 7 1 0.3 0.07
Kv|r| 6 1 0.3 0.06
Kr|v| 1 0.3 0.06 0.01
Kφ|uv| 1 0.2 0.05 0.01
Kφ|ur| 1 0.2 0.05 0.01
Kφuu 3 0.5 0.1 0.02
K|u|p 1.5 0.2 0.01 0.001
K|p|p 0.1 0.02 0.001 0.0001
Kp 2 0.3 0.01 0.002
Kφφφ 0.06 0.001 0.003 0.0006
Y|u|v 90 11 100 13
Yur 20 4 30 5
Yv|v| 1 0.2 1 0.3
Yv|r| 9 2 11 2
Yr|v| 2 0.4 2 0.5
Yφ|uv| 1.5 0.3 2 0.5
Yφ|ur| 1.3 0.2 2 0.3
Yφuu 0.1 0.03 0.2 0.04

Table 1: Sensitivity to a single parameter variation for a 10deg step rrudder command and 150sec simulation
time.

In the second test, we use a sinusoidal rudder command of amplitude 5deg with a period varying linearly from
10sec to 6sec in 150sec. The results are shown in Table 2.
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Jroll Jsteering

Parameter ±50% ±10% ±50% ±10%

N|u|v 0.4 0.07 1.5 0.3
N|u|r 33 5 21 2
Nr|r| 0.7 0.1 0.4 0.07
Kr|v| 0.2 0.05 0.2 0.03
Nφ|uv| 0.7 0.1 0.5 0.1
Nφu|r| 1.4 0.2 0.8 0.1
Nφu|u| 3 0.5 2 0.4
K|u|v 3.5 0.6 5 1
Kur 0.6 0.1 1 0.2
Kv|v| 0.1 0.02 0.1 0.03
Kv|r| 0.07 0.01 0.1 0.02
Kr|v| 0.005 0.001 0.0001 0.00002
Kφ|uv| 0.004 0.001 0.02 0.004
Kφ|ur| 0.01 0.003 0.1 0.01
Kφuu 0.8 0.1 0.4 0.1
K|u|p 9 2 8 1.5
K|p|p 2 0.3 2 0.3
Kp 46 7 43 6
Kφφφ 0.03 0.001 0.08 0.01
Y|u|v 2.5 0.5 9 2
Yur 1.6 0.3 1 0.1
Yv|v| 0.007 0.001 0.02 0.004
Yv|r| 0.06 0.01 0.2 0.04
Yr|v| 0.01 0.002 0.02 0.004
Yφ|uv| 0.04 0.01 0.2 0.04
Yφ|ur| 0.2 0.04 0.5 0.1
Yφuu 0.1 0.03 0.4 0.08

Table 2: Sensitivity to a single parameter variation for a sinusoidal rudder command on 150sec simulation
time.

From Table 1 and Table 2, we appreciate that the non-linear model for the naval vessel is very sensitive to
some parametes, especially when it is exited at low frequency. At low frequency, the parameters with larger
sensitivity are

N|u|v, N|u|r, Nr|v|, K|u|v, Kur, Y|u|v, Yur. (59)

There is no significant sensitivity to parameters accounting roll motion since the roll modes are not being
excited.

Results from Table 2, show that the sensitivity of the model at high frequency is, in general, less than at
low frequency. However, the sensitivity of N|u|r is still significant, and since in the second test the roll models
are exited, the sensitivity to Kp is significant, not only to the roll but also to the steering.

9 Summary and discussion

In this report, we have reviewed the models for describing the motion of the ship in four degrees of freedom.
Non-linear hydrodynamic models obtained from tests at the RPMM facility at the Danish Maritime Institute
and then validated via extensive full scale trials were presented. From the non-linear hydrodynamic models,
state space models both non-linear and linearized, in surge, sway, roll and yaw were obtained.

The non-linear models describe the dynamic response of the ships very accurately, and therefore can be
utilized at first stage for testing control strategies. Similarly, the linear models presented are preferred for
control application design to models obtained from system identification, and other models presented in the
literature (see for example (van der Klugt, 1987)) since they reveal explicit dependency with the speed of
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operation and thus can be easily up-dated for different speeds.

Simulation results with fully parameterized models for a container ship and a naval vessel were used to access
the quality of the linearized models. The linear models perform well at high frequency, i.e., frequencies in
the range of the natural roll frequency, but their behavior departs from the non-linear counter parts at low
frequencies. This effect is negligible for the naval vessel, but significant for the container ship. No general
conclusions can be drawn since the RPMM models vary from ship to ship, and thus the quality of the lin-
earized model. For some particular ships, and applications, it should be considered using linear models fitted
at different frequencies. For example, a rudder-roll-damping model-based autopilot design requires a model
that works well at frequencies close to the roll natural frequency.

