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Abstract

In today’s world computers are ubiquitous. They can be found in virtually
any industry and most households own at least one personal computer or
have a mobile phone. Apart from these fairly large and complex devices, we
also see computers on a much smaller scale appear in everyday objects in the
form of micro-controllers and RFID chips.

What truly transformed our society are large scale networks, like the In-
ternet or mobile telephone networks, which can link billions of devices. Our
ways of communicating and conducting business have severely changed over
the last decades due to this development. However, most of this communica-
tion happens over inherently insecure channels requiring methods to protect
our communication. A further issue is the vast amount of data generated,
which raises serious privacy concerns.

Cryptography provides the key components for protecting our commu-
nication. From securing our passwords and personal data to protecting mo-
bile communication from eavesdroppers and our electronic bank transactions
from manipulation. These applications would be impossible without cryptog-
raphy.

The main topic of this thesis is the design and security analysis of the
most fundamental algorithms used in cryptography, namely block ciphers
and cryptographic hash functions. These algorithms are the building blocks
for a vast amount of applications and play a vital role in providing both
confidentiality and integrity for our communication.

This work is organized in two parts. First, an introduction to block ciphers
and cryptographic hash functions is given to provide an overview over the
state-of-the-art, the terminology, and how we can evaluate the security of an
algorithm. The second part is a collection of scientific publications that have
been written during the PhD studies and published.

In the first publication we analyze the security of cryptographic hash func-
tions based on the AES and demonstrate practical attacks on reduced-round
versions of these algorithms. The second publication provides cryptanalysis
of the lightweight block cipher SIMON in particular how resistant this type
of block ciphers are against differential and linear cryptanalyis. In the fourth
publication we present a short-input hash function utilizing AES-specific in-
structions on modern CPUs in order to improve the performance of hash-
based signature schemes. The last publication deals with the design of the
tweakable lightweight block cipher Skinny which provides strong security
bounds against differential and linear attacks while also competing with the
performance of SIMON.

v



Resumé

I nutidens verden er computere allestedsnærværende. De findes inden for en-
hver industri, og de fleste husholdninger har mindst en personlig computer
eller en mobiltelefon. Ud over disse forholdsvist store og komplekse enheder,
begynder computere i en meget mindre skala også at dukke op i hverdagen
i form af mikrocontrollere og RFID-chips.

Det der for alvor har ændret vores samfund er netværk i stor skala, såsom
Internettet eller mobilnetværker, som kan forbinde milliarder af enheder. Den
måde hvorpå vi kommunikerer og gør forretning har ændret sig voldsomt de
sidste par årtier, netop på grund af denne udvikling. Størstedelen af denne
kommunikation foregår imidlertid over usikre kommunikationskanaler, hvor
metoder til beskyttelse af kommunikationen er påkrævet. Derudover bliver
store mænger data genereret, hvilket giver anledning til bekymringer om
vores privatliv.

Kryptologi leverer det centrale element i beskyttelsen af vores kommunika-
tion. Fra sikring af passwords og personlig data, til forebyggelse af aflytning
af mobilkommunikation og manipulation af bankoverførelser - uden krypto-
logi ville alt dette være umuligt.

Hovedemnet i denne afhandling er design og sikkerhedsanalyse af de mest
fundamentale algoritmer, der bliver benyttet i kryptologi: block ciphers og
kryptografiske hash funktioner. Disse algoritmer er byggesten i mange anven-
delser og spiller en afgørende roller i at levere både fortrolig kommunikation
og dataintegritet.

Afhandlingen består af to dele. Første del giver en introduktion til block
ciphers og kryptografiske hash funktioner med det formål at give et overblik
over state-of-the-art, terminologien, og hvordan vi kan evaluere en algorit-
mes sikkerhed. Den anden del er en samling af videnskabelige publikationer,
der er blevet skrevet og udgivet under PhD-studiet.

I den første publikation analyserer vi sikkerheden af kryptografiske hash
funktioner baseret på AES og demonstrerer praktiske angreb på versioner af
disse algoritmer med et reduceret antal runder. Den anden publikation inde-
holder kryptoanalyse af letvægts block cipheren SIMON med fokus på hvor
resistent denne type block cipher er over for differentiel og lineær kryptoana-
lyse. I den fjerne publikation præsenterer vi en hash funktion med kort input,
der benytter AES-specifikke instruktioner på moderne CPU’er for at forbed-
re hash-baserede signatureres ydeevne. Den sidste publikation omhandler
designet af en tweakable letvægts block cipher, Skinny, som giver stærke
sikkerhedsgarantier mod differentiale og lineære angreb, men hvis ydeevne
stadig er sammenlignelig med SIMONs ydeevne.
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Part I

S Y M M E T R I C P R I M I T I V E S

This part gives a concise introduction to both block ciphers and
cryptographic hash functions. This includes different notions of
security, applications and also techniques to study the security of
these algorithms.





1
Introduction

Cryptography studies techniques for secure communication over an insecure
channel and has a long and interesting history. In some forms it has already
been used in ancient times, like the famous ancient Caesar cipher (after Julius
Caesar), which just consisted of shifting the position of the letters in the al-
phabet to hide the original message. Another famous historical example is
the break of the German Enigma machine by Polish and British cryptolo-
gists. This allowed the western Allies to read a large amount of messages
transmitted during World War II, providing them a significant advantage.
A comprehensive guide to the fascinating early history of cryptography is
given by David Kahn in [37].

Before the information age cryptography mostly dealt with keeping mes-
sages secret and was only used by very few people like diplomats, spies
or the military. Only in the 1970’s cryptography started attracting open aca-
demic research with the publication of the Data Encryption Standard (DES)
and the invention of public key cryptography.

Computers and large scale networks have become ubiquitous today, with
billions of users communicating and having billions of users and cryptogra-
phy plays essential in keeping us safe. The nature of our modern communica-
tion channels is often inherently insecure and it is very easy for an adversary
to eavesdrop a conversation (see Figure 1). Transmissions over radio waves,
like they are used in our mobile communication or wireless networks, can
easily be captured and are prone to manipulation. The infrastructure of the
Internet is controlled by a vast amount of entities which are spread globally,
offering an adversary a huge attack surface and we require ways to protect
our private data, personal communication, electronic commerce and critical
infrastructure.

While most people associate cryptography with keeping information se-
cret, it serves various purposes nowadays. In practice it is not sufficient to
just keep the messages transmitted secret, but we also want to make sure that
they are not modified by a third party or that someone impersonates our
communication partner. Through the research in cryptography many new
applications emerged ranging from digital signatures, payment schemes like
Bitcoin to secure multi-party computation (MPC) [77] and zero-knowledge
proofs [30].

3
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Alice Bob

Adversary

Insecure Channel

Figure 1: Two parties communicating over an insecure channel like the Internet or
mobile networks. An adversary can listen to any communication on the
channel, delete messages or modify them.

This work focus on how we can create a secure channel between two par-
ties. We define the following three requirements for this:

• Confidentiality: When an adversary listens to the communication she
should not be able to derive any information on the messages being
exchanged between the two parties.

• Integrity: When an adversary modifies the transmitted messages the
communicating parties should be able to detect that a modification has
occurred.

• Authenticity: The communicating parties should be able to verify that
the message originated from whom they expect. It should not be pos-
sible for the adversary to impersonate as one of the persons communi-
cating.

In this thesis we will look at different cryptographic algorithms which
provide one or more of these properties. The first class of algorithms are
block ciphers which use a secret key, which is shared between the two parties,
to encrypt a message which can be send over an insecure channel without
loss of confidentiality. The second class of algorithms are cryptographic hash
functions, which provide integrity by giving the two parties a way to detect
any potential malicious changes to messages transmitted. We can also use
these functions in combination with a secret key to authenticate messages, as
will be shown later.

What is not covered in this thesis are so called public key algorithms. The
main advantage of these algorithms is that they do not require any prior
shared secret between the two parties. They involve a pair of keys, the pri-
vate key and the public key, where the latter be made public. Using this
public key anybody can encrypt a message, which can only be decrypted
if one knows the corresponding private key. While the private key and the
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public key are related, it should be infeasible for an adversary to recover
it. These algorithms are often based on hard problems like integer factorization
(RSA) or discrete logarithms. A major drawback of these algorithms is that
they are much slower then symmetric key algorithms and therefore in prac-
tice, protocols or applications usually use a combination of these algorithms.
The public key algorithms are used to exchange keys, while the large bulk of
data is then encrypted with the much faster symmetric algorithms.

Outline. In Chapter 2 we give a short introduction to block ciphers. This
includes how we can argue about security for these algorithms, the capa-
bilities of an adversary and some basic design principles on how they are
constructed in practice. In Chapter 3 we discuss the same aspects for cryp-
tographic hash functions and also give a more detailed discussion of some
applications with a focus on hash-based signature schemes. At last, in Chap-
ter 4 we discuss some of the most prevalent cryptanalysis techniques for
both block ciphers and hash functions, namely meet-in-the-middle attacks
and differential cryptanalysis.





2
Block Ciphers

A block cipher is a family of functions parameterized by a key K ∈ {0, 1}k,
which maps a set of messages M ∈ {0, 1}n to a set of ciphertexts C ∈ {0, 1}n

E : {0, 1}k × {0, 1}n → {0, 1}n (1)

We will use the key as a subscript EK(M) for the encryption of M using
the key K. The inverse of this operation DK = E−1

K is called the decryption
algorithm. K is the set of possible keys, M the set of possible messages and C

the set of possible ciphertexts. We refer to k as the key size and n as the block
size.

The main purpose of a block cipher is to provide confidentiality. We can
transmit the ciphertext over any insecure channel and it should be impossible
for any third party to derive information of the plaintext without knowing
the secret key.

The first standardized block ciphers is the Data Encryption Standard (DES),
which was published in 1975 and standardized in 1977. DES evolved out of
an earlier design by Horst Feistel developed at IBM and modified in consul-
tation with the National Security Agency (NSA). It was quickly adopted inter-
nationally and attracted lot of academic research. The study of DES has led
to many advances in the cryptanalysis of block ciphers, which still influence
designs nowadays.

As DES was aging and only had a limited key size, the National Institute
of Standards and Technology decided to hold a new and more open com-
petition to find a successor, the Advanced Encryption Standard (AES). The
competition was lasting from 1997 to 2000 and received a lot of attention
from the cryptographic research community. Fifteen block cipher designs
were submitted both by companies and researchers. In October 2000 the win-
ner Rijndael by the Belgian cryptographers Joan Daemen and Vincent Rijmen
was announced [72]. Since then the algorithm became widely spread and
modern CPUs even provide instructions specific to the AES.

There are several areas emerging in which highly resource constraint de-
vices are used to build networks and communicate with each other, for ex-
ample RFID chips or sensor networks. For these platforms algorithms like
the AES are not always suitable due to the limited chip-area, code-size or
strict requirements on the latency. This has lately been reflected by various

7



8 block ciphers

M MC CE DInsecure Channel

K K

Figure 2: A block cipher can use a shared secret K to establish confidentiality over an
insecure channel. The encrypted messages C = Ek(M) can be send over the
insecure channel and gives an adversary no information on M.

lightweight designs, which optimize for several of these criteria and address
this restrictions. Examples include Noekeon [18], Present [13], Prince [14],
SIMON [4], Speck [4] and also the lightweight cipher Skinny [5] which will
later be discussed in this thesis.

2.1 Applications

Block ciphers are used in various protocols to provide confidentiality and are
used to encrypt the main bulk of data. This includes encrypting traffic over
the Internet, which is usually done using TLS [23], single files or providing
full disk encryption for your computer. They are also an elemental building
block for other cryptographic primitives including stream ciphers, message au-
thentication codes (MACs), pseudo-random number generators and hash functions.

2.2 Security

The main purpose of a block cipher is to provide secure communication be-
tween two parties. Giving an exact and concise definition of secure is a diffi-
cult task and depends both on the requirements of the parties communicat-
ing and the goals and capabilities of the adversary.

2.2.1 Unconditional Security

We call an encryption system unconditionally secure if it can not be broken
by an adversary, even if she has unlimited computational resources avail-
able [24]. This property results from having multiple meaningful solutions
for a given ciphertext, which are all equally likely to be the secret message.
For example, if the ciphertext JxkMc could be decrypted to mouse, sloth,
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tiger, . . . for different keys then the adversary can not distinguish anymore
which is the right solution. Shannon [67] used the term perfect secrecy for a
similar definition

Definition 2.1. A system has perfect secrecy if for any message m ∈ M and
ciphertext c ∈ C

Pr(m | c) = Pr(m). (2)

Note that this implies that for any pair of (m, c) there must be at least one
key k ∈ K which relates these two values c = EK(m). Therefore the key space
K must be at least as big as the message space.

Can we now realize such a system in practice? In fact, there is a very simple
encryption scheme which achieves this property the one-time pad.

One-time Pad For the one-time pad we have M = C = K ∈ Fn2 . To encrypt
a message m = (m1, . . . ,mn) ∈ M we select a key k = (k1, . . . ,kn) ∈ K

uniformly at random. The encryption function is then given by

EK(m) = m⊕ k = (m1 ⊕ k1,m2 ⊕ k2, . . . ,mn ⊕ kn) (3)

While this scheme achieves perfect secrecy it has mayor limitations. First,
the key has to be as long as the message and second it can only be used once
without compromising the security. Encrypting a second message m ′ with
the same key would allow an attacker to learn m⊕ k⊕m ′⊕ k = m⊕m ′ and
therefore leak information on the plaintext.

2.2.2 Computational Security

While the previous schemes are provably secure they have severe drawbacks
in practice due to the size of the key or requiring a new key for each encryp-
tion. Furthermore, in practice an attacker is always limited by the available
amount of computing power, memory storage and amount of messages she
is able to obtain. Hence, for encryption schemes used in practice it is reason-
able to look at computational secure systems.

The size of the key used in a block cipher is always limited and therefore
an attacker can always succeed in finding the secret key by searching through
the whole key space. This exhaustive search gives an inherent upper limit to
the security one can expect from a block cipher and also requires the keys to
be sufficiently large, typically 128 or 256 bits in practice.

We say a block cipher provides t-bit security if the best attack requires an
exhaustive search over 2t values. In general it is very difficult to prove that
a cipher is computational secure and the usual approach is to show that it
provides sufficient security against all known attacks, that means no attack
is faster then exhaustive search.
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2.2.3 Adversary Goals

From an attacker’s point of view recovering the secret key is the best case,
however in practice it is not sufficient to only protect against this type of
attack. We also have to consider scenarios which appear less severe at first
sight and consider other goals which an adversary might want to achieve. In
the following we give a list of those in decreasing order of severity [42].

Total Break The attacker fully recovers the secret key K.

Global Deduction The attacker finds an algorithm which is functionally
equivalent to EK or DK. This would allow her to decrypt any messages, but
would not compromise the choice of K.

Local Deduction The attacker can generate M (or C) corresponding to a C
(or M) which has not been seen before. In this case the attacker might only
be able to derive information of a single intercepted ciphertext.

Distinguisher The attacker is given access to either the block cipher using a
random key or a randomly chosen mapping from M to C. The goal for her is
to decide whether a given output C is coming from the block cipher or the
random mapping.

2.2.4 Capabilities of the Attacker

In order to break a cryptosystem the attacker first has to assess which al-
gorithms are used. Therefore, one might assume that keeping the algorithm
secret will result in a more secure system, however this is rarely the case
and can often be a dangerous pitfall giving a false sense of security. For all
our cryptosystems we assume that the attacker has full knowledge of the
underlying algorithms. In cryptography this is often referred to as Kerckhoffs’
principle which states that the security of a cryptosystem should solely de-
pend on the secrecy of the key.

Designing a cryptosystem under this assumption can be very beneficial
and lead to a more robust system in general. It is easier to protect a small
piece of information, the key, than the whole description of the algorithm. In
practice an attacker will often have access to a system which implements the
block cipher allowing to reverse engineer the process. Additionally, in the
case of compromise it is much simpler to replace a key then replacing the
algorithm in all implementations deployed, especially in Hardware. Another
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important aspect is that we have a higher confidence in published crypto-
graphic algorithms, as they have convincingly survived years of attack efforts
by a large research community.

Traditionally, when you think about breaking encryption, you imagine in-
tercepting some scrambled message and trying to deduct the secret message
which has been transmitted. However, this is not the only relevant scenario
in practice and an attacker might be able not only to passively listen on an
encrypted channel, but also send her own messages or modify messages be-
ing send. In the following we give an overview over the most relevant ways
an attacker can obtain data, starting from the one were she has least control
over:

• Ciphertext only: The attacker intercepts a set of messages C1, . . . ,Cn
encrypted with the key K. Note that the attacker might still infer some
knowledge on the plaintexts, for instance the language used.

• Known-plaintext: The attacker is able to obtain a set of ciphertexts
C1, . . . ,Cn encrypted with K where she knows the corresponding mes-
sages M1, . . . ,Mn. A typical example for this would be fixed headers
for instance of an e-mail or TCP/IP package.

• Chosen-plaintext: The attacker can request the encryption with key K
for a set of messagesM1, . . . ,Mn of her choice. While at first this might
seem like an artificial scenario it can be useful in practice. A historical
example for this can be found during World War II, where the British
RAF would drop mines in specific locations in order to induce warning
messages with a specific content being transmitted.

• Adaptive chosen-plaintext: In this scenario an attacker can obtain the
encryption of messages in an interactive way. This means she can re-
quest Ci = EK(Mi) and depending on the outcome of this issue a new
request for Ci+1.

When discussing the actual costs of an algorithm breaking an encryption
scheme we will use the following three metrics:

• Time T: This represents the computational effort required to break the
system. For practical attacks this could be stated as the actual time it
requires to recover the key. However as this strongly depends on the
computational power available it is more common to express T as the
number of simple operations required to succeed. This can be single
instructions on a CPU or the number of calls to the block cipher.
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To put this into context, a typical processor found in a consumer PC
can do ≈ 232 operations per second. The Bitcoin network manages to
compute ≈ 260 hash computations per second1.

• Memory M: The storage space required for an attack is equally impor-
tant and can severely hinder the practicality of an attack. Accessing the
memory usually also gets more costly with the amount of memory re-
quired. While a typical hard drive nowadays offers 242 bits of memory,
accessing it is significantly slower than the main memory or cache of a
CPU.

• Data D: The amount of data required for an successful attack. In prac-
tice it might be very difficult to obtain a large amount of data, especially
if an attack requires very specific messages.

Independent of the structure of a block cipher an attacker can always apply
generic attacks. As no block cipher can be secure against these attacks they
provide an upper bound on what level of security one can expect. These
attacks typically only depend on the size of the key or the block size. In
general we consider a cipher broken if there exists an attack which is more
efficient than the best known generic attack. In order to prevent these generic
attacks in practice the key size should not be below 128 bits resp. 256 bits
in the quantum computing settings. Here, we briefly state two of the most
important generic attacks.

Exhaustive Search The attacker tries out all the possible keys. For a key-size
of k bits the time complexity is≈ 2k. The attack requires no memory and only
requires a few plaintext/ciphertext pairs depending on the block size and
unicity distance of the underlying messages [50]. In the quantum computing
setting Grover’s algorithm [31] is able to find a key in 2k/2 evaluations.

Time-memory Trade-o� These type of attacks, which as the name sug-
gests, allow a trade-off between the time and memory complexity by pre-
computing a table which then enables a faster key recovery attack. The vari-
ant proposed by Hellman [32] requires 2k pre-computation and then can find
the secret key with a total complexity T ×M = 2k, where T is the time com-
plexity and M the amount of memory used. While this approach might not
be useful for finding a single key it provides a significant speed-up when
attacking multiple targets.

1https://blockchain.info/charts/hash-rate on 22th July, 2016.

https://blockchain.info/charts/hash-rate
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2.3 Design

A block cipher can be seen as a set of 2k permutations on n-bit words which
are indexed by the key k. Ideally we want a block cipher to randomly draw
2k permutations out of the possible 2n! permutations on n-bit words. Un-
fortunately, in practice such a random block cipher would be very difficult to
implement and require a huge description for any meaningful key and block
sizes. Therefore, in practice we need a more structured approach which gives
us an efficient block cipher and still makes it difficult for an adversary to find
any relationship between plaintext, ciphertext and the secret key.

Nowadays, most block cipher found in practice use simple building blocks
which are combined to get a complex function. One of the first constructions
of this kind, the product cipher, was described by Shannon in [67].

Definition 2.2. An iterative block cipher is an algorithm which maps a plaintext
of fixed size n into a fixed size ciphertext n ′ using a key K, by repeatedly
applying a round transformation fr to the plaintext

EK(·) = frkr(·) ◦ . . . ◦ f
1
k1
(·) (4)

The round keys k1,k2, . . . ,kr are derived from K by a so called key schedule.
The intermediate outputs of the function are called intermediate states. If the
round functions are all equal we also refer to this as an iterated block cipher.

The main difficulty for a designer is now to choose a round function and
method to factor in the key to get a complex relationship between the plain-
text, ciphertext and key. The two most common ways to achieve this are
so-called Feistel networks or Substitution Permutation Networks (SPNs). An-
other less widespread way to design block cipher is the construction by Lay-
Massey, which is used in IDEA [43].

2.3.1 Feistel

The first construction we will look at are so called Feistel networks, named
after German cryptographer Horst Feistel. The basic idea of Feistel ciphers
is to split the message in two parts and apply the round transformation
only to one half. The result is then added using XOR to the other half and
the two outputs are swapped (see Figure 3). The seminal work by Luby and
Rackoff [47] showed that if the round transformation is a secure pseudorandom
function then three rounds are sufficient to get a pseudorandom permutation.

There are several benefits by using this construction. First of all, the round
transformation does not have to be invertible, giving the designer more op-
tions to choose from. Also the computationally expensive round transforma-
tion are only applied to half the state. However, this will usually require a
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Figure 3: Outline of an r-round Feistel network.

higher number of rounds to account for. Furthermore, the decryption algo-
rithm can easily be derived by changing the order of the round keys.

Apart from the classic construction, Feistel networks come in large variety
of flavors. There are unbalanced Feistel networks [65], where the message is
split in uneven parts, or Feistel networks with multiple branches as proposed
in [78].

The most prominent Feistel cipher is the Data Encryption Standard (DES),
first published in 1975 and has been a federal standard (FIPS-46) in the U.S.
from 1977 until 2004 [69]. DES operates on 64-bit blocks and uses a 56-bit key,
which has been controversial already since its initial publication, and can not
be considered a secure block cipher anymore as it is vulnerable to brute-force
attacks. However, a variant of DES, the Triple-DES which has a larger key size
and provides a security level of around 112 bits is still in use and remains a
standard (FIPS-46-3).

Feistel ciphers have also been a popular choice in the Advanced Encryption
Standard competition, which was held by the National Institute of Standards
and Technology (NIST) from 1997 to 2000 with the goal of finding a succes-
sor for DES. Out of the five finalists, three designs where based on Feis-
tel networks (MARS [16], RC6 [60], Twofish [66]). Another example can be
found in mobile communication systems like GSM and UMTS, which use the
MISTY1/Kasumi [48] block cipher.
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Figure 4: Outline of a substitution permutation network (SPN).

2.3.2 Substitution Permutation Networks

The second most important construction are Substitution Permutation Net-
works (SPNs). The round transformation is composed of a substitution layer,
which applies a complex operation on small chunks of the state followed by
applying a simpler permutation layer on larger parts of the state (see Figure 4).

The substitution layer applies multiple substitution boxes (S-boxes) to the
state. These S-boxes provide a complex non-linear mixing on a small part
of the state, typically 4 or 8 bits and can be efficiently realized with lookup
tables. Designing S-boxes which help strengthen the security of the block
cipher and are also efficient to implement in Hardware is an important re-
search area.

The permutation layer operates on the whole state and the main purpose
is to quickly diffuse the relationship between parts of the state. This is often
realized by matrix multiplication or as a bit permutation, like in Present [13],
which only requires rewiring in hardware.

The most important block cipher using this construction is Rijndael, now
known as the Advanced Encryption Standard (AES) standardized by NIST in
2001 [72]. It uses 8-bit S-boxes, operates on blocks of 128-bit and supports
key sizes of 128-, 192- and 256-bit. A detailed description of the AES and its
design rationales can be found in [19].
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Figure 5: The electronic code book (ECB) mode encrypts each message block
M1, . . . ,Mn individually.

2.4 Modes of Operation

A block cipher on its own can only encrypt rather short messages, with typ-
ical block sizes of 64 or 128 bits and therefore has limited use in practice. In
order to encrypt arbitrary sized messages, various modes of operation exists
with different properties regarding security, error propagation and imple-
mentation. In the following we will look at different ways to encrypt a mes-
sage M = M1, . . . ,Mn and the advantages and disadvantages of the most
commonly used modes.

2.4.1 Electronic Code Book

The Electronic Code Book (ECB) is the simplest mode where each block is
encrypted independently of the others

Ci = EK(Mi) for 1 6 i 6 n. (5)

Both encryption and decryption are parallelizable and it also allows random
access as one can decrypt any block independently from the others (see Fig-
ure 5). One of the main problems with ECB is that it can leak information,
as the same message block encrypted with the same key will always result
into identical ciphertext blocks. Therefore, it is not recommended to use this
mode in practice for encrypting longer messages.



