Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

Qiao, Jixin; Salminen-Paatero, Susanna; Rondahl, Stina Holmgren; Bourgeaux-Goget, Marie; Roos, Per; Lagerkvist, Petra; Strålberg, Elisabeth; Ramebäck, Henrik

Published in:
Journal of Radioanalytical and Nuclear Chemistry

Link to article, DOI:
10.1007/s10967-017-5385-9

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

Jixin Qiao 1*, Susanna Salminen-Paatero 2, Stina Holmgren Rondahl 3, Marie Bourgeaux-Goget 4, Per Roos 1, Petra Lagerkvist 3, Elisabeth Strålberg 4, Henrik Ramebäck3,5

1 Center for Nuclear Technologies, Technical University of Denmark (DTU Nutech), Denmark

2 Department of Chemistry - Radiochemistry, P.O. Box 55, 00014 University of Helsinki (UH), Finland

3 CBRN Defence and Security, Swedish Defence Research Agency (FOI), Sweden

4 Health and Safety Department, Institute for Energy Technology (IFE), Norway

5 Department of Chemistry and Chemical Engineering, Nuclear Chemistry, Chalmers University of Technology, Sweden

Abstract

In order to deliver reliable results for a multitude of different scenarios, e.g. emergency preparedness, environmental monitoring, nuclear decommissioning and waste management, there is a constant process of method development in the field of radioanaytical chemistry. This work presents the results of a method comparison exercise aimed at quantifying 90Sr and 239,240Pu in environmental soil samples, with the intention of evaluating the performance and applicability of different methods. From the methods examined in this work, recommendations are given in order to find a radioanalytical measurement procedure, for 90Sr and 239,240Pu analysis, which is fit-for-purpose for a particular scenario.
Keywords

41 Method comparison, radiochemical analysis, Pu, Sr, soil

Introduction

43 For identification and quantification of radionuclides in demanding sample matrices, robust and reliable radiochemical analyses are imperative. These methods can be used in order to provide input for different purposes including environmental monitoring, nuclear emergency preparedness, nuclear decommissioning/waste disposal, radioecology/tracer studies as well as nuclear forensics. For the various situations mentioned above, the selected method will differ from situation to situation due to different analytical purposes and criteria of clearance limit. However, efficient analytical performance of the radiochemical method is desirable for cases.

46 As to what constitutes an ideal radioanalytical method, it should have both characters of high analytical quality and low analytical cost. The analytical quality can be assessed by the detection limit, analytical accuracy/precision and robustness of the method, while the analytical cost should be related to labor intensity, analytical time, instrument cost and sample throughput. However, there is often a trade-off between the analytical quality, as defined above, and the cost. This is often denoted as the fitness-for-purpose, i.e. the measurement result should be able to support the decision making process.

50 In recent years, novel and effective sample treatment technologies and automated radioanalytical protocols are becoming attractive to many researchers to improve analytical efficiency [1–11]. As of today, many laboratories working with radiochemistry have initiated the development of rapid radiochemical methods using different novel and effective sample treatment techniques. The literature to date describes many rapid methods for nuclear emergency preparedness. However, these methods may need to be altered to suit the needs for nuclear decommissioning and environmental monitoring, encouraging further method development.
Sr-90 is a well-known radioisotope requiring extensive radiochemistry for most environmental samples and 239,240Pu similarly requires a thorough purification regardless which detection approach is applied. In most situations with an unknown source, 90Sr and 239,240Pu would be of interest following gamma spectrometry. Therefore effective analytical methods for both 90Sr and 239,240Pu are desirable for most radiochemistry labs. Generally, it is representative for many labs to perform 90Sr and 239,240Pu analysis separately, but it could be relevant to employ combined methods with limited sample material and restricted time.

In this work, a method comparison was performed for determination of 90Sr and 239,240Pu in environmental soil samples to identify the advantages and pitfalls in the different methods. For the comparison, seven analytical methods were selected which were mostly developed by the laboratories participating this inter-comparison exercise. They include two 90Sr methods, three 239,240Pu methods and two methods which combined the analysis of 239,240Pu and 90Sr. Parameters for comparing the analytical performance of these methods are analytical precision and accuracy, detection limit, analytical turnover time, simplicity and robustness.

Experimental

Samples

Two reference materials were used in the method comparison. The first was a Danish soil (DS) which was obtained from a laboratory round-robin inter-comparison [12]. The DS comprised of the top 10 cm of soil (sieved using a mesh of 2 mm) collected from 12 different Danish locations during 2003 and pooled at Risø National Laboratory, Denmark. The soil was further sieved through a 0.6 mm and a 0.4 mm sieve, respectively, and coarsely mixed by hand following a single homogenization of all soil for 30 minutes in a large volume mixer.

The second reference material was a Syrian soil (SS) which was obtained from the IAEA-TEL-2015 ALMERA proficiency test (soil No. 5). The raw material of Syrian soil was
collected and treated in Syria by the Syrian Atomic Energy Commission. After drying, it was milled, sieved under 90 micron, ashed at 650 °C, homogenised and packed into plastic bottles. The sample was sterilised by a gamma dose of 25 kGy.

The Danish soil was used in the method comparison for determination of 239,240Pu, while the Syrian soil was used for both 90Sr and 239,240Pu determination.

Analytical methods for 90Sr and 239,240Pu determination

Seven analytical methods were used in the comparison including four methods for 90Sr (Sr-A, Sr-B, Sr/Pu-A and Sr/Pu-B) and five analytical methods for 239,240Pu (Pu-A, Pu-B, Pu-C, Sr/Pu-A and Sr/Pu-B). The schematic procedures of these methods are illustrated in Figures 1-7. The detailed operational protocols for these methods can be found in the on-line supporting information.

Calculation of accuracy and precision

Two tests, as described by IAEA, were used to evaluate the results obtained: the relative bias test and the precision test. The relative bias is calculated as

$$\text{Bias} = \frac{V_i - V_r}{V_r} \times 100\%$$ \hspace{1cm} (1)

where V_i is the value obtained by each method in the inter-comparison exercise, V_r is the reference value of the corresponding samples.

The precision was calculated as

$$P = \sqrt{\left(\frac{u_i}{V_r}\right)^2 + \left(\frac{u_r}{V_i}\right)^2} \times 100\%$$ \hspace{1cm} (2)

where V_i and u_i is the value and the uncertainty obtained by each method in the inter-comparison exercise, V_r and u_r is the reference value of the corresponding sample.
It is noted that the accuracy and precision required for emergency response versus routine monitoring may be different, as a larger bias and precision may be acceptable in an emergency as long as it can be assured that the activity found is below the dose concern limit. Whereas, in order to facilitate the evaluation of each method, an uniform criteria for accuracy and precision tests are employed according to IAEA recommendation [13]. If the Bias < MARB (Maximum Acceptable Relative Bias) the result will be ‘Acceptable’ for accuracy. And if Bias < \(k \times P \) (where \(k=2.56 \)) and \(P<\text{MARB} \) then the result will be ‘Acceptable’ for precision as well. The MARB value was set to 20% for both the \(^{90}\text{Sr} \) and the \(^{239,240}\text{Pu} \) analysis.

