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Abstract 	�

Real energy performances of buildings depend not only on deterministic aspects, such as building physics and HVAC systems, 
�
but also on stochastic aspects such as weather and occupants� behavior. Typically, occupant behavior is not adequately ���
considered when calculating the expected performance. As a result, field test studies all over Europe have shown discrepancies ���
between real and expected energy performance of buildings. In order to bridge this gap, stochastic occupants� behavior models ���
could be embedded into building energy performance simulation software. In order to make such models, there is a need for a ���
better understanding of occupants� behavior and in particular the reasons of their adjustments of building controls such as ���
window opening, heating set points, etc. The purpose of this paper was to analyze window opening behavior in residential ���
buildings, investigate which drivers lead occupants to interact with windows and how these actions can be modeled. A method ���
to analyze the probability of a state change of the windows, based on logistic regression, was applied to monitored data ���
(measured each minute) from two refurbished demonstration buildings. The weather and the five rooms of the 60 apartments �	�
located in the buildings were monitored in terms of air quality and thermal environment (presence of occupants was not �
�
monitored) during four years.  ���
The most common driver to open a window was the time of the day, followed by the carbon dioxide concentration. The most ���
common driver to close a window was the daily average outdoor temperature, followed by the time of the day.  ���

Keywords: Logistic regression, Natural ventilation, Buildings� energy performance, Building energy performance ���
simulation, Case study, Field test ���

1. Introduction ���
During the last decades, a big effort has been made to build new energy efficient buildings and make energy retrofits to the ���
existing building stock. However, new or retrofitted buildings do not always perform as predicted: field test studies all over ���
Europe [1�14] show higher final energy consumption t han predicted. The reasons for this discrepancy can be grouped into �	�
engineering system issues (e.g. components not performing as expected or wrongly installed, wrong installation of the �
�
insulation, bad insulation of thermal bridges, tightness, etc.), weather data as well as occupants’ behavior issues (differences in ���
modeled and real behavior regarding the interaction with windows and engineering systems). ���
The real energy performances of buildings depend in general on deterministic aspects, like building physics and the HVAC ���
systems, as well as stochastic (probabilistic) aspects, such as weather and occupants’ behavior. While a lot of effort has been ���
spent on deterministic modeling of the buildings as a whole, as well as on the generation of standard weather files (known as ���
test reference years) for many regions in the world, only in the last decade the importance of the dynamic interaction between ���
occupants and buildings has been recognized and researched. A reason for this can be connected to the fact that the relative ���
impact of the occupants’ behavior on the building energy performance seems to increase when building standards require lower ���
energy use [15]. Including the stochastic aspects of occupants’ behavior into building energy performance simulation software, �	�
could hence lead to better predictions of the buildings’ final energy consumption, especially for new low energy buildings or �
�
energy retrofitted buildings. ���

 ���
����������������������������������������������� ��!����"���#����$�����!���!���%��&'����

In order to improve the energy performance forecasts, there is a need to focus on occupants� behavior, defined as the set of ���
actions, executed by occupants, modifying the physical conditions of the built environment. Occupants also influence the indoor ���
environment passively through their presence (e.g. through the production of heat, water vapor, carbon dioxide, and volatile ���
organic compounds); thus, a holistic model of the occupants� behavior should include: ���
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1. periods of presence and absence of occupants ��
2. occupants� interaction with, among others, thermostats/valves, windows and sun-blinds (as schematized in Figure 1) ��

A consistent stochastic model of occupants’ behavior in residential buildings based on a large database of observed data has ��
not been developed yet, mostly due to lack of data. In fact, in studies where the presence of occupants was monitored (e.g. ��
through the use of time-use survey) and modeled [17,18], no information about occupants� behavior was recorded. Vice versa, ��
in studies focusing on the evaluation and modeling of occupants� behavior, based on monitoring data, reliable information about ��
real occupancy profiles is missing. In this context, in 2014, the International Energy Agency started the �IEA-EBC Annex 66 - ��
Definition and Simulation of Occupant Behavior in Buildings� [19]: this aims to bridge the gap between expected and observed 	�
energy performance of buildings, by modeling and integrating the occupants� behavior in buildings� simulation software.  
�
The architecture of a holistic occupants� behavior model could consist of a core for the generation of presence patterns (e.g. ���
based on Markov chain as in [17,20,21]), and, on top of this, of a variable number of add ons to reproduce human activities, ���
(e.g. related to settings of the engineering system, change of state of windows, use of appliances, etc.). Many models have ���
already been developed for reproducing occupants� activities: A plenary literature review on occupants� behavior models, up to ���
2013, is offered in [22]; a more recent review of state of the art models of occupants� behavior is offered in Yan et al. [23].  ���
In the European Union (EU28), space heating [24], which is influenced by the ventilation rate, accounts for more than two thirds ���
of residential buildings� energy consumption. As such, the energy consumption in residential buildings is under heavy influence ���
of the occupants� window opening behavior and any attempt to realistically model indoor environment and energy consumption ���
in residential buildings should include realistic models of the window operation. In order to construct such models, basic �	�
knowledge of the reasons for opening and closing windows, is needed.  �
�
In 2012 Fabi et al. [25] analyzed more than 70 papers to investigate why occupants opened and closed windows. In addition to ���
the literature review, the authors define the concept of drivers: �Factors influencing occupant behavior, both external and ���
individual, that could be named with the general term "Drivers", are the reasons leading to a reaction in the building occupant ���
and suggesting him or her to act (they namely "drive" the occupant to an action)�. From the analyzed literature review, Fabi et al. ���
conclude that: ���

1. Window opening behavior has a strong impact on both the indoor environmental quality and the energy performances ���
of buildings, ���

2. there is not a commonly agreed upon approach among scientists about the driving forces of occupants’ window ���
opening and closing behavior, �	�

3. most of the existing studies analyze the position of windows instead of the transition from state "Open" to state �
�
"Closed" and vice versa, and this might be problematic since the status of the windows influences the indoor ���
environment, ���

4. more efforts should be made to better understand and model occupants’ behavior. ���
 ���
One of the first attempts to mathematically model the occupants’ behavior related to natural ventilation was made by Fritsch et ���
al. [26]. They use a Markov Chain process and their model is based on the measured window opening angles recorded each ���
half hour for four windows in four office rooms. Each window is modeled with transition probability matrices with six states ���
respectively (the opening angles are grouped into five opening classes plus a class for the closing status) and adjusted for four ���
different outdoor temperature ranges. The model considers the windows to be closed at night and on weekends, and the �	�
generation of the window state profiles starts at the beginning of each working day (and ends therefore at the end of the day). �
�
Fritsch et al. [26] argue that the state of windows during night has, except for two cases, always been closed over the entire ���
observed heating period. However, this consideration is not valid for residential buildings, as shown in many field test studies ���
[25], [27].  ���
With their work "Interactions with window openings by office occupants" [28], Haldi et al. set a milestone in the modeling of ���
occupants’ behavior related to window operation in office buildings. For seven years, the authors monitored temperature, ���
window position (open/closed, no distinction between opening angles), and presence of occupants (with passive infra-red ���
sensors) of 14 offices in a building, and the outdoor environmental conditions through a weather station located 8 km away from ���
the building. They modeled the behavior following several approaches based on logistic probability distributions, Markov chains, ���
continuous-time random processes, and hybrid combinations of those models. They concluded that "[s]upported by rigorous �	�
cross-validation, [they] have demonstrated the superiority of a discrete-time Markov process approach and its strong added �
�
value compared with existing models". Further, they wrote: �[f]actors related to indoor air quality (e.g. CO2 or pollutant ���
concentration) should also be treated".  ���
A further contribution to the occupants’ modeling for natural ventilation is done by Andersen et al. within several works ���
[27,29,30]. In the last paper, the authors introduce a model for the transition of the state of windows (open to close and vice-���
versa close to open) based on observations collected from 15 dwellings located in Denmark. Contrarily to previous window ���
operation (or state) models introduced by 2013 and only based on thermal conditions, the authors also monitored indoor carbon ���
dioxide concentration as an indicator for indoor air quality. The models - one for the opening and one for the closing of the ���
windows - are based on the results of logistic regression analysis. The conclusion of the manuscript is that indoor CO2 ���
concentration and outdoor temperature are the two single most important variables (drivers) determining the window opening �	�
and closing probability respectively.  �
�
D�Oca and Hong [31] recently evaluated occupants� behavior related to natural ventilation in offices using logistic regression ���
analysis and two different data-mining approaches, cluster analysis and association rules mining. They state that indoor air ���
temperature, outdoor air temperature, time of the day (office arriving time and early morning) and occupancy presence are the ���
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top drivers for the window opening operation; indoor air temperature, time of the day (office leaving time and evening), ��
occupancy presence and outdoor air temperature are the top drivers for the window closing operation.  ��
From the literature review it is evident, that most analyses focused on office buildings, and that there is a lack of field test ��
studies related to residential buildings. Furthermore, several approaches were used to analyze and model occupants� behavior: ��
logistic regression analysis and mixed effect models seem to be proper instruments for evaluating the drivers, while Markov ��
chains are particularly indicated to model the time dependency of processes (e.g. opening and closing cycles). ��
In many of the mentioned papers [21, 24, 25, 26, 27, 28] there is agreement that factors related to indoor air quality could be a ��
driver for occupants� window operation. There is also agreement that factors related to thermal comfort should be included in 	�
models of window opening behavior. However, these conclusions are based on data from a limited number of windows in a 
�
limited number of apartments. The objective of this work was to investigate which drivers lead occupants to open or close ���
windows, based on one full year of measurements from 300 windows in 60 apartments.  ���
The drivers analyzed were related to thermal comfort (room air temperature, room relative humidity), indoor air quality (carbon ���
dioxide concentration), weather (wind speed, outdoor temperature, outdoor relative humidity) and time of the day. Compared to ���
other studies on modeling the state change of windows, the data used within this work had three main advantages: the ���
availability of both data related to thermal comfort and to indoor air quality, the big number of geometrically identical apartments ���
(however with different engineering systems) and a ten times higher time resolution. This high time resolution allowed for a ���
precise study of the drivers for a window state change, without missing short opening/closing phases (more on this topic in ���
section 3.2) �	�

2. Description of the applied methodology �
�
Logistic regression is a well-established statistical method used to analyze and model binary dependent variables (such as the ���
state of a window, closed or open, or the change of state of a window). It is used in many scientific fields, from medicine and ���
economics to engineering. As illustrated in the introduction, the method has been successfully adopted to describe the ���
probability of opening and closing events of windows. The main objective of the statistical analyses was to understand the ���
drivers leading occupants� to act (change the state of windows), thus providing researchers a background about how occupants� ���
make decisions, correlated to thermal comfort, indoor air quality, weather and time of the day. In order to tackle this research ���
question, the logistic regression analysis with multiple explanatory variables was applied singularly to each monitored window. ���
In this way, for each window, it was possible to determine which variables had a major influence on the probability of a change ���
of window state, and which did not. Thus, the variables were classified depending on the number of times they appeared in the �	�
models (the logistic regression equations). The variables used most frequently in the models were regarded as more important �
�
in general for opening/closing actions. ���
Logistic regression [32] was used as analysis and modeling method. Logistic regression is based on the logistic function as ���
expressed in equation 1. P(x) expresses the probability function for a certain event to happen (e.g. a window changes its state), ���
and, by definition, ���������	
�����. Equation 1 can be rewritten as in equation 2. ���

 � � �
����������

� � � (1)� ����

�� � �
���

� � �� � ����� � � (2)� � � ����

Where: ���
1. P(x) (or simply p) is the probability function, ���
2. α is the intercept, �	�
3. β is a coefficient, �
�
4. x is the explanatory variable. ���

 ���
Equation 2 describes the probability of an event depending on one explanatory variable, and is therefore used for simple linear ���
regression analysis. For regression analysis with n explanatory variables, the probability function p can be expressed as in ���
equation 3. ���

�� � �
���

� � �� � � � � ���� �!�� �"�"��� � � (3) ���

Andersen et al. [27] suggest to include interaction terms into the probability function. They argue that "the probability might ���
depend differently on x1 at one level of x2 as compared to another level of x2". For example, when inferring the probability of ���
opening (or closing) a window, it may happen that the coefficient βi of the xi explanatory variable at a certain time slot (e.g. �	�
morning) differs from the coefficient βi at a different time slot (e.g. night): in an extreme case, an increase of the temperature �
�
might result in an increase of the probability of opening a window in the morning, and in a decrease of the probability of opening ���
a window in the evening. Based on their suggestion, in order to include the interaction terms γi,j, equation 3 can therefore be ���
written as equation 4. Only interaction terms between continuous and categorical variables were used. ���

�� � �
���

� � �� � � � � ���� �!�� �"�" � #�	$���$ �!��#�	"���" �!� #"��	"�"���"� � � (4) ���

The "forward and backwards" selection of the variables for the regression models was executed based on the Akaike ���
information criterion (AIC), as suggested by Schweiker and Shukuya [33]: This allowed for a selection of a "best model" ���
containing only the most important explanatory variables (variables that have a consistent impact on the probability function). In ���
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practice, the process for the selection of the best model was implemented using the �step� function with the �glm� function in the ��
statistical language �R�, with n explanatory variables. It is described by the following steps: ��

1. each variable was fitted by the regression model (in a single-variable model), and the AIC calculated for each fit; ��
2. the variable with the lowest AIC was selected, and the model was fitted n-1 times with the selected variable and each ��

of the n-1 remaining variables; ��
3. the model based on two variables with the lowest AIC was selected and the AIC of this model is compared to the best ��

single-variable model (the single-variable model with the lowest AIC); Then: ��
a. If the new model (two-variables model) had a consistently lower AIC, the process went further to step 4,  	�
b. otherwise the single-variable model was chosen; 
�

4. The yet excluded n-2 variables were used to fit the model together with the two variables of the �two variables model� ���
with the lowest AIC, in a �three variables model� (t his is the so-called "forward selection"). Further, from each of the ���
three-variables models, three two-variables models, obtained by dropping each of the variables recursively, were fitted ���
(this is the so-called "backward selection"). Then:  ���

a. If none of the three-variable or "new generated" two-variable models had a consistently lower AIC than the ���
two-variables model with the lowest AIC from step 3, the model with the lowest AIC from step 3 was chosen, ���

b. Otherwise, the process went further with the same criteria, up to n-variables models. ���
 ���

��	�

Figure 2. Flux diagram of the process aimed to generate and obtain the best fitting model �
�

Further, a k-fold cross validation (with K=10) was executed on the top of the described selection process: Therefor, each data ���
sample was partitioned into ten sub-samples. Nine sub-samples were used for the training of the models, while one sub-sample ���
was used to test the model. This was done by using the measured input variables of the 10th subsample (the one which was not ���
used for the training) as input to the model and comparing the model output with the monitored window position. The operation ���
was executed 10 times: each subsample was used once as a test subsample, while the remaining nine sub-samples were used ���
as training samples. The analysis and modeling activity was executed for the window state change "opening" and the window ���
state change "closing" separately. By windows with more panels, p=0 corresponds to both panels closed, while p=1 ���
corresponds to at least one panel open. In order to infer the probability of opening and closing (the �state change probability�), ���
the data sample was partitioned into two sub-samples: sub-sample "window closed", to infer the probability that a window will be �	�
opened and sub-sample "window open", to infer the probability that a window will be closed. The complete modeling process is �
�
graphically described in the flux diagram of Figure 2. The analyses were executed in the language �R� using the packages ���
�Companion to Applied Regression� (car) and the pac kage �Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness ���
Estimation� (mgcv), within the programming environment R Studio.  ���

3. Description of the demonstration buildings and of the monitoring system ���
Measurements were conducted in three refurbished buildings (Figure 3) located in southern Germany. The buildings were built ���
at the end of the nineteen-fifties, with relatively poor materials and unpretentious engineering systems. The three buildings, ���
located next to each other, are geometrically identical. Each building has 3 entrances, and each entrance provides access to 10 ���
apartments over 5 floors. The buildings have a total of 90 apartments. The apartments have the same floor plan. They consist of ���
a kitchen, a bathroom, three rooms and a corridor. In this paper, the following nomenclature was used: �B� for building, e.g. �B2� �	�
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refers to the group of the 30 apartments in building 2, E for entrance, e.g. B2E1 indicated the 10 apartments located in building 2 ��
and accessible through entrance 1. The buildings are 52 m wide and 10 m long. Before retrofit, the gables had 4 cm insulation ��
material and the windows were double glazed; the roof, the floor to the cellar and the façade were not  insulated. The apartments ��
were heated through gas stoves installed in each living room. Domestic hot water was produced through gas flow heaters ��
installed in each apartment. ��

  ��

  ��

Figure 3. One building façade before retrofit (a). One back façade after the retrofit (c). Floor space  of the apartments, for one 	�
entrance with south-gable (b). Relative position and orientation of the buildings (d). 
�

3.1. The Retrofit of the Buildings ���

Table 1. Description of each retrofit layout in each of the 3 entrances in the three buildings: The HVAC system is supplied by ���
either District heating (DH) or heat pump (HP). The ventilation is exhaust air ventilation (EAV) or ventilation with heat recovery ���
(HR). The apartments are heated through radiators (Rad), floor heating (FH), warm air heating (VH) or ceiling heating (CH). ���
Domestic hot water is produced through central heat exchanger (HX) or fresh water heat exchanger stations (FWHX). ���

  Insulation Windows U-Val HVAC DHW 
B1, 2160m†, 
30 apartments 

14cm 0.035W/(m†K) 1.3 W/(m†K) DH, EAV, Rad Central HX 

B2E1, 720m† 
10 Apartments 

16cm 0.021W/(m†K) 1.3 W/(m†K) DH, EAV, window 
frame HR, Rad 

Apartment 
FWHX 

B2E2, 720m† 
10 Apartments 

16cm 0.021W/(m†K) 0.8  W/(m†K) DH, EAV, Rad Central HX 

B2E3 720m† 
10 Apartments 

16cm 0.021W/(m†K) 1.3 W/(m†K) DH, EAV, FH Central HX 

B3E1, 720m†  
10 Apartments 

Vacuum: 
4cm 0.008W/(m†K)  
4cm 0.021 W/(m†K) 

0.8  W/(m†K) CO2-Probe HP, HR 
central ventilation, 

FH 

Apartment 
FWHX 

B3E2, 720m†  
10 Apartments 

Vacuum: 
4cm 0.008W/(m†K) 
4cm 0.021 W/(m†K) 

0.8  W/(m†K) CO2-Probe master 
HP + slave HP, 
apart. HR, VH 

Apartment 
FWHX 

B3E3, 720m†  
10 Apartments 

Vacuum: 
4cm 0.008W/(m†K) 
4cm 0.021 W/(m†K) 

1.3  W/(m†K) Air HP + exhaust air 
HP, CH 

Apartment 
FWHX 
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Between 2008 and 2010 the buildings were retrofitted. The retrofit layouts were designed together with the municipal society ��
owning the buildings. Various engineering system components and building insulation materials as well as new windows (Figure ��
4) were selected and combined, to generate seven different retrofit layouts: in this way, the retrofit layouts can be compared, ��
and useful knowledge about optimal retrofitting can be gained. Building 1 and building 2 are connected to a district heating ��
network, while building 3 is heated through different types of heat pumps (HP). Depending on the entrance, radiators (Rad), ��
ceiling heating (CH), floor heating (FH) and ventilation heating (VH) were installed to deliver the heating energy to the indoor ��
heated spaces. Standard water heaters and low temperature peripheral domestic hot water (DHW) heaters were installed. In the ��
peripheral solution the DHW is generated in each apartment through so called fresh water heat exchanger stations (FWHX). The 	�
seven retrofit layouts are schematically described in Table 1. More information about the buildings and the retrofit layout can be 
�
found in [34�38]. ���
It should be noted that there are five windows per apartment; two of them (in kitchen and bathroom) have one opening panel.  ���
The two windows in the bedrooms and in the children rooms have three opening panels: for those windows, the panels on the ���
left and on the right can be opened independently and were monitored; the central panel can only be open (but not tilted) when ���
the right panel of the window is also completely open. The window (balcony-door) in the living room has three panels: the one on ���
the left can be open be open irrespective of the state of the other two panels and was monitored, the panel in the middle can ���
only be open (but not tilted) only if the left panel is open, and was not monitored. The panel on the right is fixed. ���

       ���

       �	�

Figure 4. Pictures of the windows and of the façade after retrofit. �
�

3.2. The Monitoring System and the Observed Data ���
To evaluate the energy performances of the refurbished buildings and the occupants� behavior, a comprehensive high time ���

resolution monitoring system was designed and installed (by the University of Applied Science Karlsruhe). The monitoring ���
system collected energy flows in the heat generation, the heat storage and the distribution system of both domestic hot water ���
(DHW) and heating (HE). In building 2 and building 3, the following variables were monitored every minute in each room of the ���
60 apartments:  ���

1. Air temperature [°C] ���
2. Relative humidity [%]  ���
3. CO2 concentration [ppm]  �	�
4. Volatile organic compounds (VOC) [-],  �
�
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5. Light on the ceiling [Lux], ��
6. Infrared/visible light ratio (to recognize the light source) [-], ��
7. Window opening sensors (open/closed).  ��

All variables (except for window position) were monitored through room monitoring units (RMUs) as shown in Figure 5. Further ��
information about the monitoring system can be found in [39]. In building 1, only 7 apartments were equipped with RMUs. The ��
evaluation presented in this manuscript was therefore related to B2 and B3. The windows� positions were monitored through ��
wired reed switches installed in the windows� frames and permanent magnets installed in the frame of the windows� moveable ��
panels. The monitoring started in 2010 (The buildings were completely occupied since spring 2011), the measurements were 	�
collected each 60 s, and the data was stored in HDF5 files. Due to crashes of the monitoring system, not all data was always 
�
collected correctly. For the year 2012 (chosen for the here proposed analysis), at least 90 % of the data was correctly collected; ���
the crashes of the monitoring system were spread out over the entire monitoring period. ���
Table 2 shows the specification of the sensors adopted to collect the variables used within the LRA (the choice of those ���
variables is explained in the next section). ���

�� ����

Figure 5. (a) RMU ready for plugging. The border on the bottom of the RMU is fixed to the wall. The circular opening permits the ���
light penetration. (b) Upper part of an open RMU: VOC sensor (bottom), CO2 sensor (in the center), temperature and relative ���
humidity sensor (top right outside the board), and illuminance sensor (behind the black tape, bottom left). ���
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����

����

�� �������

Figure 6. Monitored data (2012). Outdoor measurements (minutes and daily average): outdoor air temperature (a), outdoor ��
relative humidity (b) and wind speed (c). The numbers on the x-axis indicate the months of 2012.  Interruptions in the graphs are ��
caused by missing values. Indoor measurements: box plots of the values of air temperature (d), relative humidity (e) and CO2 ��
concentration, measured in the rooms of each entrance. The boxes contain 50% of the observations; the whiskers are up to 1.5 ��
the size of the boxes, the rest of the data is included in the flyers.  	�

Table 2. Specifications of the installed sensors 
�

�� (����� )������ *����� +������$�

*����
,-�� )����+��,-�.����/("0��'� �1��������� 2��������

/����������� )�������)3/��� 1���4,�1�5�����4,� 2�����4,�
*����#�����!�$� )�������)3/��� �6�1����6� 2��6�

7�������
/����������� (7)��(8�9�(7)	� 1���4,�1�5����4,� 2�����4,�

*����#�����!�$� (7)��(8�9�(7)	� ��6�1����6� 2��6�
7�!�����!� (7)��(8�9�(7)	� ��1�����9�� 2����9��

A description of the measured data used for the logistic regression analysis is offered in Figure 6. The subfigures (a) to (c) ���
provide information related to the observed weather conditions in 2012. February was particularly cold, with daily average ���
temperature down to -12 °C; On average, the outdoor  temperature in 2012 was 11 °C, against the typical  value for this region ���
(based on historical data and used e.g. for the generation of the energy labels of buildings) equal to 8.9 °C. The values related ���
to the indoor conditions are plotted in Figure 6 (d) to (f): each box shows the data collected in the 50 rooms (10 apartments) of ���
each building entrance (hence, each box represents over 25 million data points, which explains the high density of the flyers in ���
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the figures). In general, building 3 had higher temperatures and lower relative humidity than building 2. The CO2 concentration ��
was lower in B2E3 and B3, than in B2E1 and B2E2; however, it was not possible to find any dependency between the air quality ��
level and the different retrofit solutions.  ��

���
Figure 7. Number of times windows were opened, and duration of the state open, by month, for B3E2.  ��

As already mentioned in the introduction, it is important to monitor the opening cycles of the windows event-based, or within a ��
short time interval. Figure 7 shows the duration of time with open windows. In colder months, the duration was much shorter ��
than in warmer periods.   	�

4. Evaluation and modeling of the occupants� behavior 
�
In this section, the results of the regression analysis applied at room (window) level are illustrated. The method explained in ���
section 2 was applied to the 300 windows located in buildings B2 and B3. The only categorical variable used was �Time range�, ���
which distinguishes between low, medium and high probability of a state change of a window, and is grouped as follows: ���

1. Night, low probability of action: 7 hours, between 11:00 p.m. and 5:59 a.m. ���
2. Morning, high probability of action: 3 hours, between 7:00 a.m. and 9:59 a.m. ���
3. Rest of the day, medium of action: 14 hours, between 6:00 a.m. and 6:59 a.m. and between 10:59 a.m. and 22:59 ���

p.m. ���
The following continuous variables, measured each minute, were used: ���

1. Room air temperature [°C]; �	�
2. Room carbon dioxide concentration (CO2) [ppm], transformed through the reciprocal function to obtain a more suitable �
�

distribution for the use in the regression analysis [ppm-1]; ���
3. Room relative humidity (RRH) [%]; ���
4. Daily average outdoor temperature (DAT) [°C]; ���
5. Wind speed (WS) [m/s]; ���
6. Outdoor relative humidity (ORH) [%]; ���

The categorical variable �Time range� was used in o rder to take into account the differences in behavior, depending on the time ���
of the day. The categories were chosen based on the observations of the window opening activity in Building 2 entrance 1. ���
Those are illustrated in Figure 8.   ���

��	�

Figure 8. Observed no. of times windows were opened in B2E1, depending on the time of the day, and thresholds for the choice �
�
of the action probability levels. ���
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In the selection of the variables to be used for the LRA, correlating variables were avoided. The carbon dioxide concentration ��
was chosen instead of the volatile organic compounds (VOC) as the indicator for air quality. This choice is justified by the fact ��
that it is not possible to distinguish between good and bad odors through the VOC (some VOCs have pleasant odors e.g. used ��
in cleaning products and perfumes while others have unpleasant odors), while the CO2 concentration is a good indicator for ��
human bioeffluents [40]: hence, a high concentration of CO2 is an indicator for bad air quality. In addition, the continuous ��
variable �global radiation� was not included in the  evaluation since it correlated to the variable �room temperature�. The variable ��
�outdoor temperature� was taken into account, but o nly as daily average outdoor temperature to prevent correlation issues with ��
the time and with the outdoor relative humidity. 	�
As previously discussed in the introduction, the presence of occupants is a prerequisite for occupants� actions. A method to 
�
reveal occupants� presence using the carbon dioxide concentration in a room, and the mechanical ventilation patterns was ���
developed and introduced in [16]. However, since the door position of the rooms as well as the occupants� settings regarding ���
the ventilation system were unknown, the uncertainty on the results of the proposed algorithm was too big, hence the algorithm ���
was not used. As a consequence, the evaluation and modeling activity was executed for the entire measured time, without ���
distinction between occupied/not occupied timeslots (as those were unknown).  ���
In the next section, an example of an opening and a closing model, as result of the LRA, are introduced. Hence, in section 4.2 ���
and in section 4.3 the results of all the windows are presented. The results are organized in graphics, showing the explanatory ���
variables, selected with the procedure explained in section 2, and the number of models using each of them. In this way, the ���
occupants� behavior related to the operations of 300 windows (corresponding to 300 analyses resulting in 300 models for the �	�
opening operation and 300 models for the closing operation) can be evaluated. The results shown are related to those windows, �
�
for which at least one state change per year was observed (some of the sensors were defect and did not register the changes of ���
state): thus, the results were based on 273 windows. ���
 ���

4.1. Example of an opening and a closing model of one window ���
One model for the opening and one model for the closing action of one window were selected, with the aim to illustrate the way ���
the models work; the models presented within this section were selected randomly from the 546 models (273 for opening, 273 ���
for closing), and therefore those models are not representative. The presented models were obtained from the data monitored in ���
a living room of one apartment located in B2E1. The models were defined by equation 5 and 6, respectively for the opening and ���
the closing action. The terms of the equations were defined as following: �	�

1. α is the intercept; �
�
2. β are the coefficients, free of interactions; ���

����
�� � �%

���%
� � ��&	'()� � �&	*�+,-��*�+,-� � �&	.'�.' � � � (5) ���

 ���

�� � �/
���/

� � ��0	'()� � �0	12'�12' � �0	*�+,-��*�+,-� � �0	2.3�2.3 � �0	..3�..3 � �0	.'�.' ��� � � (6) ���

Table 3 Intercept α and coefficients β of the explanatory variables for the living room�s window model of an apartment in B2E1 ���
(n.p. implies that the variable was �not present� i n the model). ���

  B2E1, models of a living room�s window 

  Opening action Closing action 

  Coef.  Conf. interval Coef.  Conf. interval 

Expl. variable   2.50% 97,5%   2.50% 97,5% 

αNight -10.089 -11.262 -8.916 2.539 0.559 4.519 

αMorning -8.214 -9.431 -6.998 3.317 1.309 5.325 

αRest of the day -7.795 -9.002 -6.587 3.955 1.956 5.954 

βf((CO2
-1

)) -551.15 -696.32 -405.98 -785.70 -934.88 -636.52 

βRT 0.134 0.082 0.187 -0.268 -0.348 -0.188 

βRRH n.p. n.p. n.p. -0.058 -0.071 -0.044 

βDAT n.p. n.p. n.p. -0.089 -0.105 -0.074 

βARH n.p. n.p. n.p. 0.027 0.022 0.031 

The coefficients to solve equation 5 and equation 6, and their confidence interval, are listed in Table 3. When the coefficients β ���
were positive, an increase of the related explanatory variable caused an increase of the probability of the opening/closing �	�
action, while, when negative, an increase of the explanatory variable caused a decrease of the probability of the opening/closing �
�
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action. Since the CO2 concentration was transformed through the reciprocal function, an increase of the CO2 concentration ��
caused a decrease of the reciprocal of the CO2 concentration: hence a negative sign of the coefficient of f (CO2) meant that with ��
increasing CO2 concentration in the room, the probability of opening/closing a window increased. ��

 ��

��

��

���
Figure 9. Probability of opening action for the window in the living room of an apartment located in B2E1, at night (c and f), in 	�
the morning (b and e) and during the rest of the day (a and d). 
�

Which time slot is analyzed, depends on the chosen intercept: the explanatory categorical variable "time" only affected the ���
intercept, since no interaction terms between this variable and other continuous variables were present in these particular ���
models. For the presented opening action model, the probability of opening a window grew with increasing CO2 concentration ���
and with increasing room temperature. In the closing action model, the probability of closing a window grew with: ���

1. increasing CO2 concentration, ���
2. decreasing room temperature, ���
3. decreasing relative humidity in the room, ���
4. decreasing daily average outdoor temperature, ���
5. decreasing outdoor relative humidity. �	�
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The probability of the opening action in the model described in equation 5 is graphically illustrated in Figure 9. The probability of ��
the opening action for this particular window was very low at night, high in the morning and very high during the rest of the day. ��
The probability of opening varied between 0 and 0.02. The small values were a consequence of the very short measuring ��
interval (60 s). In essence, the model calculated the probability of opening and closing a window within the next minute. This ��
window was in "open status" 32.1 % of the time during 2012 (The analyses of this room were based on a time period of 329 ��
days and had a 10% failure rate of the monitoring system) and the window was closed (and opened, when it was in status ��
closed) 1014 times. On average, the probability of opening that window in 2012 was equal to 0.0032 (1014 opening events in ��
321683 minutes, 67.9 % of 329 days), while the probability of closing that window was equal to 0.0067 (1014 closing events in 	�
152077 minutes, 32.1 % of 329 days). 
�

4.2. Evaluation of the window opening action ���
Figure 10 shows the explanatory variables of the models of opening a window. The only categorical variable used, "time", was ���
included in over 70% of the windows. All the interaction terms with the variable "time" were used by less than 10% of the models ���
with the consequence that the variable time commonly influenced the intercept, but not the coefficients of the continuous ���
explanatory variables.  ���
The most common continuous explanatory variable was the carbon dioxide concentration, present in over 50% of the models. ���
The room temperature, the relative humidity of the room, the daily average outdoor temperature, and the outdoor relative ���
humidity were used by over 35% of the models. The wind speed turned out to be mostly irrelevant for the opening action. ���
�None� indicates that no explanatory variables were  found for the fitting of the model. �	�

 �
�
Figure 10. Drivers for opening and the number of rooms/models with the driver used as explanatory variable. ���

 ���
Figure 11. Drivers for opening and number of rooms/models with a positive correlation between the variable and the probability ���
of opening. ���

Figure 11 and Figure 12 show the drivers which directly (positively) and inversely (negatively) influenced the probability of the ���
action �window opening� respectively (this can be v erified based on the sign of the coefficients: a negative coefficient shows a ���
negative correlation to the probability of action). An increase in carbon dioxide concentration leads to an increase of the ���
probability of window opening for more than 45% of the windows; However, contrary to this result, the carbon dioxide ���
concentration negatively influenced the opening action for approximately 6% of the models; this is not necessarily a �	�
contradiction, and could be related to the occupancy (which is not included in the models) and window opening behavior upon �
�
arrival. The probability of opening windows increased with increasing indoor temperatures, and by increasing room relative ���
humidity and daily average outdoor temperature (each of these explanatory variables was present in more than 35% of the ���
models). The only remarkable explanatory variable that negatively influenced the opening of windows (more than 30 % of the ���
windows) was the outdoor relative humidity. ���
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 ��
Figure 12. Drivers for opening and number of rooms/models with a negative correlation between the driver and the probability of ��
opening. ��

4.3. Evaluation of the window closing action ��
Figure 13 shows the explanatory variables of the logistic regression models of closing action. Figure 14 and Figure 15 show the ��
drivers that positively and negatively influenced window opening action respectively. The daily average outdoor temperature ��
was the most common driver (in almost 70% of the models); in particular, as Figure 15 shows, the probability of closing windows ��
increased with decreasing daily average outdoor temperature. The variable time was present in almost half of the models.  	�
Further, an increase in the carbon dioxide concentration was associated with increasing probability of the closing action: the 
�
carbon dioxide concentration correlated with the presence of occupants, and the presence of occupants is a necessary ���
condition for the window to be closed. In almost 40% of the models, a decrease of the room temperature corresponded to an ���
increase of the probability of closing the window. ���

 ���
Figure 13. Drivers for closing and number of apartments/models with the driver used as explanatory variable. ���

 ���
Figure 14. Drivers for closing and number of rooms/models with a positive correlation between the variable and the probability of ���
closing. ���
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 ��
Figure 15. Drivers for closing and number of rooms/models with a negative correlation between the driver and the probability of ��
closing. ��

4.4. Differences in behavior related to room typology ��
In this section, the explanatory variables of the logistic regression models for the opening and the closing action are illustrated, ��
depending on room typology. The names �living room� , �bedroom� and �children room� only refer to the n omenclature used in ��
the floor space of Figure 3; the real use of those rooms is unknown. In contrast to the other rooms, the living room has a ��
balcony-door. The most common drivers for the opening and the closing action, depending on room typology, are listed in Table 	�
4 and Table 5 respectively. 
�
The daily average outdoor temperature influenced the opening models of kitchen windows less than the window models of the ���
other rooms. In addition, the relative humidity was present in two thirds of the models of bathroom windows, and in more than ���
half of the models of kitchen windows. Finally, wind speed was found in 13 % of the opening models of the living room windows, ���
against an average value over the entire field test equal to 4 %; for the closing models, wind speed was found in 55.6 % of the ���
models, against an average value over the entire field test of 20.9 % This could be due to the fact that the living room windows ���
are much bigger than the windows in the other rooms; therefore wind may have a stronger impact on the comfort of occupants. ���

4.5. Differences in behavior related to HVAC system ���
Within this section, the share of explanatory variables within the models is compared depending on the retrofit solution of the ���
buildings (as illustrated in Table 6 and Table 7). The CO2 concentration was a driver for 53.5 % of the windows, varying between �	�
41.3 % for B2E2 and 70.8 % for B3E3: however, these two entrances have the same ventilation system. Similar considerations �
�
can be applied to the other variables. In conclusion, there were no clear trends showing differences in the drivers for window ���
opening behavior between the buildings� different ventilation systems..  ���

4.6. Differences in behavior related to level of the apartments ���
In this section, the share of explanatory variables within the models is compared depending on the level of the apartments (as ���
illustrated in Table 8 and Table 9). The variables varied strongly depending on the level of the apartments. However, it was not ���
possible to find systematic patterns in the variation of the behavior. The change in behavior may have been a result of ���
distribution of occupants within the different levels.   ���

Table 4 Share of the drivers for the opening action, of all the models and of the models of each room typology (e.g. Time 73.7 % ���
for the kitchen indicates that 73.7 % of the 60 models obtained by analyzing the windows in the 60 kitchens, located in the �	�
demonstration buildings, used the explanatory variable, time).  �
�

����

All Kitchen Bathroom Livingroom Bedroom Childrenroom

Time 72.2% 73.7% 76.7% 83.3% 57.7% 68.0%

Room CO2 concentration 53.5% 47.4% 56.7% 68.5% 40.4% 54.0%

Room air temperature 41.8% 47.4% 51.7% 50.0% 19.2% 38.0%

Room relative humidity 39.9% 52.6% 66.7% 33.3% 17.3% 24.0%

Daily average outdoor temperature 38.8% 24.6% 31.7% 51.9% 42.3% 46.0%

Outdoor relative humidity 35.9% 45.6% 36.7% 40.7% 26.9% 28.0%

Time & Room air temperature 5.5% 3.5% 8.3% 7.4% 0.0% 8.0%

Time & Room CO2 concentration 4.8% 1.8% 1.7% 3.7% 7.7% 10.0%

Wind speed 4.0% 3.5% 1.7% 13.0% 0.0% 2.0%

Time & Daily average outdoor temperature 2.9% 0.0% 1.7% 3.7% 5.8% 4.0%

Time & Room relative humidity 2.6% 1.8% 6.7% 1.9% 0.0% 2.0%

None 1.8% 1.8% 0.0% 0.0% 3.8% 4.0%

Time & Outdoor relative humidity 0.7% 1.8% 0.0% 1.9% 0.0% 0.0%
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Table 5 Share of the drivers for the closing action of all the models and of the models of each room typology.��

���

���
Table 6 Share of the drivers for the opening action, of all the models and of the models of each retrofit layout.��

 ��

Table 7 Share of the drivers for the closing action, of all the models and of the models of each retrofit layout.��

���

�	�

All Kitchen Bathroom Livingroom Bedroom Childrenroom

Daily average outdoor temperature 67.8% 64.9% 75.0% 74.1% 57.7% 66.0%

Time 49.1% 40.4% 36.7% 72.2% 46.2% 52.0%

Room CO2 concentration 42.5% 26.3% 43.3% 72.2% 36.5% 34.0%

Room air temperature 40.7% 42.1% 35.0% 44.4% 40.4% 42.0%

Outdoor relative humidity 33.0% 22.8% 25.0% 55.6% 30.8% 32.0%

Room relative humidity 29.3% 19.3% 23.3% 50.0% 21.2% 34.0%

Wind speed 20.9% 8.8% 3.3% 55.6% 15.4% 24.0%

Time & Daily average outdoor temperature 7.3% 7.0% 5.0% 13.0% 7.7% 4.0%

Time & Room CO2 concentration 5.9% 0.0% 0.0% 20.4% 1.9% 8.0%

None 3.3% 5.3% 1.7% 1.9% 3.8% 4.0%

Time & Room air temperature 2.9% 1.8% 0.0% 9.3% 0.0% 4.0%

Time & Room relative humidity 1.1% 0.0% 0.0% 1.9% 0.0% 4.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 3.7% 0.0% 0.0%