2.4 modes of operation 17

IV

M1

C1

K E

M2

C2

K E

M3

C3

K E . . .

Figure 6: In the cipher block chaining (CBC) mode, each subsequently encrypted
block depends on the previous blocks.

2.4.2 Cipher Block Chaining

The Cipher Block Chaining mode adds some dependency on the encryption of
all previous blocks. The ciphertexts are computed as

C1 = EK(M1 ⊕ IV) and Ci = EK(Mi ⊕Ci−1) for 2 6 i 6 n. (6)

The initial value (IV) has to be transmitted with the ciphertext to be able to
decrypt the whole message and should be unpredictable. As the encryption
of a block now depends on all previous blocks of ciphertext it is not possible
to parallelize the encryption process.

While there is no obvious information leaking compared to ECB, it can
still occur. Assume you have found two ciphertexts Ci,Cj for i 6= j which are
equal

Ci = Cj → EK(Mi ⊕Ci−1) = EK(Mj ⊕Cj−1).
This can only hold if Mi ⊕ Ci−1 = Mj ⊕ Cj−1 and we can therefore learn
Mi ⊕Mj. For a block cipher with b-bit blocksize we expect this to occur
after ≈

√
2b blocks due to the birthday paradox (see Section 3.2.1.2). While

this problem is less severe as the one in the ECB mode, it can still be an issue
for smaller block sizes like 64 bits. A further issue with CBC in practice can
be that it is vulnerable to padding oracle attacks [73].

2.4.3 Counter Mode

The Counter mode builds a stream cipher out of a block cipher creating a key
stream through encryption of an incrementing counter value

Ci = EK(N⊕ i)⊕Mi for 1 6 i 6 n. (7)



18 block ciphers

M1

N⊕ 1

C1

K E

M2

N⊕ 2

C2

K E

M3

N⊕ 3

C3

K E . . .

Figure 7: The counter (CTR) mode encrypts a unique value N and increasing counter
to generate a continuous key stream.

There is a variety of options for the counter, typically it involves a nonce N,
which is some unique number, and an integer which is incremented for each
block. These two values can either be concatenated or XORed. It is important
to never reuse the same key and nonce/counter combination, as otherwise
this will result in the same key stream and allow an attacker to learn the XOR
of the plaintexts similar to the issue we have seen with the one-time pad.

The CTR mode has various advantages over the previous modes. First, sim-
ilar to ECB both encryption/decryption are parallelizable. CTR mode only re-
quires the encryption function and can save the implementation costs of the
decryption function of the block cipher. Additionally, the inputs are known
in advance allowing to carry out preprocessing which can speed up the im-
plementation.

A downside of the CTR mode is that the sender is stateful as she has to
ensure that no counter is reused. However this is also often the case for CBC
in practice when the IV is derived from the last encrypted block or chosen
with some pseudorandom generator, to avoid the adversary predicting the
IV.

2.5 Tweakable Block Ciphers

A tweakable block cipher [46] is a block cipher with the signature

EK : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n. (8)

Here we call the second input the tweak, which is not secret and allows us to
add some variability to the block cipher. A block cipher is deterministic and
always gives the same output for a given message and key. However, this
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property can be a problem in some modes of operations and applications
which require a new instance of the block cipher for each call.

One of the main applications for a tweakable block ciphers is memory or
disk encryption. The disk is usually organized in sectors of fixed size, typ-
ically 512 bytes and we want to be able to encrypt/decrypt those indepen-
dently of all other sectors. A mode like CBC is unsuited for this application
as it is not parallelizable and for CTR mode we require to never reuse the
nonce/counter. A tweakable block cipher in ECB mode can provide a solu-
tion to this problem by using the sector index as a tweak, which guarantees
that each sector is encrypted with a unique block cipher.

Modes like XE and XEX [62] can be used to turn any block cipher into a
tweakable block cipher, but dedicated designs can be more efficient.





3
Hash Functions

A cryptographic hash function is an efficient deterministic algorithm, which
maps messages of arbitrary length to strings of fixed length n

H : {0, 1}∗ → {0, 1}n. (9)

The output of a hash function is called the hash value, hash, digest or finger-
print of a message. Every possible message is associated with such a value
which can then be used as a short identifier or representative for this message.
Cryptographic hash functions are used to provide integrity and authenticity
in a large number of applications and protocols.

The first constructions of cryptographic hash functions were based on
building a compression function from a block cipher. These functions have a
fixed input size and can be used to build a hash function as shown indepen-
dently by Merkle [52] and Damgård [21]. One of the first dedicated designs,
MD4, was presented by Ron Rivest in 1990 [58], but quickly superseded by
MD5 [59] due to security concerns. In 1993 NIST published SHA-0 [70] which
has been designed by the NSA and follows a similar design strategy to MD5.
It was withdrawn shortly after and SHA-1 was published [71] to correct a
flaw in the design. Both MD5 and SHA-1 have been widely used for many
years and still can be found in use today even though they are not considered
secure anymore.

In 2004, weaknesses in several popular hash functions have been found
leading to attacks on MD4, MD5 and SHA-1 [74–76]. Today, MD5 can be
broken in seconds on a consumer machine and the attacks on SHA-1 are
feasible for larger organizations, although no collision for SHA-1 has been
published yet.

These attacks also casted doubt on the security of SHA-2, which follows a
similar design strategy, and as a response NIST announced in 2007 that they
will host a public competition, similar to the AES competition, to find a new
cryptographic hash function standard, SHA-3. Fifty-one candidates were ini-
tially submitted and on October 2, 2012, Keccak designed by Guido Bertoni,
Joan Daemen, Michaël Peeters and Gilles Van Assche was announced as the
winner.

In the following, we will give a brief introduction to cryptographic hash
functions, what they are used for and how we can construct them. In addition

21
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we will have a look at what we mean by a secure hash function. For further
reading on this topic a good starting point is [50].

We would also like to note that that there are non cryptographic hash
functions, which are used for instance in data structures like hash tables.
Although they provide similar functionality they do not require the same
security properties we expect from cryptographic hash functions (see Sec-
tion 3.2). In this work only the later are considered and therefore the prefix
cryptographic will be usually omitted.

3.1 Applications

Cryptographic hash functions are one of the most versatile primitives and
have become a fundamental part of modern cryptography. A common ap-
plication for hash functions is to provide integrity for a message. If you flip
a single bit in a message the resulting hash value will change allowing to
detect any modifications.

One of the first applications of hash functions in cryptography was sug-
gested by Rabin in 1978 [57]. As it is very expensive to digitally sign long
messages he suggested to sign the hash instead. In signature schemes, like
the digital signature algorithm (DSA), hash functions are used to get a short
unique identifier for a message [27]. These schemes only sign the hash, which
speeds up the computation while also providing additional security com-
pared to using for instance raw RSA signatures. Hash functions can also
directly be used to build signature schemes. We will discuss this application
in more detail in Section 3.4.

A second important application are message authentication algorithms
(MAC). A MAC is a keyed hash function that provides both integrity and
authenticity of a message

MAC : {0, 1}∗ × {0, 1}k → {0, 1}n. (10)

We call the output tag and it can be used by the receiver to check if the
message originates from the desired sender. An example for a widespread
MAC is HMAC, used in standards like TLS [23] and IPSec [26].

Another common application is password protection. Passwords should
not be stored as plaintext and a common practice is to only store the hash
value. This allows the original password to be kept secret due to the one-
wayness of hash functions. For a secure hash function it should be infeasible
to derive a password from the stored hash-value. In general we want hash
functions to be fast to compute, however in the case of password hashing
the opposite is required. Password hashing and key derivation schemes like
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bcrypt [55], scrypt [54] or Argon2 [11] are designed to be computationally
expensive to make brute force attacks less efficient.

A further application is for confirmation of knowledge or commitment
schemes. If you want to prove that you know some information, without re-
vealing it, the hash of this information can be made public. Later you can
prove that you had this information at the time of commitment by publish-
ing the message and everyone can verify that it indeed corresponds to the
previously published hash value.

3.2 Security

For a secure cryptographic hash function it should be difficult to find a mes-
sage for a given hash value and it should also be difficult to find two mes-
sages which result in the same hash value, a collision. As the input domain
of a hash function is always significant larger than the output domain this
collisions are unavoidable.

We define the three main security requirements for a secure hash function
as:

• Preimage Resistance: For a given output y it should be computation-
ally infeasible to find an input x ′ such that y = H(x ′).

• Second Preimage Resistance: For a given x and y = H(x) it should be
computationally infeasible to find x ′ 6= x such that H(x ′) = y.

• Collision Resistance: It should be computationally infeasible to find
two distinct inputs x, x ′ such that H(x) = H(x ′).

Note that collision resistance implies second preimage resistance. Assume
H is collision resistant. If H is not second preimage resistant then it is pos-
sible to find, for a fixed x, a value y = H(x ′). Hence, (x, x ′) is a collision.
However, collision resistance does not necessarily imply preimage resistance.

An ideal hash function should behave like a random oracle. A random oracle
is a function which outputs a random value for each new input. If an input
value is repeated it outputs the previously used value. No practical hash
function can implement a random oracle, as the description would be too
large. Nonetheless, a good hash function should be difficult for an attacker
to distinguish from such a random oracle.

Similar to block ciphers we only require the hash function to be secure
against a computational bound adversary. For hash function we only need to
consider the time and memory complexity of an attack and the expected level
of security is strongly correlated with the output size of the hash function n.
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Table 1: The hash sizes for some of the most important hash functions over the last few
years. Hash functions marked with † are insecure as there exist cryptanalytic
attacks breaking the security claims.

Algorithm Hash size Year

MD4
†

128-bit 1990

MD5
†

128-bit 1992

SHA-1† 160-bit 1995

RIPEMD-160 160-bit 1996

Whirlpool 512-bit 2000

SHA-2 224-, 256-, 384- and 512-bit 2001

SHA-3 224-, 256-, 384- and 512-bit 2012

There exist also weaker variants of these properties which can be of in-
terest. Near-collisions allow a small number of differences between the two
hash values. Further examples include semi-free start and free-start collisions
which allow an attacker to choose the initial value respectively choose two
different initial values used for computing the hash of the colliding message
pair. While such an attack has less practical impact it can still be useful to
evaluate the quality of a hash function.

3.2.1 Generic Attacks

Similar to block ciphers, there exist also generic attacks on hash functions,
which allow an attacker to find preimages or collisions disregarding the un-
derlying structure. When treating the hash function as a black box the only
relevant parameter for these attacks is the length of the hash value n. In Ta-
ble 1 you can find the hash size of the most commonly used cryptographic
hash functions and how the size evolved over the years.

3.2.1.1 Preimages

An attacker can always find a (second) preimage by trying out many inputs
and checking whether they give the desired hash value. If the hash function
has n-bit output then Pr(H(X) = y) = 2−n, hence after trying ≈ 2n inputs it
is likely that an attacker succeeds in finding a preimage.

The only real improvement to this is if we give an attacker access to a
quantum computer. In this case a preimage for a function f can be found in
only 2n/2 steps using Grover’s algorithm [31], which is also asymptotically
optimal [6].
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3.2.1.2 Collisions

Finding a collision for a hash function can be done more efficiently and for an
output size of n bit a generic attack with a time complexity of ≈ 2n/2 exists.
This fact is related to the birthday paradox which states that in a group of 23

people, the probability that two people share the same birthday is greater
than 0.5.

When choosing j randomly distributed inputs to the hash function the
probability that at least two inputs collide is

pc = 1− 1 · (1−
1

2n
) · (1− 2

2n
) . . . (1−

j− 1

2n
) ≈ 1− e−

j2

2n+1 (11)

and hence we expect to find a collision after
√

ln(2)2 · 2n/2 trials.
The simplest attack using this property is to subsequently compute out-

puts for the hash function and store them in a list checking each time if the
value is already in this list. While we can expect to find a collisions after the
expected number of steps this method requires to store ≈ 2n/2 hash values,
which would often be a bottleneck in practice. There exist memoryless ver-
sions of these birthday attacks based on cycle finding algorithms [56], which
only have a very small memory footprint and are also parallelizable.

3.3 Design

Most hash functions follow an iterative design similar to Figure 8. The input
m is split into evenly sized blocks M1,M2, . . .Mn and a compression func-
tion f (see Section 3.3.2) is used iteratively to process each message block

h1 = f(IV ,M1) (12)

hi = f(hi−1,Mi) 1 6 i 6 n (13)

h = hn (14)

The initial value IV is some fixed constant and the intermediate values hi
are referred to as chaining values. The last chaining value hn is used as the
output of the hash function.

3.3.1 Merkle-Damgård construction

The Merkle-Damgård construction provides a method to construct a collision-
resistant hash function from a collision-resistant compression function [21].
This construction is widely used and includes designs like MD5, SHA-1,
SHA-2.
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Figure 8: An iterative construction for a hash function. The message is split in evenly
sized blocks M1, . . . ,Mn and processed using a compression function f. IV
is a fixed constant and g the output transformation.

It uses an iterated construction based on a compression function f and
adds the length of the message at the end of the padding which is referred to
as Merkle-Damgård strengthening (MD-strengthening). It may also include
an additional output transformation g.

The input M is padded by appending a 1-bit followed by the minimum
number of 0 bits to result in a multiple of the block-size. This is followed by
an additional block which encodes the binary representation of the length of
M. This construction gives a provable collision-resistant hash function:

Proof. Let us assume that the hash function h is not collision-resistant and the
attacker can find a colliding message pair (M,M ′) such that h(M) = h(M ′).
We consider the following two cases now:

• The length of the two messages is not equal. If the attacker has found
a collision then the output of the last compression function call must
be equal for a collision in the output. The last two message block con-
tain the message length, therefore Mn 6= M ′n. However, this implies
we have found a collision for the compression function f(Mn,hn) =

f(M ′n,h ′n).

• The length of the two messages is equal. In this case at least one com-
pression function call must lead to a collision f(Mi,hi) = f(Mj,hj) for
the output to be equal.

If an output transformation is applied then one has to consider collisions in
the output transformation too.

While this construction is provable collision-resistant it still has some prop-
erties which one would not expect from a secure cryptographic hash func-
tion.

An example for this is the length extension attack [17]. It allows an attacker
to compute H(pad(M) || X) without knowing M. This can be a problem, for
instance if a MAC is constructed by computing H(key || M). In this case it
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would allow an attacker to forge valid tags for messages of the structure
H(pad(key || m) || X).

Kelsey and Schneier showed that finding a second preimage for hash
functions using the Merkle-Damgård construction is easier for large mes-
sages [38]. Using their results, a second preimage for SHA-1 for a message
of size 260 can be found with a complexity of 2106 compared to the costs of
2160 for the generic attack.

Computing multi-collisions, this means t messages H(M1) = H(M2) =

. . . = H(Mt), can be done more efficiently for hash functions based on the
Merkle-Damgård construction. Joux presented an approach to construct 2t-
collisions at t times the costs of finding a collision for two messages [36].

3.3.2 Compression Functions

Compression functions

f : {0, 1}m → {0, 1}n m > n. (15)

play an important role in the construction of cryptographic hash functions.
The first designs were based on block ciphers, where for instance the message
block is used as input for the key. There are various ways to construct a
compression function from a block cipher (see Figure 9). One of the main
drawbacks of this is that block ciphers typically only have a block size of 128

bits, leading to a 128-bit hash size which is not large enough for a secure
hash function nowadays.

There are some constructions which address this problem, like the double
length constructions MDC-2, MDC-4 and Hirose [33]. Nonetheless, the most
popular constructions today are based on compression functions designed
explicitly for hash functions which leads to more efficient solutions in prac-
tice.

The MD-family (MD4, MD5, SHA-1, SHA-2) share a similar design strategy
for their compression function, with the main difference being an increased
digest size, number of rounds and complexity of the round function. As an
example how the round function is constructed we can look at SHA-1 (see
Figure 10). The 160-bit state consists of five 32-bit words and in each round
only one of them is updated. The 512-bit message block is expanded into
80 32-bit words Wi. This message expansion is very critical and has lead to
security issues for the first published version (SHA-0).

3.3.3 Sponge construction

A fairly new design strategy based on permutations has become very popu-
lar recently and is also the basis for SHA-3. The sponge construction is a mode
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Figure 9: The three most commonly used ways to construct a compression function
from a block cipher.
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Figure 10: Outline [35] of one-round (out of 80) of the SHA-1 compression function.
The function uses modular addition �, bit-wise rotation≪ and a boolean
function Fi. The expanded message words are Wi and Ki is a round spe-
cific constant.
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of operation building a function which takes arbitrary sized input and gen-
erates arbitrary sized output. It is based on a fixed-sized permutation π, a
padding rule and takes two parameters: the rate r and the capacity c. The
sponge construction is also iterative and operates on an internal state S of
size b = r+ c.

First, split the input M into blocks M1, . . . ,Mn of size r and apply the
padding. Set the initial state S = (0 . . . 0) and process in the following two
steps:

• Absorb: XOR the ith message block to the first r bits of the state and
update it with the π-permutation. Repeat this step until all message
blocks have been processed.

• Squeeze: Append the first r bits of the state to h and update the state.
Repeat this step until enough output has been generated.

An outline of this procedure can be seen in Figure 11. When using a ran-
dom permutation the sponge construction is as secure as a random oracle
apart from inner collisions [8].

M pad
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0
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c

π

M0
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M1

π

M2

π

h0

π

h1

h

Absorb Squeeze

Figure 11: The sponge construction takes input of arbitrary length and computes an
output of arbitrary length. It uses a fix-sized permutation π and the input
is processed iteratively.

As the output size of a sponge can be arbitrary, it is not possible to de-
fine the security in terms of the output size like we did previously for hash
functions. If this was the case one could simply produce more output in the
squeeze phase to increase the level of security. The security of the sponge
construction is strongly tied to the security parameter c. A sponge with a
capacity of c provides 2c/2 collision and 2c/2 (second) preimage resistance.
The reason for the reduced costs of a preimage attack are that an attacker can
apply a meet-in-the-middle attack (see Section 4.1.2).
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3.4 Hash-based Signature Schemes

Digital signature schemes are an important cryptographic application provid-
ing a digital equivalent to handwritten signatures. A signature is a bit string
which depends on a secret exclusively known to the signer (secret key) and
on the content of the message which is signed. The validity of the signature
can be verified by any public party without knowledge of this secret key
through some additional information (public key).

Let M be the message space. A digital signature scheme is a triple of effi-
ciently computable algorithms (Kg, Sign, Vf):

• Key Generation (G(1n)): Given a security parameter 1n, generates
both the secret key (sk) which is required to sign messages and the
public key (pk) to verify the signatures.

• Signing (S(M, sk)): Takes as input a messageM ∈M and sk to produce
a digital signature σ.

• Verify (V(M,pk,σ)): Returns 1 if the signature σ is valid for M given
the public key pk.

The most commonly used signature schemes in practice are RSA [61],
DSA [27] and ECDSA. These schemes are not secure in the setting of quan-
tum computing as they are based on the difficulty of factoring large inte-
gers or computing discrete logarithms. Both these problems can be efficiently
solved on a quantum computer [68].

Hash-based signatures seem to be a promising alternative to these schemes
as they only rely on the security of the underlying hash-function used. While
there is no proof that they are quantum resistant they only require minimal
security assumptions, like a collision resistant hash function. In fact one-way
functions are necessary for a secure signature scheme to exist [63].

3.4.1 Security Goals

Similar to a handwritten signature it should be difficult for an adversary to
forge a signature which appears to be valid. The worst case is if an adversary
is able to recover the secret key or construct an efficient algorithm which
is functionally equivalent to the signature algorithm instantiated with the
secret key. This would allow the adversary to forge arbitrary signatures.

A weaker attack scenario is if an adversary is able to produce selective
forgeries. This means an attacker is able to construct valid signatures for a
specific message or class of messages. As an example, consider an adversary
observing some valid signatures and then use this information to derive a
valid signature for a new message.
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3.4.2 One-time digital signatures

The basic building block for a hash-based signature scheme are one-time
digital signatures. As the name suggest, these schemes only allow to sign a
single message with a given key pair.

Lamport-Di�e. A classic example for such a scheme is the Lamport-Diffie
one-time signature scheme (LD-OTS). It requires a one-way function

F : {0, 1}n → {0, 1}n

and a cryptographic hash function

H : {0, 1}∗ → {0, 1}n.

Key Generation. The secret key consists of 2n bit strings xi[j] of length n
which are uniformly chosen at random

sk = (sk0[0], sk0[1], . . . , skn−1[0], skn−1[1]).

The public key is then given by

pk = (pk0[0],pk0[1], . . . ,pkn−1[0],pkn−1[1])

where
pki[j] = F(ski[j]), i ∈ {0, . . . ,n− 1}, j ∈ {0, 1}.

The resulting key pair (sk,pk) is then of size 2(2n2).

Signing. For signing an arbitrary sized message M we first compute the
hash of the the message

h = H(M) = (h0, . . . ,hn−1)

and then compute the signature in the following way

σ = (sk0[h0], sk1[h1], . . . , skn−1[hn−1]).

The length of the signature is therefore n2.

Verify. The verifier computes h = H(M) again and then checks if

f(σi) = pki[hi] i ∈ {0, . . . ,n− 1}.
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The key pair can only be used once without compromising security, as the
signature contains half of the secret key. As an example assume an adver-
sary observes two messages M,M ′, with H(M) = (1, 1, 0, 0) and H(M ′) =

(1, 1, 1, 1), being signed. The signatures are σ = (sk0[1], sk1[1], sk2[0], sk3[0])
respectively σ ′ = (sk0[1], sk1[1], sk2[0], sk3[1]). The information leaked on the
secret key would clearly allow an adversary to construct a valid signature for
H(M) = (1, 1, 1, 0) and H(M) = (1, 1, 0, 1) as she knows the necessary parts
of the secret key.

Winternitz One of the major drawbacks of LD-OTS is the rather large size
of the signature. The Winternitz OTS (W-OTS), first mentioned in [51], im-
proves upon this by using the parts of the secret key to sign more than a
single bit. These scheme has been further improved by Hülsing [34], named
W-OTS+, which both provides shorter signature and allows to drop the re-
quirement for collision resistance of the hash function.

3.4.3 Merkle Signature Scheme

The requirement of generating a new key pair for each signatures makes
one-time signatures inefficient in practice. Ralph Merkle proposed a solution
for this problem based on binary hash-trees in 1979, the Merkle signature
scheme (MSS) [51]. The main advantage of this scheme is that it bundles a
number of one-time signature and allows to use a single smaller public key
to use for verification.

Key Generation. The signer first has to select a parameter N, which speci-
fies the number of messages 2N which can be signed with this key pair. In the
next step the signer generates 2N one-time signature key pairs (ski,pki). The
public keys pki are used to generate the leaves of a binary tree by computing
H(pki) (see Figure 12). In the binary tree a parent node always contains the
hash of the concatenation of its children. The key pair is then given by

(sk,pk) = ((sk0, sk1, . . . skN−1),pk).

Signing. The signer picks an index i and signs the message using the one-
time signature to get σOTS. Note that the signer has to keep track of not
reusing the index i and therefore MSS is a so-called stateful scheme. Addi-
tionally, the signature has to contain additional information, the authentica-
tion path Ai = (a0,a1, . . .), to allow a verifier to check whether the provided
signature σOTS is indeed part of the hash tree

σ = (i,σOTS,pki,Ai).
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pk = H(H(pk0||pk1)||H(pk2||pk3))

H(H(pk0)||H(pk1))

H(pk0)

pk0

H(pk1)

pk1

H(H(pk2)||H(pk3))

H(pk2)

pk2

H(pk3)

pk3

sk0 sk1 sk2 sk3

Figure 12: Key generation in the Merkle Signature Scheme.

Verify. The verification is done in two steps. First, verify that the one-time
signature σOTS is valid. The next step is to check the authenticity of pki. The
auxiliary information given in the signature allows the verifier to recompute
the root of the tree and verify that the used OTS was indeed part of this tree.
As an example see Figure 13.

3.4.4 XMSS

XMSS (eXtended Merkle Signature Scheme) [15] is a hash-based digital sig-
nature scheme improving upon the classic version of MSS in various aspects.
XMSS provides forward security, this means that if a key gets compromised
all previously generated signatures still remain valid. Another advantage of
XMSS is that it only requires two function families H and F, where H has to
be second preimage resistant and F pseudo random.

3.4.5 Stateless Schemes

Using a one-time signature twice breaks the security of the system. All the
previous signature schemes share the property of being stateful. This means
that the signer has to keep track of which one-time signatures have been used
and never use them again. This might be acceptable for some applications but
can also be a serious drawback in practice. For instance if you want to backup
your key or move it to another computer you have to make sure that the state
is synchronized.
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Figure 13: Verification of a signature in the Merkle signature scheme for i = 1. Using
a0,a1 the verifier can compute the root of the tree.