Simple sensitivity analysis via numerical simulation was done for the non-linear model of the naval vessel.
This study reveals that the model is generally insensitive to single parameter variations at high frequency;
however, at low frequency there are some parameters for which the sensitivity results one order of magnitude
bigger than for the rest of the parameters. Some of this parameters are present in the linearized models, and
therefore their variation should also be reflected in the linearized model behavior. This analysis provides an
indication of which parameters are more important to be identified to tune the models for implementing any
model-based control strategy.
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Appendix A: Prime non-dimensional normalization system and con-
version factors

The prime non-dimensionalization system of SNAME (1950) is the most commonly used by maritime institu-
tions. In this system, the ship’s length L = Lpp is used as a linear measure unit, and the time unit U/L is the
time requited to traveling a distance equal to the ship’s length. U is the ship’s total speed

U �
√

u2 + v2, (60)

and ρ is the sea water density. Then, magnitudes are made non-dimensional as shown in Table 12.

Magnitudes Conversion

Time t′ = L
U t

Length and position �′ = 1
L � x′ = 1

L x

Mass and Inertia m′ = 2
ρL3 m I ′ = 2

ρL5 I

Area a′ = 1
L2 a

Angle α′ = α

Forces F ′ = 1
1
2 ρU2L2 F

Moments M ′ = 1
1
2 ρU2L3 M

Linear velocity and acceleration v′ =
1
U

v v̇′ =
L

U2
v̇

Angular velocity and acceleration r′ =
L

U
r ṙ′ =

L2

U2
ṙ

Table 3: Conversion to the Prime normalization system.

Some conversion factors between unit systems frequently used in marine applications:

Magnitude and units Conversion factor

Angle αrad = π
180 αdeg

Linear speed: m/s and knots ukt = 3600
1852 vm/s

Angular speed: RPM and rad/s ωrad/s = 2π
60 ωRPM

Table 4: Conversion factors between unit systems.

2In table 1, ρ = 1014 (Kg/m3) is the density of the sea water.
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Appendix B: Main Data and RPMM model data for the Container
ship

Main particulars

Quantity Symbol Measure Unit
Length between perpendiculars Lpp 230.66 m
Beam B 32 m
Draft fore Df 10.7 m
Draft aft Da 10.7 m
Displacement ∇ 46070 m3

Nominal speed Unom 12.7 m/s
Block coefficient 0.561
Transverse area of superstructure (sway) AY 5200 m2

Transverse area of superstructure (surge) AX 1100 m2

Transverse Metacenter above keel KM 15.18 m
Transverse Center of Buoyancy KB 6.18 m
Transverse Metacenter BM KM − KB m
Prismatic coefficient 0.595
Nominal x coordinate of CG xG -0.46 m
Nominal z coordinate of CG zG -3.54 m
Nominal metacentric height GM 0.83 m
Nondim mass m′ 750.81 10−5

Nondim inertia in roll I ′xx 1.30 10−5

Nondim. inertia in yaw I ′zz 43.25 10−5

Rudder area AR 42 m2

Rudder angle δmax 35 deg
Rudder stall δstall 17 deg

Rudder speed, 1 pump δ̇max 2.3 deg/s

Rudder speed, 2 pumps δ̇max 4.6 deg/s

Table 5: Main data for container ship from late 1970’s - even keel condition.
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Non-dimensional RPMM model data for the Container ship

X-Coefficients * 10−5 Y-Coefficients* 10−5 N-Coefficients* 10−5 K-Coefficients* 10−5

Xv = −24.0 Yv = −725.0 Nv = −300 Kv = 25.0
Xvv = −1.0 Yvv = 98.6 Nvv = 0.6 Kvv = 0.0

Yv|v| = −5801.5 Nv|v| = −712.9 Kv|v| = 99.2
Xδ = −1.4 Yδ = 248.1 Nδ = −128.9 Kδ = −6.5
Xδδ = −116.8 Yδδ = 13.4 Nδδ = −11.9 Kδδ = −0.8
Xu = −226.2 Yδδδ = −193.0 Nδδδ = 101.4 Kδδδ = 4.1
Xuu = −64.5 Yδu = −379.4 Nδu = 196.9 Kδu = 8.9
Xuuu = −137.2 Yδδu = −55.6 Nδδu = 12.8 Kδδu = 1.3

Yδδδu = 232.3 Nδδδu = −125.4 Kδδδu = −4.8
X0 = 0.0 Y0 = 4.7 N0 = −0.6 K0 = −0.1
Xvδ = 124.5 Y0u = −5.3 N0u = 6.5 K0u = 1.1
Xvδδ = −341.0 Yδv = −100.0 Nδv = −24.6 Kδv = 5.4
Xvvδ = 0.0 Yδvv = 189.2 Nδvv = −349.1 Kδvv = −0.9
Xδu = −17.2 Yδ|v| = 0.0 Nδ|v| = 0.0 Kδ|v| = 0.0
Xδδu = 224.9
Xφ = −5.9 Yφ = 37.7 Nφ = −17.9
Xφφ = −42.2 Yφφ = 0.0 Nφφ = 0.0
Xvφ = 108.1 Yvφ = 144.9 Nvφ = 17.8 Kvφ = −14.7
Xvφφ = 0.0 Yvφφ = 2459.3 Nvφφ = −0.9 Kvφφ = −103.9
Xφvv = 0.0 Yφvv = 177.2 Nφvv = −933.9 Kφvv = −6.2
Xr = 43.1 Yr = 118.2 Nr = −290.0 Kr = 0.8
Xrr = 4.4 Yr|r| = 0.0 Nr|r| = 0.0 Kr|r| = −20.0