Calculation of limit of detection

The following equation, as described by Holmgren et al. [1] adapted from the works of Lochamy [14] and Currie [15], was used to calculate the limit of detection (LOD) for \(^{90}\text{Sr} \).

\[
LOD = \frac{1}{U \cdot m \cdot \psi} \left(\frac{k^2 + 2k \sqrt{2} \sigma_{BG} t_m}{\lambda Y (1 - e^{-\lambda Y t_i})} \right)
\]

where \(U \) is the chemical yield, \(m \) is mass of sample in kg, \(\psi \) is the measurement efficiency for the measurement of \(^{90}\text{Y} \) by LSC or beta counting, \(k \) is 1.64 for a 95% confidence interval, \(R_{BG} \) is the count rate in cps for the blank, \(t_m \) is the measurement time for the samples, \(t_i \) is the time of ingrowth for the samples (\(t_i = \infty \) for the methods that awaited full ingrowth of \(^{90}\text{Y} \)), and \(\lambda Y \) is the decay constant for \(^{90}\text{Y} \).

Different equations were used to calculate the LODs for \(^{239,240}\text{Pu} \) through ICP-MS and alpha spectrometry measurement, respectively. For ICP-MS, the equation from Miller and Miller [16] was used:

\[
LOD_{\text{MS}} = x_{\text{blk}} + 3 \times s_{\text{blk}}
\]

where \(x_{\text{blk}} \) is the average concentration of the background signal, \(s_{\text{blk}} \) the standard
deviation of the background. For alpha spectrometry, Currie’s equation was used based on a 95% confidence interval[15]:

\[LOD_{AS} = 2.71 + 4.65 \sqrt{b} \]

(5)

where \(b \) is the number of counts in the background.

Results and discussion

Analytical performance of each method

Accuracy and precision The overall results for \(^{90}\text{Sr}\) and \(^{239,240}\text{Pu}\) determination in this work are summarized in Table 1 and Table 2, respectively. Uncertainties of the activity concentrations are given for 1\(\sigma\).

The reference value of \(^{90}\text{Sr}\) in Syrian soil is \((36.2 \pm 2.7)\) Bq/kg. The \(^{90}\text{Sr}\) concentrations obtained using Sr-A, Sr/Pu-B and Sr-B methods were \((34.2 \pm 4.7), (39.0 \pm 3.0)\) and \((42.3 \pm 7.3)\) Bq/kg, respectively. These results show satisfactory accuracy, with relative bias of -5.5%, 7.7% and 16.8%, respectively. \(P\) values obtained by these three methods for Syrian soil are within 20% and meet the criteria of Bias<2.56 \(P\). However, the \(^{90}\text{Sr}\) value for Syrian soil obtained by the Sr/Pu-A method significantly differs from the reference value (Figure 8) with large relative bias (-60.6%) and large uncertainty \((P=92.2\%)\). The overall results indicate that, except for the Sr/Pu-A method, all the other methods (Sr-A, Sr/Pu-B and Sr-B) pass both the accuracy and the precision test.

The reference value of \(^{239,240}\text{Pu}\) in the Syrian soil is \((2.7 \pm 0.4)\) Bq/kg. The results obtained using Pu-A and Sr/Pu-A methods are \((2.82 \pm 0.07)\) Bq/kg and \((2.50 \pm 0.10)\) Bq/kg, respectively, which agree well with the reference value with relative bias < 8%.

For the Danish soil, the recommended value of \(^{239,240}\text{Pu}\) is \((0.238 \pm 0.014)\) Bq/kg[12]. Pu-C and Sr/Pu-B methods show relative bias within 5% for the Danish soil analysis, while Pu-B method indicates -16% relative bias (Figure 9). Higher \(P\) value of 25% was obtained for Pu in Sr/Pu-B method, while the other methods achieved \(P\) values ranging...
within 10-15 %. The overall results indicate that all methods pass both accuracy and precision test, except Sr/Pu-B method which only passes the accuracy test.

Limit of detection It can be seen from Table 1 that, the LODs of 90Sr vary from 0.2 to 24 Bq/kg among the four methods used in this work. Relatively high LOD was achieved for 90Sr by Sr-B method (10.4 Bq/kg) compared to the other three methods (0.2-1.0 Bq/kg), this is due to the short time (16 h) allowed for ingrowth. It should be noted that after such a short ingrowth time, 90Y has only reach about 16% of the equilibrium activity relative to 90Sr. This will of course result in a higher LOD as well as a higher combined measurement uncertainty. It was calculated that the resulting LODs were 5.1 and 3.5 Bq/kg, when the time of ingrowth increased to 36 and 48 h, respectively. In the Pu determination (Table 2), when using ICP-MS (Pu-A and Pu-C methods), the LOD for 239,240Pu is 0.00104 Bq/kg (with 0.00025 Bq/kg for 239Pu and 0.00079 Bq/kg for 240Pu, respectively). This is 1-2 order of magnitude lower than the values obtained by alpha spectrometry (0.018, 0.022 and 0.07 Bq/kg of 239,240Pu in Sr/Pu-A, Pu-B and Sr/Pu-B method, respectively).

It should be mentioned that the criteria for evaluating the LOD of the analytical methods maybe different for emergency response and routine monitoring. Higher LOD may be acceptable in an emergency situation as long as it can be assured that the activity found is below the dose concern limit.

Chemical yield

Apart from the performance of the detecting instrument, chemical yield is also an important parameter affecting the LOD. High chemical yield is always desirable to ensure the lowest possible LOD for any analytical method.

The highest chemical yield (99 %) for 90Sr analysis was obtained in Sr-B method for 1 g of the Syrian soil (Table 1). Moderate chemical yield (70 %) for 90Sr was obtained in Sr-A method for 10 g of the Syrian soil. However, largely varying chemical yields (41-79%) were achieved in Sr/Pu-A method, whilst even lower (37%) chemical yield was obtained in Sr/Pu-B method.
The highest Pu chemical yield (95 %) was obtained in Pu-C method for the Danish soil (Table 2). Satisfactory chemical yield (80 %) for Pu was achieved in Pu-A method for the Syrian soil. However, the other three methods indicated relatively low chemical yields (< 40%), whilst one method failed to measure 239,240Pu in the Syrian soil due to the significant loss of Pu during sample preparation.

Analytical turnover time The turnover time for 90Sr determination in this work ranged from approximately 1 to 32 days, depending on the method employed (see Table 1). Apart from the Sr-B method, which can be completed within 24 h, all other methods presented in this work are very tedious. The major part of time used for 90Sr analysis among these four methods was spent on 90Y ingrowth. For example, a 3-week 90Y ingrowth time was used in both Sr-A and Sr/Pu-A method, while a 2-week ingrowth for Sr/Pu-B, and a 16 h ingrowth for the Sr-B method were employed. In addition to the time for 90Y ingrowth (16 h to 3 weeks), beta counting (Sr-A and Sr/Pu-B method) is also a time-consuming step (1 week).

The entire analytical turnover time for 239,240Pu determination ranged from 1 to 13 days among the methods used in this work. The most time consuming procedure was used in Sr/Pu-B method (13 days), whereas the most time-efficient analysis was reported by Pu-C method (1 day). Generally, the alpha spectrometric counting of Pu is the most time-consuming phase (7-9 days). In addition, the sample pre-treatment among the investigated methods also takes significant time (1-3 days).

Analytical turnover time is a crucial parameter especially in emergency situations. The analytical methods which take more than 1-2 days is not recommended for emergency purposes, but could be suited for routine analysis where analytical time is not a critical issue. Sr-B and Pu-C methods are applicable for both emergency and routine situations as long as their respective LOD meets the requirement for the analyzed samples.

Parameters affecting the analytical performance

Sample pre-treatment In radiochemical analysis, pre-treatment for solid samples such as soil is aimed to quantitatively release the target radionuclides into a homogeneous
solution. It is of importance to choose a suitable sample decomposition method that completely extracts the analytes contained in the sample into solution. In this work, three sample decomposition techniques were employed including acid leaching, total dissolution with HF and other mineral acids and alkaline fusion.