Goldreich. Goldreich proposed a stateless signature scheme in [28, 29],
which uses a binary tree build out of one-time signature key pairs. The key
pairs corresponding to the leafs are used to sign messages, while the key
pairs corresponding to the non-leafs are used to sign the public keys of its
child nodes. Similar to the MSS the root node becomes the public key.

One of the main disadvantages of this schemes is the signature size. The
signature contains all the public keys in the path from the leaf to the root, all
the public keys of the siblings, the OTS on the message and the OTS on all
the public keys in the path. This leads to a signature size which is cubic in
the security parameter. For a typical security parameter n = 256, the scheme
by Goldreich would have a signature size above 1 MB.

SPHINCS. SPHINCS [7] is a fairly new hash-based signature scheme which
is stateless and provides much shorter signatures then the scheme by Goldre-
ich. The main improvements in SPHINCS which allow reducing the signature
size are the use of a few-time signature scheme and the use of a hyper-tree
construction which allows a trade-off between signature size and computa-
tion time. Together this leads to a signature of ≈ 41KB for a security level of
128-bit against an attacker with a quantum computer.



4
Cryptanalysis

While cryptography is about designing new algorithms and applications
which are secure, cryptanalysis is concerned with evaluating the security of
these algorithms and tries to break these algorithms. This usually means to
subvert the confidentiality, integrity or authenticity provided. Cryptography
and cryptanalysis are very closely connected, as when designing a new algo-
rithm one has to take into account cryptanalytic techniques to obtain a secure
design.

In the following we will look at some of the most powerful techniques
known today which every newly designed cryptographic algorithm should
resist.

4.1 Meet-in-the-middle

The meet-in-the-middle attack is a generic attack applicable to a large vari-
ety of cryptographic primitives. The main idea is to split the primitive into
two independent parts and use a time-memory trade-off for a more efficient
attack. While the original meet-in-the-middle attack is very generic, many
improvements to it have been suggest by using the underlying structure of
the cryptographic primitive.

One of the first applications of this technique is to multiple encryption [25],
which we will have a closer look at in Section 4.1.1. Since then many improve-
ments have been made: Better trade-offs [53], the first attack on full round
AES using the bi-clique technique [12] and methods to automatically find
meet-in-the-middle attacks [22]. For cryptographic hash function meet-in-the-
middle attacks are mainly used for finding preimages, for example MD4 [2,
45], MD5 [64], SHA-1 [3] and SHA-2 [1, 39].

4.1.1 Multiple Encryption

One of the most prominent examples of meet-in-the-middle attacks is the
application to multiple encryption. As the key size of DES is limited to 56-bit,
it was suggested to encrypt two or three times with different keys resulting
in a key size of 112 respectively 168 bits. However, by using a meet-in-the-
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Figure 14: Outline of the meet-in-the-middle attack on double-DES.

middle attack we can show that the effective key size is significant smaller.
As an example we look at DES using double encryption

doubleDES(m) = DESk2(DESk1(m)). (16)

We can recover the two keys k1, k2 in the following way:

1. Obtain one plaintext/ciphertext pairs (m, c).

2. Compute the encryption of u = DESk1(m) under all possible keys k1
and store them in a table T .

3. Decrypt the ciphertext v = DESk2(c) for all possible keys k2 and check
if v ∈ T . If we find such a v then (k1,k2) is a candidate for the correct
key.

Complexity. DES has a 64-bit block size and 56-bit key size, therefore step
(2) costs 256 time and requires 64× 256 bits of memory. Step (3) again re-
quires to do 256 DES encryptions and for each one check whether the entry is
in T . At this point we could still have gotten a wrong key pair as the expected
number of key pairs for our plaintext/ciphertext pair is 256256/264 = 248.
However, if we use a second plaintext/ciphertext pair then the probability
that a wrong key pair also gives a correct solution is only 248/264 = 2−16,
allowing us to filter out any false guesses with a high probability.

Oorschot and Wiener [53] showed that the product of time and memory
complex can be kept constant, which allows us more efficient trade-offs as
the memory complexity is often more critical in practice.
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Figure 15: Finding a preimage for a Sponge using an inner collision.

4.1.2 Preimages in a Sponge Construction

The reason why we only get 2c/2 preimage resistance in the Sponge con-
struction is that an attacker can find a collision on the inner state to construct
a preimage. Assume we build a hash function with output size n using the
Sponge construction with capacity c and rate r. We can find a preimage for
a given h by computing π−1(h || x), for random values of x, and choosing
a random message block M0 to compute π(M0 || 0) and check if we have a
collision on the last c bits.

This means that if we want to construct a hash function using the sponge
construction, the capacity should be c = 2n to have the same security level
as one would expect from a hash function with n-bit output size.

4.2 Di�erential Cryptanalysis

Differential cryptanalysis is one of the most powerful techniques and is
widely used for analyzing both block ciphers and cryptographic hash func-
tions. It was first published by Biham and Shamir [10] to analyze the DES
block cipher, which surprisingly turned out to be fairly resistant against this
type of attack and highly suggests that it was taken into account by the de-
signers of DES.

The basic idea behind differential cryptanalysis is to find a correlation be-
tween the difference of two plaintexts and the corresponding ciphertexts (see
Figure 16). If such a correlation occurs with a significant higher probability
in a block cipher then it does for a random permutation we can use this fact
for an attack.

The difference is chosen to not be influenced by the addition of the secret
key, which usually corresponds to addition of vectors over F2 (XOR) or addi-
tion in Zn. In the following we assume that the key is added using the XOR
operation and f : Fn2 → Fn2 .
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Figure 16: Differential cryptanalysis observes the correlation between the difference
of a pair of plaintexts (p,p ′) and the corresponding ciphertexts (c, c ′). For
an ideal block cipher we expect all differences β to be close to some prob-
ability distribution [20].

Definition 4.1. A differential is a pair of differences (α,β) ∈ Fn2 ×Fn2 , where
α is the input difference to some function f and β the output difference.

We use α f−→ β to denote a differential for a function f. We denote a pair of

messages (x, x⊕α) and f(x)⊕ f(x⊕α) = β as α f−→
x
β. We call this a right pair

or a pair which follows the differential α f−→ β.
In a block cipher we usual don’t know the input to the function f, as a

secret uniformly at random chosen key is masking it. Hence, for any non-

linear function f the transition α f−→ β will be probabilistic.

Definition 4.2. The differential probability of a differential α f−→ β is given by

DP(α f−→ β) = Pr
X
(f(X)⊕ f(X⊕α) = β). (17)

For a random function the probability for any non-zero differential is close
to 2−n. Therefore, if we can find a differential with a higher probability for
our function f, we can distinguish it from a random function. In general it is
difficult to compute the DP for a differential exactly and for the usual block
sizes, i.e. 64 or 128 bits, it is infeasible to compute it by trying all possible
inputs.

In order to get a good approximation of the actual DP with less compu-
tational effort we can use the underlying structure of f. Most block ciphers
used in practice are iterative block ciphers (see Theorem 2.2) and we can trail
how the differences propagate through each round.



4.2 differential cryptanalysis 39

Definition 4.3. A differential trail1 Q is a sequence of differences

Q = (α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr). (18)

The first step is to determine the probability of a differential for a single
round and later connect them together to cover more rounds. Finding a good
or the best differential for a single round can usually be done in practice.

In the case of SPNs which use 4-bit or 8-bit S-boxes, we can actually com-
pute all differentials for a single S-box and store them in a differential distri-
bution table (DDT), allowing us to look up the differential with the highest
probability.

At this point we can compute the probability for one round, however it is
still open how the probability can be computed when we connect multiple
rounds

DP(Q) = Pr(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr). (19)

In general it is not feasible to determine the exact value of Equation 19 and
the common approach is to make two assumptions. The first assumption
we make is that the rounds are independent, which allows us to simplify
Equation 19 to

DP(Q) =

r−1∏
i=0

DP(αi
fi−→ αi+1). (20)

While this assumption of independent rounds is not true in general it
serves as a good approximation in practice.

Another problem which occurs is that the attacker only receives the mes-
sages encrypted under a fixed key. Therefore, in practice we want to deter-
mine the probability of the differential for many or all keys. This is however
not possible in most cases, hence we assume that the probability for a fixed
key is close to the probability for a random key.

Definition 4.4. The Stochastic Equivalence Hypothesis states that for all high

probability differentials (α
f−→ β)

Pr
M
(α

EK−−→
M

β) ≈ Pr
M,K

(α
EK−−→
M

β) (21)

holds for a large fraction of the keys K.

In practice, we can not observe the exact differences in all the interme-
diate states, but only observe the output difference between the ciphertext
pair. Therefore for an attack we are actually interested in the probability of

1Another common term for this is differential characteristic or differential path.
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the differential α0
f−→ αr. We can compute this probability by summing the

probability of all trails with the same input and output difference

Pr(α0
f−→ αr) =

∑
α1,...,αr−1

Pr(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr). (22)

If an attacker can now find such a differential with a probability > 2−n it
can be used to recover information of the secret key.

4.2.1 Key Recovery using a Di�erential Distinguisher

In the following we will look at how we can use differential cryptanalysis to
recover information of the secret key in a block cipher. In our example we
use the block cipher depicted in Figure 17 with block size n, r rounds and
each sub-key k0, . . . ,kr being k-bit.

The first step would be to find a differential Q = α→ β over r− 1 rounds
with a probability of p. Then we can proceed in the following way to recover
the correct last round key:

1. We request the encryption ofNmessagesm of the form (m,m⊕α) and
obtain the corresponding ciphertext pairs (c, c ′).

2. Initialize a set of counters T0, . . . , Tk−1, one for each possible last round
key, and set them to zero.

3. For each pair of ciphertexts (c, c ′) obtained:

• For each possible choice of the last round key kr:

– Compute the intermediate values v = f−1(c⊕ kr) resp. v ′ =
f−1(c ′ ⊕ kr). This allows us to determine v⊕ v ′ = u⊕ u ′.

– If u⊕ u ′ = β increment the counter Tkr .

4. The counter with the value Np is most likely the correct key.

To understand why this attack works and what the success probability is
we have to consider when we increase the counters in step (3). When de-
crypting one round with a wrong key we can still get the correct difference
β for some plaintext pairs, suggesting that this could be a potential key can-
didate. However, if we have a right pair which follows the differential then
the correct key will always be amongst the possible key candidates.

To make the attack work, we require that the correct key lies more often
amongst the key candidates then a wrong key. We need at least one pair of
plaintexts following the differential, therefore N = tp−1 for some constant
t > 0. Additionally, we assume that for a wrong key guess the set of key
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Figure 17: Using a differential distinguisher to recover the key.

candidates is randomly distributed. Intuitively what happens when we guess
the wrong key is that we encrypt for an additional round making the output
more random.

In some cases it is already possible to filter the ciphertext pairs before the
key guessing part, which can further help reducing the noise. For instance,
in a Feistel network we could observe one half of the state.

4.2.2 Truncated Di�erentials

The idea behind truncated differentials [40] is that it is not always necessary to
predict all bits of a differential and it can be beneficial to only consider parts.

Definition 4.5. A truncated difference α is a n-bit value α ∈ {0, 1, ?}n, where 1

corresponds to a difference in this bit, 0 to no difference and ? that this bit is
unknown.

We can then in a similar way define differentials

Definition 4.6. A truncated differential is a pair of truncated differences (α,β).

One of the main advantages of truncated differentials is that they allow us
to bundle a larger number of differentials together and therefore can have a
significant higher probability. Additionally, it is often sufficient to only know
parts of the difference to propagate them through the round functions. Espe-
cially for SPN constructions this approach can be very useful, when consid-
ering only whether an S-box has a difference (is active) or no difference (not
active).

4.2.3 Impossible Di�erentials

The goal for an attacker is typically to find differentials with high probability,
however we can also utilize if a block cipher has differentials with a prob-
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Figure 18: Using a structure we can obtain two pairs for each differential using only
four plaintexts.

ability of zero [9, 41]. If such an differential exists we can use it to build a
distinguisher similar to the classic differential attack.

The simplest way to construct such an impossible differential is to use two
differentials (α,β) and (γ, δ) where the former covers the first part of the
cipher and the other one the second part. We also require that both differen-
tials have a probability of 1. If β 6= γ, then the differential (α, δ) will have
a probability of zero. Finding such an impossible differential is often done
using truncated differentials.

4.2.4 Structures

Using multiple differentials in attack can be beneficial by increasing the suc-
cess rate or allowing to recover different parts of the key and lead to more
efficient attacks. However, one of the main drawbacks, and often limiting
factors of differential cryptanalysis, is the large amount of data required.

In a differential attack an attacker would ask for the encryption of random
plaintexts x and x ⊕ α in order to obtain one pair of plaintexts with the
correct difference. Consider now that we use a second differential and ask
for the encryption of x, x⊕ α, x⊕ α ′ and x⊕ α⊕ α ′. By combining these
plaintexts we can now obtain two pairs for each difference α and α ′ (see
Figure 18). In general if we have d differentials we can build a structure out
of 2d plaintexts giving us 2d−1 pairs for each differential.

4.2.5 Collision Attacks for Hash Functions

Differential cryptanalysis also plays an important role in the analysis of hash
functions especially when trying to find collisions. This approach seems
very intuitive for finding collisions, as one wants to find a pair of messages



4.2 differential cryptanalysis 43

fbw fin ffw

Inbound

OutboundOutbound

Figure 19: Outline of the rebound attack.

(m,m ′) with non zero difference α giving H(m) = H(m ′). We are therefore

interested in differentials of the form α
H−→ 0.

For an efficient attack we also want a differential with high probability,
similar to the block cipher case. However, finding a pair of messages which
follow the differential is a very distinct process. In a block cipher we usually
require to query 2−p random message pairs, where p is the probability of the
differential, to expect one right pair. This is due to the addition of the secret
key, which masks the input.

For hash functions we do not use any secret key and an attacker has
full control over the input to the hash function. This allows an attacker to
choose the right pair which follows the differential and also verify interme-
diate states. Using this available degrees of the freedom the probability of
the differential does not matter, as long as the attacker can freely choose and
modify the message. In a good hash function each output bit should depend
on each input bit after a few rounds limiting this approach as it quickly re-
quires solving highly non-linear equations to find a message following the
differential over many rounds. Nonetheless, using these so-called message
modification techniques has lead to the break of widely used hash functions
like MD5 [76] or SHA-1 [75].

4.2.6 Rebound Attack

The rebound attack is a powerful tool in the cryptanalysis of hash functions
and can be seen as a message modification technique. It is especially useful
for finding collisions for AES-based designs [44, 49]. The basic idea of the
rebound attack is to split the hash function into three sub-functions (see
Figure 19) and proceed in two steps. First, the inbound phase which tries to
find an efficient solution for the middle part using the available degrees of
freedom. This is followed by a probabilistic part, the outbound phase in ffw
and fbw using the solutions from the inbound phase.
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The rebound attack uses truncated differentials, which are constructed
such that the most expensive part of the trail is covered by fin and the part
of the trail in ffw and fbw holds with high probability.
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Abstract. Despite the great interest in rebound attacks on AES-
like hash functions since 2009, we report on a rather generic, al-
beit keyschedule dependent, algorithmic improvement: A new
message modification technique to extend the inbound phase,
which even for large internal states makes it possible to drasti-
cally reduce the complexity of attacks to very practical values
for reduced-round versions. Furthermore, we describe new and
practical attacks on Whirlpool and the recently proposed GOST
R hash function with one or more of the following properties:
more rounds, less time/memory complexity, and more relevant
model. To allow for easy verification, we also provide a source-
code for them.

Keywords: hash functions, cryptanalysis, collisions, Whirlpool,
GOST R, Streebog, practical attacks

1 Introduction

Cryptographic hash functions are one of the most versatile primitives and
have many practical applications like integrity checks, message authentica-
tion, digital signature or password protection. Often they are a critical part
of more complex systems whose security might fall apart if hash a function
does not provide the properties we expect it to have.

Cryptographic hash functions take as input a string of arbitrary finite
length and produce a fixed-sized output of n bits called hash. As a con-
sequence, the following main security requirements are defined for crypto-
graphic hash functions:

• Preimage Resistance: For a given output y it should be computation-
ally infeasible to find any input x ′ such that y = h(x ′).
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• Second Preimage Resistance: For given x,y = h(x) it should be com-
putationally infeasible to find any x ′ 6= x such that y = h(x ′).

• Collision Resistance: It should be computationally infeasible to find
two distinct inputs x, x ′ such that h(x) = h(x ′).

For any ideal hash function with n-bit output size, we can find preimages
or second preimages with a complexity of 2n, and collisions with a complex-
ity of 2n/2 using generic attacks.

Most cryptographic hash functions are constructed iteratively by splitting
the message into evenly sized blocks mi and using a compression function f
to update the state. We call the intermediate results xi chaining values and
the final output h hash value.

IV f

m0

f

m1

f

m2

x1 x2 xn
f

mn

h

Figure 1: Iterative construction for a cryptographic hash function.

The security proofs for the hash function rely on the difficulty of finding
a collision for this compression function, hence it is also of interest to con-
sider the properties of the compression function and find properties which
distinguish it from an ideal function.

• semi-free start collision: Find x,m,m ′ such that f(x,m) = f(x,m ′).

• free-start collision: Find x, x ′,m,m ′ such that f(x,m) = f(x ′,m ′).

• near collision: Find x,m,m ′ such that f(x,m)⊕ f(x,m ′) has a low Ham-
ming weight.

To sum up the various types with respect to their relevance: a semi-free-
start collision is more interesting than a free-start collision, and a collision is
more interesting than a near-collision.

1.1 Motivation

Cryptanalytic attacks are often hard to verify. Cryptanalysts often concen-
trate on the total running time of the attack, which is boiled down to a single
number. While one can argue about the exact transition point between crypt-
analytic attacks of practical and theoretical time complexity, it is often placed
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around an equivalent of 264 calls to the primitive [5]. While this is a reason-
able assumption for state-level adversaries, it is out of reach for academic
research labs. However, the ability to fully implement and verify attacks is
crucial, as this is often the only way to make sure that all details are modelled
correctly in the theoretical analysis. In this paper we therefore aim at attacks
that can actually be executed (and verified) with limited budget computing
resources.

In this paper we show a new practical attack on a class of AES-like hash
functions. We show attacks on reduced round versions of the ISO/IEC 10118-
3 standard Whirlpool [3] and GOST R 34.11-2012 which is the new Russian
federal standard [7]. The model we consider is semi-free-start attacks on the
compression function, which in contrast to the free-start attacks do not allow
the attacker to choose different chaining values in a pair of inputs. This re-
duced degree of freedom makes the task of cryptanalysts harder, but is more
relevant as it is closer to the actual use in the hash function.

1.2 Contribution

Despite a lot of attention on rebound-attacks of AES and AES-like primitives,
we show that more improvements are possible in the inbound phase.

To the best of our knowledge, currently no practical attacks on reduced
round GOST R have been published. However, there exists a practical 4-round
free-start collision attack on the Whirlpool compression function [20]. It
seems very hard to apply this specific attack directly to GOST R due to the ex-
tra round in the key schedule, which gives GOST R additional security against
these free-start attacks.

In this paper we show a new method to carry out a 4-round practical attack
on the Whirlpool and GOST R compression function. Additionally, and in
contrast to many other attacks known on GOST R, we do not need the freedom
to add half a round at the end to turn a near-collision into a collision. As the
full hash function also does not end with a half round, we argue that a result
on 4 rounds can actually be more informative than a result on 4.5 rounds.

New message modification technique. The attack is based on the rebound
attack and start-in-the-middle techniques, and it carefully chooses the key
input to significantly reduce the complexity resulting in a very low complex-
ity1. We are also able to improve the results on 6.5 rounds by extending this
attack. We give an actual example for such a collision, and have the source
code of both the attack and the general framework publicly available to fa-
cilitate further research on practical attacks2. The method is not specific to a

1Naturally, the improvement is not applicable for constructions or modes that do not allow
modification of the key input

2The source-code can be found at https://github.com/kste/aeshash

https://github.com/kste/aeshash
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particular primitive, but is an algorithmic technique that however depends
on two conditions in a primitive to hold (see also Section 4).

1.3 Related Work

In Table 1 we summarize the practical results on Whirlpool and GOST R.
As the GOST R compression function uses a design similar to the Whirlpool

hash function [3], many of the previous results on Whirlpool can be applied
to GOST R. We would also like to note on adding half a round at the end
for GOST R. This does not always make an attack more difficult, and in some
cases it makes it easier, as it makes it possible to turn a near-collision into a
collision, therefore we distinguish for our attacks if it applies for both cases.

Table 1: Summary of attacks with a complexity up to 264 on AES-based hash func-
tions. Time is given in compression function calls and memory in bytes.

Function Rounds Time Memory Type Reference

GOST R

4.5 264 216 semi-free-start collision [21]
4.75 practical 28 semi-free-start near-collision [2]
4 219.8 216 semi-free-start collision this work
4.5 219.8 216 semi-free-start collision this work
5.5 264 264 semi-free-start collision [21]
6.5 264 216 semi-free-start collision this work

Whirlpool

4 225.1 216 semi-free-start collision this work
6.5 225.1 216 semi-free-start near-collision this work
4 28 28 free-start collision [21]
7 264 28 free-start collision [20]

There have also been practical attacks on other AES-based hash functions
like Maelstroem (6 out of 10 rounds [12]), Grøstl (6 out of 10 rounds [17])
and Whirlwind (4.5 out of 12 rounds [4]).

1.4 Rebound Attacks

The rebound attack is a powerful tool in the cryptanalysis of hash functions,
especially for finding collisions for AES-based designs [14, 18]. The cipher is
split into three sub-ciphers

E = Efw ◦ Ein ◦ Ebw

and the attack proceeds in two steps. First, the inbound phase which is an
efficient meet-in-middle in Ein using the available degree of freedom. This is
followed by a probabilistic part, the outbound phase in Efw and Ebw using
the solutions from the inbound phase. The basic 4-round rebound attack uses
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E
SPL

mi

hi
hi+1

Figure 1: An outline of the GOST R compression function. The chaining input is pro-
cessed through an additional round before entering E

a differential characteristic with 1− 8− 64− 8− 1 active bytes per round and
has a complexity of 264. There are many techniques extending and improving
this attack. Some can even improve this very basic and simple setting of
a square geometry, like start-from-the-middle [17], super S-box [8, 13] or
solving three fully active states in the middle [9, 10]. Other generic extensions
exploit additional degrees of freedom or non-square geometries to improve
results, like and using multiple inbounds [13, 16]. In these settings, improved
list-matching techniques [6, 19] are also a generic improvement.

2 Description of GOST R

This section gives a short description of the GOST R compression function
as we will use it for describing our attack in detail. As we are only looking
at the compression function, we leave out some details not relevant for the
upcoming attack in order to simplify the description. For a more detailed
description of GOST R we refer to [7].

The compression function g uses two 512-bit inputs (the message block
m and the chaining value h) to update the state in the following way (see
Figure 1)

gN(h,m) = E(L ◦ P ◦ S(h),m)⊕ h⊕m (1)

where E is an AES-based block cipher using a state of 8× 8 bytes and S,P,L
are the same functions as used in this block cipher (see below).

If we want to find a collision for the compression function, the following
equation must hold

∆mi ⊕∆hi ⊕∆E(hi,mi) = 0 (2)
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2.1 Block Cipher E

The block cipher E takes two 512-bit inputs M and K0 and produces a 512-bit
output C. The state update consists of 12 rounds r and a final key addition.

L1 = L ◦ P ◦ S ◦AK(M,K0)

Li+1 = L ◦ P ◦ S ◦AK(Li,Ki) i = 1 . . . 11

C = AK(L12,K12)

The following four operations are used in one round (see Figure 2):

• AK Adds the key byte-wise by XORing it to the state.

• S Substitutes each byte of the state independently using an 8-bit S-box.

• P Transposes the state.

• L Multiplies each row by an 8× 8 MDS matrix.

The 512-bit key input is expanded to 13 subkeys K0, . . . ,K12. This is done
similar to the state update but AK is replaced with the addition of a round-
dependent constant RCr.

Li+1 = L ◦ P ◦ S ◦AK(K0,RC0) i = 0 . . . 11

K12 = AK(L12,K12)

K1

L0 AK1 S1 P1 L1

AK S P L

Figure 2: The four operations used in one round of GOST R.

2.2 Notation

The notation we use for naming the states is:

• The state after applying the round function {AK,S,P,L} in round r is
named {AKr,Sr,Pr,Lr}
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• The byte at position x,y in state Xr is named Xrx,y

• A row is denoted by Xr∗,y and a column by Xrx,∗

• and denote that there is a difference in a byte.

• and are used for highlighting values of a byte.

2.3 Di�erential Properties

The attacks in this paper are based on differential cryptanalysis, and the
resulting complexity correlates with the differential properties of the round
functions. Therefore, to ease understanding, we give a short overview of the
properties that are relevant for our attack.