Yrrr = −158.0 Nrrr = −224.5 Krrr = 0.0
Xvr = −24.0 Yr|v| = −409.4 Nr|v| = −778.8 Kr|v| = 41.1

Yrvv = −994.6 Nrvv = −1287.2 Krvv = −34.6
Yv|r| = −1192.7 Nv|r| = −174.7 Kv|r| = 10.4
Yvrr = −1107.9 Nvrr = 36.8 Kvrr = 22.2

Xu̇ = −124.4 Yṙ = −48.1 Nṙ = −30.0 Kṙ = −1.0
Yv̇ = −878.0 Nv̇ = 42.3 Kv̇ = 0
Yp = −3.4 Np = −8.0 Kp = −3.0

Xpp = 7.2 Yp|p| = 0.0 Np|p| = 0.0 Kp|p| = −1.0
Yppp = −9.3 Nppp = 0.0 Kppp = 0.0

Xppu = 3.9 Ypu = 23.6 Npu = 12.8 Kpu = 0.0
Ypu|pu| = −52.5 Npu|pu| = 0.0 Kpu|pu| = 0.0
Yṗ = 23.3 Nṗ = 0.2 Kṗ = −0.7

Table 6: Non-dimensional RPMM model test data for container ship.
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Appendix C: Main Data and RPMM model data for a Multipurpose
Naval Vessel.

Main particulars

Published with permission of the Danish Naval Material Command and Danish Maritime Institute.

Quantity Symbol Measure Unit
Length between perpendiculars Lpp 48 m
Beam B 8.6 m
Draft D 2.2 m
Displacement ∇ 350 m3

Nominal speed Unom 8 m/s
Nominal x coordinate of CG xG -3.38 m
Nominal z coordinate of CG zG -1.75 m
Nominal metacentric height GM 0.776 m
Nominal mass m = ∇ρ 35.6 104 Kg
Nominal inertia in roll Ixx 3.4 106 Kgm2

Nominal inertia in yaw Izz 60 106 Kgm2

Trans. Metacenter above keel KM 4.72 m
Trans. Center of Buoyancy KB 1.80 m
Trans. Metacenter BM KM − KB = 0.97 m
Rudder area AR 2 × 1.3 m2

Max. rudder angle δmax 45 deg

Max. rudder speed δ̇max 20 deg/s
Stall angle δstall 25 deg
Proportional band δpb 4 deg
Dist. to CP lx -23.5 m
Dist. to CP port lyp -3.2 m
Dist. to CP starboard lys 3.2 m
Dist. to CP lz 1.5 m
Tilt ang. port θtilt 6 deg
Tilt ang. starboard θtilt -6 deg
Lift coefficient CL 1.15

Table 7: Main data for a Multipurpose Naval Vessel at project stage.

X-Coefficients N-Coefficients K-Coefficients Y-Coefficients
Xu̇ = −17400 Nv̇=538000 Ku̇=296000 Yu̇ = −393000
Xu|u| = −1960 Nṙ = −38.7 × 106 Kṙ= 0.0 Yṙ = −1.4 × 106

Xvr= 0.33 × m Nṗ=0.0 Kṗ = −0.774 × 106 Yṗ = −0.296 × 106

N|u|v = −92000 K|u|v = 9260 Y|u|v = −11800
N|u|r = −4.71 × 106 Kur = −102000 Yur = 131000
Nv|v| = 0.0 Kv|v| = 29300 Yv|v| = −3700
Nr|r| = −202 × 106 Kr|r| = 0.0 Yr|r| = 0.0
Nv|r| = 0.0 Kv|r| = 0.621 × 106 Yv|r| = −0.794 × 106

Nr|v| = −15.6 × 106 Kr|v| = 0.142 × 106 Yr|v| = −0.182 × 106

Nφ|uv| = −0.214 × 106 Kφ|uv| = −8400 Yφ|uv| = 10800
Nφu|r| = −4.98 × 106 Kφ|ur| = −0.196 × 106 Yφ|ur| = 0.251 × 106

Nφu|u| = −8000 Kφuu = −1180 Yφuu = −74
N|u|p = 0.0 K|u|p = −15500 Y|u|p = 0.0
Np|p| = 0.0 Kp|p| = −0.416 × 106 Yp|p| = 0.0
Np = 0.0 Kp = −0.5 × 106 Yp = 0.0
Nφ = 0.0 Kφφφ = −0.325ρg∇ Yφ = 0.0
Nφφφ = 0.0 Yφφφ = 0.0

Yδuu = 2 × 3.5044 × 103

Table 8: Dimensional RPMM model test data for a Multipurpose Naval Vessel3.

3Sea water density ρ = 1014(Kg/m3), Gravity constant g = 9.80665 (m/s2).
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