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Abstract 

Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated 

carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl 

chloride. Hybrid composites of activated carbon functionalized with COPs exhibit a core-shell formation of COP 

material grafted to the outer layers of activated carbon.  This general method brings features of both COPs and 

porous carbons together for target-specific environmental remediation applications, which was corroborated with 

successful adsorption tests for organic dyes and metals. 
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1.  Introduction 

 

As water scarcity around the globe continues to deepen and water treatment becomes increasingly more crucial 

for the health and development of societies on every corner of the planet [1], the necessity for new, effective, and 

affordable treatment materials also becomes imperative.  Cheap and efficient technologies employing novel 

materials are emerging across a wide range of disciplines, from nanomaterials [2–4], to biomimetic membranes 

[5,6], to modifications on classic technologies like activated carbon [7–10].  To date, the standard cheap 

adsorptive material in water treatment remains to be activated carbon.  Activated carbon is, and has been for 

decades, actively employed in the adsorption of many common contaminants, such as pesticides [11], 

pharmaceuticals and endocrine disruptors [12], heavy metals [13], inorganic ions [14], among others.  Although 

the versatility of activated carbon to adsorb a wide range of compounds is generally advantageous, it also 

becomes a limitation when there is a need for selectivity in treating a particular contaminant.  Consequently, 

various modifications have been made on activated carbon to achieve specific advantages for numerous 

particular applications.  These modifications have been treatment with acids, bases, external media impregnation, 

heat, microwaves, ozone, plasma, and bioadsorption [15,16].  Therefore, functionalization of this traditional 

material with novel compounds can expand its use to an even wider range of pollutants, targeting specific 

contaminated water sources.  One of these novel materials is that termed covalent organic polymers (COPs).  

The benefit of these polymers is that they are extremely stable in many harsh conditions (e.g. high temperatures 

and boiling water) [17], and have already been proven efficient for environmental applications, such as gas 

capture [17–19], solvent uptake [20], and groundwater remediation [21]. 

 

However, full-scale applications of these COPs for environmental remediation have yet remained elusive.  

Efficient purification of large volumes of water or air requires that the contaminated stream can be drawn 

through a column containing highly functional materials, on the order of millimeters in size; in order to achieve 
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economical synergy between contaminant/column contact time and energy demand.  To date, COPs are nano- to 

micrometer in scale [17,18,21,22] or in the form of macroscale solidified gel-like materials [20].  Columns built 

with particles of such a small size are rendered unpractical for typical remediation purposes, as they yield very 

high back pressures, as is the case with high performance liquid chromatography (HPLC) columns; and the 

energy to overcome this phenomenon would be too great for large-scale operation.  Additionally, polymerizing 

the solidified gel-like polymers into millimeter-scale particles would still be limited in treatment efficacy due to 

slow intra-polymeric diffusion and insufficient contaminant contact time with the column material.  Thus, 

supporting COPs on a cheap backbone material provides an ideal solution for creating a cost effective 

purification process. 

 

Herein, we report the functionalization of COPs onto the surface of granular activated carbon (GAC); through a 

series of surface modification techniques, followed by the synthesis of a COP “shell” around the carbon granule.  

Activated carbon, established as one of the cheapest and most effective environmental remediation materials of 

all time [23], provides the optimal base material for the attachment of COPs.  As it is large enough to be able to 

be used in a low energy demand packed-bed column [24] and has a compatible chemistry for the grafting of 

polymers to its surface.  A first of its kind, activated carbon with a porous polymer functionalized shell provides 

a robust and re-generable material with the durability and versatility for a wide range of environmental 

applications.  By developing a cheap functionalized activated carbon with a novel porous polymer matrix, it 

becomes possible to drastically increase the target contaminant range for water treatment, while still remaining 

affordable. 

 

In this study, we successfully functionalized the surface of GAC with the porous matrix of COP material, 

specifically COP-19 [25].  Through an array of characterization techniques, it was confirmed that not only was 

the COP material present, but was in fact grafted to the surface of the carbon materials in a shell-like fashion.  