Acid leaching using either aqua regia (Pu-A and Pu-C methods) or HNO$_3$/H$_2$O$_2$ (Pu-B, Sr-A and Sr/Pu-A methods) was performed with heating (150-200 °C) and reflux of the leaching solution. Aqua regia is more aggressive and thus more effective compared to 14 mol/l HNO$_3$, even though the addition of H$_2$O$_2$ in the 14 mol/l HNO$_3$ would assist with further decomposition of organic matters contained in the sample. This might be a possible explanation for the somewhat lower $^{239, 240}$Pu values with relative bias of -7.4% and -16%, obtained by Pu-B and Sr/Pu-A methods, respectively. The extraction of Pu might not be completed with the use of 14 mol/l HNO$_3$/H$_2$O$_2$ in both methods.

Acid leaching is a very simple and flexible approach, which is favourable for processing low-level environmental samples, where a large sample amount is needed. However, the literature indicates a potential risk of underestimating the Pu concentration for samples containing refractory oxides or hot particles, due to the incomplete dissolution of the sample matrix and therefore potential losses of target radionuclides in the pre-treatment step using acid leaching[17]. The two soils analysed in this work are environmental samples with Pu originating mainly from global fallout, the content of Pu refractory oxides in these two samples may be negligible. This is also confirmed by the good analytical accuracy obtained by the Pu-A and Pu-C methods.

A rapid alkaline fusion with LiBO$_2$ was performed in the Sr-B method, wherein the entire operation could be completed within 20 minutes. Many works have proved that alkaline fusion is more effective than acid leaching to completely dissolve refractory oxides contained in soil [17]. For small-sized samples (e.g., < 1 g), the fusion can be directly performed without ashing the sample, which significantly shortens the operational time. However, handling large-sized samples is still a challenge in alkaline fusion process and the maximum fusion capacity, as found in the literature to date, has been reported to be 20 g of soil [18].
Total dissolution with aqua regia/HF/ H2O2 was used in Sr/Pu-B method and it was noticed that the sample matrix composition affected the effectiveness of the total dissolution. It was observed in the experiment that Syrian soil is very fine-grained and contains an iron-rich matrix component, which was very difficult to dissolve. The complex matrix composition of the Syrian soil made it impossible to achieve total dissolution even using HF. In the literature, total dissolution using HF in combination of other mineral acids have been widely used for decomposition of solid samples\cite{19–22}, especially for the determination of natural radionuclides (e.g., uranium and thorium) in geological studies. Having said that, it must be noted that in some cases HF could not totally dissolve the refractory particles of radionuclides especially when the sample size is larger than about 5 g\cite{23}. Under such circumstances, alkaline fusion method should be recommended instead of HF dissolution.

After sample decomposition, pre-concentration is needed to reduce the sample volume or transform the sample to a suitable form prior to further chemical purification. In this work, precipitation/co-precipitation was used as a pre-concentration step, except for the Pu-B, Sr-B and Sr/Pu-A methods which employed direct evaporation. A simple Fe(OH)3 co-precipitation was used in Pu-A and Pu-C methods for Pu pre-concentration. CaCO3-SrCO3 precipitation was used in Sr-A method to pre-concentrate Sr, and CaC2O4 co-precipitation was applied in Sr/Pu-B method for pre-concentration of both Pu and Sr.

Even though the operation of evaporation is simpler than precipitation/co-precipitation, the latter could provide an additional function of partially eliminating matrix elements, which could facilitate the following purification step. It can be seen from the results (Table 2) that much lower chemical yields (< 45 %) for Pu were achieved when using direct evaporation (Sr/Pu-A and Pu-B methods). This could be explained by the high competitive adsorption of matrix elements in the following chromatographic separation. Therefore, a preliminary removal of matrices might be recommended, especially when handling large-size environmental samples with high matrix elements content.

It can be seen that the sample ashing and evaporation are the most time-consuming steps in the sample pre-treatment. Shortening the ashing time with increased temperature and
performing co-precipitation instead of evaporation can be recommended to reduce the time for sample pre-treatment.

Chemical purification for 90Sr The protocol used for the chemical purification of radiostrontium depends on the measurement techniques selected. 90Sr is a pure beta emitter, which can be measured either directly by beta counting/liquid scintillation counting (LSC), or indirectly through its daughter 90Y. The yttrium chemistry is very much different from strontium, so the isolation of first strontium and then the ingrown 90Y provides an excellent way of assuring results that are free from interferences. Additionally, 90Y has much higher beta energy, providing higher measurement efficiencies on beta counters and LSC. Therefore, in this work, all methods used for 90Sr were based on the indirect measurement of 90Y.

For methods involving LSC (e.g., Sr-B and Sr/Pu-A methods), no second 90Sr-90Y separation was needed since Cerenkov counting was performed for 90Y, discriminating the contribution of the relatively low-energy beta particles from 90Sr, and there were no 89Sr present [1]. Whereas for the beta counting (e.g. Sr-A and Sr/Pu-B methods), the chemical purification procedure generally includes two stages: first purification of 90Sr from matrix element including Y and interfering radionuclides, secondly purification of 90Y from Sr and other interferences. For the latter stage, two chemical yields need to be determined in order to obtain the actual activity concentration of 90Sr: one is the chemical yield of Sr during the chemical purification of Sr, and the other is the chemical yield of Y during the separation between Sr and Y before beta counting.

One way of determining the yield of Sr is to add stable strontium as a chemical yield tracer (Sr/Pu-A and Sr-B methods) and determine it gravimetrically (Sr/Pu-A method) or by ICP-OES (Sr-B method). Another way is to use 85Sr as a radioactive yield tracer, measured by gamma spectrometry to determine the chemical yield of Sr (Sr-A and Sr/Pu-B methods). The chemical yield of Y could be determined through measuring stable Y concentration before and after the 90Sr-90Y separation either by EDTA titration (Sr/Pu-B method), ICP-OES (Sr-A method) or by gravimetric methods.
It was noted that handling the gravimetric determination was not as straightforward as the ICP-OES technique which was directly performed in 0.05 M HNO₃. As can be seen in Table 2, that large variation was obtained for Sr chemical yield in the Sr/Pu-A method, which might be a consequence of low repeatability when using the gravimetric method.

To reduce the uncertainty in the Sr or Y chemical yield monitoring, ICP-OES, AAS or ion chromatography, as well as use of ⁸⁵Sr tracer, are possible alternatives [24, 25].

For chemical purification of ⁹⁰Sr, a variety of approaches have been reported [24, 26–30]. In this work, a series of precipitation/co-precipitation was employed in the Sr-A method to purify Sr. This method is very robust and reliable, which has been applied to many different sample matrices [31–33]. However, due to the relatively low selectivity, repeated precipitation/co-precipitation is needed which makes the protocol very tedious. Sr-A method also involves the use of aggressive chemical-fuming nitric acid, which imposes potential safety concerns.

Since the early 1990s, the application of Sr resin has become more and more popular in radiochemistry analysis for ⁹⁰Sr due to its high selectivity and its rapid separation process [28, 34]. In this work, Sr resin was used in all methods, except for the Sr-A method. However, it has been reported that the performance of Sr resin is sensitive to the matrix content of the samples [35, 36], for example, for a 3 g Sr resin loaded with a sample of high Ca content, approximately 0.3 g, the chemical yield of Sr dropped to 40% [36]. The relatively low Sr chemical yield (40–60%) obtained in the two combined methods (Sr/Pu-A and Sr/Pu-B) might be related to the competitive adsorption of matrix elements on Sr resin, since no preliminary removal of matrix elements have been carried out in the sample pre-treatment.