The linear layer L has a strong influence on the number of active S-boxes.
There is no proof given that the linear layer L is MDS or has a branch number
of 9 in the GOST R reference [7], but it was shown that this is the case in [11].
Hence, if we have one active byte at the input we will get 8 active bytes at
the output with probability one. If we have a active bytes at the input the
probability that there will be b active bytes at the output under the condition
a 6= 0,b 6= 0 and a+ b > 9 is 2(b−8)8.

The properties of the S-box have a strong influence on the complexity of
our attack, as will be seen later. Given a S-box S : Fn2 → Fn2

{x | S(x)⊕ S(x⊕ a) = b} (3)

is the number of solutions for an input a and output difference b. Table 2

gives the number of solutions for some S-box designs used in practice.
To get a bound on the probability of the differential characteristics we are

interested in the maximum value of Equation 3 which we will refer to as
the maximum differential probability (mdp) of an S-box. A 4-round differential
characteristic has at least 81 active bytes due to the properties of the linear
layer, therefore any 4-round characteristic has a probability of 6 mdp81.

For the rebound attack it is also important to know the average number of
possible output differences, given a non-zero input difference. We will refer
to this as the average number of solutions (ANS) for an S-box which can be
computed by constructing the differential distribution table (DDT). The ANS
corresponds to the average number of non-zero entries in each row of the
DDT.

This property influences the complexity for the matching step in the in-
bound phase and increases the costs of finding one solution. For the GOST R

S-box we get on average 107.05 solutions.
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Table 2: Comparison of different 8-bit S-box designs used in AES-based hash func-
tions.

Solutions AES Whirlpool GOST R

0 33150 39655 38235
2 32130 20018 22454
4 255 5043 4377
6 - 740 444
8 - 79 25
256 1 1 1

3 Attack on GOST R

In this section we describe our 4-round practical attack in detail and also
show how it can be applied to more rounds. The description of the attack
is split into two parts. First, we find a differential characteristic leading to
a collision. Then we show how to construct a message pair following this
characteristic in a very efficient way.

AK0 AK1 AK2 AK3 AK4

S

P

L

AK

S

P

L

AK

S

P

L

AK

S

P

L

AK

Figure 1: The 4-round differential characteristic used in our attack.

3.1 Constructing the Di�erential Characteristic

For our 4-round attack we use a characteristic of the form 1− 8− 64− 8− 1

(see Figure 1). This truncated differential path has the minimal number of
possible active S-boxes for 4 rounds and is the starting point for many attacks.
Next, we will determine the values of the differences before continuing with
the construction of the message pair.

The approach we use for this is based on techniques from the rebound at-
tack, like the start-in-the-middle technique used in [17]. This approach would
also give us an efficient way to find both the characteristic and message pair
for a characteristic of the form 1− 8− 64− 8. However this would still lead
to a higher attack complexity if extended to 4 rounds. Hence, we only use
ideas from this approach to determine the differential characteristic and do
not assume the key input as constant.
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Precomputation.

First we pre-compute the differential distribution table (DDT) of the S-box
and we also construct a list Mlin. This list contains all possible 255 non-zero
values of P0,0 and the result after applying L (see Figure 2).

P0 L1

L

Figure 2: Computing list Mlin for all 255 values of P00,0 (blue) to find all possible
transitions from 1 to 8 bytes. Gray bytes are set to zero.

Construction.

1. Start with a random difference in AK40,0 and propagate it back to S2

through the inverse round functions. For the linear steps this is deter-
ministic, and for propagating through the S-box we choose a random
possible input difference to the given output difference. After this step
we will have a full active state in S2.

2. For each difference in S2 we look up the set of all possible input differ-
ences from the DDT for each byte of the state.

3. Check for each row of AK2 whether there is a possible match with the
rows stored in Mlin (see Figure 3).

107.05 differences

255 possible rows Mlin

AK2 S2

S

Figure 3: The matching step in the middle is done on each row individually. There
are 28 possible values for each row AK2∗,j for j = 0, 1, . . . , 7.

• The probability that a single byte matches is 107.05/255 ≈ 2−1.252

therefore a row matches with a probability of 2−10.018.
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• If we take into account that Mlin has 255 entries we expect to find
a match with a probability of 1− (1− 2−10.018)255 ≈ 2−2.2.

• Therefore the probability for a match of all 8 rows is given by

(2−2.2)8 = 2−17.6 (1)

After this step we have found a characteristic spanning from S1 to AK4.
Now we have to repeat the previous process for a single row to find the right
differences in AK1. This has a probability of 2−2.2 of succeeding. Hence we
need to repeat the whole process 219.8 times to obtain one solution.

Note that we can only choose 255 differences for AK40,0, but we can also
freely choose from the set of possible differences when propagating from S3

to AK3. This gives us an additional 107.05 choices for each row in S2 leading
to ≈ 254 possible values for the state S2. Hence, we have enough starting
points for finding our differential characteristic.

3.2 Finding the Message Pair

Now we want to find a message pair which follows the previously con-
structed characteristic. At this point only the differences, but not the values
of the state, are fixed. We start by fixing the values of AK2 such that the 64

differential transitions S2 = S(AK2) are fulfilled.
Next we use the key input to solve any further conditions on the active

S-boxes in order to lower the complexity of our attack. This step is split into
solving the conditions on S1∗,0 = S(AK1∗,0) and S30,∗ = S(AK

3
0,∗).

Solving Conditions at the Start.

We have 8 conditions on S1∗,0 which we need to solve. These conditions can
be solved row-wise by choosing the corresponding values in K2 such that
P−1(L−1(AK2 ⊕K2)) = S1. We can do this step row-wise by solving a linear
equation. As there is only a single byte condition for each row, we only need
one byte in the corresponding row of K2 to solve the equation (see Figure 4).
The remaining bytes are fixed to arbitrary values as we have no further condi-
tions to fulfill at this step. These bytes could be used to solve more conditions
for other differential characteristics or to construct additional solutions, as we
will do for extending the attack on more rounds.

In this step we can generate up to 256 solutions per row. Note that we only
do this step for 7 rows, as we need the last row in the next step.
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AC

S

P

L

AK1 S1 P1 L1

AK2 S2 P2 L2

AK S P L

AK S P L

K1

K2

Figure 4: The values of AK2 are fixed. We solve 7 of the conditions on S1 by using
the freedom in K2 (bytes marked orange), which allows us to influence the
values on the bytes in S1 (orange slash pattern).

Solving Conditions at the End.

For solving the conditions S3 = S(AK3), we can use the bytes in K2∗,7. These
bytes form a column in cmssKP37,∗ (see Figure 5), which allows us to solve a
single byte condition per row for AK3.

1. Assume that K2∗,0−6 are fixed and propagate them forward to KP3.

2. We can now solve the conditions for each row individually. In each row
there are 7 bytes fixed in KP3 and a single byte in K3 (from AK3). This
gives us a linear equation with one solution per row and allows us to
solve all conditions on AK3.

AC2 KS2 KP2 K2

AC3 KS3 KP3 K3

AC S P L

AC S P L

AK

AK

AK2

AK3

Figure 5: Solving all the conditions on AK3. The orange values are fixed from the
previous step and the purple values are used to fulfill the conditions on
AK3.
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Remaining Conditions.

We still need to solve one byte condition on S10,7, which can be done by
repeating the previous procedure 28 times. The bytes which are used to solve
the conditions on AK3 form a row in K2 and influence the values of L1 resp.
P1 and S1 (see Figure 1 in Section A). This implies that we can change the
value of S10,7 by constructing different solutions for K2∗,7.

The only remaining condition is ∆AK00,0 = ∆AK40,0, which can again be
solved by repeating the previous steps 28 times. It follows that we need to
repeat the algorithm shown in Section 3.2 about 216 times.

Complexity.

We can construct the differential characteristic with a complexity of 219.8.
Finding a message pair following this characteristic requires 216 steps using
our message modification technique. Hence, the total complexity of the attack
is ≈ 219.9. We have implemented this attack and verified our results. The
un-optimized proof-of-concept implementation in Python is publicly avail-
able [1]. An example for a 4-round collision can be found in Section B.

3.3 Extending the Attack

As we only need to control 15 bytes of the key, we can extend the attack on 6.5
rounds by using a characteristic of the form 8− 1− 8− 64− 8− 1− 8. In this
case we would use the same approach to find the differential characteristic
for 4 rounds and in the message modification part we would construct more
solutions by using the additional freedom in the key. This will influence the
differences at the input/output of the 6.5 rounds. The complexity of this
attack is ≈ 264, as the 8-byte difference at the input/output needs to be
equal.
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4-round attack

Figure 6: The 4-round attack is extended by one round in the beginning and one
round in the end to mount an attack on 6.5 rounds.
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4 Application to other AES-based Hash Functions

The message modification technique presented is not specific to GOST R, but
requires a few criteria to be met. First the transposition layer has to have
the property that every byte of a single row/column is moved to a different
row/column (see Figure 1). This is true for all AES-based hash functions we
consider in this paper, as it is a desired property against other attacks.

The second criteria is that there is a key addition in every round, hence
our attack is applicable to both Whirlpool and GOST R. Permutation-based
designs like Grøstl do not have this property. The attacker has less control
of the input for each round, which makes the hash function more resistant
against these types of attacks.

Whirlpool

1 2 3 4 5 6 7 8 1

2

3

4

5

6

7

8SC

GOST R

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

P

Figure 1: The transposition layer used in Whirlpool and GOST R.

The complexity of the attack depends on the choice of the S-box, as this di-
rectly influences the costs of constructing the differential characteristic. Given
the average number of solutions s for ∆out = S(∆in) with a fixed value ∆in,
this directly gives the complexity for the matching step of the attack(

1−

(
1−

s

255

)255)8
(1)

and the number of possible states for S2 is ≈ s 8. A comparison of the differ-
ent S-boxes used in AES-based hash functions is given in Table 3.

Table 3: Comparing the maximum differential probability (MDP) and average number
of solutions (ANS) for different 8-bit S-boxes in AES-based designs.

S-box MDP ANS Matching Costs #S2

AES 2−6 127 26.42 255.91

Whirlpool 2−5 101.49 225.10 253.32

GOST-R 2−5 107.05 219.77 253.94
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5 Conclusion

In this paper, we have shown new practical attacks for both the Whirlpool

and GOST R compression function. We presented a 4-round attack with very
low complexity of 225.10 resp. 219.8. Importantly, the attack is fully verified
and source-code for it is available. In the case of GOST R the attack can be
extended to find collisions for 6.5 rounds with a complexity of 264 and for
Whirlpool we can extend it to construct a near-collision in 50 bytes with
a complexity of 225.10 for 6.5 rounds of the compression function. The dif-
ference in the results for GOST R and Whirlpool is due to the ShiftColumns
operation which does not align the bytes to lead to a collision for the differ-
ential characteristic we use.

Our attack is applicable to all AES-based primitives where it is possible
for the attacker to control the key input for a few rounds. This significantly
reduces the complexity of previous attacks and might be useful to speed up
other attacks on AES-based hash-function designs.
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A Solving Conditions
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Figure 1: Solving both conditions on S1 and AK3. The bytes marked purple solve the
conditions on AK3 and a single condition on S1, whereas the orange bytes
solve 7 conditions on S1.
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B Colliding Message Pair

Here a colliding message pair (M,M ′) and the chaining value are given. The
message pair has been found by using the 4-round characteristic and the
difference in the messages is ∆AK00,0 = ∆AK40,0 = fc. All values are given in
hexadecimal notation.

K0

e80c313d6875c049
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Abstract. In this paper we analyse the general class of functions
underlying the Simon block cipher. In particular, we derive ef-
ficiently computable and easily implementable expressions for
the exact differential and linear behaviour of Simon-like round
functions.

Following up on this, we use those expressions for a computer
aided approach based on SAT/SMT solvers to find both optimal
differential and linear characteristics for Simon. Furthermore,
we are able to find all characteristics contributing to the proba-
bility of a differential for Simon32 and give better estimates for
the probability for other variants.

Finally, we investigate a large set of Simon variants using dif-
ferent rotation constants with respect to their resistance against
differential and linear cryptanalysis. Interestingly, the default
parameters seem to be not always optimal.

Keywords: SIMON, differential cryptanalysis, linear cryptanal-
ysis, block cipher, Boolean functions

1 Introduction

Lightweight cryptography studies the deployment of cryptographic primi-
tives in resource-constrained environments. This research direction is driven
by a demand for cost-effective, small-scale communicating devices such as
RFID tags that are a cornerstone in the Internet of Things. Most often the
constrained resource is taken to be the chip-area but other performance met-
rics such as latency [7], code-size [2] and ease of side-channel protection [12])
have been considered as well. Some of these criteria were already treated in
Noekeon [9].

The increased importance of lightweight cryptography and its applications
has lately been reflected in the NSA publishing two dedicated lightweight
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cipher families: Simon and Speck [5]. Considering that this is only the third
time within four decades that the NSA has published a block cipher, this is
quite remarkable. Especially as NIST has started shortly after this publication
to investigate the possibilities to standardise lightweight primitives, Simon

and Speck certainly deserve a thorough investigation. This is emphasised by
the fact that, in contrast to common practice, neither a security analysis nor
a justification of the design choices were published by the NSA. This lack of
openness necessarily gives rise to curiosity and caution.

In this paper we focus on the Simon family of block ciphers; an elegant,
innovative and very efficient set of block ciphers. There exists already a
large variety of papers, mainly focussed on evaluating Simon’s security with
regard to linear and differential cryptanalysis. Most of the methods used
therein are rather ad-hoc, often only using approximative values for the dif-
ferential round probability and in particular for the linear square correlation
of one round.

Our Contribution

With this study, we complement the existing work threefold. Firstly we de-
velop an exact closed form expression for the differential probability and
a log(n) algorithm for determining the square correlation over one round.
Their accuracy is proven rigorously. Secondly we use these expressions to
implement a model of differential and linear characteristics for SAT/SMT
solvers which allows us to find the provably best characteristics for different
instantiations of Simon. Furthermore we are able to shed light on how differ-
entials in Simon profit from the collapse of many differential characteristics.
Thirdly by generalising the probability expressions and the SAT/SMT model,
we are able to compare the quality of different parameter sets with respect
to differential and linear cryptanalysis.

As a basis for our goal to understand both the security of Simon as well
as the choice of its parameter set, we rigorously derive formulas for the dif-
ferential probabilities and the linear square correlations of the Simon-like
round function that can be evaluated in constant time and time linear in the
word size respectively. More precisely, we study differential probabilities and
linear correlations of functions of the form

Sa(x)� Sb(x) + Sc(x)

where Si(x) corresponds to a cyclic left shift of x and � denotes the bitwise
AND operation.

We achieve this goal by first simplifying this question by considering equiv-
alent descriptions both of the round function as well as the whole cipher
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(cf. Section 2.4). These simplifications, together with the theory of quadratic
boolean functions, result in a clearer analysis of linear and differential prop-
erties (cf. Section 3 and Section 4). Importantly, the derived simple equations
for computing the probabilities of the Simon round function can be eval-
uated efficiently and, more importantly maybe, are conceptually very easy.
This allows them to be easily used in computer-aided investigations of differ-
ential and linear properties over more rounds. It should be noted here that
the expression for linear approximations is more complex than the expres-
sion for the differential case. However, with respect to the running time of
the computer-aided investigations this difference is negligible.

We used this to implement a framework based on SAT/SMT solvers to find
the provably best differential and linear characteristics for various instantia-
tions of Simon (cf. Section 5, in particular Table 1). Furthermore we are able
to shed light on how differentials in Simon profit from the collapse of many
differential characteristics by giving exact distributions of the probabilities of
these characteristics for chosen differentials. The framework is open source
and publicly available to encourage further research [13].

In Section 6 we apply the developed theory and tools to investigate the
design space of Simon-like functions. In particular, using the computer-aided
approach, we find that the standard Simon parameters are not optimal with
regard to the best differential and linear characteristics.

As a side result, we improve the probabilities for the best known differen-
tials for several variants and rounds of Simon. While this might well lead to
(slightly) improved attacks, those improved attacks are out of the scope of
our work.

Interestingly, at least for Simon32 our findings indicate that the choices
made by the NSA are good but not optimal under our metrics, leaving room
for further investigations and questions. To encourage further research, we
propose several alternative parameter choices for Simon32. Here, we are us-
ing the parameters that are optimal when restricting the criteria to linear,
differential and dependency properties. We encourage further research on
those alternative choices to shed more light on the undisclosed design crite-
ria.

We also like to point out that the Simon key-scheduling was not part of our
investigations. Its influence on the security of Simon is left as an important
open question for further investigations. In line with this, whenever we in-
vestigate multi-round properties of Simon in our work, we implicitly assume
independent round keys in the computation of probabilities.

Finally, we note that most of our results can be applied to more general
constructions, where the involved operations are restricted to AND, XOR,
and rotations.
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Related Work

There are various papers published on the cryptanalysis of Simon [1, 3, 6,
17–19]. The most promising attacks so far are based on differential and linear
cryptanalysis, however a clear methodology of how to derive the differential
probabilities and square correlations seems to miss in most cases. Biryukov,
Roy and Velichkov [6] derive a correct, but rather involved method to find the
differential probabilities. Abed, List, Lucks and Wenzel [1] state an algorithm
for the calculation of the differential probabilities but without further expla-
nation. For the calculation of the square correlations an algorithm seems to
be missing all together.

Previous work also identifies various properties like the strong differential
effect and give estimate of the probability of differentials.

The concept behind our framework was previously also applied on the
ARX cipher Salsa20 [14] and the CAESAR candidate NORX [4]. In addition
to the applications proposed in previous work we extend it for linear crypt-
analysis, examine the influence of rotation constants and use it to compute
the distribution of characteristics corresponding to a differential.

2 Preliminaries

In this section, we start by defining our notation and giving a short de-
scription of the round function. We recall suitable notions of equivalence
of Boolean functions that allow us to simplify our investigations of Simon-
like round functions. Most of this section is generally applicable to AND-RX
constructions, i.e. constructions that only make use of the bitwise operations
AND, XOR, and rotations.

2.1 Notation

We denote by F2 the field with two elements and by Fn2 the n-dimensional
vector space over F2. By 0 and 1 we denote the vectors of Fn2 with all 0s and
all 1s respectively. The Hamming weight of a vector a ∈ Fn2 is denoted as
wt(a). By Zn we denote the integers modulo n.

The addition in Fn2 , i.e. bit-wise XOR, is denoted by +. By � we denote
the AND operation in Fn2 , i.e. multiplication over F2 in each coordinate:

x� y = (xiyi)i.

By ∨ we denote the bitwise OR operation. By x we denote the bitwise nega-
tion of x, i.e. x := (x+ 1). We denote by Si : Fn2 → Fn2 the left circular shift
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by i positions. We also note that any arithmetic of bit indices is always done
modulo the word size n.

In this paper we are mainly concerned with functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x) (1)

and we identify such functions with its triple (a,b, c) of parameters.
For a vectorial Boolean function on n bits, f : Fn2 → Fn2 , we denote by

f̂(α,β) =
∑
x

µ (〈β, f〉+ 〈α, x〉)

the Walsh (or Fourier) coefficient with input mask α and output mask β.
Here we use µ(x) = (−1)x to simplify the notation.

The corresponding squared correlation of f is given by

C2(α→ β) =

(
f̂(α,β)
2n

)2
.

For differentials we similarly denote by Pr(α −→ β) the probability that a
given input difference α results in a given output difference β, i.e.

Pr(α −→ β) =
|{x | f(x) + f(x+α) = β}|

2n
.

Furthermore, Dom(f) is the domain of a function f, Img(f) is its image.

2.2 Description of SIMON

Simon is a family of lightweight block ciphers with block sizes 32, 48, 64, 96,
and 128 bits. The constructions are Feistel ciphers using a word size n of 16,
24, 32, 48 or 64 bits, respectively. We will denote the variants as Simon2n.
The key size varies between of 2, 3, and 4 n-bit words. The round function of
Simon is composed of AND, rotation, and XOR operations on the complete
word (see Figure 1). More precisely, the round function in Simon corresponds
to

S8(x)� S1(x) + S2(x),
that is to the parameters (8, 1, 2) for f as given in Equation 1. As we are not
only interested in the original Simon parameters, but in investigating the
entire design space of Simon-like functions, we denote by

Simon[a,b, c]

the variant of Simon where the original round function is replaced by fa,b,c
(cf. Equation 1).

As it is out of scope for our purpose, we refer to [5] for the description of
the key-scheduling.
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S8

S1

S2

ki

Figure 1: The round function of Simon.

2.3 A�ne equivalence of Boolean Functions

Given two (vectorial) Boolean functions f1 and f2 on Fn2 related by

f1(x) = (A ◦ f2 ◦B)(x) +C(x)

where A and B are affine permutations and C is an arbitrary affine map-
ping on Fn2 we say that f1 and f2 are extended affine equivalent (cf. [8] for a
comprehensive survey).

With respect to differential cryptanalysis, if f1 and f2 are extended affine

equivalent then the differential α
f1−→ β over f1 has probability p if and only

if the differential
B(α)

f2−→ A−1 (β+C(α))

over f2 has probability p as well.
For linear cryptanalysis, a similar relation holds for the linear correlation.

If f1 and f2 are related as defined above, it holds that

f̂1(α,β) = f̂2

((
C ◦B−1

)T
β+

(
B−1

)T
α,ATβ

)
.

Thus up to linear changes we can study f2 instead of f1 directly. Note that,
for an actual attack, these changes are usually critical and can certainly not
be ignored. However, tracing the changes is, again, simple linear algebra.

For differential and linear properties of Simon-like functions of the form

fa,b,c(x) = S
a(x)� Sb(x) + Sc(x)

this implies that it is sufficient to find the differential and linear properties
of the simplified variant

f(x) = x� Sd(x)
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and then transfer the results back by simply using linear algebra.3

2.4 Structural Equivalence Classes in AND-RX Constructions

AND-RX constructions, i.e. constructions that make only use of the opera-
tions AND (�), XOR (+), and rotations (Sr), exhibit a high degree of sym-
metry. Not only are they invariant under rotation of all input words, output
words and constants, they are furthermore structurally invariant under any
affine transformation of the bit-indices. As a consequence of this, several
equivalent representations of the Simon variants exist.

Let T be a permutation of the bits of an n-bit word that corresponds to an
affine transformation of the bit-indices. Thus there are s ∈ Z∗n and t ∈ Zn
such that bit i is renamed to s · i+ t. As the AND and XOR operations are
bitwise, T clearly commutes with these:

Tv� Tw = T(v�w)
Tv+ Tw = T(v+w)

where v and w are n-bit words. A rotation to the left by r can be written
bitwise as Sr(v)i = vi−r. For a rotation, we thus get the following bitwise
relation after transformation with T

Sr(v)s·i+t = vs·(i−r)+t = vs·i+t−s·r .

Substituting s · i+ t with j this is the same as

Sr(v)j = vj−s·r .

Thus the rotation by r has been changed to a rotation by s · r. Thus we can
write

TSrv = Ss·rTv.

Commuting the linear transformation of the bit-indices with a rotation thus
only changes the rotation constant by a factor. In the special case where all
input words, output words and constants are rotated, which corresponds to
the case s = 1, the rotation constant are left untouched.

To summarise the above, when applying such a transformation T to all
input words, output words and constants in an AND-RX construction, the
structure of the constructions remains untouched apart from a multiplication
of the rotation constants by the factor s.

This means for example for Simon32 that changing the rotation constants
from (8, 1, 2) to (3 · 8, 3 · 1, 3 · 2) = (8, 3, 6) and adapting the key schedule

3Note that we can transform the equation f(x) = Sa(x)�Sb(x)+Sc(x) to the equation
S−a(f(x))+Sc−a(x)) = x�Sb−a(x).
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accordingly gives us the same cipher apart from a bit permutation. As s
has to be coprime to n, all s with gcd(s,n) = 1 are allowed, giving ϕ(n)
equivalent tuples of rotation constants in each equivalence class where ϕ is
Euler’s phi function.

Together with the result from Section 2.3, this implies the following lemma.

Lemma 1. Any function fa,b,c as defined in Equation 1 is extended affine equiva-
lent to a function

f(x) = x� Sd(x)
where d|n or d = 0 .

When looking at differential and square correlations of Simon-like round
functions this means that it is sufficient to investigate this restricted set of
functions. The results for these functions can then simply be transferred to
the general case.

3 Di�erential Probabilities of SIMON-like round

functions

In this section, we derive a closed expression for the differential probability
for all Simon-like round functions, i.e. all functions as described in Equa-
tion 1. The main ingredients here are the derived equivalences and the ob-
servation that any such function is quadratic. Being quadratic immediately
implies that its derivative is linear and thus the computation of differential
probabilities basically boils down to linear algebra (cf. Theorem 2). However,
to be able to efficiently study multiple-round properties and in particular
differential characteristics, it is important to have a simple expression for the
differential probabilities. Those expressions are given for f(x) = x� S1(x) in
Theorem 3 and for the general case in Theorem 4.

3.1 A closed expression for the di�erential probability

The following statement summarises the differential properties of the f func-
tion.