Given this successful functionalization (surface polymerization) method, it is now possible to develop a 
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carbon/COP “library” of various different polymers attached to GAC.  This library will aim at targeting specific 

environmental applications, depending on the polymer; from heavy metal up-take, to organics adsorption, to 

impregnation with reactive iron for contaminant degradation, to gas-capture and biogas purification operations.  

Subsequently, initial adsorption studies on an azo dye, cadmium, and iron prove feasibility for the developed 

material to be utilized in environmental applications. 

 

2.  Materials and methods 

 

Acid oxidation of the carbon was performed as follows.  25 g of Samchun carbon (AC) was combined with 250 

mL of concentrated nitric acid (HNO3, 60%) at 100 °C under reflux for 24 h. The carbon was washed thoroughly 

with copious amounts of MilliQ deionized water, until the rinsate reached a neutral pH. This material (AC-Ox) 

was then dried in a vacuum oven for 12 h at 110 °C.  Acyl chlorination of AC-Ox was performed as follows.  2.5 

g of oxidized carbon (AC-Ox) was mixed with a 2:1 mixture of dichloromethane (CH2Cl2), 100 mL, and thionyl 

chloride (SOCl2), 50 mL, and refluxed for 24 h in a nitrogen atmosphere. The solvents were removed from the 

material via rotary evaporation to afford the acyl chloride modified carbon (AC-Thio).  Melamine attachment to 

AC-Thio was performed as follows.  Avoiding contact with air, approximately 2.5 g of acyl chloride modified 

particles (AC-Thio) were immediately treated with a solution of 375 mg of melamine (C3H6N6) dissolved in 150 

mL of dimethyl sulfoxide ((CH3)2SO) and 2.5 mL of diisopropylethylamine (DIPEA) that had been sonicated 

until complete dissolution had taken place, and heated to 120 °C for 24 h in a nitrogen atmosphere. After 

filtration, the particles of melamine attached carbon (AC-Mel) were washed thoroughly three times each with 

dimethyl sulfoxide, then MilliQ deionized water, and finally ethanol; then dried in a vacuum oven for 12 h at 

110 °C.  Covalent organic polymer attachment to AC-Mel was performed as follows.  500 mg of melamine and 

800 mg of terephthalaldehyde was combined with 150 mL of dimethyl sulfoxide, sonicated until complete 

dissolution took place, and placed into a flask with a nitrogen atmosphere. 1000 mg of the melamine attached 

carbon particles (AC-Mel) were mixed into the solution, maintaining the nitrogen atmosphere. This mixture was 
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stirred under reflux for 48 h. After filtration, the particles of polymer attached carbon (AC-COP) were 

vigorously washed thoroughly three times each with dimethyl sulfoxide, then acetone, then MilliQ deionized 

water, and finally ethanol; then dried in a vacuum oven for 12 h at 110 °C.  Further information about the 

chemicals and equipment, and adsorption tests, can be found in the Supplementary material, section S1 and S2. 

 

3.  Results and discussion 

 

Initial surface modification methods of the activated carbon were inspired from previously reported literature of 

surface modification using thionyl chloride targeted at graphene [26] and carbon black [27], as well as an amino-

functionalization method for carbon nanotubes [28].  Various types of GAC were tested for the ability to be 

effectively oxidized at the surface to introduce carboxylic groups, and it was discovered that the lack of 

impurities in a pristine GAC (i.e. Norit
® activated carbon) made it difficult to break the bonds of the carbon and 

subsequently change the surface chemistry enough to allow for polymer grafting. Moreover, when using a GAC 

with too many impurities (i.e. Sigma activated charcoal), the surface area was too low and particle structure 

broke down too easily during modification. For mass loss, due to impurities on the carbons, determined by 

thermogravimetric analysis (TGA) of the different carbons, see Supplementary material, section S3.    