Time & Wind speed 0.7% 0.0% 0.0% 1.9% 0.0% 2.0%

All B2E1 B2E2 B2E3 B3E1 B3E2 B3E3

Time 72.2% 77.8% 76.1% 84.6% 70.8% 66.0% 60.4%

Room CO2 concentration 53.5% 57.8% 41.3% 64.1% 45.8% 42.6% 70.8%

Room air temperature 41.8% 46.7% 37.0% 41.0% 35.4% 36.2% 54.2%

Room relative humidity 39.9% 42.2% 47.8% 61.5% 43.8% 29.8% 18.8%

Daily average outdoor temperature 38.8% 37.8% 41.3% 48.7% 35.4% 42.6% 29.2%

Outdoor relative humidity 35.9% 28.9% 47.8% 41.0% 43.8% 23.4% 31.3%

Time & Room air temperature 5.5% 8.9% 8.7% 5.1% 4.2% 4.3% 2.1%

Time & Room CO2 concentration 4.8% 4.4% 6.5% 7.7% 8.3% 2.1% 0.0%

Wind speed 4.0% 2.2% 4.3% 2.6% 2.1% 4.3% 8.3%

Time & Daily average outdoor temperature 2.9% 0.0% 0.0% 7.7% 4.2% 4.3% 2.1%

Time & Room relative humidity 2.6% 2.2% 2.2% 5.1% 4.2% 2.1% 0.0%

None 1.8% 2.2% 0.0% 0.0% 4.2% 2.1% 2.1%

Time & Outdoor relative humidity 0.7% 0.0% 2.2% 0.0% 2.1% 0.0% 0.0%

All B2E1 B2E2 B2E3 B3E1 B3E2 :�.�
Daily average outdoor temperature 67.8% 77.8% 80.4% 74.4% 58.3% 61.7% 56.3%

Time 49.1% 53.3% 43.5% 64.1% 47.9% 57.4% 31.3%

Room CO2 concentration 42.5% 51.1% 32.6% 51.3% 39.6% 51.1% 31.3%

Room air temperature 40.7% 35.6% 41.3% 35.9% 43.8% 44.7% 41.7%

Outdoor relative humidity 33.0% 37.8% 32.6% 48.7% 31.3% 31.9% 18.8%

Room relative humidity 29.3% 17.8% 13.0% 35.9% 41.7% 36.2% 31.3%

Wind speed 20.9% 17.8% 21.7% 23.1% 25.0% 23.4% 14.6%

Time & Daily average outdoor temperature 7.3% 2.2% 8.7% 10.3% 12.5% 2.1% 8.3%

Time & Room CO2 concentration 5.9% 8.9% 6.5% 2.6% 6.3% 6.4% 4.2%

None 3.3% 2.2% 4.3% 0.0% 4.2% 6.4% 2.1%

Time & Room air temperature 2.9% 2.2% 0.0% 2.6% 2.1% 10.6% 0.0%

Time & Room relative humidity 1.1% 2.2% 0.0% 0.0% 2.1% 2.1% 0.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 0.0% 2.1% 0.0% 2.1%

Time & Wind speed 0.7% 0.0% 0.0% 0.0% 2.1% 2.1% 0.0%
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Table 8 Share of the drivers for the opening action, of all the models and of the models of each level. ��

 ��
Table 9 Share of the drivers for the closing action, of all the models and of the models of each level.��

���

5. Discussion ��
In the analysis the daily average outdoor temperature was used instead of the actual outdoor temperature measured each ��
minute to infer the probability of opening and closing of windows. The wide outdoor temperature variation within a day may have ��
different impact on the probability of opening and closing the windows. However, the choice was made to avoid correlation 	�
issues of this variable with other variables such as room temperature, outdoor humidity and time of day. Additionally, this can 
�
facilitate the use of the models for future applications when, for example, only daily average values of the outdoor temperature ���
are available. ���
The models that were used to investigate the drivers were all developed using the AIC as a means to select variables. It turned ���
out that all variables in the models had a statistically significant impact (p<0.05) on the window opening/closing probability. This ���
implies that the observed correlations are not likely to be random. In the analyses, we investigated the sign of the correlation ���
(positive or negative) but we did not investigate the size of the coefficients, which is a measure of the size of the effect. As such, ���
the results in this paper only state how the variables affected the window opening/closing probability (positively or negatively). It ���
does not state how big the effects were. ���
Furthermore, in order to keep the interpretation of the results at a manageable level, interactions between continuous variables �	�
were not included. Interaction terms between the categorical variable �time� with the continuous varia bles were included, but �
�
were used by less than 10 % of the models.  ���
The main scope of the work was the investigation of the drivers for opening and closing windows, as discussed in section 4.2 ���
and 4.3 respectively. Time of day was the most frequent driver for opening windows and the second most frequent driver for ���
closing windows. This could be an indication that the observed window opening behavior was linked to specific activities which ���
occur at specific times. E.g. a state change is less likely to occur when the occupants are asleep than when they are awake. ���
And most occupants tend to sleep during the night. As such, the lower probability of opening and closing windows during the ���
night was probably linked to the occupants� sleeping patterns rather than the time itself. Likewise, the peaks in state changes ���
during morning and evening in Figure 8 could be a consequence of typical activities at those times of the day (e.g. showering, ���
cooking, or simply moving from one room to another). However, since we did not gather information about the occupants� �	�
activities, we cannot point to a direct explanation. �
�

All 1st Floor 2nd Floor 3rd Floor 4th Floor 5th Floor

Time 72.2% 73.6% 68.5% 81.5% 74.1% 63.8%

Room CO2 concentration 53.5% 47.2% 51.9% 51.9% 50.0% 65.5%

Room air temperature 41.8% 54.7% 20.4% 46.3% 29.6% 56.9%

Room relative humidity 39.9% 37.7% 42.6% 44.4% 37.0% 37.9%

Daily average outdoor temperature 38.8% 34.0% 37.0% 48.1% 38.9% 36.2%

Outdoor relative humidity 35.9% 28.3% 37.0% 51.9% 37.0% 25.9%

Time & Room air temperature 5.5% 9.4% 5.6% 3.7% 1.9% 6.9%

Time & Room CO2 concentration 4.8% 0.0% 7.4% 0.0% 3.7% 12.1%

Wind speed 4.0% 9.4% 1.9% 1.9% 0.0% 6.9%

Time & Daily average outdoor temperature 2.9% 1.9% 0.0% 3.7% 5.6% 3.4%

Time & Room relative humidity 2.6% 1.9% 1.9% 1.9% 3.7% 3.4%

None 1.8% 0.0% 1.9% 0.0% 3.7% 3.4%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 1.9% 1.9% 0.0%

All 1st Floor 2nd Floor 3rd Floor 4th Floor 5th Floor

Daily average outdoor temperature 67.8% 62.3% 66.7% 70.4% 68.5% 70.7%

Time 49.1% 52.8% 46.3% 59.3% 37.0% 50.0%

Room CO2 concentration 42.5% 43.4% 46.3% 50.0% 29.6% 43.1%

Room air temperature 40.7% 43.4% 31.5% 48.1% 35.2% 44.8%

Outdoor relative humidity 33.0% 28.3% 35.2% 37.0% 25.9% 37.9%

Room relative humidity 29.3% 24.5% 29.6% 42.6% 27.8% 22.4%

Wind speed 20.9% 20.8% 16.7% 25.9% 20.4% 20.7%

Time & Daily average outdoor temperature 7.3% 11.3% 3.7% 11.1% 3.7% 6.9%

Time & Room CO2 concentration 5.9% 11.3% 5.6% 7.4% 1.9% 3.4%

None 3.3% 0.0% 1.9% 3.7% 5.6% 5.2%

Time & Room air temperature 2.9% 3.8% 0.0% 3.7% 3.7% 3.4%

Time & Room relative humidity 1.1% 1.9% 1.9% 0.0% 1.9% 0.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 3.7% 0.0% 0.0%