Theorem 2. Given an input difference α and an output difference β the probability
p of the corresponding differential (characteristic) for the function f(x) = x� Sa(x)
is given by

pα,β =

2−(n−d) if β+α� Sa(α) ∈ Img(Lα)

0 else
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where
d = dim ker(Lα)

and
Lα(x) = x� Sa(α) +α� Sa(x)

Proof. We have to count the number of solutions to the equation

f(x) + f(x+α) = β.

This simplifies to

Lα(x) = x� Sa(α) +α� Sa(x) = β+α� Sa(α)

As this is an affine equation, it either has zero solutions or the number of
solutions equals the kernel size, i.e. the number of elements in the subspace

{x | x� Sa(α) +α� Sa(x) = 0}.

Clearly, the equation has solutions if and only if β+α�Sa(α) is in the image
of Lα.

Next we present a closed formula to calculate the differential probability
in the case where a = 1. Furthermore we restrict ourselves to the case where
n is even.

Theorem 3. Let
varibits = S1(α)∨α

and
doublebits = α� S1(α)� S2(α).

Then the probability that difference α goes to difference β is

P(α→ β) =



2−n+1 if α = 1 and wt(β) ≡ 0 mod 2

2−wt(varibits+doublebits) if α 6= 1 and β� varibits = 0

and (β+ S1(β))� doublebits = 0

0 else

Proof. According to Theorem 2, we need to prove two things. Firstly we need
to prove that the rank of Lα (i.e. n− dim kerLα) is n− 1 when α = 1, and
wt(varibits+ doublebits)) otherwise. Secondly we need to prove that β+

α� S1(α) ∈ Img(Lα) iff wt(β) ≡ 0 mod 2 when α = 1, and that β + α�
S1(α) ∈ Img(Lα) iff β� varibits = 0 and (β + S1(β))� doublebits = 0
when α 6= 1.
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We first consider the first part. Let us write Lα(x) in matrix form and let
us take x to be a column vector. S1(α)� x can be written as MS1(α)�x with

MS1(α)� =


αn−1 . . . . . . 0

... α0
...

...
. . .

...
0 . . . . . . αn−2

 . (1)

Equivalently we can write α� x and S1(x) with matrices as Mα�x and MS1x
respectively where

Mα� =


α0 . . . . . . 0
... α1

...
...

. . .
...

0 . . . . . . αn−1

 and MS1 =

(
01,n−1 I1,1
In−1,n−1 0n−1,1

)
, (2)

i.e. MS1 consists of two identity and two zero submatrices. The result of
MS1(α)� +Mα�MS1 can now be written as

αn−1 0 0 . . . α0
α1 α0 0 . . . 0

0 α2 α1
...

...
. . . . . . 0

0 . . . 0 αn−1 αn−2

 (3)

Clearly the rank of the matrix is n− 1 when all αi are 1. Suppose now that
not all αi are 1. In that case, a set of non-zero rows is linearly dependent
iff there exist two identical rows in the set. Thus to calculate the rank of the
matrix, we need to calculate the number of unique non-zero rows.

By associating the rows in the above matrix with the bits in varibits, we
can clearly see that the number of non-zero rows in the matrices corresponds
to the number of 1s in varibits = S1(α)∨α.

To count the number of non-unique rows, first notice that a nonzero row
can only be identical to the row exactly above or below. Suppose now that
a non-zero row i is identical to the row (i− 1) above. Then αi−1 has to be
0 while αi and αi−2 have to be 1. But then row i cannot simultaneously be
identical to row (i+ 1) below. Thus it is sufficient to calculate the number of
non-zero rows minus the number of rows that are identical to the row above
it to find the rank of the matrix. Noting that row i is non-zero iff αiαi−1 and
that αiαi−1αi−2 is only equal 1 when row i is non-zero and equal to the row
above it. Thus calculating the number of i for which

αiαi−1 +αiαi−1αi−2
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is equal 1 gives us the rank of Lα. This corresponds to calculating wt(varibits+
doublebits).

For the second part of the proof, we need to prove the conditions that check
whether β+α� S1(α) ∈ Img(Lα). First notice that α� S1(α) is in the image
of Lα (consider for x the vector with bits alternately set to 0 and 1). Thus it
is sufficient to test whether β is in Img Lα. Let y = Lα(x). Let us first look
at the the case of α = 1. Then Lα(x) = x+ S1(x). We can thus deduce from
bit yi whether xi = xi−1 or xi 6= xi−1. Thus the bits in y create a chain of
equalities/inequalities in the bits of x which can only be fulfilled if there the
number of inequalities is even. Hence in that case β ∈ Img Lα iff wt(β) ≡ 0
mod 2.

For the case that α 6= 1, we first note that yi has to be zero if the correspond-
ing row i in the matrix of Equation 3 is all zeroes. Furthermore following our
discussion of this matrix earlier, we see that yi is independent of the rest
of y if the corresponding row is linearly independent of the other rows and
that yi has to be the same as yi−1 if the corresponding rows are identical.
Thus we only need to check that the zero-rows of the matrix correspond to
zero bits in β and that the bits in β which correspond to identical rows in
the matrix are equal. Thus β is in the image of Lα iff β� varibits = 0 and
(β+ S1(β))� doublebits = 0.

3.2 The full formula for di�erentials.

Above we treated only the case for the simplified function f(x) = x ·S1(x). As
mentioned earlier, the general case where gcd(a− b,n) = 1 can be deduced
from this with linear algebra. When gcd(d,n) 6= 1 though, the function f(x) =
x� Sd(x) partitions the output bits into independent classes. This not only
raises differential probabilities (worst case d = 0), it also makes the notation
for the formulas more complex and cumbersome, though not difficult. We
thus restrict ourselves to the most important case when gcd(a− b,n) = 1.
The general formulas are then

Theorem 4. Let f(x) = Sa(x)� Sb(x) + Sc(x), where gcd(n,a− b) = 1, n even,
and a > b and let α and β be an input and an output difference. Then with

varibits = Sa(α)∨ Sb(α)

and
doublebits = Sb(α)� Sa(α)� S2a−b(α)

and
γ = β+ Sc(α)
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we have that the probability that difference α goes to difference β is

P(α→ β) =



2−n+1 if α = 1 and wt(γ) ≡ 0 mod 2

2−wt(varibits+doublebits) if α 6= 1 and γ� varibits = 0

and (γ+ Sa−b(γ))� doublebits = 0

0 else .

For a more intuitive approach and some elaboration on the differential
probabilities, we refer to the ePrint version of this paper.

4 Linear Correlations of SIMON-like round

functions

As in the differential case, for the study of linear approximations, we also
build up on the results from Section 2.3 and Section 2.4. We will thus start
with studying linear approximations for the function f(x) = x�Sa(x). Again,
the key point here is that all those functions are quadratic and thus their
Fourier coefficient, or equivalently their correlation, can be computed by lin-
ear algebra (cf. Theorem 5). Theorem 6 is then, in analogy to the differen-
tial case, the explicit expression for the linear correlations. It basically corre-
sponds to an explicit formula for the dimension of the involved subspace.

The first result is the following:

Theorem 5.

f̂(α,β)2 =

2n+d if α ∈ U⊥β
0 else

where
d = dimUβ

and
Uβ = {y | β� Sa(y) + S−a(β� y) = 0}
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Proof. We compute

f̂(α,β)2 =
∑
x,y

µ (〈β, f(x) + f(y)〉+ 〈α, x+ y〉)

=
∑
x,y

µ (〈β, f(x) + f(x+ y)〉+ 〈α,y〉)

=
∑
x,y

µ (〈β, x� Sa(x) + (x+ y)� Sa(x+ y)〉+ 〈α,y〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α,y〉)
∑
x

µ (〈β, x� Sa(y) + y� Sa(x)〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α,y〉)
∑
x

µ
(
〈x,β� Sa(y) + S−a(β� y)〉

)
.

Now for the sum over x only two outcomes are possible, 2n or zero. More
precisely, it holds that

∑
x

µ
(
〈x,β� Sa(y) + S−a(β� y)〉

)
=

2n if β� Sa(y) + S−a(β� y) = 0

0 else .

Thus, defining

Uβ = {y | β� Sa(y) + S−a(β� y) = 0}

we get
f̂(α,β)2 = 2n

∑
y∈Uβ

µ (〈β, f(y)〉+ 〈α,y〉) .

Now as

〈β, f(y)〉 =〈β,y� Sa(y)〉 (1)

=〈1,y�β� Sa(y)〉 (2)

=〈1,y� S−a(β� y)〉 (3)

(4)

Now, the function fβ := 〈β, f(y)〉 is linear over Uβ as can be easily seen by
the definition of Uβ. Moreover, as fβ is unbalanced for all β, it follows that
actually fβ is constant zero on Uβ. We thus conclude that

f̂(α,β)2 = 2n
∑
y∈Uβ

µ (〈α,y〉) .

With a similar argument as above, it follows that f̂(α,β)2 is non-zero if and
only if α is contained in U⊥β .
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Let us now restrict ourselves to the case where f(x) = x� S1(x). The gen-
eral case can be deduced analogously to the differential probabilities. For
simplicity we also restrict ourselves to the case where n is even.

First we need to introduce some notation. Let x ∈ Fn2 with not all bits
equal to 1. We now look at blocks of consecutive 1s in x, including poten-
tially a block that “wraps around” the ends of x. Let the lengths of these
blocks, measured in bits, be denoted as c0, . . . , cm. For example, the bit-
string 100101111011 has blocks of length 1, 3, and 4. With this notation define

θ(x) :=
m∑
i=0
dci2 e.

Noting that the linear square correlation of f is f̂(α,β)2

22n
, we then have the

following theorem:

Theorem 6. With the notation from above it holds that the linear square correlation

of α f→ β can be calculated as

C(α→ β) =


2−n+2 if β = 1 and α ∈ U⊥β
2−θ(β)) if β 6= 1 and α ∈ U⊥β
0 else.

Proof. Define Lβ(x) := β�S1(x)+S−1(β�x). Clearly Lβ is linear. AlsoUβ =

kerLβ(x). Let us determine the rank of this mapping. Define the matrices
Mβ·, MS1 , and MS−1 as

Mβ· =


β0 . . . . . . 0
... β1

...
...

. . .
...

0 . . . . . . βn−1


MS1 =

(
01,n−1 I1,1
In−1,n−1 0n−1,1

)

MS−1 =

(
0n−1,1 In−1,n−1
I1,1 01,n−1

) (5)

We can then write Lβ in matrix form as

0 β1 0 . . . 0 β0
β1 0 β2 0 . . . 0

0 β2 0 β3
. . .

...
...

. . . . . . . . . 0

0 0 0
. . . 0 βn−1

β0 0 . . . 0 βn−1 0


(6)

Clearly, if β is all 1s, the rank of the matrix is n − 2 as n is even.4 Let us
therefore now assume that β is not all 1s. When we look at a block of 1s in

4The rank is n− 1 when n is odd.
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β e.g., βi−1 = 0, βi,βi+1, . . . ,βi+l−1 = 1, and βl = 0. Then clearly the l
rows i, i+ 1, . . . , i+ l− 1 are linearly independent when l is even. When l is
odd though, the sum of rows i, i+ 2, i+ 4, up to row i+ l− 3 will equal row
i+ l− 1. In that case there are thus only l− 1 linearly independent rows. As
the blocks of 1s in β generate independent blocks of rows, we can summarise
that the rank of the matrix is exactly θ(β).

Analogously to the differential probabilities, the linear probabilities in the
general case can be derived from this. It is likewise straightforward to derive
how to determine whether α ∈ U⊥β . As an explicit formulation of this is
rather tedious, we instead refer to the implementation in Python given in the
Section B where both is achieved in the case where gcd(a− b,n) = 1 and n
is even.

For a more intuitive approach and some elaboration on the linear proba-
bilities, we refer to the ePrint version of this paper.

5 Finding Optimal Di�erential and Linear

Characteristics

While there are various methods for finding good characteristics, determin-
ing optimal differential or linear characteristics remains a hard problem in
general. The formulas derived for both differential and linear probabilities
enable us to apply an algebraic approach to finding the best characteristics.
A similar technique has been applied to the ARX cipher Salsa20 [14] and
the CAESAR candidate NORX [4]. For finding the optimal characteristics for
Simon we implemented an open source tool [13] based on the SAT/SMT
solvers CryptoMiniSat [15] and STP [11].

In the next section we will show how Simon can be modelled to find both
the best differential and linear characteristics in this framework and how this
can be used to solve cryptanalytic problems.

5.1 Model for Di�erential Cryptanalysis of SIMON

First we define the variables used in the model of Simon. We use two n-bit
variables xi, yi to represent the XOR-difference in the left and right halves
of the state for each round and an additional variable zi to store the XOR-
difference of the output of the AND operation.

For representing the log2 probability of the characteristic we introduce
an additional variable wi for each round. The sum over all probabilities wi
then gives the probability of the corresponding differential characteristic. The
values wi are computed according to Theorem 4 as
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wi = wt(varibits+ doublebits) (1)

where wt(x) is the Hamming weight of x and

varibits = Sa(xi)∨ S
b(xi)

doublebits = Sb(xi)� Sa(xi)∧ S2a−b(xi)

Therefore, for one round of Simon we get the following set of constraints:

yi+1 = xi

0 = (zi � varibits)

0 = (zi + S
a−b(zi))� doublebits

xi+1 = yi + zi + S
c(xi)

wi = wt(varibits+ doublebits)

(2)

A model for linear characteristics, though slightly more complex, can be
implemented in a similar way. A description of this model can be found in
the implementation of our framework. Despite the increase in complexity, we
could not observe any significant impact on the solving time for the linear
model.

5.2 Finding Optimal Characteristics

We can now use the previous model for Simon to search for optimal differ-
ential characteristics. This is done by formulating the problem of finding a
valid characteristic, with respect to our constraints, for a given probability w.
This is important to limit the search space and makes sense as we are usually
more interested in differential characteristics with a high probability as they
are more promising to lead to attacks with a lower complexity. Therefore, we
start with a high probability and check if such a characteristic exists. If not
we lower the probability.

The procedure can be described in the following way:

• For each round of the cipher add the corresponding constraints as de-
fined in Equation 2. This system of constraints then exactly describes
the form of a valid characteristic for the given parameters.

• Add a condition which accumulates the probabilities of each round as
defined in Equation 1 and check if it is equal to our target probability
w.

• Query if there exists an assignment of variables which is satisfiable
under the constraints.
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Table 1: Overview of the optimal differential (on top) and linear characteristics for
different variants of Simon. The probabilities are given as log2(p), for linear
characteristic the squared correlation is used.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −34 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −46 −50

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Linear
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −34 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −46 −50

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

• Decrement the probability w and repeat the procedure.

One of the main advantages compared to other approaches is that we can
prove an upper bound on the probability of characteristics for a given ci-
pher and number of rounds. If the solvers determines the set of conditions
unsatisfiable, we know that no characteristic with the specified probability
exists. We used this approach to determine the characteristics with optimal
probability for different variants of Simon. The results are given in Table 1.

Upper Bound for the Characteristics.

During our experiments we observed that it seems to be an easy problem
for the SMT/SAT solver to prove the absence of differential characteristics
above wmax. This can be used to get a lower bound on the probability of
characteristics contributing to the differential. The procedure is similar to
finding the optimal characteristics.

• Start with a very low initial probability wi.

• Add the same system of constraints which were used for finding the
characteristic.

• Add a constraint fixing the variables (x0,y0) to ∆in and (xr,yr) to ∆out.

• Query if there is a solution for this weight.

• Increase the probability wi and repeat the procedure until a solution is
found.

5.3 Computing the Probability of a Di�erential

Given a differential characteristic it is of interest to determine the probability

of the associated differential Pr(∆in
fr−→ ∆out) as it might potentially have a

much higher probability then the single characteristic. It is often assumed
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that the probability of the best characteristic can be used to approximate the
probability of the best differential. However, this assumption only gives an
inaccurate estimate in the case of Simon.

Similarly to the previous approach for finding the characteristic, we can
formalise the problem of finding the probability of a given differential in the
following way:

• Add the same system of constraints which were used for finding the
characteristic.

• Add a constraint fixing the variables (x0,y0) to ∆in and (xr,yr) to ∆out.

• Use a SAT solver to find all solutions si for the probability w.

• Decrement the probability w and repeat the procedure.

The probability of the differential is then given by

Pr(∆in
fr−→ ∆out) =

wmax∑
i=wmin

si · 2−i (3)

where si is the number of characteristics with a probability of 2−i.
We used this approach to compute better estimates for the probability of

various differentials (see Table 2). In the case of Simon32 we were able to
find all characteristics contributing to the differentials for 13 and 14 rounds.
The distribution of the characteristics and accumulated probability of the
differential is given in Figure 1. It is interesting to see that the distribution of
w in the range [55, 89] is close to uniform and therefore the probability of the
corresponding differential improves only negligible and converges quickly
towards the measured probability5.

The performance of the whole process is very competitive compared to
dedicated approaches. Enumerating all characteristics up to probability 2−46

for the 13-round Simon32 differential takes around 90 seconds on a single
CPU core and already gives a better estimate compared to the results in [6].
A complete enumeration of all characteristics for 13-round Simon32 took
close to one core month using CryptoMiniSat4 [15]. The computational effort
for other variants of Simon is comparable given the same number of rounds.
However, for these variants we can use differentials with a lower probability
covering more rounds due to the increased block size. In this case the running
time increases due to the larger interval [wmin,wmax] and higher number of
rounds.

5We encrypted all 232 possible texts under 100 random keys to obtain the estimate of the
probability for 13-round Simon32.
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For Simon48 and Simon64 we are able to improve the estimate given
in [16]. Additionally we found differentials which can cover 17 rounds for
Simon48 and 22 rounds for Simon64 which might have potential to improve
previous attacks. Our results are also closer to the experimentally obtained
estimates given in [10] but give a slightly lower probability. This can be due
to the limited number of characteristics we use for the larger Simon variants
or the different assumptions on the independence of rounds.

Our results are limited by the available computing power and in general
it seems to be difficult to count all characteristics for weights in [wmin,wmax],
especially for the larger variants of Simon. However the whole process is
embarrassingly parallel, as one can split up the computation for each proba-
bility wi. Furthermore, the improvement that one gets decreases quickly. For
all differentials we observed that the distribution of differential characteris-
tics becomes flat after a certain point.
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Figure 1: Distribution of the number of characteristics for the differential (0, 40) →
(4000, 0) for 13-round Simon32 and the accumulated probability. A total of
≈ 225.21 characteristics contribute to the probability.
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Table 2: Overview of the differentials and the range [wmin,wmax] of the log2 proba-
bilities of the characteristics contributing to the differential. For computing
the lower bound log2(p) of the probability of the differentials, we used all
characteristics with probabilities in the range from wmin up to the values in
brackets in the wmax column.

Cipher Rounds ∆in ∆out wmin wmax log2(p)

Simon32 13 (0, 40) (4000, 0) 36 91 (91) −28.79
Simon32 14 (0, 8) (800, 0) 38 120 (120) −30.81
Simon48 15 (20, 800088) (800208, 2) 46 219 (79) −41.02
Simon48 16 (800000, 220082) (800000, 220000) 50 256 (68) −44.33
Simon48 17 (80, 222) (222, 80) 52 269 (85) −46.32
Simon64 21 (4000000, 11000000) (11000000, 4000000) 68 453 (89) −57.57
Simon64 22 (440, 1880) (440, 100) 72 502 (106) −61.32

6 Analysis of the Parameter Choices

The designers of Simon so far gave no justification for their choice of the
rotation constants. Here we evaluate the space of rotation parameters with
regard to different metrics for the quality of the parameters. Our results are
certainly not a definite answer but are rather intended as a starting point to
evaluating the design space and reverse engineering the design choices. We
consider all possible sets of rotation constants (a,b, c)6 and checked them for
diffusion properties and the optimal differential and linear characteristics.

6.1 Di�usion

As a very simple measure to estimate the quality of the rotation constants, we
measure the number of rounds that are needed to reach full diffusion. Full
diffusion is reached when every state bit principally depends on all input
bits. Compared to computing linear and differential properties it is an easy
task to determine the dependency.

In Table 3 we give a comparison to how well the standard Simon rotation
parameters fare within the distribution of all possible parameter sets. The
exact distributions for all Simon variants can be found in the appendix in
Table 8.

6.2 Di�erential and Linear

As a second criteria for our parameters, we computed for all a > b and
gcd(a − b,n) = 1 the optimal differential and linear characteristics for 10

rounds of Simon32, Simon48 and Simon64. A list of the parameters which
are optimal for all three variants of Simon can be found in Section D.

6Without lack of generality, we assume though that a > b.
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Table 3: The number of rounds after which full diffusion is reached for the standard
Simon parameters in comparison to the whole possible set of parameters.

Block size 32 48 64 96 128

Standard parameters 7 8 9 11 13

Median 8 10 11 13 14

First quartile 7 9 9 11 12

Best possible 6 7 8 9 10

Rank 2nd 2nd 2nd 3rd 4th

It is important here to note that there are also many parameter sets, in-
cluding the standard choice, for which the best 10-round characteristics of
Simon32 have a probability of 2−25 compared to the optimum of 2−26. How-
ever, this difference by a factor of 2 does not seem to occur for more than 10

rounds and also not any larger variants of Simon.

6.3 Interesting Alternative Parameter Sets

As one result of our investigation we chose three exemplary sets of param-
eters that surpass the standard parameters with regards to some metrics.
Those variants are Simon[12, 5, 3], Simon[7, 0, 2] and Simon[1, 0, 2].

Simon[12, 5, 3] has the best diffusion amongst the parameters which have
optimal differential and linear characteristics for 10 rounds. The two other
choices are both restricted by setting b = 0 as this would allow a more ef-
ficient implementation in software. Among those Simon[7, 0, 2] has the best
diffusion and the characteristics behave similar to the standard parameters.
Ignoring the diffusion Simon[1, 0, 2] seems also an interesting choice as it is
optimal for the differential and linear characteristics.

If we look though at the differential corresponding to the best differential
characteristic of Simon[7, 0, 2] and Simon[1, 0, 2], then we can see the number
of characteristics contributing to it is significantly higher than for the stan-
dard parameters (see Table 6). However, for Simon[12, 5, 3] the differential
shows a surprisingly different behaviour and the probability of the differen-
tial is much closer to the probability of the characteristic. On the other side,
the characteristics seem to be worse for the larger variants as can be seen
in Table 7. Furthermore it might be desirable to have at least one rotation
parameter that corresponds to a byte length, something that the standard
parameter set features.
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7 Conclusion and Future Work

In this work we analysed the general class of functions underlying the Simon

block cipher. First we rigorously derived efficiently computable and easily
implementable expressions for the exact differential and linear behaviour of
Simon-like round functions.

Building upon this, we used those expressions for a computer aided ap-
proach based on SAT/SMT solvers to find both optimal differential and lin-
ear characteristics for Simon. Furthermore, we were able to find all character-
istics contributing to the probability of a differential for Simon32 and gave
better estimates for the probability for other variants.

Finally, we investigated the space of Simon variants using different ro-
tation constants with respect to diffusion, and the optimal differential and
linear characteristics. Interestingly, the default parameters seem to be not
always optimal.

This work opens up for further investigations. In particular, the choice and
justifications of the NSA parameters for Simon remains unclear. Besides our
first progress concerning the round function, the design of the key schedule
remains largely unclear and further investigation is needed here.
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A Short tutorial for calculating di�erential

probabilities and square correlations in

SIMON-like round functions

The idea of this section is to complement the rigorous proofs with a more in-
tuitive approach to calculating the differential probabilities and square corre-
lation of one round of Simon. This should also allow us to better understand
the Python code given later for calculating these values. We restrict ourselves
to a simplified version of the Simon round function:

f : Fn2 → Fn2 (1)

f(m) = S1(m)�m . (2)

Writing this equation bitwise where mi denotes the ith bit of m we obtain:

fi(m) = mi−1 �mi . (3)

When using a bit subscript, we will always implicitly assume that the sub-
script is calculated modulo n, the number of bits. Thus m−1 and mn−1 will
for example refer to the same bit.

A.1 Di�erential probabilities

Suppose now we are given a message m = (mn−1, . . . ,m1,m0) and an input
difference d = (dn−1, . . . ,d1,d0). Then the resulting difference D for the
function f is calculated as D(m,d) = f(m)⊕ f(m⊕ d). This can be written
bitwise as:

Di(m,d) = (mi−1 �mi)⊕ ((mi−1 ⊕ di−1)� (mi ⊕ di)) . (4)

By differentiating between the four possible different cases for di and di−1,
we obtain the following:

Di(m,d) =



0, if di = 0 and di−1 = 0

mi, if di = 0 and di−1 = 1

mi−1, if di = 1 and di−1 = 0

mi ⊕mi−1, if di = 1 and di−1 = 1 .

(5)

In the last case, Di is 1 exactly when mi = mi−1 and is 0 when mi 6= mi−1.
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Let us now look at a first example. Let n = 6, and d = 001010. We then
calculate D(m,d) using the above bitwise definition of D:

i 5 4 3 2 1 0

d 0 0 1 0 1 0
S1(d) 0 1 0 1 0 0

D(m,d) 0 m4 m2 m2 m0 0

. (6)

We can see that the resulting difference depends only on m4, m2 and m0.
Thus by adapting these bits appropriately we can generate the following
resulting differences:

000000, 000010, 001100, 001110, 010000, 010010, 011100, 011110.