As the secular equilibrium between ⁹⁰Sr and ⁹⁰Y is reached after about 14 days, the samples need to stand for some time prior to the separation to allow for the ingrowth of ⁹⁰Y. In the different methods used in this work, the samples were allowed to stand 16 h to 3 weeks before the ⁹⁰Sr–⁹⁰Y separation can be performed to get a purified fraction of ⁹⁰Y.

For ⁹⁰Sr–⁹⁰Y separation, a conventional method via series of precipitations/co-precipitations was employed in Sr-A and Sr/Pu-B methods. Sr-resin has been reported as
a method of choice to isolate 90Y, as was done in the Sr-B method, in order to decrease the total combined uncertainty of the method [37]. Ln-resin has also been tested, however, it was found to give a lower chemical yield of Y (approx. 50-60%) [38]. The recent work by Amano and Maxwell using DGA Resin indicated higher affinity for Y$^{3+}$ [39, 40].

Source preparation and measurement of 90Y In this work, the detection of 90Y was performed by either low background beta counting (Sr-A and Sr/Pu-B methods) or LSC (Sr-B, Sr/Pu-A methods). For the beta counting, 90Y source was prepared as $Y_2(C_2O_4)_3$ precipitate. No source preparation is needed for Cerenkov counting for 90Y by LSC. However, the Cerenkov counting approach for determining 90Y requires that there is no 89Sr (or any other high energy beta emitter) present in the sample.

The benefits from low background beta counting are the low detection limits. However, the sample throughput using beta counting in this work is limited due to the long-term measurement for achieving sufficiently low detection limit. On the other hand, LSC is more straightforward and does not require much sample preparation. Modern LSC instruments (e.g., Quantulus) could also provide very low detection limits. As Cherenkov counting discriminates against low energy radiation, LOD could be decreased even further. LSC in combination with Cherenkov counting could be recommended especially for emergency situations to prompt the analytical speed, and moreover, previous work show that the 90Y ingrowth time could be shorten to less than one day [37, 38]. However, it should be noted that there are published methods successfully measured 90Y by gas flow proportional counting for emergency situations. LCS with cocktail instead of Cerenkov could also be used with higher efficiency than Cerenkov counting. [41]

Furthermore, it is worth noting that by switching to LSC counting or gas flow proportional counting instead of Cherenkov counting results in a method more sensitive to other beta emitting radionuclides, seeing as it does not discriminate against low energy beta.

Chemical purification for $^{239, 240}$Pu For the chemical purification of Pu, a single chromatographic purification step was used in both Pu-A and Pu-C methods, with the use
of AG 1× 4 and TEVA resin, respectively. UTEVA/TRU tandem column was employed for Pu-B and Sr/Pu-B methods. A combination of ion exchange chromatography (Dowex) and tandem extraction chromatography (UTEVA/TRU) was performed in Sr/Pu-A method.

In the chromatographic purification process, TEVA indicates higher absorption capacity for Pu(IV) and superior decontamination of U compared to traditional anion exchange resin. However, experiences have shown that TEVA is sometimes more sensitive to matrix content in the sample solution compared to anion exchange resin [42]. In cases of handling complex matrices or high matrix content samples, a guard column (normally anion exchange column) could be used to avoid deteriorated performance of the TEVA column. The iron-rich matrix in Syrian soil created more Fe(OH)₃ precipitates which in turn makes it difficult for a single TEVA column to handle. Therefore, a larger anion exchange column was used in Pu-A method for the chemical purification of Pu.

The UTEVA resin has high absorption of tetra- and hexavalent radionuclides e.g., U(VI) and Th(IV), while TRU has high absorption for trivalent radionuclides, e.g., Am(III) and Pu(III). The application of a tandem UTEVA/TRU column could thus separate Pu from the major interfering radionuclides (U, Th).

Potential reason for the relatively low Pu chemical yields in Sr/Pu-A, Pu-B and Sr/Pu-B methods could be the high competitive adsorption of matrix elements on the column separation, or the oxidization of Pu(III) to Pu(IV) in 3 mol/l HNO₃ solution, which became retained on UTEVA. The failure of Sr/Pu-B method in the Pu analysis for the Syrian soil might be related to the challenges imposed by the complex matrix composition of the sample as mentioned before.

It was observed in the experiment that due to the high content of matrix elements in the sample loading solutions (especially for the Syrian soil), the column separation was very slow. Therefore, an automated sequential injection (SI) system (Pu-A method) and a vacuum box system (Sr/Pu-B method) were used with a controllable flow rate for the column separation. It is advantageous to improve the sample throughput when vacuum box and automated chromatographic separation are employed, since in many cases, the
column separation for Pu can be extremely prolonged due to the blockage of column by inseparable particulate matter contained in the sample solution. An additional advantage of applying a fully automated SI chromatographic separation is to reduce the labour intensity and human errors in the operation.

Source preparation and detection of 239,240Pu Among the five analytical methods used for Pu detection, ICP-MS measurement was used in Pu-A and Pu-C methods, while traditional alpha spectrometry was used in the other methods. In the methods that employed alpha spectrometry, fluoride co-precipitation was used for source preparation [23]. For ICP-MS, the Pu eluate was reconstituted to dilute HNO$_3$ (typically 0.5 mol/l) prior to measurement. In Table 2 it can be seen that the turnover times are remarkably reduced by replacing alpha spectrometry with ICP-MS measurement. Besides the relatively fast measurement by ICP-MS, another advantage of using ICP-MS is to be able to distinguish between 239Pu and 240Pu, and thereby the isotopic ratio 240Pu/239Pu can be obtained for investigating *e.g.* source terms. However, ICP-MS is very sensitive to the impurity of Pu eluate, especially the content of U, as tailing from 238U as well as 238U$^{1+}$H interfere with the detection of 239Pu. In Pu-A method, the results indicated that decontamination of uranium was not sufficient by using a single anion exchange column separation. To correct for the interferences caused by uranium in the Pu sample, an additional calibration was performed to subtract the contribution of 238U$^{1+}$H and tailing of 238U to 239Pu signal in the data evaluation.

Conclusions

Most methods used in this work successfully determined the activity of 239,240Pu and 90Sr in the relevant samples. The analytical turnover time varied from 1 to 13 days for 239,240Pu and from 1 to 32 days for 90Sr. The most rapid methods (Pu-C and Sr-B) are suitable for time sensitive emergency situations, given that the detection limit of the methods are acceptable. Preliminary removal of matrix elements in the sample pre-treatment is useful to facilitate following chemical purification and to improve the chemical yields. Therefore precipitation/co-precipitation instead of direct evaporation for sample pre-
concentration is recommended, especially when processing a large sized environmental sample with complex matrix composition.

For 239,240Pu determination, it is apparent that ICP-MS technique provides advantages of shortening the measurement time and reducing the LOD. Determination of 90Sr through its daughter 90Y requires sufficient ingrowth time for 90Y. Gas flow proportional counting has a lower LOD except for Quantalus ultra low level LSC and can measure a batch of samples simultaneously. However, in this work, LSC measurement for 90Sr works more effectively compared to beta counting. Rapid techniques including sequential injection and vacuum-box-assisted chromatographic separation were applied in this work, which are advantageous when aiming to improve the analytical efficiency.