Time & Wind speed 0.7% 0.0% 0.0% 0.0% 1.9% 1.7%
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In general, the time of day, the CO2 concentration and the average outdoor temperature appeared most frequently in the models ��
of window opening and closing. These results support the tendency of the results in [27] and underline the importance of ��
including indoor air quality indicators in any attempts of modeling occupants� window opening behavior in residential buildings. ��
The most frequently occurring driver for closing of windows was the daily outdoor average temperature and in the majority of the ��
models the association was negative, i.e. the probability of closing a window increased with decreasing daily outdoor average ��
temperature. This is in agreement with Fabi et al. [41], who found that outdoor temperature was negatively correlated with ��
window closing in two of the three best performing models of window opening behavior. From this, a general picture emerges: ��
Occupants tend to open the windows at specific times of day (probably associated to activities) and when the CO2 concentration 	�
and relative humidity is elevated. They tend to close windows when it is cold outside and at specific times of day (probably 
�
associated with their activities). ���
The differences in drivers for the behavior related to the room typology, to the retrofit layout and to the level of the apartment ���
were investigated. The room typology (kitchen, bathroom, other) and the window type (balcony-door, normal window) clearly ���
lead occupants to a diversified behavior. The time of day remained as the single most frequent driver for window opening across ���
all room typologies and room relative humidity was the second most frequent driver in the kitchen and bathroom. In the living ���
room and children room, the second most frequent driver was the CO2 concentration. This indicates that the occupants� window ���
opening behavior was driven by the activities in the home and aimed at removing pollutants from the indoor air (in this case, ���
moisture from showering and cooking and bioeffluents from the rest of the rooms).  No systematic changes in drivers for the ���
observed behavior were recognizable, when comparing the retrofit layout and the level of the apartments. Interestingly, no �	�
pattern was recognized when comparing B2 and B3E3 (equipped with exhaust ventilation) to B3E1 and B3E2 (equipped with �
�
balanced ventilation with heat recovery). Even though the drivers for the opening and closing of windows were not different ���
between the retrofit layouts, the average time with window open was different, both between the apartments, and between the ���
entrances. For example, in 2012, B2E3 had open windows for 29 % of the time, B3E2 for 39 % of the time. In order to ���
investigate whether those differences were statistically significant or not (e.g. due to the random distribution of tenants within the ���
buildings), the distributions of the average positions of the windows of each apartment were used for a double comparison (each ���
comparison for two entrances) in the Wilcoxon-Mann-Whitney test: the results indicated statistical significance of the differences ���
between B2E1 and B3E2, and between B2E3 and B3E2, but only for the year 2012. ���
Each window was modeled through a logistic function. Those models can be implemented in building energy performance ���
simulation software. Since the occupants, and thus the models, react to variables that are influenced by the presence of �	�
occupants (e.g. carbon dioxide concentration in the air), those models can only be used within a simulation, when occupants’ �
�
presence profiles are available. Only if presence patterns are provided, the CO2 emissions caused by occupants could be ���
reproduced in the dynamic simulation, and therefore the model could render the occupants� reaction to this air quality parameter ���
correctly. However, this has the disadvantage that presence profiles and window models would not be congruent, since those ���
would come from different observations or only from general assumptions. Furthermore, in the literature, a model that ���
reproduces the presence of occupants in the residential sector at room level resolution, and based on observations, does not ���
exist at the time of writing. To test the models within a building energy simulation software, presence patterns simulating the ���
movements of occupants between the rooms of an apartment could be modeled using an agent based approach through ���
inhomogeneous Markov Chains based on assumptions about the presence of each occupant and the probability of their ���
transition between rooms at given timestamps. The occupants of 34 of the 60 apartments were interviewed, and disclosed the �	�
number of occupants in their own apartment, as well as the average time per day when the apartment is not occupied, �
�
distinguishing between weekdays and weekends. Such information, together with the collected data in the rooms, could be used ���
to generate the necessary presence patterns, making use of the Bayes theorem and the Markov Chains technique [42]. ���
The LRA procedure was effective when focusing on the evaluation of the drivers but had the disadvantage of generating two ���
models for each window, one for opening and one for closing. In order to model the occupants� behavior, it would probably be ���
more meaningful to make one model per apartment and use the room as an explanatory variable [27]; alternatively, it would be ���
possible to make one general model for opening and one for closing, using the mixed effect modeling technique, and setting the ���
apartment and the room as further explanatory variables [43]. ���
To generate congruent models of presence and behavior, with a holistic approach, it would be beneficial to follow the procedure ���
described within this paper for buildings with known occupancy patterns. Those patterns could help on the one hand, to better �	�
and more precisely fit the models, and on the other hand, to use the models under the real occupants� presence conditions. �
�
Logistic regression was confirmed to be a strong and robust analysis methodology for investigating the drivers for occupants to ���
interact with the built environment. The strengths of the models are related to the high time resolution of the data, the use of an ���
indoor air quality parameter as an explanatory variable, and the distinction of the room use typology. The weaknesses are ���
mostly due to the lack of data related to the presence of occupants.�Through the logistic regression analysis, each window was ���
modeled singularly. Thus, 546 models were generated. In order to reduce the number of models while including the occupants’ ���
diversity, Haldi [28] suggested the use of a generalized linear mixed effect logistic regression model. This approach could be ���
investigated in future modeling activities, based on the observed data from the demonstration buildings or of new field tests, ���
where the presence of occupants could be monitored. ���

6. Conclusions �	�

The results of the logistic regression identified the drivers of the opening and closing of windows. The most common drivers for �
�
opening windows were time of day (for more than 70 % of the modeled windows), and the indoor carbon dioxide concentration ���
(for over 50 % of the modeled windows). The most common drivers for closing windows were the daily average outdoor ���
temperature (for almost 70 % of the modeled windows) and the time of day (for more than 50 % of the modeled windows).  ���
The room typology (kitchen, bathroom, other) and the window type (balcony-door/normal window) affected the frequency with ���
which the drivers appeared in the models of both window openings and closings. The time of day and average outdoor ���
temperature remained the most frequent drivers for opening and closing, respectively, across all room typologies and window ���
types. For the opening case, the room relative humidity was the second most frequent driver (after the time of day) in the ���
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kitchen and bathroom, while in the living room and children�s room, the second most frequent driver was the CO2 concentration. ��
This indicates that the occupants� window opening behavior was driven by the activities in the home (like showering and cooking ��
activities, which produce moisture) and by pollutants in the indoor air (windows were opened to remove moisture from kitchen ��
and bathroom and to remove bioeffluents from the rest of the rooms). ��
Finally, no systematic changes in drivers for the observed behavior were recognizable, when comparing the ventilation ��
principles and the level of the apartments. ��
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Coef. Coef. 

Expl. variable 2.50% 97,5% 2.50% 97,5%
aNight -10.089 -11.262 -8.916 2.539 0.559 4.519
aMorning -8.214 -9.431 -6.998 3.317 1.309 5.325
aRest of the day -7.795 -9.002 -6.587 3.955 1.956 5.954
bf(CO2) -551.15 -696.32 -405.98 -785.70 -934.88 -636.52
bRT 0.134 0.082 0.187 -0.268 -0.348 -0.188
bRRH n.p. n.p. n.p. -0.058 -0.071 -0.044
bDAT n.p. n.p. n.p. -0.089 -0.105 -0.074
bARH n.p. n.p. n.p. 0.027 0.022 0.031

B2E1, models of a living room's window

Opening action Closing action

Conf. interval Conf. interval
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All Kitchen Bathroom Livingroom Sleepingroom Childrenroom

