Topology Optimization of Active Transport Flows

Andreasen, Casper Schousboe

Published in:
Proceedings of the 30th Nordic Seminar on Computational Mechanics (NSCM-30)

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
TOPOLOGY OPTIMIZATION OF ACTIVE TRANSPORT FLOWS

CASPER SCHOUSBOE ANDREASEN*

*Department of Mechanical Engineering, Section for Solid Mechanics
Technical University of Denmark
Nils Koppels Allé, Building 404
e-mail: csan@mek.dtu.dk, web page: http://www.topopt.dtu.dk

Abstract. Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology optimization to the design of multiphase flow components. The work is a natural extension of the density based topology optimization procedure applied to design of passive mixers and coolers where the transported material is not influencing the properties of the governing fluid flow model. In this work the effective properties of the fluid is changing with concentration.

In this work a multiphase fluid flow model is combined with a Brinkman penalization in order to introduce the design of the fluid component. Gradient based optimization is applied in order to optimize the performance of flow components. The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated.

Keywords: Topology Optimization, Multiphase flow, Particles, FEM

REFERENCES