This work highlights the importance of knowing the limitations of a method, as scenario dependent parameters will put different kinds of demands on e.g. sample throughput, turnover time, measurement uncertainty, and detection limit. These parameters are crosslinked and also affected by each other, for example, longer measurement time would improve the uncertainty and detection limit, but prolong the turnover time and thus reduce the sample throughput. It is always important to bear this in mind when set the criteria for selecting the fit-for-purpose analytical method in different situations. For emergency preparedness, the analytical turnover time would be the most important parameter as long as the method LOD is below the dose concern limit. While for routine environmental monitoring, low detection limit and uncertainty might be needed.

Acknowledgements

The authors convey their gratitude to Nordic Nuclear Safety Research (NKS) for the financial support to this work. Salminen-Paatero wishes to thank EU-project “TOXI Triage” (project id. 653409) for the support of her work.

References

Tables

Table 1 Overall analytical results of ^{90}Sr in the Syrian soil, uncertainties are given for 1σ.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample size, g</th>
<th>Description</th>
<th>Overall chemical yield, %</th>
<th>^{90}Sr activity, Bq/kg*</th>
<th>MDA, Bq/kg</th>
<th>Bias, %</th>
<th>P, %</th>
<th>Turnover time, day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-A</td>
<td>10</td>
<td>Dry ashing - aqua regia digestion - Fe(OH)$_3$ precipitation - repeated Ca(OH)$_2$, SrCO$_3$ and Sr(NO$_3$)$_2$ precipitation – 3-week ^{90}Y ingrowth- repeated Fe(OH)$_3$/Y(OH)$_3$ and BaSO$_4$/SrSO$_4$ precipitation - Y_2(C$_2$O$_4$)$_3$ precipitation - beta counting (^{90}Y)</td>
<td>70.1 ± 7.0</td>
<td>34.2 ± 4.7</td>
<td>0.4</td>
<td>-5.5</td>
<td>15.6</td>
<td>32.1</td>
</tr>
<tr>
<td>Sr/Pu-A</td>
<td>10</td>
<td>Dry ashing - conc.HNO$_3$/H$_2$O$_2$ digestion-evaporation - Dowex 1 x 4+ Sr column – SrCO$_3$ precipitation – 3-week ^{90}Y ingrowth – LSC (^{90}Y Cerenkov counting)</td>
<td>60.0 ± 19.0</td>
<td>14.3 ± 13.1</td>
<td>1.0</td>
<td>60.6</td>
<td>92.2</td>
<td>23.2</td>
</tr>
<tr>
<td>Sr/Pu-B</td>
<td>10</td>
<td>Dry ashing - aqua regia/H$_2$O$_2$/HF digestion - CaC$_2$O$_4$ co-precipitation-UTEVA/TRU/Sr column – 2-week ^{90}Y ingrowth- repeated Fe(OH)$_3$/Y(OH)$_3$ precipitation - PbSO$_4$/SrSO$_4$ precipitation - Y_2(C$_2$O$_4$)$_3$ precipitation - beta counting (^{90}Y)</td>
<td>37.0 ± 3.7</td>
<td>39.0 ± 3.0</td>
<td>0.2</td>
<td>7.7</td>
<td>10.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Sr-B</td>
<td>1</td>
<td>Dry ashing - LiBiO$_2$ fusion - Sr resin – 16 h ^{90}Y ingrowth - LSC (^{90}Y Cerenkov counting)</td>
<td>99.5 ± 8.6</td>
<td>42.3 ± 7.3</td>
<td>24</td>
<td>16.8</td>
<td>18.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Reference value: 36.2 ± 2.7

* Decay corrected to reference date 15th Oct 2015. Bias and P values are calculated using the mean value ± sd, for reference purpose only. #NP: not pass the corresponding accuracy or precision test. & overall chemical yield in to Sr or Sr·Y.
Table 2 Overall analytical results for Pu isotopes in the Danish soil and the Syrian soil, uncertainties are given for 1σ.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Method</th>
<th>Description</th>
<th>Pu chemical yield, %</th>
<th>$^{239+240}$Pu activity, Bq/kg</th>
<th>LOD, Bq/kg</th>
<th>Bias, %</th>
<th>P, %</th>
<th>Turnover time, day</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS (10 g of each)</td>
<td>Pu-A</td>
<td>Dry ashing - aqua regia digestion-Fe(OH)$_3$ co-precipitation-AG 1x 4 chromatography-ICP-MS</td>
<td>80.1 ± 8.0</td>
<td>2.82 ± 0.07*</td>
<td>0.00025 (239Pu) 0.00079 (240Pu)</td>
<td>4.4</td>
<td>15.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Sr/Pu-A</td>
<td>Conc. HNO$_3$ + H$_2$O$_2$ digestion - evaporation-Dowex + UTEVA/TRU chromatography-alpha spectrometry</td>
<td>40.0 ± 5.0</td>
<td>2.50 ± 0.10</td>
<td>0.012 (238Pu) 0.018 ($^{239+240}$Pu)</td>
<td>-7.4</td>
<td>15.3</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Sr/Pu-B</td>
<td>Dry ashing - aqua regia/H$_2$O$_2$/HF digestion- CaC$_2$O$_4$ co-precipitation - UTEVA/TRU column - alpha spectrometry</td>
<td>NA*</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>DS (10 g of each)</td>
<td>Pu-B</td>
<td>Dry ashing - conc. HNO$_3$ + H$_2$O$_2$ digestion - evaporation - UTEVA/TRU column - alpha spectrometry</td>
<td>40.0 ± 5.0</td>
<td>0.20 ± 0.02</td>
<td>0.014 (238Pu) 0.022 ($^{239+240}$Pu)</td>
<td>-16.0</td>
<td>11.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Pu-C</td>
<td>Dry ashing - aqua regia-Fe(OH)$_3$ co-precipitation-automated TEVA chromatography-ICP-MS</td>
<td>95.3 ± 4.7</td>
<td>0.23 ± 0.03</td>
<td>0.00025 (239Pu) 0.00079 (240Pu)</td>
<td>3.4</td>
<td>14.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sr/Pu-B</td>
<td>Dry ashing - aqua regia/H$_2$O$_2$/HF digestion-evaporation - UTEVA/TRU column - alpha spectrometry</td>
<td>25.6 ± 2.6</td>
<td>0.25 ± 0.06</td>
<td>0.07 (238Pu) 0.07 ($^{239+240}$Pu)</td>
<td>5.0</td>
<td>24.7</td>
<td>(NP*8)</td>
<td></td>
</tr>
<tr>
<td>Reference value [12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.238 ± 0.014(239Pu: 0.140 ± 0.008, 240Pu: 0.098 ± 0.006)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 240Pu/239Pu atomic ratio was measured to be 0.186. *NA: not available. *NP: not pass the corresponding accuracy or precision test.
Fig. 1 Schematic analytical procedure of the Sr-A method
Fig. 2 Schematic analytical procedure of the Sr-B method
Fig. 3 Schematic analytical procedure of the Pu-A method
Fig. 4 Schematic analytical procedure of the Pu-B method
Fig. 5 Schematic analytical procedure of the Pu-C method