Time 72.2% 73.7% 76.7% 83.3% 57.7% 68.0%

Room CO2 concentration 53.5% 47.4% 56.7% 68.5% 40.4% 54.0%

Room air temperature 41.8% 47.4% 51.7% 50.0% 19.2% 38.0%

Room relative humidity 39.9% 52.6% 66.7% 33.3% 17.3% 24.0%

Daily average outdoor temperature 38.8% 24.6% 31.7% 51.9% 42.3% 46.0%

Outdoor relative humidity 35.9% 45.6% 36.7% 40.7% 26.9% 28.0%

Time & Room air temperature 5.5% 3.5% 8.3% 7.4% 0.0% 8.0%

Time & Room CO2 concentration 4.8% 1.8% 1.7% 3.7% 7.7% 10.0%

Wind speed 4.0% 3.5% 1.7% 13.0% 0.0% 2.0%

Time & Daily average outdoor temperature 2.9% 0.0% 1.7% 3.7% 5.8% 4.0%

Time & Room relative humidity 2.6% 1.8% 6.7% 1.9% 0.0% 2.0%

None 1.8% 1.8% 0.0% 0.0% 3.8% 4.0%

Time & Outdoor relative humidity 0.7% 1.8% 0.0% 1.9% 0.0% 0.0%
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All Kitchen Bathroom Livingroom Sleepingroom Childrenroom

Daily average outdoor temperature 67.8% 64.9% 75.0% 74.1% 57.7% 66.0%

Time 49.1% 40.4% 36.7% 72.2% 46.2% 52.0%

Room CO2 concentration 42.5% 26.3% 43.3% 72.2% 36.5% 34.0%

Room air temperature 40.7% 42.1% 35.0% 44.4% 40.4% 42.0%

Outdoor relative humidity 33.0% 22.8% 25.0% 55.6% 30.8% 32.0%

Room relative humidity 29.3% 19.3% 23.3% 50.0% 21.2% 34.0%

Wind speed 20.9% 8.8% 3.3% 55.6% 15.4% 24.0%

Time & Daily average outdoor temperature 7.3% 7.0% 5.0% 13.0% 7.7% 4.0%

Time & Room CO2 concentration 5.9% 0.0% 0.0% 20.4% 1.9% 8.0%

None 3.3% 5.3% 1.7% 1.9% 3.8% 4.0%

Time & Room air temperature 2.9% 1.8% 0.0% 9.3% 0.0% 4.0%

Time & Room relative humidity 1.1% 0.0% 0.0% 1.9% 0.0% 4.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 3.7% 0.0% 0.0%

Time & Wind speed 0.7% 0.0% 0.0% 1.9% 0.0% 2.0%



ACCEPTED MANUSCRIPTAll B2E1 B2E2 B2E3 B3E1 B3E2 B3E3

Time 72.2% 77.8% 76.1% 84.6% 70.8% 66.0% 60.4%

Room CO2 concentration 53.5% 57.8% 41.3% 64.1% 45.8% 42.6% 70.8%

Room air temperature 41.8% 46.7% 37.0% 41.0% 35.4% 36.2% 54.2%

Room relative humidity 39.9% 42.2% 47.8% 61.5% 43.8% 29.8% 18.8%

Daily average outdoor temperature 38.8% 37.8% 41.3% 48.7% 35.4% 42.6% 29.2%

Outdoor relative humidity 35.9% 28.9% 47.8% 41.0% 43.8% 23.4% 31.3%

Time & Room air temperature 5.5% 8.9% 8.7% 5.1% 4.2% 4.3% 2.1%

Time & Room CO2 concentration 4.8% 4.4% 6.5% 7.7% 8.3% 2.1% 0.0%

Wind speed 4.0% 2.2% 4.3% 2.6% 2.1% 4.3% 8.3%

Time & Daily average outdoor temperature 2.9% 0.0% 0.0% 7.7% 4.2% 4.3% 2.1%

Time & Room relative humidity 2.6% 2.2% 2.2% 5.1% 4.2% 2.1% 0.0%

None 1.8% 2.2% 0.0% 0.0% 4.2% 2.1% 2.1%

Time & Outdoor relative humidity 0.7% 0.0% 2.2% 0.0% 2.1% 0.0% 0.0%
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All B2E1 B2E2 B2E3 B3E1 B3E2 ����

Daily average outdoor temperature 67.8% 77.8% 80.4% 74.4% 58.3% 61.7% 56.3%

Time 49.1% 53.3% 43.5% 64.1% 47.9% 57.4% 31.3%

Room CO2 concentration 42.5% 51.1% 32.6% 51.3% 39.6% 51.1% 31.3%

Room air temperature 40.7% 35.6% 41.3% 35.9% 43.8% 44.7% 41.7%

Outdoor relative humidity 33.0% 37.8% 32.6% 48.7% 31.3% 31.9% 18.8%

Room relative humidity 29.3% 17.8% 13.0% 35.9% 41.7% 36.2% 31.3%

Wind speed 20.9% 17.8% 21.7% 23.1% 25.0% 23.4% 14.6%

Time & Daily average outdoor temperature 7.3% 2.2% 8.7% 10.3% 12.5% 2.1% 8.3%

Time & Room CO2 concentration 5.9% 8.9% 6.5% 2.6% 6.3% 6.4% 4.2%

None 3.3% 2.2% 4.3% 0.0% 4.2% 6.4% 2.1%

Time & Room air temperature 2.9% 2.2% 0.0% 2.6% 2.1% 10.6% 0.0%

Time & Room relative humidity 1.1% 2.2% 0.0% 0.0% 2.1% 2.1% 0.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 0.0% 2.1% 0.0% 2.1%

Time & Wind speed 0.7% 0.0% 0.0% 0.0% 2.1% 2.1% 0.0%



ACCEPTED MANUSCRIPTAll 1st Floor 2nd Floor 3rd Floor 4th Floor 5th Floor

Time 72.2% 73.6% 68.5% 81.5% 74.1% 63.8%
Room CO2 concentration 53.5% 47.2% 51.9% 51.9% 50.0% 65.5%

Room air temperature 41.8% 54.7% 20.4% 46.3% 29.6% 56.9%

Room relative humidity 39.9% 37.7% 42.6% 44.4% 37.0% 37.9%

Daily average outdoor temperature 38.8% 34.0% 37.0% 48.1% 38.9% 36.2%

Outdoor relative humidity 35.9% 28.3% 37.0% 51.9% 37.0% 25.9%

Time & Room air temperature 5.5% 9.4% 5.6% 3.7% 1.9% 6.9%
Time & Room CO2 concentration 4.8% 0.0% 7.4% 0.0% 3.7% 12.1%

Wind speed 4.0% 9.4% 1.9% 1.9% 0.0% 6.9%

Time & Daily average outdoor temperature 2.9% 1.9% 0.0% 3.7% 5.6% 3.4%

Time & Room relative humidity 2.6% 1.9% 1.9% 1.9% 3.7% 3.4%

None 1.8% 0.0% 1.9% 0.0% 3.7% 3.4%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 1.9% 1.9% 0.0%
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Daily average outdoor temperature 67.8% 62.3% 66.7% 70.4% 68.5% 70.7%

Time 49.1% 52.8% 46.3% 59.3% 37.0% 50.0%
Room CO2 concentration 42.5% 43.4% 46.3% 50.0% 29.6% 43.1%

Room air temperature 40.7% 43.4% 31.5% 48.1% 35.2% 44.8%

Outdoor relative humidity 33.0% 28.3% 35.2% 37.0% 25.9% 37.9%

Room relative humidity 29.3% 24.5% 29.6% 42.6% 27.8% 22.4%

Wind speed 20.9% 20.8% 16.7% 25.9% 20.4% 20.7%

Time & Daily average outdoor temperature 7.3% 11.3% 3.7% 11.1% 3.7% 6.9%
Time & Room CO2 concentration 5.9% 11.3% 5.6% 7.4% 1.9% 3.4%

None 3.3% 0.0% 1.9% 3.7% 5.6% 5.2%

Time & Room air temperature 2.9% 3.8% 0.0% 3.7% 3.7% 3.4%

Time & Room relative humidity 1.1% 1.9% 1.9% 0.0% 1.9% 0.0%

Time & Outdoor relative humidity 0.7% 0.0% 0.0% 3.7% 0.0% 0.0%

Time & Wind speed 0.7% 0.0% 0.0% 0.0% 1.9% 1.7%
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• Occupants open and close windows depending on drivers leading them to take action. 

• Drivers can be identified through logistic regression analysis. 

• The most common drivers for opening action are: time of the day and CO2 concentration. 

• The most common drivers for closing action are: outdoor temperature and time of the day. 

• Thermal comfort and AIQ play a role for occupant behavior in regard to natural ventilation. 