Consequently, a moderately pristine GAC (i.e. Samchun activated carbon) that still possesses a high surface area 

was found to be the optimal starting point for the reaction.  Carbon was first oxidized with concentrated nitric 

acid (HNO3, 60%) at 100 °C for 24 h (AC-Ox). Once highly saturated with carboxylic groups, the carbon was 

treated with a 2:1 mixture of dichloromethane (CH2Cl2) and thionyl chloride (SOCl2) under reflux for 24 h (AC-

Thio), converting the carboxylic groups to the extremely reactive acyl chloride substituent. After drying by 

rotary evaporation, the AC-Thio was used immediately in the next reaction step, without characterization, in 

order to avoid hydrolysis of acyl chloride by air or moisture. AC-Thio particles were then treated with a solution 

of melamine dissolved in dimethyl sulfoxide (DMSO) at 120 °C for 24 h (AC-Mel). At this point, melamine is 

grafted onto the surface of the acyl chloride containing carbon, by making amide bonds.  Using the amine groups 
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that melamine possesses, attachment of a covalent organic polymer (COP) shell around the GAC is thus possible. 

The final surface polymerization of attaching a COP matrix is employed by previously reported methods 

utilizing Schiff base chemistry with melamine and terephthaldehyde as the core monomers (AC-COP) [22,25].  

The entire series of reaction schemes is identified in Figure 1.  Due to the vigorous washing strategies after each 

phase of the grafting procedure, it can be assumed that any unattached monomers or polymers are no longer 

present (i.e. the high solubility of melamine in water and terephthaldehyde in ethanol will wash away any 

residuals), and therefore characterization data reflects only the carbon and grafted materials. 

 

 

Fig. 1.  Step-wise evolution of the COP attachment to the surface of activated carbon (illustrated as large grey 

object, not to scale). 

 

Fourier transform infrared spectroscopy (FTIR) was carried out at each point in the series of reaction steps 

producing the carbon-COP composite (Figure 2A).  As expected, the raw activated carbon exhibits no 

distinguishable peak pattern in the spectra, confirming the lack of any significant functional groups.  Following 
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the first reaction step with acid oxidation (AC-Ox), two major peaks appear at 1710 cm
-1

 and 1210 cm
-1

, which 

can be attributed to C=O and C-O, respectively, of the stretching of carboxylic groups formed on the carbon 

surface.  Another peak found at 1520 cm
-1

, correlates to nitro groups formed during the oxidation.  After the 

reaction in the third step with the grafting of melamine (AC-Mel), the appearance of peaks at 1580 and 1000 cm
-

1
 correlate to N-H and C-N, respectively.  These stretching frequencies verify the existence of secondary amine 

groups stemming from the acyl chloride on the carbon surface.  Ultimately, the final product (AC-COP) 

following the reaction in the fourth step with the COP attachment, yields a multitude of peaks at 1720, 1530, 

1460, 1340, 1190, 980, 860, and 800 cm
-1

.  These peaks are identical to the peak pattern found in the pure COP-

19, confirming that there is now COP material contained within the sample matrix (Figure 2A, green dashed 

line). 

 

 

Fig 2.  A) FTIR spectra of AC (black), AC-Ox (red), AC-Mel (magenta), AC-COP (blue), and COP-19 (green); 

XPS C1s scan of AC-COP. 

 

When elemental analysis (EA) was performed on the carbon particles, there was a clear trend in the quantities of 

each element present that corresponded very well with the reaction scheme (Table 1A).  Initially, as expected, 

the particles are primarily carbon, with some defects found mostly in the form of oxidation.  Following acid 
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oxidation with nitric acid (AC-Ox), the percentage of oxygen significantly increases; additionally, minor 

increases in hydrogen and nitrogen takes place.  After treatment with thionyl chloride (AC-Thio), and with the 

attachment of melamine to the carbon surface (AC-Mel), the third step correspondingly sees a substantial 

increase in nitrogen and hydrogen, due to the added presence of amine groups and aromatic nitrogens; while 

concurrently seeing a significant decrease in oxygen, as a secondary amine substitutes for the acyl chloride.  

Furthermore, the COP attachment more than doubles the nitrogen content while lowering the oxygen and 

hydrogen slightly (AC-COP), matching well with the added presence of a polymer constructed from melamine 

and terephthaldehyde. 