1. Add 241Pu, leach with aqua regia at 150°C for 30 min and 200°C for 2 hr, filtration
2. Add NH4H2O to pH 8-9, centrifuge
3. Add 30 ml 6 M NaOH, centrifuge
4. Dissolve with HCl, add K2S2O8, stir 20 min. Add NaOH to pH 9-10, centrifuge
5. Dissolve with 14 M HNO3, dilute to 1 M HNO3
6. Sample solution, with Pu (IV) in 1 M HNO3 medium
7. Column separation: 2 hr
8. Source preparation: 0.3 hr
9. Measurement: 0.2 hr
Fig. 6 Schematic analytical procedure of the Sr/Pu-A method
Fig. 7 Schematic analytical procedure of the Sr/Pu-B method
Fig. 8 Activity concentration of 90Sr in Syrian soil (SS) obtained by different methods utilized in this work. The solid and dotted lines represent the reference value and confidence limits of the reference value for 90Sr. The error bars of the results represent the expanded uncertainty with a coverage factor, $k=1$.
Fig. 9 The activity concentration of $^{239,240}\text{Pu}$ in Syrian soil (SS) and Danish soil (DS) obtained by different methods used in this work. The dotted lines represent the reference values for $^{239,240}\text{Pu}$ (green line for SS and red line for DS). The error bars of the results represent the expanded uncertainty with a coverage factor, $k=1$.
Supplementary information

Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

Jixin Qiao 1, Susanna Salminen-Paatero 2, Stina Holmgren Rondahl 3, Marie Bourgeaux-Goget 4, Per Roos 1, Petra Lagerkvist 3, Elisabeth Strålberg 4, Henrik Ramebäck3,5

1 Center for Nuclear Technologies, Technical University of Denmark (DTU Nutech), Denmark

2 Department of Chemistry - Radiochemistry, P.O. Box 55, 00014 University of Helsinki (UH), Finland

3 CBRN Defence and Security, Swedish Defence Research Agency (FOI), Sweden

4 Health and Safety Department, Institute for Energy Technology (IFE), Norway

5 Department of Chemistry and Chemical Engineering, Nuclear Chemistry, Chalmers University of Technology, Sweden

This supporting information summarizes the detailed analytical procedures for the seven methods used in this work for 90Sr and 239,240Pu determination in Syrian and Danish soil samples.

1. Manually operated method for 90Sr: Sr-A

The schematic procedure of the Sr-A method is summarized in Figure 1. 10 g of soil was ashed at 550 °C overnight. After the addition of 85Sr (5-10 Bq) as a chemical yield tracer and 0.5 g of SrCl$_2$$\cdot$6 H$_2$O as carrier, 100 ml of aqua regia was added. The sample was digested on a hotplate for 30 minutes at 150 °C and for 2 h at 200 °C, respectively. After cooling, the sample was filtered with a GF/A filter and the residue was washed with 300 ml of 0.2 mol/l HCl. The solution was evaporated to 60 ml and 6 mol/l NaOH was
added to pH 6 to form Fe(OH)_3 precipitate. After centrifugation, the supernatant was collected in a beaker. 10 ml of 12 mol/l HCl was added to dissolve the precipitate and the Fe(OH)_3 precipitation was repeated until ^{85}Sr activity in the precipitate was less than 5% of the total ^{85}Sr activity spiked.

All the supernatants obtained were combined and 100 ml of 6 mol/l NaOH was added to form Ca(OH)_2 precipitate. After centrifugation, the supernatant was heated to boil and Na_2CO_3 (5 g Na_2CO_3 per 100 ml solution) was added to form SrCO_3 precipitate. The sample was heated on a hot plate at 250-300 °C for 1 h. After cooling, the sample was centrifuged and the supernatant was discarded. 4 ml of 8 mol/l HNO_3 was added to dissolve the SrCO_3 precipitate. Sr(NO_3)_2 precipitation was performed for three times with the addition of 24 mol/l HNO_3. The Sr(NO_3)_2 precipitate was dissolved with 50 mL ultrapure H_2O and 5 mg of Fe (as FeCl_3) was added. NaOH was added to pH 10. After centrifugation, 7.5 mg of Y carrier (as YCl_3), 10 mg of Ba carrier (as BaCl_2) and 1 ml of 14 mol/l HNO_3 were added to the supernatant. ^{85}Sr was measured by NaI gamma detector for determining the chemical yield of ^{90}Sr until the current step and the sample was left to stand for three weeks for the ingrowth of ^{90}Y.

After three weeks, 6 mol/l NH_3 was added to the sample to pH >10 to form Y(OH)_3 precipitate. After centrifugation, 1 ml of 6 mol/l HNO_3 was added to dissolve the Y(OH)_3 precipitate, and 5 mg Sr carrier (as SrCl_2) was added. The Y(OH)_3 precipitation was repeated. 1 ml of 6 mol/l HNO_3 was added to dissolve the Y(OH)_3 precipitate. 5 mg of Ba^{2+} carrier and 2 mg of Sr^{2+} carrier were added. BaSO_4 and SrSO_4 precipitation was formed with the addition of 1 ml of 2 mol/l H_2SO_4. 6 mol/l NH_3 was added to the supernatant to pH >10 to form the Y(OH)_3 precipitate. The BaSO_4/SrSO_4 and Y(OH)_3 precipitate was repeated for two more times. Thereafter five drops of 6 mol/l HNO_3 was added to dissolve the sample. 20 ml of 0.8 mol/l H_2C_2O_4 was added to form Y_2(C_2O_4)_3. The Y_2(C_2O_4)_3 precipitate was filtered and delivered to β-measurement by a low background gas flow Geiger Müller (GM) beta counter (Risø beta counter, Denmark). Stable yttrium is used to monitor the chemical yield of ^{90}Y in the Sr-Y separation step and quantified by inductively coupled plasma optical emission spectrometry (ICP-OES).
2. Vacuum box assisted method for ^{90}Sr: Sr-B

The schematic procedure of the Sr-B method is summarized in Figure 2. 1 g of soil sample was added to a graphite crucible. After the addition of 1 mg stable Sr as a chemical yield tracer and about 4 g LiBO$_2$ as fusion flux, the sample was pre-oxidized in a muffle furnace at 650 °C for 1 h. After pre-oxidation, the sample was melted at 1050 °C for 15 min, or until the sample was completely melted. After cooling, the sample was dissolved in 100 ml of 1.4 mol/l HNO$_3$ while being stirred and heated. PEG2000 was added to flocculate Si in solution to avoid clogging during the solid phase extraction chromatograph. The sample was evaporated to 50 mL and then filtered with a Millipore OOM filter paper. To the filtrate, 14 mol/l HNO$_3$ was added to achieve a final concentration of 8 mol/l HNO$_3$. 0.1 ml of aliquot was taken for stable Sr analysis by ICP-OES.

The chromatographic purification of Sr was performed with a vacuum box, where 2-mL Sr-resin cartridge (TrisKem International, Bruz, France) was mounted on the top. After preconditioning the cartridge with 10 ml of 8 mol/l HNO$_3$, the sample solution was loaded onto the column. The column was rinsed with 10 ml of 8 mol/l HNO$_3$, 10 ml of 3 mol/l HNO$_3$-0.05 mol/l H$_2$C$_2$O$_4$ and 10 ml of 8 mol/l HNO$_3$, respectively. Strontium was then eluted using 15 ml of 0.05 mol/l HNO$_3$. 0.1 ml of aliquot was taken for stable Sr analysis by ICP-OES (iCap 7000) to determine the chemical yield of Sr. In order to avoid interferences from the ingrowth of ^{90}Y from ^{90}Sr, an immediate 15 min Cherenkov counting of ^{89}Sr is performed. After allowing about 16 h of in-growth, the sample was measured for its ^{90}Y activity by Cherenkov counting on a Quantulus 1220 liquid scintillation counter for 4 h.