All these differences then have the same probability of 8/64 = 1/8. Note that
the reuse of a message bit, m2 in this case, is due to a subsequence 101 in the
difference.

Let us take a look at another example. Let again n = 6 and now d = 011010.
Then we can again calculate D(m,d) as

i 5 4 3 2 1 0

d 0 1 1 1 1 0
S1(d) 1 1 1 1 0 0

D(m,d) m5 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m0 0

.

(7)
We can see here that consecutive 1s in the input difference will cause the
respective output difference bit to depend on two message bits. Nevertheless
are all five non-zero output difference bits independent of each other. Thus
25 different output differences are possible, each one with probability 1/32.

With the observations made above, we can now devise a rule that allows
us to determine the probability of a given pair (α,β) of an input difference
α and an output difference β. First we calculate the set of varibits which is
the bits in which the output difference can be non-zero. So output bit βi is
in varibits if and only if αi or αi−1 is non-zero:

varibits = α | S1(α) (8)

where | denotes the bitwise or.
Next we have to calculate which of these output difference bits have to

be the same because of patterns 101 in the input difference. We do this by
calculating the set doublebits which is the output difference bits that always
have to be the same as the difference bit one position to the right. Thus βi is
in doublebits if and only if αi is 1, αi−1 is 0, and αi−2 is 1.

doublebits = α� S1(α)� S2(α) (9)
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To check whether input difference α can map to output difference β with
non-zero probability, we only need to check whether all non-zero bits of β lie
in varibits and that all bits of β that are in doublebits are the same as the
bits to their right. The probability of the transition is then determine by the
number of output difference bits that can be chosen freely, i.e. the number of
bits in varibits minus the number of bits in doublebits.

Before we write this procedure down, we have to take a look at one special
case, namely when all input difference bits are set, e.g. n = 6 and d = 111111.
Then we can again calculate D(m,d) as

i 5 4 3 2 1 0

d 1 1 1 1 1 1
S1(d) 1 1 1 1 1 1

D(m,d) m5 ⊕m4 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m1 ⊕m0 m0 ⊕m4

.

(10)
Although all bits of the output are influenced and all bits of the input take
equal influence, there are not 64 possible output differences since by switch-
ing all bits of m the output difference does not change.

So which output differences are possible then? By fixing an output differ-
ence, we get a sequence of equations of the kind mi = mi+1 or mi 6= mi+1.
This creates a closed chain of equations that have to be coherent to be satisfi-
able. As a 0 in the output difference creates an inequality and a 1 creates an
equality, in the end it boils down to the condition that the number of 0s in
the output difference has to be even when the input difference only consists
of 1s.

Let us now summarise all of this in a method to calculate the probability
that a given input difference α is mapped to a given output difference β:

1. Check if α is the difference with all bits set to 1. If that is the case, cal-
culate the number of 0s in β. If this number is even, return probability
2−n+1, otherwise return probability 0. If α is not all 1s, go to next step.

2. Calculate varibits as varibits = α | S1(α). Check if β has any bits set
to 1 which are not in varibits, i.e. check if varibits� β 6= 0. Should
this be the case, return probability 0. Otherwise continue with next
step.

3. Calculate doublebits as doublebits = α � S1(α) � S2(α). Check
whether there are any bits of β in doublebits that are not equal to
their right neighbour, i.e. check

(
β+ S1(β)

)
� doublebits 6= 0. Should

this be the case, return probability 0. Otherwise continue with next
step.

4. Return probability 2−wt(varibits+doublebits).
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This method allows us to determine differential probabilities of the function
f(x) = S1(x)�x. We only have to apply some affine transformation to convert
this to a method for calculating the probability of the Simon round function.
A Python implementation of the more general method can be found in Sec-
tion B.

A.2 Square correlations

Let us now look at how to calculate square correlations for f(x) = S1(x)� x.
First we look at the case where the input mask α is all 0s. Let n = 6 and

let the output mask β be 010110:

α 0 0 0 0 0 0

m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 1 0

. (11)

The resulting expression is then

m4m3 +m2m1 +m1m0. (12)

Let us look at the first term. It is zero in 3 out of 4 cases. It thus has a
correlation of 12 and hence a square correlation of 14 .

Let us look at the next two terms m2m1 and m1m0. First we note that they
are not independent as they share the variable m1. So we cannot calculate
the square correlation of the sum of these terms as the product of the square
correlations of the single terms. But we can rewrite the sum of these terms as

m2m1 +m1m0 = m1(m2 +m0). (13)

Now (m2 +m0) behaves like a single one bit variable. Therefore the square
correlation of m1(m2+m0) is 14 as well. As m4m3 and m1(m2+m0) do not
share any variables, the square correlation of the whole expression m4m3 +
m2m1 +m1m0 is then 1

4 · 14 = 1
16 . It is easy to see that different “blocks” of

1s in β that are separated by at least one 0, will generate independent terms.
We thus only need to look at the square correlations of the terms generated
from these blocks and multiply these to get the final result.

Let us thus look at a longer block of 1s with β = 011111:

α 0 0 0 0 0 0

m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 1 1 1 0

. (14)
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The resulting expression is

m5m4 +m4m3 +m3m2 +m2m1 +m1m0. (15)

By combining the first and the second as well as the third and the fourth
term, we get

m4(m5 +m3) +m2(m3 +m1) +m0m1. (16)

As (m5 +m3), (m3 +m1), and m1 are independent of each other, the three
terms m4(m5 +m3), m2(m3 +m1), and m0m1 are independent and the

square correlation of the whole expression is thus
(
1
4

)3
= 2−6.

At this point we already dare to formulate a rule. The square correlation
of the term generated by m consecutive blocks of 1s is 2−2dm2 e. As every pair
of consecutive single terms can be combined to create one independent term
of square correlation 2−2, the total square correlation just depends on the
number of terms left after such pairing. And this number is

⌈
m
2

⌉
.

Let us now consider a non-zero input mask α. Let α = 010010 and let
β = 010100:

α 0 1 0 1 1 1

m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 0 0

. (17)

The resulting expression is then

m4m3 +m4 +m2m1 +m2 +m1 +m0. (18)

We see that we can combine the first two terms to get a term of square
correlation 2−2 again: m4m3 +m4 = m4(m3 + 1). Note that if the second
term had been m3 instead, it would have worked too. For the next three
terms we can do the same: m2m1 +m2 +m1 = (m2 + 1)(m1 + 1) + 1. Note
that the bias of this term is now flipped; the square correlation is nonetheless
also 2−2. As the first two terms are independent of the next three terms, the
square correlation of the combined first five terms is 2−4. But when looking
at the last term m0, we see that it is independent of all other terms and
unbiased. Thus the square correlation of the complete expression is 0.

As a matter of fact, it is easy to see that when for any i the respective bit αi
of the input mask is 1 but both βi and βi+1 are 0, the resulting expression
will always be unbiased. Thus we can say that every non-zero bit in the
input mask belonging to some block of 1s in the output mask is a necessary
condition for the whole expression to be unbiased. Note that every bit in
the input mask can at most be associated with one block of 1s in the output
mask.
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Thus we can evaluate the square correlation of f for an input mask α and
an output mask β like this: First we check whether every non-zero bit in
the input mask is associated to a block of 1s in the output mask. Is this not
the case, we already know that the square correlation is zero. Otherwise we
continue to partition the output mask and the input mask into blocks of 1s
and their associated input mask bits. For each of these blocks we determine
the square correlation of the resulting expression and finally multiply these
together to get the total square correlation.

But how do we evaluate a block of 1s with the associated input mask bits
in general? In the last example, we saw that for a block of a single 1 in the
output mask, the two associated bits of the input mask can take any value;
the square correlation remains 2−2.

How about in the case of a block of two 1s? Let us look at the case of
α = 111001 and let β = 110110:

α 1 1 1 0 0 1

m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 0 1 1 0

. (19)

The resulting expression is

m5m4 +m4m3 +m5 +m4 +m3 +m2m1 +m1m0 +m0. (20)

Let us first look at the first block of 1s in the output mask β, i.e. at the
expression m5m4 +m4m3 +m5 +m4 +m3. Combining the first two terms,
we get

m4(m5 +m3) +m5 +m4 +m3. (21)

We can now combine the first term with m4 to get

m4(m5 +m3 + 1) +m5 +m3. (22)

Finally we can also incorporate m5 and m3 to get

(m4 + 1)(m5 +m3 + 1) + 1. (23)

The expression thus has a square correlation of 2−2.
Let us look at the expression generated by the second block of 1s in the

output mask:
m2m1 +m1m0 +m0. (24)

Combining the first two terms, we get

m1(m2 +m0) +m0. (25)
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But now we see that the term m0 is independent of the first term. Thus we
are left with a square correlation of 0. Note that the square correlation would
also be 0 if the last term were m2 but not if the last term were m1 in which
case the square correlation would be 2−2.

As a matter of fact, the rule to determine the square correlation of an
expression generated by a block of two 1s in the output mask and the asso-
ciated bits in the input mask is straightforward. There are three associated
input mask bits. If and only if both or none of the two outer bits (m2 and
m0 in the last example) are set to 1, is the expression biased and the square
correlation is 2−2.

In fact, for a block of an even number of 1s in the output mask, any com-
bination of associated input bits, will lead to a biased expression with the
same square correlation. For a block of an odd number of 1s in the output
mask, we need to check the input mask though. There is an odd number of
associated bits to this block in the input mask. Let us refer to the first bit and
then every second bit as the odd bits, and to the second bit and then every
second bit as the even bits (from which direction we count does not matter).
The even bits do not have an influence on the square correlation. But the
parity of the odd bits determines whether the expression for this block will
be unbiased or not. If and only if the parity is even, the expression is biased.

We can summarise a method to calculate the square correlation for a given
input mask α and a given output mask β that is not all 1s as follows:

1. Partition the 1s in the output mask into consecutive blocks of 1s. The
total square correlation is now the product of the square correlations
for each block.

2. For each block calculate the square correlation:

a) If the block length is odd, this block is always biased and the
square correlation is solely determined by its length.

b) If the block length is even, we need to check the input mask. There
is an odd number of bits in the input mask that are associated with
this output block. Calculate the XOR of every second bit of these
associated bits starting with the first one (such that both outer bits
are considered). If this XOR sum is 1, the block is unbiased and
thus the whole expression is unbiased. If the XOR sum is 0, the
square correlation for this block is determined by its length.

For an implementation of the method to calculate the square correlation in
Python, see Section B.
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B Python code to calculate di�erential

probabilities and square correlations in

SIMON-like round functions

In the following, code for calculating the differential probabilities and square
correlations of Simon-like round functions (fa,b,c(x) = S

a(x)�Sb(x)+Sc(x))
are given in Python. Restrictions are that the constants need to fulfil gcd(a−
b,n) = 1. We assume that the functions Sd(x) and wt(x) have been imple-
mented as well as a function parity that calculates the parity wt(x) mod 2
of a bit vector x. a, b, and c have to be defined in the program as well.

The differential probability of α f−→ β can then be calculated with the fol-
lowing function:
def pdiff (alpha ,beta):

# Use gamma instead of beta to get rid of linear part

gamma = beta ^ S(alpha ,c)

# Take care of the case where alpha is all 1s

if alpha == 2**n-1:

if hw(~ gamma)%2 == 0:

return 2**(n-1)

else:

return 0

# Determine bits that can take a nonzero difference

varibits = S(alpha , a) | S(alpha ,b)

# Check whether gamma conforms with varibits

if gamma & ~varibits != 0:

return 0

# Determine the bits that are duplicates

doublebits = S(alpha ,2*a-b) & ~S(alpha ,a) & S(alpha ,b)

# Check whether the duplicate bits are the same as there counterpart

if (gamma ^ S(gamma ,a-b)) & doublebits != 0:

return 0

return 2**(-hw(varibits^doublebits))

The squared correlation of α f→ β can be calculated with the following func-
tion. Here we assume n to be even, which is relevant for the case where β is
all 1s.
def plin (alpha ,beta):

# Get rid of linear part of round function

alpha ^= S(beta ,-c)

# If the input masks uses bits that have corresponding bits

# in the output mask , the correlation is 0.

if ((S(beta ,-a) | S(beta ,-b)) ^ alpha) & alpha != 0:

return 0

# Take care of the case where beta is all 1s

if beta == 2**n-1:

t, v = alpha , 0

while t != 0:

v ^= t & 3

t >>= 2

if v != 0:
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return 0

else:

return 2**(-n+2)

# Set in the abits mask the first and then every second bit of each

# block of 1s in the output mask beta. Each corresponds to one

# independent multiplication term , and thus adds a factor of 2^( -2)

# to the square correlation.

# Example: beta = 0111101110110 -> abits = 0101001010100

tmp = beta

abits = beta

while tmp != 0:

tmp = beta & S(tmp , -(a-b))

abits ^= tmp

# The sbits correspond to bits one to the right of each block of an

# even number of 1s in the output mask.

# Example: beta = 0111101110110 -> sbits = 0000010000001

sbits = S(beta , -(a-b)) & ~beta & ~S(abits , -(a-b))

# Adopt sbits to correspond to the respective bits in the input

# mask

sbits = S(sbits , -b)

# The pbits are used to check whether the input mask removes the

# bias from one of the output mask blocks. It checks the parity of

# the sum of every second inputmask bit for each block that

# corresponds to a block of an even number of 1s in the output mask.

pbits = 0

while sbits != 0:

pbits ^= sbits & alpha

sbits = S(sbits , (a-b)) & S(beta ,-b)

sbits = S(sbits , (a-b))

pbits = S(pbits , 2*(a-b))

# If the parity is uneven for any one of the blocks , there is no bias.

if pbits != 0:

return 0

return 2**( -2*hw(abits))

C Additional Di�erential Bounds

In Table 4 resp. Table 5 we give the distributions for the characteristics con-
tributing to a differential up to the bound we computed them.

D Optimal parameters for di�erential

characteristics

The following sets of rotation constants (a,b, c) are optimal for 10 rounds
regarding differential characteristics for Simon32, Simon48, and Simon64

(1, 0, 2), (1, 0, 3), (2, 1, 3), (4, 3, 5), (5, 0, 10), (5, 0, 15), (5, 4, 3), (7, 0, 14), (7, 6, 5)

(8, 1, 3), (8, 3, 14), (8, 7, 5), (10, 5, 15), (11, 6, 1), (12, 1, 7), (12, 5, 3), (12, 7, 1)

(13, 0, 10), (13, 0, 7), (13, 8, 2)
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Table 4: Number of differential characteristics for the differential (80, 222) f17

−−→
(222, 80) for Simon48.

log2(p) #Characteristics log2(p) #Characteristics

−52 1 −69 20890

−53 6 −70 38837

−54 15 −71 72822

−55 46 −72 133410

−56 100 −73 240790

−57 208 −74 353176

−58 379 −75 279833

−59 685 −76 235071

−60 1067 −77 259029

−61 1607 −78 225836

−62 2255 −79 256135

−63 2839 −80 252193

−64 3476 −81 252654

−65 4088 −82 198784

−66 5032 −83 229843

−67 7063 −84 208757

−68 11481 −85 253112

Table 5: Number of differential characteristics for the differential

(4000000, 11000000) f
21

−−→ (11000000, 4000000) for Simon64.

log2(p) #Characteristics log2(p) #Characteristics

−68 2 −83 185709

−69 14 −84 173860

−70 70 −85 171902

−71 276 −86 171302

−72 951 −87 168190

−73 2880 −88 164694

−74 8101 −89 163141

−75 21062 −90 161089

−76 52255 −91 159354

−77 123206 −92 155804

−78 238297 −93 150954

−79 239305 −94 145061

−80 171895 −95 141914

−81 170187 −96 138480

−82 165671 −97 132931
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Table 6: Distribution of the characteristics for a 13-round differential for Simon32 us-
ing different set of constants.

log2(p) [8, 1, 2] [12, 5, 3] [7, 0, 2] [1, 0, 2]

−36 1 1 4 1
−37 4 2 16 6
−38 15 3 56 27
−39 46 2 144 88
−40 124 1 336 283
−41 288 0 744 822
−42 673 0 1644 2297
−43 1426 0 3420 6006
−44 2973 0 6933 14954
−45 5962 0 13270 34524
−46 11661 1 24436 73972
−47 21916 3 43784 150272
−48 40226 14 76261 292118
−49 72246 32 130068 /
−50 126574 54 218832 /
−51 218516 83 362284 /

Similar to the experiments for the default parameters, we used our frame-
work to evaluate the quality of various rotation constants. In Table 7 we give
an overview of the best differential characteristics for variants of Simon us-
ing a different set of rotation constants. Table 6 shows that a carefully chosen
set of constants can have a very strong effect on the differentials.

Table 7: Overview of the optimal differential characteristics for Simon variants.
Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential (12, 5, 3)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −28 −34 −36 −42 −44 −47
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −37 −43 −47 /

Differential (1, 0, 2)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Differential (7, 0, 2)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −35 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −48 −53
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 /
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Table 8: For each Simon variant and each possible number of rounds, the number of
possible combinations of rotation constants (a,b, c) with a > b is given that
reaches full diffusion.

Simon32

Rounds 6 7 8 9 10 11 17 ∞
#(a,b, c) 48 600 528 88 144 128 64 576

Simon48

Rounds 7 8 9 10 11 13 14 15 25 ∞
#(a,b, c) 48 1392 1680 792 528 344 144 128 64 2080

Simon64

Rounds 8 9 10 11 12 13 15 17 18 19 33 ∞
#(a,b, c) 384 4800 2112 2256 1152 608 512 48 288 256 128 4352

Simon96

Rounds 9 10 11 12 13 14 15 16 17

#(a,b, c) 336 4272 13920 7104 5568 3456 912 1152 800

19 21 25 26 27 49 ∞
1568 640 48 288 256 128 16000

Simon128

Rounds 10 11 12 13 14 15 16 17 18 19 20

#(a,b, c) 768 10944 26112 25536 9024 6912 7488 2496 192 1824 2304

21 23 24 25 33 34 35 65 ∞
1792 1024 960 512 96 576 512 256 33792
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Abstract. Simeck is a new lightweight block cipher design based
on combining the design principles of the Simon and Speck

block cipher. While the design allows a smaller and more ef-
ficient hardware implementation, its security margins are not
well understood. The lack of design rationals of its predecessors
further leaves some uncertainty on the security of Simeck.

In this work we give a short analysis of the impact of the design
changes by comparing the upper bounds on the probability of
differential and linear trails with Simon. We also give a compar-
ison of the effort of finding those bounds, which surprisingly is
significantly lower for Simeck while covering a larger number
of rounds at the same time.

Furthermore, we provide new differentials for Simeck which
can cover more rounds compared to previous results on Simon

and study how to choose good differentials for attacks and show
that one can find better differentials by building them from a
larger set of trail with initially lower probability.

We also provide experimental results for the differentials for
Simon32 and Simeck32 which show that there exist keys for
which the probability of the differential is significantly higher
than expected.

Based on this we mount key recovery attacks on 19/26/33

rounds of Simeck32/48/64, which also give insights on the re-
duced key guessing effort due to the different set of rotation
constants.

Keywords: SIMON, SIMECK, differential cryptanalysis, block
cipher
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1 Introduction

Simeck is a family of lightweight block ciphers proposed in CHES’15 by
Yang, Zhu, Suder, Aagaard and Gong [13]. The design combines the Simon

and Speck block ciphers proposed by NSA [4], which leads to a more com-
pact and efficient implementation in hardware. The block cipher Simon is
built by iterating a very simple round function which uses bitwise AND and
rotation while the block cipher Speck uses modular addition as non-linear op-
erations. The designers of Simeck chose a different set of rotation constants
from Simon to construct the round function.

The efficiency of Simon and Speck on hardware and software platform has
a natural appeal to use similar design principles for constructing efficient
primitives. The designers of Simon and Speck do not provide rationales for
the original choices apart from implementation aspects. These modifications
are likely to have an impact on the security margins, which often are already
small for lightweight designs and can be a delicate issue. Hence it is im-
portant to understand the effect of the parameter change on the security of
Simon like design.

The Simon block cipher family has been studied in various paper [1, 2, 5,
9, 10, 12] and the attacks covering the most rounds are based on differential
and linear cryptanalysis, which therefore will also be the focus of this work.
However very few analyses [7] was done to study the choice of parameters
for Simon and Speck and their effect on the security of these block ciphers.

Our Results

In this paper we give a first analysis on the impact of these design changes by
comparing the bounds for differential and linear trails with the correspond-
ing variants of Simon. An unexpected advantage for Simeck is, that it takes
significantly less time to find those while also covering more rounds (see Ta-
ble 1). Additionally we investigate strategies to find differentials which have
a high probability and are more suitable for efficient attacks.

Surprisingly, we can find differentials with higher probability for Simeck32

by not using the input and output difference from the best differential trails.
Furthermore, we also provide new differentials which cover 4 and 5 rounds
for Simeck48 and Simeck64 respectively which also have a slightly higher
probability compared to previous results on Simon.

We verified the estimated probability with experiments for both Simon32

and Simeck32 to confirm our model and also noticed that for some keys a
surprisingly large number of valid pairs can be found.

This is followed by key-recovery attacks for reduced round versions of
Simeck (see Table 6). These attacks are similar to previous work [5] done
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on Simon and give insight into the lower complexity for the key recovery
process for Simeck as we need to guess fewer key bits.

Table 1: A comparison between the number of rounds for which upper bounds on the
probability of differential and linear trails exist, the probability of differentials
utilized in attacks and the best differential attacks on Simon and Simeck.
Results contributed by this work are marked in bold.

Cipher Rounds Upper Bounds Differentials Key Recovery
differential linear Rounds Pr(α −→ β)

Simon32/64 32 32 32 13 2−28.79 [5] 21 [11]
Simeck32/64 32 32 32 13 2−27.28

22 [8]

Simon48/96 36 19 20 16 2−44.65 [10] 24 [11]
Simeck48/96 36 36 36 20 2−43.65

26 [8]

Simon64/128 44 15 [7] 17 21 2−60.21 [10] 29 [11]
Simeck64/128 44 40 41 26 2−60.02

35 [8]

2 The Simeck Block Cipher

Simeck2n is a family of block ciphers with n-bit word size, where n =

16, 24, 32. Each variant has a block size of 2n and key size of 4n giving the
three variants of Simeck: Simeck32/64, Simeck48/96 and Simeck64/128. As
for each block size there is only one key size we will omit the key size usually.

S5

S1

ki

Figure 1: The round function of Simeck.

The block cipher is based on the Feistel construction and the round function
f is the same as in Simon apart from using (5, 0, 1) for the rotation constants
(as depicted in Figure 1). The key-schedule on the other hand is similar to
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Speck, reusing the round function to update the keys. The key K is split into
four words (t2, t1, t0,k0) and the round keys k0, . . . ,kr−1 are given by:

ki+1 = ti

ti+3 = ki ⊕ f(ti)⊕C
(1)

3 Preliminaries

Differential cryptanalysis is a powerful tool for analyzing block ciphers us-
ing a chosen plaintext attack. The idea is to find a correlation between the
difference of a pair of plaintexts and the corresponding pair of ciphertexts.
Resistance to differential cryptanalysis is an important design criteria but it
is difficult, especially for designs like Simon, to proof the resistance against
it.

Definition 1. A differential trail Q is a sequence of difference patterns

Q = (α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr). (1)

In general, as the key is unknown to an attacker, we are interested in the
probability that a random pair of inputs follows such a differential trail and
the goal for the attacker is to find a correlation between input and output
difference with high probability.

Definition 2. The probability of a differential trail Q is defined as

Pr(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr) =

r−1∏
t=0

Pr(αt → αt+1) (2)

and gives the probability that a random input follows the differential trail.
The last equality holds if we assume independent rounds.

In most attack scenarios we are not interested in the probability of a dif-
ferential trail, as we are only interested in the input difference α0 and the
output difference αr, but not what happens in between.

Definition 3. The probability of a differential is the sum of all r round differ-
ential trails

Pr(α0
f−→ αr) =

∑
α1,...,αr−1

(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr) (3)

which have the same input and output difference.
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Table 2: Number of rounds required for full diffusion.

Wordsize 32-bit 48-bit 64-bit
Simon 7 Rounds 8 Rounds 9 Rounds
Simeck 8 Rounds 9 Rounds 11 Rounds

4 Analysis of Simon and Simeck

In [7] the differential and linear properties of Simon were studied, including
variants using a different set of rotation constants. Following up on this work,
we can use the same methods to analyze the round function of Simeck. This
allows us to find lower bounds for the probability of a differential trail resp.
square correlation of a linear trail for a given number of rounds.

4.1 Di�usion

An important criteria for the quality of a round function in a block cipher
is the amount of diffusion it provides, i.e. how many rounds r it takes until
each bit at the input effects all bits of the output. For Simon this was already
studied in [7] for the whole parameter set and we only explicitly state the
comparison to Simeck here in Table 2.