 

Table 1.  Elemental concentrations of carbon particles at each stage of the modification reactions, determined by 

elemental analysis (A) and X-ray photoelectron spectroscopy (B). 

 C N O H Other 

A.  Elemental analysis (%) 

AC 82.40 0.58 6.50 1.67 8.85 

AC-Ox 55.43 2.16 33.40 2.04 6.97 

AC-Mel 61.90 7.57 19.48 4.23 6.82 

AC-COP 55.85 17.52 12.43 2.65 11.54 

B.  X-ray photoelectron spectroscopy (%) 

AC 77.36 0.00 18.58 --- 4.06 

AC-COP 57.28 32.80 6.36 --- 3.56 

 

However, in order to verify that the spectral data from FTIR was indeed indicative of a polymer and its 

corresponding functional groups on the surface of the carbon, rather than entirely separate co-existing particles, 

X-ray photoelectron spectroscopy (XPS) was employed, which is limited to a penetration depth of the first 10 

nm of a surface.  Analyzing the elemental percentages with XPS reveals a clear indication that there is a polymer 

shell bound to the surface of the carbon, see Table 1B.  The best indicator for this is the surface nitrogen, which 

is non-existent in the original carbon, and is nearly one-third of the total content when the polymer is grafted.  

Additionally, an in-depth look at the C1s scan of the XPS measurement yields three distinct peaks of C-N, C=O, 
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and C (Figure 2B), whereas the original carbon contains only the bare carbon peak (see Supplementary material, 

section S4). 

 

Final confirmation of successful COP attachment to the carbon surface was verified using transmission electron 

microscopy (TEM).  Imaging with TEM revealed large dark activated carbon particles, out of focus in the 

foreground, with a shell of interwoven porous chains of COP material bound to the outer edges, in focus in the 

background (Figure 3). Confirming expected polymer formation and construction, the morphology of the COP 

used in this study and observed surrounding the GAC closely resembled that of the COP used in a previous study 

immobilizing nanoscale zero-valent iron (nZVI) into the pores of the COP (see Supplementary material, section 

S5) [21].  In addition, when TEM imaging was performed on particles just before COP attachment (AC-Mel) 

with only melamine bound to the surface, there was a noticeable difference in the material at the edges of the 

activated carbon.  This material of melamine monomers attached appeared as an amorphous and nonporous 

coating, rather than a shell of a porous polymer matrix (see Supplementary material, section S5). 

 

 

Fig. 3.  TEM images of activated carbon particles with an attached shell of COP material. 
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Porosity and textural characterization was performed on the materials, using nitrogen adsorption-desorption 

isotherms at 77K (Figure 4).  Activated carbon shows a typical type I isotherm, due to its microporous nature, 

with a very narrow pore size distribution centered around 2 nm (Figure 4A, black line).  For comparison, the 

bare COP possesses a type II isotherm with a significant amount of macropores and a broad range of pore sizes 

(from 2.6 nm to 100 nm) (see Supplementary material, section S7).  Not uncommon after oxidation of activated 

carbon [29,30], the porosity of AC-Ox is significantly reduced, reflecting the high content of oxidized 

functionalities blocking the pores (Figure 4B, red line).  Melamine attachment and successive COP growing 

leads to an increase in surface area of 75 m
2
/g and 338 m

2
/g for AC-Mel and AC-COP, respectively. The 

increased porosity can be explained through partially re-opening of the blocked pores after oxidation (small 

pores centered around 2.3 nm), as well as newly generated larger pores from the COP structure itself (2.6 nm to 

10 nm) but with a broader pore size distribution, reflecting the hybrid nature of the AC-COP. 

 

        

Fig. 4.  A) N2 adsorption (filled)-desorption (empty) isotherms at 77 K; B) Pore size/volume distribution by 2D-

NLDFT (slit pores, N2 carbon model) of AC (black), AC-Ox (red), AC-Mel (magenta), and AC-COP (blue). 