3. Manually operated method for $^{239,240}\text{Pu}$: Pu-A

The schematic procedure of the Pu-A method is summarized in Figure 3. 10 g of soil was ashed at 550 °C overnight. About 10 mBq of ^{242}Pu was spiked to the sample as a chemical yield tracer. The sample was digested with 100 ml of aqua regia on a hotplate at 150 °C for 30 min and 200 °C for 2 h, respectively. After cooling, the sample was filtered...
The beaker and the filter were washed with 30 ml of 0.2 mol/l HCl. The wash solution was combined with the filtrate. 2.5 mol/l NH$_3$·H$_2$O was added to adjust the pH to 8-9. After centrifugation, the residue was dissolved with 5 ml of 12 mol/l HCl and then diluted to 200 ml with deionized water. 300 mg of K$_2$S$_2$O$_5$ were added and the solution was stirred for 20 min. 2.5 mol/l NH$_3$·H$_2$O was added to adjust pH to 9-10. The precipitate obtained after centrifugation was dissolved with 5 ml of 14 mol/l HNO$_3$. The sample solution was adjusted to 8 mol/l HNO$_3$ and loaded onto a 8-mL column (1.0 cm i. d. × 10 cm length) packed with AG 1× 4 resin (100-200 mesh, BioRad Laboratories Inc., Hercules, CA). The column was rinsed with 200 ml of 8 mol/l HNO$_3$ followed by 100 ml of 9 mol/l HCl. Pu was eluted with 100 ml of 0.2 mol/l HCl and then evaporated to dryness. The sample was finally dissolved in 5 ml of 0.5 mol/l HNO$_3$ for ICP-MS measurement. The detection of 239Pu, 240Pu and 242Pu was performed using ICP-MS (Thermo Scientific X Series II) under hot plasma conditions. The details for the ICP-MS instrumentation can be found elsewhere.[43]

4. Manually operated method for 239,240Pu: Pu-B

The schematic procedure of Pu-B method is summarized in Figure 4. 10 g of soil was ashed in a muffle furnace at 450 °C overnight. About 50 mBq of 242Pu was spiked as a chemical yield tracer. The sample was heated to boiling and digested with 100 ml of 14 mol/l HNO$_3$ on a hot plate for 6 h. Concentrated H$_2$O$_2$ was added dropwise (1-2 ml per sample) 1 h before ending the digestion. After cooling, the sample was filtered through a GF filter paper and the filtrate was evaporated to dryness. The sample was dissolved with 20 ml of 3 mol/l HNO$_3$ + 1 mol/l Al(NO$_3$)$_3$ solution. The overall Pu was reduced to Pu(III) by the addition of 2 ml of 0.6 mol/l ferrous sulphamate solution and 150 mg of ascorbic acid. After 15 min, the sample was loaded to a 2-mL UTEVA column (TrisKem International, Bruz, France) which was then washed with 10 ml of 3 mol/l HNO$_3$. Both effluents from UTEVA column were collected and then directly loaded to a 2-ml TRU column (TrisKem International, Bruz, France). After washing the TRU column with 5 ml of 2 mol/l HNO$_3$, 5 ml of 2 mol/l HNO$_3$ + 0.1 mol/l NaNO$_2$, 3 ml of 0.5 mol/l HNO$_3$, 2 ml of 9 mol/l HCl, 20 ml of 4 mol/l HCl and 20 ml of 4 mol/l HCl+0.1 mol/l HF, Pu was eluted with 10 ml of 4 mol/l HC1 + 0.02 mol/l TiCl$_3$. 50 µg of Nd carrier and 1 ml of 23
mol/l HF were added to Pu eluate to co-precipitate Pu with NdF$_3$. The precipitate was filtered through a 0.1 µm filter. After drying, the filter paper was measured by alpha spectrometer (Alpha Analyst, Canberra) for 7 days to obtain the activities of $^{239+240}$Pu and 242Pu.

5. Automated sequential injection method for 239,240Pu: Pu-C

The schematic procedure of Pu-C method is summarized in Figure 5. 10 g of soil was ashed at 550 °C overnight. About 10 mBq of 242Pu was spiked to the sample as a chemical yield tracer. The sample was digested with 100 ml of aqua regia on a hotplate at 150 °C for 30 min and 200 °C for 2 h, respectively. After adding 2.5 mol/l NH$_3$·H$_2$O to pH 8-9 to firstly perform the Fe(OH)$_3$ co-precipitation, 30 ml of 6 mol/l NaOH was added to dissolve amphoteric elements. The residue obtained after centrifugation was dissolved with 5 ml of 12 mol/l HCl and then diluted to 200 ml with deionized water. 300 mg of K$_2$S$_2$O$_5$ were added and the solution was stirred for 20 min to reduce Pu to Pu(III). 2.5 mol/l NH$_3$·H$_2$O was added to adjust pH to 9-10, and the precipitate obtained was dissolved with 5 ml of 14 mol/l HNO$_3$. The sample solution was finally diluted to 1 mol/l HNO$_3$ with 0.1 mol/l HNO$_3$, and 100 mg of NaNO$_2$ was added to stabilize Pu(IV).[6]

A multi-sample processing sequential injection (SI) system was used for the chromatographic purification of Pu, wherein 2-ml columns (0.5 cm i. d. × 10 cm length) packed with TEVA resin (100-150 µm particle size, TrisKem International, Bruz, France) were integrated in the SI system.[4, 5] The chromatographic purification of Pu was computer controlled. The protocol for each purification consisted of the following steps: 1) Rinse the holding coil with 20 ml of 1 mol/l HNO$_3$ at flow rate of 5 ml/min. 2) Precondition the TEVA column with 20 ml of 1 mol/l HNO$_3$ at 3 ml/min. 3) Load the sample solution onto the column at 1 ml/min. 4) Rinse the column with 60 ml of 1 mol/l HNO$_3$, followed by 60 ml of 9 mol/l HCl at 2.5 ml/min. 5) Elute Pu with 20 ml of 0.1 mol/l NH$_2$OH·HCl + 2 mol/l HCl solution. Pu eluate was evaporated to dryness on a hotplate with the addition of few millilitres of 14 mol/l HNO$_3$ to decompose the remaining NH$_2$OH·HCl. The sample was finally dissolved in 5 ml of 0.5 mol/l HNO$_3$ for
measurement of 239Pu, 240Pu and 242Pu using ICP-MS (Thermo Scientific X Series II) under hot plasma conditions as reported elsewhere. [4, 43]

6. Manually operated combined method for 90Sr and $^{239, 240}$Pu: Sr/Pu-A

The schematic procedure of Sr/Pu-A method is summarized in Figure 6. 10 g of soil sample was dried at 105 °C and ashed in a muffle furnace at 450 °C overnight. 50 mBq of 242Pu chemical yield tracer and 30 mg of Sr (as SrCl$_2$) carrier were added to the sample. The sample was heated to boiling and digested with 100 ml of 14 mol/l HNO$_3$ on a hot plate for 6 h. H$_2$O$_2$ was added dropwise (1-2 ml per sample) 1 h before ending the digestion. After cooling, the sample was filtered through a GF filter and the filtrate was evaporated to dryness.

The residue was dissolved with 80 ml of 8 mol/l HNO$_3$ with the aid of heating (~70 °C). Solid NaNO$_2$ was added to the warm solution which was further heated for 30 min to stabilize Pu(IV). After cooling to room temperature, sample solution was loaded to an 8-mL column packed with Dowex 1 x 4 (50-100 mesh) anion exchange resin preconditioned with 30 ml of 8 mol/l HNO$_3$. The column was washed with 50 ml of 8 mol/l HNO$_3$, followed by 120 ml of 12 mol/l HCl to remove thorium. The effluent from sample loading and 8 mol/l HNO$_3$ washing were collected for further purification of 90Sr. Pu was eluted with a mixture of 60 ml of 12 mol/l HCl and 8 ml of 1 mol/l NH$_4$I.