4.2 Bounds on the best di�erential trails

We carried out experiments for the parameter set of Simeck using Cryp-
toSMT1 to find the optimal differential and linear trails for Simeck32,
Simeck48 and Simeck64 and compare it with the results on Simon. The
results of this experiment are given in Figure 1. The bounds on the square
correlation for linear trails are given in the Appendix.

While the bounds for Simon32 and Simeck32 are still comparable we no-
ticed a significant difference for the larger variants. While the required num-
ber of rounds for Simon48, such that the probability of the best trail is less
than 2−48, is 16, Simeck48 achieves the same property only after 20 rounds.
It is also interesting to note that the bounds for the different word sizes of
Simeck are the same, which is not the case for Simon.

In our experiments we noticed that the different set of rotation constants
plays a huge role in the running time of the SMT solver. For instance find-
ing the bounds in Figure 1 took 51 hours for Simon32 and 10 hours for
Simeck32

2. Especially for larger block sizes it allows us to provide bounds for

1CryptoSMT https://github.com/kste/cryptosmt Version: 70794d83

2Using Boolector 2.0.1. running on an Intel Xeon X5650 2.66GHz 48GB RAM (1 core).

https://github.com/kste/cryptosmt
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Figure 1: Lower bounds on the probability of the best differential trails for variants of
Simon and Simeck. For the different variants of Simeck the bounds are the
same.

a significant larger number of rounds including full Simeck48. For Simon64

computing the bounds up to 15 rounds takes around 19 hours, while the
same process only takes around 30 minutes for Simeck64. We computed the
bounds for Simeck64 up to round 40 in around 53 hours.

4.3 Di�erential e�ect in Simon and Simeck

As noted in previous works Simon shows a strong differential resp. linear
hull effect, which invalidates an often made assumption that the probability
of the best trail can be used to estimate the probability of the best differential.
Therefore bounds on differential and linear trails have to be treated with
caution. The choice of constants for Simon-like round functions also plays a
role in this as shown in [7].

One approach to find good differentials is to first find the best trail for
a given number of rounds of Simeck using CryptoSMT [6] and then find a
large set of trails with the same input and output difference. However, as we
will see later this will not always give the highest probability differential. The
results of these experiments are summarized in Table 3.

If we compare those with previous results on Simon we can cover more
rounds. The best previous differential attack by Wang, Wang, Jia and
Zhao [11] utilizes a 13-round differential for Simon32, a 16-round differ-
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ential for Simon48 and a 21-round differential for Simon64. We show that
with the same or slightly better probability (Table 1) differentials can be
found for a higher number of rounds for both Simeck48 and Simeck64.

Table 3: Overview of the differentials we found for Simeck which can likely be used
to mount attacks. The probability is given by summing up all trails up to
probability 2max taking a time T .

Cipher Rounds Q = (α→ β) log2(p) max T

Simeck32 13 (8000, 4011)→ (4000, 0) −27.28 −49 17h
Simeck48 20 (20000, 450000)→ (30000, 10000) −43.65 −98 135h
Simeck48 20 (400000, e00000)→ (400000, 200000) −43.65 −74 93h
Simeck48 21 (20000, 470000)→ (50000, 20000) −45.65 −100 130h
Simeck64 25 (2, 40000007)→ (40000045, 2) −56.78 −90 110h
Simeck64 26 (0, 4400000)→ (8800000, 400000) −60.02 −121 120h

While we let our experiments run for a few days, the probability only
improves marginally after a short time. For instance, for Simeck32 and
Simeck48 the estimates after three minutes are only 2−2 lower than the
final results and after two hours the improvements are very small. Some
additional details on the differential utilized in the key-recovery attack on
Simeck48 can be found in Table 9, including the exact running times to
obtain the results.

4.4 Choosing a good di�erential for attacks

For an attack we want a differential with a high probability, but also the form
of the input and output difference can have an influence on the resulting at-
tack complexity. Ideally we want differentials with a sparse input/output dif-
ference resp. of the form (x, 0) → (0, x). When expanding such a differential
it leads to a truncated differential with fewer unknown bits which reduces
the complexity in the key recovery part of the attack as will be seen later.

The best differential trail of the form (x, 0) −→ (0, x) only has a probability
of 2−42 for Simeck32 resp. 2−47 for Simon32. The corresponding differen-
tial improves the probability to ≈ 2−36.7, but is still unlikely to be useful
for an attack. If we relax the restriction and allow differentials of the form
(x, x) −→ (0, x) we can find differential trails with a probability of 2−38 (the
same bound exists for Simon32). However, the corresponding differentials
still seem impractical for an attack. As both this approaches fail for finding
good differentials we do not impose any restrictions on the form of the input
resp. output difference of the differentials.

We looked at all 40 rotation invariant differentials constructed from the
best differential trail with probability 2−32 for Simeck32 (see Table 4). There
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Table 4: Number of differential trails for 13-round Simeck32.

Pr(α f13−−→ β) Trails

2−32 640

2−33 128

2−34 31616

2−35 49152

are only two possible distributions for the trails contributing to the differen-
tial, which we denote as Type 1 and Type 2 (see Figure 2 and Table 8). There
are 8 trails of Type 1, all with at least one word having 0 difference, and
the corresponding differential gives a slightly higher probability. For a list of
these differentials see Table 7.

However, by expanding our search we could find a better differential.
Instead of using the optimal differential trail we can find the differential
(8000, 4011) −→ (4000, 0) which has a higher probability even though the best
trail contributing only has a probability of 2−36. This is due to the higher
number of trails contributing to this specific differential (see Type 3 in Fig-
ure 2 respectively Table 8).
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Figure 2: Distribution of trails contributing to the differentials for 13 rounds of
Simeck32 and the accumulated probability by summing up all trails up to a
specific probability.

For 20-round Simeck48 the best trails with pattern only has a probability
of 2−62 and for (x, x) → (0, x) it is 2−54. The corresponding differentials are
not usable for an attack in this case. Therefore, we again do not impose any
of these restrictions and use the 20-round trails with highest probability. For
Simeck48 there are 768 such trails with a probability of 2−50 (32 rotation
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invariant) and we choose the one where the input and output difference is
most sparse.

For Simeck64 the best differentials we found are also based on the best
trail and given in Table 3.

4.5 Experimental Veri�cation

While the previous approach can give a good estimate for the probability one
can expect for a differential, it is not entirely clear how good these approxi-
mations are. As both Simon32 and Simeck32 allow us to run experiments on
the full codebook we can verify the probabilities at least for these variants.
For a random function we expect that the number of valid pairs are a Poisson
distribution.

Definition 4. Let X be a Poisson distributed random variable representing
the number of pairs (a,b) with values in Fn2 following a differential Q =

(α
f−→ β), that means f(a)⊕ f(a⊕α) = β, then

Pr(X = l) =
1

2
(2np)l

e−(2np)

l!
(1)

where p is the probability of the differential.

We ran experiments for both Simon32 and Simeck32 reduced to 13

rounds by encrypting the full code book for a large number of random
keys. The differential we used for Simon32 is (0, 40) −→ (4000, 0), which
is also used in the best attack so far [11] and has an estimated proba-
bility of 2−28.56. The expected number of valid pairs is E(X) ≈ 5.425.
We encrypted the full code book using 202225 random master keys and
counted the number of unique pairs. The full distribution is given in
Figure 3. The distribution follows the model in Equation 1, but we ob-
serve some unusual high number of pairs for some keys. For example
the key K = (k0,k1,k2,k3) = (8ec1, 1cf8, e84a, cee2) gives 1082 pairs
following the differential. If 13 rounds of Simon32 would behave like a
random function, this would only occur with an extremely low probability
Pr(X = 1082)� 2−1000.

For Simeck32 we used the new differential (8000, 4011) −→ (4000, 0) with
E(X) ≈ 13.175. Again, we encrypt the full code book for 134570 random keys
and the distribution follows our model as can be seen in Figure 4. Similar, to
Simon for some keys a surprisingly large number of valid pairs can be found.
In both cases our method provides a good estimate for the probability of a
differential and we can use Equation 1 for estimating the number of pairs.
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Table 5: Truncated differential obtained by extending (400000, e00000) 20−−→
(400000, 200000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗
−5 ***0***0**************** ************************ 22 24

−4 ***000000***0*********** ***0***0**************** 17 22

−3 ***00000000000***0****1* ***000000***0*********** 11 17

−2 ***0000000000000000***01 ***00000000000***0****1* 6 11

−1 111000000000000000000000 ***0000000000000000***01 0 6

0 010000000000000000000000 111000000000000000000000 0 0

20 rounds

20 010000000000000000000000 001000000000000000000000 0 0

21 1*100000000000000000*000 010000000000000000000000 2 0

22 ***000000000000*000***01 1*100000000000000000*000 7 2

23 ***0000000*000***0****1* ***000000000000*000***01 12 7

24 ***00*000***0*********** ***0000000*000***0****1* 18 12

25 ***0***0**************** ***00*000***0*********** 22 18

26 ************************ ***0***0**************** 24 22

5 Recovering the Key

In the following subsection we describe the key recovery attack on Simeck48

based on the differential given in Table 3. Extending this differential both in
forward and backward directions gives the truncated differential shown in
Table 5 which will be used in the attack. The input difference to round r is
denoted as ∆r and kr denotes the round key for round r. The difference in
the left resp. right part of the state we denote as ∆Lr and ∆Rr.

5.1 Attack on 26-round Simeck48

Our attack on 26-round Simeck48 uses four 20-round differentials in a similar
way as in [5]. Let Di denote the differentials

D1 : (400000, e00000)
f20−−→ (400000, 200000)

D2 : (800000, c00001)
f20−−→ (800000, 400000)

D3 : (000004, 00000e)
f20−−→ (000004, 000002)

D4 : (000008, 00001c)
f20−−→ (000008, 000004)

each having probability ≈ 2−44. We add 4 rounds at the end and 2 rounds on
top and obtain the truncated difference (see Table 5). The truncated difference
at round 0 for each differential is given by
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***0000000000000000***01, ***00000000000***0****1*

**0000000000000000***01*, **00000000000***0****1**

000000000000000***01***0, 0000000000***0****1****0

00000000000000***01***00, 000000000***0****1****00 .

By identifying the unknown and known bit positions in these differen-
tials we can construct a set of 230 plaintext pairs where the bit positions
corresponding to the aligned 0s in the truncated differentials are fixed to
an arbitrary value for all plain-texts. By guessing 6 round key bits we can
also identify the 231 pairs satisfying the difference (∆L2,∆R2) after the first
two round encryption. Hence we can get 4 sets of 231 pairs of plain-texts
where the difference is satisfied after the first two rounds of encryption. By
varying the fixed bit positions we can get 4 sets of 246 pairs of plain-texts,
each satisfying the difference after two rounds for each key guess.

Filtering the pairs

First we encrypt the 246 plaintext pairs. Then we unroll the last round and
use the truncated differential to verify if a pair is valid. This is possible due to
the last key addition not having any influence on the difference (∆L25,∆R25).
As there are 12 + 17 bits known in this round we will have 246−29 = 217

plaintext pairs left.

∆L25 ∆R25

S5

S1
k25

∆L26 ∆R26

∆L25 ***0000000*000***0****1* 12

∆R25 ***000000000000*000***01 17

For each pair (∆L ′,∆R ′) obtained:

1. Compute
∆R ′25 = f(∆R ′26)⊕∆L263.

2. Check if ∆L ′25 = ∆L25 and
∆R ′25 = ∆R25.

Figure 1: Filtering for the correct pairs which we use in the key guessing part.
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Key guessing

In the key guessing phase we guess the necessary round key bits (or lin-
ear combination of round key bits) to verify the difference at the beginning
of round 22, i.e. ∆22. For each differential we counted that a total of 30
round key bits and linear combinations of round key bits are necessary to
be guessed during this process. The required key bits DK

1
for D1 are

K23 = {2, 17}

K24 = {2, 3, 4, 8, 12, 16, 17, 18, 22}

K25 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23}

We describe this process for one round in Figure 2. An interesting differ-
ence to Simon in the key guessing part is that the required number of key
guesses is much lower, as many bits required to guess coincide when par-
tially recovering the state which can reduce the overall complexity. This is
always the case if one of the rotation constants is zero, but similar effects can
occur with other choices as well.

For the key guessing part, we keep an array of 230 counters and increment
a counter when it is correctly verified with the difference after partial decryp-
tion of the cipher-text pairs. For each differential we can verify the remaining
19(= 48− 29) bits with the key guessing process. For the 230 counters we ex-
pect to have (217 × 230)/219 = 228 increments. The probability of a counter
being incremented is 228/230 = 2−2. Since 4 correct pairs are expected to be
among the filtered pairs, the expected number of counters having having at
least 4 increments is

230 · (1− Pr(X < 4)) ≈ 217.13. (1)

We observe that there are 18 common key guesses required for the differ-
entials D1 and D2. Hence combining the corresponding array of counters T1
and T2 we can get 217.13 × 217.13/218 = 216.26 candidates for 42 bits. Con-
tinuing in the same way we observe that |DK3 ∩ (DK1 ∪DK2 )| = 24, hence we get
216.26 × 217.13/224 = 29.39 candidates for 48 bits. Using D4 this can be fur-
ther reduced, as |DK4 ∩ (DK1 ∪DK2 ∪DK3 )| = 28 we expect 29.39 × 217.13/228 ≈
2−1.5 candidates for 50 bits. For the remaining 46 bits we perform an exhaus-
tive search.

Complexity

The complexity of the attack is dominated by the key recovery process. For
the partial decryption process we need 217 × 230 × 4

26 ≈ 245 encryptions,
3The key has no influence on the input to the non-linear function in the last round.
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hence the complexity of one key recovery attack is 254. This key recovery is
performed for each differential and each 26 round key guesses of the initial
rounds. Hence the overall complexity of the attack is 254 × 26 × 4 = 262.

We expect in our attack that at least 4 out of 246 pairs follow our differen-
tial, which has probablity > 2−43.65, for the correct key. Therefore we get a
success rate of

1− Pr(X < 4) ≈ 0.75 (2)

However, in practice this will be much higher as we only use a lower bound
on the probability of the differential.

5.2 Key Recovery for 19-round Simeck32

For Simeck32 we also use 4 differentials

D1 : (8000, 4011)
f13−−→ (4000, 0000)

D2 : (0001, 8022)
f13−−→ (8000, 0000)

D3 : (0008, 0114)
f13−−→ (0004, 0000)

D4 : (0010, 0228)
f13−−→ (0008, 0000)

each having probability ≈ 2−28 (for the truncated differences see Table 10).
We add two rounds at the top of the 13-round differential and identify a set of

∆L24 ∆R24

S5

S1
k24

k25

∆R25

∆z24
∆R25 ***000000000000*000***01

S5(∆R25) 0000000000*000***01***00
∆z24 ***0000000*000***0****0*
∆R24 1*100000000000000000*000

Key filtering:

1. Find bits s.t. ∆z24 = ∗ and ∆R24 6= ∗.

2. Guess corresponding bits in k25.

3. Check ∆z24 = ∆R24 ⊕ S1(R25)⊕∆L25.

Figure 2: Outline of the process of key guessing and filtering for a single round.
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230 pairs of plain-texts each satisfying the specific difference (∆L2,∆R2) after
the first two round encryption. Identifying a set of plaintext pairs requires to
guess 6 key bits.

Filtering

We can filter some wrong pairs by unrolling the last round and verifying the
truncated difference (with 18 known bits) at the beginning of the last round.
This will leave us with 230−18 = 212 pairs.

Key guessing

We counted that 22 round key bits are necessary to guess for verifying the
difference at the end of round 14. The required key bits DK

1
for D1 are

K16 = {3, 9}

K17 = {2, 3, 4, 8, 9, 10, 14}

K18 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15}

We use the same method as described for Simeck48 during this phase. Out
of the filtered pairs we expect to get at least 4 correct pairs (those follow the
13-round differential). Hence the number of candidates for 22 key bits are
≈ 29.1. The number of common key bits amongst the differentials is given by

DK1 ∩DK2 = 14

DK3 ∩ (DK1 ∪DK2 ) = 16
DK4 ∩ (DK1 ∪DK2 ∪DK3 ) = 20

and we expect to 1 key candidate for 38 bits. For the remaining 26 bits of the
last four round keys we perform exhaustive search.

Complexity

The complexity of the partial decryption (for the last 4 rounds) is 212× 222×
4
19 ≈ 232 which is the dominating part of the complexity. Since we perform
the key recovery for each differential and for each 6-bit round key guesses of
the first two rounds the overall complexity of the attack is 232+8 = 240.

5.3 Key Recovery for 33-round Simeck64

We use the following 4 differentials for Simeck64
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D1 : (0, 04400000)
f26−−→ (08800000, 00400000)

D2 : (0, 44000000)
f26−−→ (88000000, 04000000)

D3 : (0, 40000004)
f26−−→ (80000008, 40000000)

D4 : (0, 00000044)
f26−−→ (00000088, 00000004)

each having probability ≈ 2−60 (for the truncated differences see Table 11).
We add two rounds at the top of the 26 round differential and identify a set
of 262 pairs of plain-texts by guessing 4 round key bits from the first two
rounds.

Filtering wrong pairs

We add 5 round truncated difference at the end of the 26 round differential.
The last round may be unrolled to verify the difference at the beginning of
the last round. This helps to filter some wrong pairs using the known bits
of the truncated difference and after filtering we are left with 262−30 = 232

pairs of plaintext out of which we expect 22 correct pairs (those followed 26
round differential).

Key guessing

In this phase we guess the necessary key bits from the last four rounds to
verify the difference at the beginning of round 28. We counted that 76 key
bits are necessary to guess for verifying (∆L28,∆R28). The required key bits
DK
1

for D1 are

K29 = {0, 18, 22, 28}

K30 = {0, 1, 5, 13, 17, 18, 19, 21, 22, 23, 27, 28, 29, 31}

K31 = {0, 1, 2, 4− 6, 8, 10, 12− 14, 16− 24, 26− 31}

K32 = {0− 31}

Out of the filtered pairs we expect to get at least 4 correct pairs (those that
follow the 26-round differential). Hence the number of candidates for 76 key
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bits are ≈ 263.12. The number of common key bits amongst the differentials
is given by

DK1 ∩DK2 = 66

DK3 ∩ (DK1 ∪DK2 ) = 70
DK4 ∩ (DK1 ∪DK2 ∪DK3 ) = 64

By combining all the four differentials we expect to get 252 key candidates
for 104 bits. For the remaining 24 bits of the last four round keys we perform
exhaustive search.

Complexity

The complexity of the partial decryption (for last 4 rounds) is 232 × 276 ×
5
33 ≈ 2105 which is the dominating part of the complexity. Since we perform
the key recovery for each differential and for each 6-bit round key guesses of
the first two rounds the overall complexity of the attack is 2105+10 = 2115.

Table 6: Comparison of the attacks on Simeck.

Cipher Rounds Time Data Memory Type

Simeck32/64 20/32 262.6 232 256 Imp. Differential [13]
Simeck32/64 22/32 257.9 232 − Diff.(dynamic key-guessing) [8]
Simeck32/64 18/32 263.5 231 − Linear [3]
Simeck32/64 19/32 240 231 231 Differential (Section 5.2)

Simeck48/96 24/36 294.7 248 274 Imp. Differential [13]
Simeck48/96 28/36 268.3 246 − Diff.(dynamic key-guessing) [8]
Simeck48/96 24/36 294 245 − Linear [3]
Simeck48/96 26/36 262 247 247 Differential (Section 5.1)

Simeck64/128 25/44 2126.6 264 279 Imp. Differential [13]
Simeck64/128 34/44 2116.3 263 − Diff.(dynamic key-guessing) [8]
Simeck64/128 35/44 2116.3 263 − Diff.(dynamic key-guessing) [8]
Simeck64/128 27/44 2120.5 261 − Linear [3]
Simeck64/128 33/44 2115 263 263 Differential (Section 5.3)

6 Conclusion and Future Work

We gave a brief overview of the Simeck and Simon block cipher and their
resistance against differential and linear cryptanalysis. From our comparison
we can see that statistical attacks can cover a significant larger number of
rounds for Simeck48 and Simeck64. Our key recovery attacks still have a
significant margin compared to generic attacks (see Table 6) in regard to time
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complexity, therefore additional rounds can be covered using the dynamic
key-guessing approach at the costs of a higher complexity.

This also shows that the impact of small design changes in Simon-like
block ciphers can be hard to estimate and requires a dedicated analysis, as the
underlying design strategy is still not well understood. Especially for variants
with a larger block size it is difficult to find lower bounds or estimate the
effect of differentials. An open question is whether better differentials exist
for both Simon and Simeck which give a surprisingly higher probability as in
the case of our differential for Simeck32. This effect could be more significant
for larger word sizes and lead to improved attacks.

In this sense Simeck also has an unexpected advantage over Simon and
Speck, as the analysis is simpler and requires less computational effort with
our approach. This is a property that is especially important in the light of
not having cryptanalytic design documentation, nor design rationales for the
constants regarding security available by the designers of Simon and Speck.

For both Simon32 and Simeck32 reduced to 13 rounds we observed that for
some keys a surprisingly large number of valid pairs can be found. This gives
an interesting open problem in classifying the keys which give a significant
higher probability for a given differential.
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Table 7: Classification of all the 40 rotation invariant 13-round differentials for
Simeck32.

Type 1

(0,22) f13
−−→ (2a,1) (4,8a8) f13

−−→ (88,0) (4,8e8) f13
−−→ (88, ) (0,11) f13

−−→ (1d,8)

(0,11) f13
−−→ (115,8) (0,88) f13

−−→ (8e8,4) (4,a8) f13
−−→ (88,0) (1,3a) f13

−−→ (22,0)

Type 2

(4,8a) f13
−−→ (aa,4) (4,8a) f13

−−→ (ae,4) (1,a8) f13
−−→ (228,1) (4,aa) f13

−−→ (a,4)

(4,8e) f13
−−→ (aa,4) (4,2e) f13

−−→ (a,4) (4,2e) f13
−−→ (e,4) (2,57) f13

−−→ (5,2)

(2,5) f13
−−→ (55,2) (4,8e) f13

−−→ (2a,4) (1,2a8) f13
−−→ (228,1) (2,7) f13

−−→ (55,2)

(4,aa) f13
−−→ (8e,4) (4,ae) f13

−−→ (e,4) (4,8a) f13
−−→ (2e,4) (2,15) f13

−−→ (5,2)

(2,7) f13
−−→ (17,2) (4,e) f13

−−→ (ae,4) (4,ae) f13
−−→ (8e,4) (4,8a) f13

−−→ (2a,4)

(4,e) f13
−−→ (2a,4) (4,a) f13

−−→ (2a,4) (4,2e) f13
−−→ (8a,4) (4,2a) f13

−−→ (8e,4)

(4,a) f13
−−→ (ae,4) (4,8e) f13

−−→ (ae,4) (1,28) f13
−−→ (b8,1) (4,8e) f13

−−→ (2e,4)

(1,b8) f13
−−→ (238,1) (4,ae) f13

−−→ (8a,4) (2,15) f13
−−→ (7,2) (1,2a8) f13

−−→ (38,1)

Table 8: Distribution of the trails for the different type of differentials in 13-round
Simeck32.

log2 Pr(Q) Type 1 Type 2 Type 3

−32 1 1 0

−33 0 0 0

−34 9 7 0

−35 6 5 0

−36 38 24 8

−37 44 28 2

−38 124 71 87

−39 166 96 79

−40 367 210 560

−41 521 308 868

−42 1014 625 2911

−43 1566 1002 5170

−44 2629 1752 12485

−45 4232 2975 22007

−46 6448 5101 43969

−47 9620 8234 75212

−48 13952 14439 133341

−49 19425 24653 220359∑
2−27.88 2−28.43 2−27.29
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Table 9: Number of trails and time to find them for the Simeck48 differential

(400000, e00000) f
20

−−→ (400000, 200000).
log2 Pr(Q) #Trails Pr(Differential) T

−50 1 −50.0 3.72s
−51 0 −50.0 6.9s
−52 12 −48.0 19.78s
−53 6 −47.7520724866 31.77s
−54 80 −46.7145977811 42.62s
−55 68 −46.4301443917 55.68s
−56 413 −45.804012702 77.58s
−57 484 −45.5334136623 104.69s
−58 1791 −45.1367816524 180.02s
−59 2702 −44.8963843436 265.5s
−60 7225 −44.6271009401 528.39s
−61 12496 −44.4289288164 1068.95s
−62 28597 −44.2312406041 2603.59s
−63 52104 −44.0720542548 6146.77s
−64 111379 −43.9193398907 19276.9s
−65 207544 −43.7902765446 41938.08s
−66 238939 −43.7209043818 70720.98s
−67 228530 −43.6888725691 96657.81s
−68 229018 −43.6730860168 123706.38s
−69 276314 −43.6636455186 160688.8s
−70 271192 −43.6590352669 197354.41s
−71 269239 −43.6567522016 232641.34s
−72 267563 −43.6556191172 271083.28s
−73 266716 −43.6550547005 308072.68s
−74 227971 −43.6548135551 336027.17s

Table 10: Truncated differential for Simeck32 obtained by extending (8000, 4011) f
13

−−→
(4000, 0) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗
−4 ***0************ **************** 15 16

−3 **000***0****1** ***0************ 11 15

−2 0*0000*000***01* **000***0****1** 6 11

−1 0100000000010001 0*0000*000***01* 0 6

0 1000000000000000 0100000000010001 0 0

13 rounds

13 0100000000000000 0000000000000000 0 0

14 1*0000000000*000 0100000000000000 2 0

15 **00000*000**001 1*0000000000*000 5 2

16 ***000**00***01* **00000*000**001 9 5

17 ***00***0******* ***000**00***01* 13 9

18 ***0************ ***00***0******* 15 13

19 **************** ***0************ 16 15
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Table 11: Truncated differential for Simeck64 obtained by extending (0, 4400000) f
26

−−→
(8800000, 400000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗
−8 *************0****************** ******************************** 31 32

−7 **********0**00***0************* *************0****************** 28 31

−6 **********00*000**00***0******** **********0**00***0************* 24 28

−5 **********0000000*000**00***0*** **********00*000**00***0******** 19 24

−4 *0****1***000000000000*000**00** **********0000000*000**00***0*** 13 19

−3 *00***01**00000000000000000*000* *0****1***000000000000*000**00** 8 13

−2 *000**001*0000000000000000000000 *00***01**00000000000000000*000* 4 8

−1 00000100010000000000000000000000 *000**001*0000000000000000000000 0 4

0 00000000000000000000000000000000 00000100010000000000000000000000 0 0

26 rounds

26 00001000100000000000000000000000 00000000010000000000000000000000 0 0

27 000**001*1000000000000000000000* 00001000100000000000000000000000 4 0

28 00***01***0000000000000000*000** 000**001*1000000000000000000000* 9 4

29 0****1****00000000000*000**00*** 00***01***0000000000000000*000** 14 9

30 **********000000*000**00***0**** 0****1****00000000000*000**00*** 20 14

31 **********0*000**00***0********* **********000000*000**00***0**** 25 20

32 ************00***0************** **********0*000**00***0********* 29 25

33 ************0******************* ************00***0************** 31 29

34 ******************************** ************0******************* 32 31
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Abstract. Recently, many efficient cryptographic hash func-
tion design strategies have been explored, not least because
of the SHA-3 competition. These designs are, almost exclusively,
geared towards high performance on long inputs. However, vari-
ous applications exist where the performance on short (fixed length)
inputs matters more. Such hash functions are the bottleneck in
hash-based signature schemes like SPHINCS or XMSS, which
is currently under standardization. Secure functions specifically
designed for such applications are scarce. We attend to this gap
by proposing two short-input hash functions (or rather sim-
ply compression functions). By utilizing AES instructions on
modern CPUs, our proposals are the fastest on such platforms,
reaching throughputs below one cycle per hashed byte even for
short inputs, while still having a very low latency of less than 60
cycles.