 

Finally, in order to test the preliminary efficacy of the produced material for environmental clean-up and 

contaminant removal/adsorption, in separate batch tests, AC-COP was mixed with the azo dye naphthol blue 
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black and cadmium.  Iron was also tested, to assess possibility for future application of impregnating nZVI into 

AC-COP for subsequent contaminant degradation.  For comparison, AC and COP-19 were also examined.  After 

only 30 minutes, AC-COP and COP-19 exhibited a high affinity for adsorbing the azo dye, very similar to 

previously reported results using COP-19 [21]; while the AC did not, each adsorbing up to 23.6, 23.8, and 5.6 

mg/g, respectively (Figure 5A).  The high adsorption of an azo dye to the COP material has been exhibited 

before [21], and can best be explained by the phenomenon known as pi-pi stacking, which has been observed 

before between aromatic compounds [31–33].  After 72 hours, adsorption for cadmium was 5.6, 4.5, and 5.3 

mg/g for AC-COP, COP-19, and AC, respectively (Figure 5B); similar results have been observed adsorbing 

cadmium with carbon nanotubes [34].  Interestingly, COP-19 exhibited the lowest cadmium adsorption, however, 

there was a synergistic effect observed between the AC and COP-19 in AC-COP, which adsorbed the highest 

amount of cadmium.  After 72 hours, adsorption for iron was 8.7, 12.4, and 11.5 mg/g for AC-COP, COP-19, 

and AC, respectively (Figure 5C).  Although, having lower adsorption numbers, AC-COP continued to increase 

adsorption of iron over a 3 day period, while AC and COP-19 saw a release of iron back into solution after 8 

hours, indicating that AC-COP is permanently trapping iron, making it an ideal candidate of nZVI I 

impregnation for future studies on contaminant degradation.  Ultimately, the rate constants of adsorption were 

determined using pseudo first-order kinetics [35].  The rate constants for azo dye adsorption were 0.0678, 0.1304, 

and 0.2211 h
-1 

for AC, COP-19, and AC-COP, respectively; the rate constants for cadmium adsorption were 

0.0012, 0.0016, and 0.0011 h
-1 

for AC, COP-19, and AC-COP, respectively; and the rate constants for iron 

adsorption were 0.0203, 0.0124, and 0.0121 h
-1

 for AC, COP-19, and AC-COP, respectively.  Preliminary 

adsorption batch tests indicate the ability of the developed material to be used effectively in environmental 

applications. 
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Fig. 5.  Adsorption isotherms of A) azo dye naphthol blue black; B) cadmium; and C) iron adsorbed by AC-COP 

(blue), COP-19 (green) and AC (black).  Material dosage: 0.5 g/L; initial pH: 6.5; C0-azo dye: 40 µM; C0-Cd: 10 

mg/L; C0-Fe: 10 mg/L. 

 

 

4.  Conclusions 

In summary, although various types of activated carbons were tested, it was determined that very pristine or 

crude carbons are not adequate for surface modification. If the carbon is too pristine, then the surface oxidation 

becomes extremely difficult; and, if the carbon is too crude, then the structural integrity of the carbon becomes a 

concern.  Therefore, a carbon with a moderate amount of defects that possesses a high surface area is an optimal 

material for polymer functionalization of GAC.  Defects initially present in the carbon leads to ease of oxidation 

of the surface, creating functional carboxyl groups for further modification.  These carboxyl groups are easily 

converted in to acyl chlorides via thionyl chloride treatment. From the acyl chloride, monomer attachment, in the 

form of melamine, is then possible.  Monomers such as this can provide the building infrastructure for the 

construction of a polymeric network around the surface of the carbon. In this manner, we successfully created a 

covalent organic polymer shell around activated carbon granules, the first time this type of porous framework 

has been attached to the surface of activated carbon. From here, we expect to establish a “library” of surface 

modified polymer attached carbons for various environmental applications; ranging from heavy metal adsorption, 
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to water contamination treatment, to CO2 adsorption, to biogas purification.  Consequently, following the 

successful initial results of contaminant adsorption by AC-COP, the environmental applications are promising. 
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