The Pu eluate was evaporated to dryness and the residue was dissolved with 20 ml of 3 mol/l HNO$_3$ + 1 mol/l Al(NO$_3$)$_3$ solution. 2 ml of 0.6 mol/l Fe(NH$_2$SO$_3$)$_2$ solution and 150 mg of ascorbic acid were added to reduce overall Pu to Pu(III). After 15 min, the sample was loaded to a 2-mL UTEVA column which was then washed with 10 ml of 3 mol/l HNO$_3$. Both effluents from the UTEVA column were collected and then directly loaded to a 2-mL TRU column. After washing the TRU column (5 ml of 2 mol/l HNO$_3$, 5 ml of 2 mol/l HNO$_3$ + 0.1 mol/l NaNO$_2$, 3 ml of 0.5 mol/l HNO$_3$, 2 ml of 9 mol/l HCl, 20 ml of 4 mol/l HCl and 20 ml of 4 mol/l HCl+0.1 mol/l HF), Pu was eluted with 10 ml of 4 mol/l HCl + 0.02 mol/l TiCl$_3$. 50 µg of Nd carrier and 1 ml of 23 mol/l HF were added to Pu eluate to co-precipitate Pu with NdF$_3$. The precipitate was filtered through a 0.1 µm
membrane filter (Supor®-100, Pall Life Sciences). Activities of $^{239+240}$Pu and 242Pu on the filter were measured by alpha spectrometer (Alpha Analyst, Canberra) for 7 days.

The Sr fraction collected from the Dowex 1 x 4 column was evaporated to dryness and re-dissolved with 50 ml of 8 mol/l HNO$_3$. The sample was loaded to 8-ml Sr resin preconditioned with 20 ml of 8 mol/l HNO$_3$. After washing the Sr column with 20 ml of 8 mol/l HNO$_3$, 10 ml of 3 mol/l HNO$_3$ + 0.05 mol/l H$_2$C$_2$O$_4$ and 10 ml of 8 mol/l HNO$_3$, respectively, Sr was eluted with 50 ml of 0.05 mol/l HNO$_3$.

Sr in the eluate was precipitated as SrCO$_3$ after adding 1 g of NH$_2$CO$_2$NH$_4$. The precipitate was filtered through a membrane filter (Millipore 0.45 µm) and dried. The chemical yield of Sr was determined gravimetrically via weighing the SrCO$_3$. The precipitate on the filter was transferred to a liquid scintillation vial and 2 ml of 4 mol/l HCl and 18 ml of H$_2$O was added. After 3 weeks in-growth of 90Y, the Cherenkov counting of 90Y was done for 10 h using a a Quanulus 1220 liquid scintillation counter.

7. Vacuum box assisted combined method for 90Sr and $^{239, 240}$Pu: Sr/Pu-B

The schematic procedure of Sr/Pu-B method is summarized in Figure 7. 10 g of soil was dried at 105 °C overnight and then ashed at 450 °C overnight. The sample was spiked with about 18 mBq of 242Pu and 5 Bq of 85Sr as chemical yields tracers for $^{239, 240}$Pu and 90Sr, respectively. The sample was digested with 100 ml of Aqua regia on a hotplate at 120 °C for 7 h with the addition of H$_2$O$_2$. After evaporation to dryness, 28 mol/l HF and 14 mol/l HNO$_3$ were added, and the sample was evaporated to dryness again. 1.0 g of NH$_2$OH HCl and 100 mg of Ca carrier were added. The sample was dissolved with 1 mol/l HNO$_3$, and 10 g of oxalic acid was added. NH$_3$·H$_2$O was added to pH 5-6 and the sample was heated for 1 h at 110 °C. After cooling, the sample was filtered through a Whatman 42 grade filter. The beaker and the filter paper were washed with 30 ml of 0.8 mol/l oxalic acid solution. The precipitate on the filter was dried under 110 °C for 15 h, and then ashed under 450 °C for 5 h and 600 °C for 17 h, respectively.

The ashes were dissolved with 5 ml of 14 mol/l HNO$_3$ and then evaporated to dryness. The sample was finally dissolved in 20 ml of 3 mol/l HNO$_3$ – 0.1 mol/l sulfamic acid –
0.1 mol/l ascorbic acid and loaded onto a tandem UTEVA-TRU-Sr cartridge (2-mL volume of each column, 100-150 µm particle size) with the assistant of a vacuum box system. The tandem set-up of columns was washed with 10 ml of 3 mol/l HNO₃ and thereafter the three columns were splitted up. The TRU column was washed with 10 ml of freshly prepared 3 mol/l HNO₃ – 0.1 mol/l NaNO₂ followed by 2 ml of 9 mol/l HCl and 20 ml of 4 mol/l HCl. Pu was eluted from TRU with 10 ml 4 mol/l HCl + 0.2 ml 15% TiCl₃ into a 20 ml scintillation vial. 100 µL Ce(III) solution (500 µg Ce/mL) and 2 ml of 28 mol/l HF were added to the Pu eluate and allowed to stay for 30 min. The precipitate was filtered through a Resolve® filter, which was measured by an Ortec alpha detector for 9 days to obtain activities of 239Pu, 240Pu and 242Pu.

The Sr column was washed with 10 ml of 8 mol/l HNO₃ followed by 5 ml of 3 mol/l HNO₃ – 0.05 mol/l oxalic acid and 5 ml of 3 mol/l HNO₃, respectively. Sr was eluted with 10 ml of 0.05 mol/l HNO₃ into a 20 ml scintillation vial. The activity of 85Sr was detected by NaI gamma detector to calculate the chemical yield of 90Sr in the previous process. 10 mg of Y carrier (as YCl₃) was added. After 14 days in-growth of 90Y, 12 mol/l HCl was added to the sample to pH 2. The sample was heated to 90 °C and 6 mol/l NH₃·H₂O was added to the sample to pH 2. The sample was heated to 90 °C again and the Fe(OH)₃-Y(OH)₃ precipitation was repeated twice. The precipitate was dissolved with 3-4 drops of 12 mol/l HCl and 15 ml of deionized water. The sample was heated to 90 °C again and the Fe(OH)₃-Y(OH)₃ precipitation was repeated twice. The precipitate was dissolved with 3-4 drops of 12 mol/l HCl and 15 ml of deionized water. 6 mol/l NH₃·H₂O was added to adjust pH to 2. After addition of 20 mg of Pb carrier (as PbCl₂), 2 ml of saturated NaSO₄ was added. The precipitate was filtered through a 0.45 µm membrane filter and the filtrate was heated to 90 °C. 1 ml of saturated oxalic acid solution was added dropwise and then 6 mol/l NH₃·H₂O was added to pH 2-3. The sample was kept at 90 °C for 1 h. The Y₂(C₂O₄)₃ precipitate was filtered through a GF/A filter and then measured with a low background GM beta counter (Risø beta counter, Denmark).

After the beta counting, the filter was combusted at 900 °C for 1.5 h and the remaining Y₂O₃ was dissolved with 3 ml of 14 mol/l HNO₃. The sample was evaporated to dryness.
and then dissolved in 20 ml acetate buffer solution (pH=4). After adding 1 drop of xylenol orange, the Y concentration was titrated with 0.01 mol/l EDTA.