GCN CIRCULAR 21478, LIGO/Virgo G297595: INTEGRAL search for a prompt gamma-ray counterpart


Total number of authors: 15

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We investigated serendipitous INTEGRAL observations carried out at the time of the LIGO/Virgo burst candidate G297595. The satellite was pointing at RA=240.554 Dec=-55.181, far from the high-probability area of LIGO localization. For the full LIGO 90% confidence region the best upper limit is set by the anti-coincidence shield of the spectrometer on board of INTEGRAL (SPI/ACS). The localization of G297595 is close to optimal for SPI-ACS observation.

The INTEGRAL Burst Alert System (IBAS) did not identify any unusual transients in coincidence with the LIGO/Virgo trigger. The IBAS inspects both ISGRI Field of View and all-sky SPI-ACS light curve.

We investigated the SPI-ACS, IBIS/Veto, and IBIS/ISGRI light curves between -500 and +500 s from the trigger time (2017-08-14 10:30:43 UTC) on temporal scales from 0.1 to 100 s, and found no evidence for any significant deviation from the background. We estimate maximal 3-sigma upper limits of 6.6e-7 erg/cm² (75-2000 keV) for 8s duration assuming Band model parameters alpha=-1, beta=-2.5, and E_peak = 300 keV. To derive a limit for a typical short burst with 1 s duration, we use a harder cutoff power law spectrum with a photon index of -0.5 and an Epeak = 500 keV. We find a limiting fluence of 2.1e-7 erg/cm² (75-2000 keV) at 3 sigma c.l. Due to high particle background at the current phase of the Solar Cycle, these upper limits are somewhat higher than those that can be achieved by SPI-ACS in more favorable conditions.

We do not confirm the report by Pozanenko et al. 2017, GCN 21476. The fluctuation they report has an S/N marginally exceeding 3 sigma in an optimized time bin used by the authors. In our systematic search, based on predefined detection thresholds and time bins, this event is not detected with a sufficiently high significance to justify a report. We estimate post-trial significance of a long-timescale fluctuation shortly following G297595 at 1.9 sigma.

INTEGRAL is scheduled to perform pointed follow-up observations of the G297595 localization region.