Under the hood, this results comes with several innovations.
First, we study whether the number of rounds for our hash func-
tions can be reduced, if only second-preimage resistance (and
not collision resistance) is required. The conclusions is: only a lit-
tle. Second, since their inception, AES-like designs allow for sup-
portive security arguments by means of counting and bounding
the number of active S-boxes. However, this ignores powerful
attack vectors using truncated differentials, including the pow-
erful rebound attacks. We develop a general tool-based method
to include arguments against attack vectors using truncated dif-
ferentials.
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Keywords: Cryptographic hash functions, second-preimage re-
sistance, AES-NI, hash-based signatures, post-quantum

1 Introduction

Cryptographic hash functions are commonly constructed with collision resis-
tance in mind. Consider e.g. the SHA-3 competition, which involved a large
part of the research community, where collision resistance was one of the
main requirements. Sometimes, cryptographic functions are designed with
collision resistance as the main or only requirement, see e.g. VSH [15]. This
is in contrast to a sizable and growing set of applications, that utilize cryp-
tographic hashing, but explicitly do not require collision resistance. Consider as
an example the proof for the HMAC construction, which initially required
collision resistance from its hash function [4], but in later versions the colli-
sion resistance requirement was dropped in favor of milder requirements [3].
Universal one-way hash functions (UOWHF) [5] are, in principle, candidate
functions, but they will not suffice for many applications.

Another example, which brings us to the main use-case of this paper, are
hash-based signature schemes originally introduced by Lamport [36]. Recent
schemes include XMSS [13], which is currently submitted as a draft stan-
dard to the IETF and which features short signatures sizes, and the state-less
scheme SPHINCS [9]. A recent version of the former, XMSS-T [25], attains
additional security against multi-target preimage attacks on the underlying
hash function. Arguably, such designs are the most mature candidates for
signature schemes offering post-quantum security, i.e. they are believed to
be secure in the presence of hypothetical quantum computers, as their secu-
rity reduces solely to the security properties of the hash function(s) used, thus
relying on minimal assumptions.

The hash-based signature schemes mentioned require many calls to a hash
function, but only process short inputs. For instance in SPHINCS-256, about
500000 calls to two hash functions are needed to reach a post-quantum secu-
rity level of 128 bits. One of those functions (denoted H) compresses a 512-bit
string to a 256-bit string and is used in a Merkle-tree construction, while the
other (denoted F) maps a 256-bit string to a 256-bit string.

The applications share the absence of collision resistance from the require-
ments imposed on the underlying hash function(s), and further they pro-
cess only short inputs4. However, nearly all cryptographic hash functions are
geared towards high performance on long messages and, as we will show,
perform rather poorly on short inputs.

4For HMAC, one of the two calls to the hash function used is always for a short input.
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1.1 Contributions

Motivated by the applications described above, we explicitly consider preimage-
and second-preimage resistance as the sole security goals for cryptographic
hash functions, particularly dropping collision resistance, and furthermore
target high performance on short (fixed length) inputs. We limit ourselves to
one particular design strategy, which is fairly well understood and scalable:
AES-like designs. This enables both strong security arguments, while also al-
lowing excellent performance on widespread platforms offering AES-specific
instructions, such as modern Intel and AMD CPUs, as well as the ARMv8

architecture.
Concretely we propose Haraka v2, two secure (in the above sense) short-

input hash functions achieving a performance better than 1 cycle per byte
(cpb) and a latency of only 60 cycles, on various Intel architectures. As we
show in Section 5.3, competitive designs are somewhat slower than that. Our
proposals share strong similarities with the permutation AESQ that is used in
the CAESAR candidate PAEQ [11]. We perform benchmarks of the SPHINCS-
256 hash-based signature, using Haraka v2 as the underlying hash functions,
and show performance speed-ups of ×1.50 to ×2.86. As hash-based signature
schemes such as SPHINCS are already practical, and in the case of XMSS in
the process of standardization, this shows that Haraka v2 can significantly
contribute to speeding up such schemes.

On the theoretical side, our proposal also carries with it several contri-
butions. Firstly, we study if the number of rounds for Haraka v2 can be
reduced if only second-preimage resistance, and not collision resistance, is re-
quired. The conclusion is that only one round (5 rounds instead of 6) can be
dropped. Secondly, and as a point we like to elaborate at this point already,
we describe new ways to bound the applicability of attacks. Traditionally, re-
sistance against differential attacks (which are important for collision- and
second-preimage attacks) of key-less constructions, such as cryptographic
hash functions, is almost solely based on arguments that are also found for
keyed constructions such as block ciphers. Common approaches include (1)
using a bound on the best differential trail and comparing it with the avail-
able degrees of freedom, or (2) assuming a number of rounds controlled by
the attacker, and use a bound on the best differential trail for the uncontrolled
rounds as a security margin. Such arguments have been used for various
SHA-3 candidates like Grøstl [20], ECHO [6], Luffa [16], and the more recent
hash function PHOTON [23]. One problem of these approaches is that they
do not consider truncated differentials, and as such do not cover rebound
attacks.

Arguments against rebound attacks are of course still possible and can
be found in the literature, also for the aforementioned designs. Often this
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involves designing concrete rebound attacks along with arguments for why
improving them is unlikely. Alternatively, designers make assumptions akin
to (2) about the controlled rounds that are simply “for free”, and then focus
on bounding the effect of the uncontrolled rounds. Perhaps the most notable
arguments in that direction are for the design of SPN-Hash [14], which uses
approach (2), but provides bounds for the uncontrolled rounds using differ-
entials and not solely single trails. However, the controlled rounds are still
treated as a black box.

To improve the situation, we propose a way to model an idealized attacker
who has capabilities which resemble cryptanalytic techniques such as the
rebound attack. We take into account how the complexity of an attack can be
reduced in the controlled rounds, like in the inbound phase of the rebound
attack, by using the available degrees of freedom to fulfill conditions in a
truncated differential. This allows us better security arguments by not having
to treat parts of the hash function as a black box, and we can take into account
also the fact that there are less degrees of freedom available in a second-
preimage attack. Overall, this gives us a better understanding of the required
number of rounds for Haraka v2 to resist these types of attacks.

Finally, we remark at this point that both implementations of our proposals,
including test vectors, the SPHINCS code for benchmarking and the code
used to generate the MILP models for the security analysis of Haraka v2, are
publicly available5.

1.2 Related Work

Several proposals have been submitted to the SHA-3 competition that aim
to take advantage of AES instructions in modern CPUs. Among them are
Grøstl [20], ECHO [6], Fugue [24], LANE [28]. Many of them are geared
towards performance on long messages, and often show severe performance
degradation for short messages. The CAESAR competition for authenticated
encryption schemes saw many proposals, including AEGIS [49], PAEQ [11]
and Tiaoxin [40], based on utilizing AES instructions. Recently, two designs
for permutations based on the AES round function have been proposed. Jean
and Nikolic [31] studied AES-based designs for MACs and authenticated
encryption, however not for hashing applications. Gueron and Mouha [22]
propose Simpira v2, a family of permutations based on Feistel networks.

5See supplementary material
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1.3 Recent Developments in Short-Input Hashing

Haraka v1 was originally presented to a larger group of cryptographers in
November 2015 [41], with the explicit goal of providing fast hashing on
short inputs, the main application being speeding up hash-based signature
schemes. Simpira, mentioned above, started circulating a few months there-
after, with one of the three main applications mentioned also being hash-
based signature schemes [22, Section 7]. Haraka v1 was broken by Jean [30]
(see also Section 4.2), and in this paper Haraka v2 is presented, which differs
from Haraka v1 in the choice of round constants. Simpira (the former ver-
sion) was broken in two different ways [18, 43] and Simpira v2 addresses the
identified problems. Concrete performance numbers for Simpira v2 in mod-
ern hash-based signature schemes are not available yet, but our benchmarks
in Section 5.3 suggest that Simpira v2 is slower.

Recently, KangarooTwelve, a variant of Keccak with a reduced number
of rounds, was proposed, aimed at improved hashing speed. However, its
performance is still geared towards long inputs. Furthermore, improvements
on SHA-256 implementations are being discussed in the community. In Sec-
tion 5.3 we discuss briefly recent performance figures on Skylake for SHA-
256 as well as comparison with KangarooTwelve.

Secure short-input keyed hash functions also found applications in protect-
ing against hash flooding denial of service attacks. This has been addressed
with the SipHash [1] family, but the security requirements are much lower
for this setting.

2 Speci�cation of Haraka v2

Haraka v2 exists in two variants denoted Haraka-512 v2 and Haraka-256 v2

with signatures

Haraka-512 v2 : F5122 → F2562 and

Haraka-256 v2 : F2562 → F2562 .
(1)

For both variants, we claim 256 bits of security (respectively 128 bits in the
presence of quantum computers) against (second)-preimage resistance, but
we make no further claims about other non-random properties.

The main components are two permutations denoted π512 and π256 on 512
bits and 256 bits, respectively. Both Haraka-512 v2 and Haraka-256 v2 employ
the well-known Davies-Meyer (DM) construction using a permutation with
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x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8 x0,9 x0,10 x0,11 x0,12 x0,13 x0,14 x0,15

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10 x1,11 x1,12 x1,13 x1,14 x1,15

x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10 x2,11 x2,12 x2,13 x2,14 x2,15

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 x3,10 x3,11 x3,12 x3,13 x3,14 x3,15

Haraka-256 v2 state

Haraka-512 v2 state

Figure 1: State for Haraka-512 v2 and Haraka-256 v2 (not including the shaded area).
The box xi,j denotes the ith byte in the jth column of the state.

a feed-forward (applying the XOR operation) of the input. As such, they are
defined as

Haraka-512 v2(x) = trunc(π512(x)⊕ x) and

Haraka-256 v2(x) = π256(x)⊕ x,
(2)

where trunc : F5122 → F2562 is a particular truncation function (described
below).

2.1 Speci�cation of π512 and π256

In the following, we give our specification of the permutations used in
Haraka v2. In Section 3, we give our security analysis of the constructions
and, based on this, motivate our design choices in Section 4.4.

The constructions of π512 and π256 are iterated, thus applying a round func-
tion several times to obtain the full permutation. The permutations π512 and
π256 operate on states which have the same size as respective inputs. Due to
the similarity of the permutations, much of their description is common to
both. When we talk about a block, we refer to a 16-byte string consisting of
four columns denoted x4i‖ · · · ‖x4i+3 for i = 0, . . . ,b− 1. In general, we let b
denote the number of 128-bit blocks of the state, so for π512 we have b = 4

while for π256 we have b = 2. The state arrangement is given in Figure 1.
Denote the total number of rounds by T and denote by Rt the round with

index t = 0, . . . , T − 1. The state before applying Rt is denoted St, and thus
S0 is the initial state. As both π512 and π256 use the AES round function,
states are arranged in matrices of bytes, and we use subscripts to denote the
column index, starting from column zero being the leftmost one. The state
size is 4× 4b bytes, so 4× 16 for π512 and 4× 8 for π256. When a stream of
bytes is loaded into the state, the order is column first, such that the first byte
of the input stream is in the first row of the first column, while the last byte
of the stream is in the last row of the last column.
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Let aes denote the parallel application of m AES rounds to each of the b
blocks of the state. As such, for t = 0, . . . , T − 1, the round function for π512
is Rt = mix512 ◦aes while for π256 it is Rt = mix256 ◦aes. Thus, in both cases,
a single round consists of m rounds of the AES applied to each block of the
state, followed by a linear mixing function. Round constants are injected via
the aes operations (see below). The number of rounds is T = 5 while using
m = 2 AES rounds for both Haraka-512 v2 and Haraka-256 v2 (totaling 10
AES rounds).

The main difference π512 and π256 is the linear mixing used. In both cases,
the mixing itself is comprised of simply permuting the state columns. For
π512, the sixteen columns of the state are permuted such that each output
block contains precisely one column from each of the b = 4 input blocks. For
π256 on the other hand we have b = 2 so we obtain the most even distribution
of the columns by mapping two columns from each of the b = 2 input blocks
to each of the b = 2 output blocks. Letting x0‖ · · · ‖x15 denote the columns
for a state of π512, the columns are permuted by mix512 as

x0‖ · · · ‖x15 7→ x3‖x11‖x7‖x15‖x8‖x0‖x12‖x4‖x9‖x1‖x13‖x5‖x2‖x10‖x6‖x14.

(3)

Likewise for π256 the eight columns denoted x0‖ · · · ‖x7 are permuted by
mix256 as

x0‖ · · · ‖x7 7→ x0‖x4‖x1‖x5‖x2‖x6‖x3‖x7. (4)

The round functions for both permutations are depicted in Figure 2.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

aes

aes

aes

aes

aes

aes

aes

aes

(a) For π512

x0 x1 x2 x3 x4 x5 x6 x7

aes

aes

aes

aes

(b) For π256

Figure 2: Depictions of round functions Rt for π512 (a) and for π256 (b). Each xi
denotes a column of 4 bytes of the state.

Round Constants

For each AES call, we use different round constants via the round key addi-
tion. The constants are derived using a similar approach as in the CAESAR
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candidate Prøst [32]. Let pi be the least significant bit of the ith digit after
the decimal point of π, then the round constants are defined as

RCj = p128j+128|| . . . ||p128j+2||p128j+1 ∀j = 0 . . . 39. (5)

The AES layer aesi uses round constants (RC4i,RC4i+1,RC4i+2,RC4i+3) in
the case of π512, respectively (RC2i,RC2i+1) for π256. The constants are also
given in Section A. The use of π is an application of a nothing-up-my-sleeve
number; another choice of a known constant would be an equally qualified.

Truncation Function

Let x ∈ F5122 . Then trunc(x), which is used in Haraka v2, is obtained as
concatenating two columns from each block: The least significant two from
the first two blocks, and the two most significant columns from the last two
blocks. As such

trunc(x0‖ · · · ‖x15) = x2‖x3‖x6‖x7‖x8‖x9‖x12‖x13. (6)

3 Security Requirements

The three most commonly defined security requirements for a cryptographic
hash function H are

• Preimage resistance: Given an output y it should be computationally
infeasible to find any input x such that y = H(x),

• Second-preimage resistance: Given x,y = H(x) it should be computa-
tionally infeasible to find any x ′ 6= x such that y = H(x ′), and

• Collision resistance: Finding two distinct inputs x, x ′ such that H(x) =
H(x ′) should be computationally infeasible.

Generic attacks, which can find a (second-)preimage with a complexity of 2n

and collisions with a complexity of 2n/2, exist for any hash function, where
n is the digest size in bits. Quantum computers can improve upon this by
using Grover’s algorithm [21] to further reduce the complexity of finding a
(second-)preimage to 2n/2. It is also known that this is the optimal bound
for quantum computing. Brassard, Høyer and Tapp’s method [12] suggests
an algorithm finding collisions in 2n/3 steps, however the actual costs are
not lower compared to methods based on classical computers [7].

In the following sections, we discuss common attack vectors which will
aid in choosing appropriate parameters for Haraka v2 to achieve the desired
security properties. As described, we focus on second-preimage resistance,
as the main applications of Haraka v2 do not require collision resistance.
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3.1 Preliminaries

Differential cryptanalysis is a powerful tools for evaluating the security of
cryptographic hash functions. It is also a very natural attack vector, as both
collision and second-preimage resistance require the attacker to efficiently
find two distinct inputs yielding the same output.

Definition 1. A differential trail Q is a sequence of differences

α0
R0−−→ α1

R1−−→ · · · RT−1−−−→ αT (1)

in the states St, for the application of the function on two distinct inputs.

Definition 2. The differential probability of a differential trail Q is defined as

DP(Q) = Pr(α0 → α1 → . . .→ αT ) =

T−1∏
t=0

Pr(αt → αt+1) (2)

and gives the probability, taken over random choices of the inputs, that the
pair follows the differential trail (i.e. the differences match). The last equality
holds if we assume independent rounds.

The AES round function uses the SubBytes, ShiftRows and MixColumns oper-
ations (denoted SB, SR and MC for short). For our further analysis we will be
interested in how truncated differentials [34] propagate through MixColumns.
The branch number of MixColumns is 5, so if an input column to MixColumns

contains a active bytes, then the probability of having b active bytes in the
corresponding output column, where a + b > 5 and 1 6 a,b 6 4, can be
approximated by 2(b−4)8.

Di�erential Trails

One way to estimate DP(Q) for the best trail is to count the minimum number
of active S-boxes. As the maximum differential probability for the AES S-box
is 2−6 this allows to give an upper bound on DP(Q). While the number of
active S-boxes gives a good estimate for the costs of an attack in the block
cipher setting, this is only partially true for cryptographic hash functions.

Consider a pair of inputs (x, x⊕ α) as input to a non-linear function, like
the AES S-box, then S(x⊕ K)⊕ S(x⊕ α⊕ K) = β holds only with a certain
probability if the key K is unknown. This can be very useful in the block ci-
pher settings, where it gives a bound on the probability of the best differential
trail. In the case of hash functions there is no secret key and an attacker has
full control over the input. This allows him to choose the pair (x, x⊕α) such
that S(x)⊕ S(x⊕α) = β holds with probability 1. The limit of this approach
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is only restricted by the number of free and independent values, referred to
as degrees of freedom. This means that the probability of a differential trail can
be very low and contain many active S-boxes, but if the conditions are easy
to fulfill, and the attacker has enough degrees of freedom, an attack can be
very efficient.

A popular technique to count the number of active S-boxes for AES-based
designs is based on mixed integer linear programming (MILP) [39, 47]. The basic
idea is to express the restrictions on the trail, given by the round transforma-
tions, as linear equations, and generate a optimization problem which can be
solved with any MILP optimizer, e.g. Gurobi [27] or CPLEX [26]. We use this
technique later to find the minimum number of active S-boxes for Haraka v2,
which aids us in an informed choice of parameters.

3.2 Capabilities of an Attacker

One of the main difficulties in the design of hash functions is to estimate
the security margin one expects against a powerful attacker. As described,
bounding the probability of trails can be useful for block ciphers but are of
limited use for hash functions, as there is no secret input. Degrees of freedom
can be used, to some extent, to solve many conditions on the trail and lead
to surprisingly efficient attacks. This was partially addressed in the design
of Fugue [24] and SPN-hash [14]. The former assumes that an attacker can
improve the probability of a differential trail by using the degrees of freedom
directly, i.e. if one has f degrees of freedom the probability can be improved
by 2f. SPN-hash assumes the attacker can bypass r2 rounds, estimated based
on existing attacks, and the total number of rounds is given by r = r1 + r2,
where r1 is chosen such that the probability of the best differential is low
enough for the required security level. A major drawback of this approach
is that they do not resemble the capabilities of an attacker in practice, which
can lead to too conservative estimates while also ignoring important attack
vectors.

The most powerful collision attacks on AES-based hash functions, such as
the rebound attack [38], use truncated differentials combined with a clever
use of the degrees of freedom to reduce the attack complexity. Arguing se-
curity against this type of attacks is a difficult task, as one has to estimate
the limits of an attacker to use the available degrees of freedom in a smart
way. In the second-preimage scenario, the attacker has much less control as
the actual values of the state are fixed, and the conditions are instead solved
by carefully choosing the trails. In the following, we propose a new method
to better bound the capabilities of an attacker in practice under reasonable
assumptions.
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Truncated Di�erentials

A MILP model to count the number of active S-boxes inherently uses trun-
cated differentials (at the byte level), as it considers active bytes but not the
difference values, but it does not cover the costs of their propagation. When
an attacker tries to utilize a truncated differential, the transitions through
MixColumns are probabilistic and, if not controlled by the attacker, will de-
termine the attack complexity similar to the outbound phase in the rebound
attack.

An attacker can always use a (fully active) truncated differential with prob-
ability ≈ 1 (as a fully active state will very likely remain fully active after
MixColumns), which gives a valid second-preimage if the input difference is
equal to the output difference. This happens with a probability of 2−256,
hence the security can be at most 256 bits for this attack vector.

Utilizing Degrees of Freedom

The previous approaches still ignore the fact that a powerful attacker can
utilize the available degrees of freedom to reduce the attack complexity. To
take this into account we assume the attacker is able to use all degrees of
freedom in an optimal way, i.e. the attacker has an algorithm to solve any
condition in constant time, as long as there are enough independent degrees
of freedom left.

Without any further restrictions we can not achieve any level of security
in this model, as the attacker can always use a truncated differential which
is active in all bytes having a probability of 1 and then use the degrees of
freedom to guarantee the condition f(x)⊕ f(x⊕ α) = 0. In general the state
size is at least as big as the output size, hence the attacker will have enough
degrees of freedom to solve these conditions.

However, it is very unlikely that an attacker can utilize the degrees of
freedom in this way without further restrictions. In the case of AES, already
after two rounds we get full diffusion, i.e. every byte of the output depends
on all bytes of the input. In general solving a condition like f(x)⊕ f(x⊕α) = 0
then corresponds to solving a system of non-linear equations over F28 which
is an NP-hard problem.

The model we propose is more restrictive and reflects the capabilities of an
attacker in practice. The attacker is still allowed to solve conditions for free
using the degrees of freedom, but can only do so for q consecutive rounds of
the primitive. This means, the attacker chooses a state Sk and then is allowed
to solve any conditions for states Sk−q, . . . ,Sk+q in constant time, as long as
there are still degrees of freedom available. The remaining conditions which
can not be solved make up the security level. We can formulate this as a
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MILP problem with the goal of finding the lowest attack complexity over
all possible states Sk (for more details and the application to Haraka v2 see
Section 4.2).

This model for truncated differential attacks resembles how collision at-
tacks on cryptographic hash functions actually work in practice. The attacker
can control how the differences propagate over a part of the state and tries to
minimize the conditions in the remaining rounds [38, 48]. The currently best
known attacks on AES-based hash functions utilize the degrees of freedom
for up to three AES rounds to reduce the complexity of an attack [29, 46].
These results can not be carried over directly to our construction, as we com-
pose our state of four individual (respectively two) AES states. Very recent
work on AESQ [2] found that 4 AES rounds can be covered in an inbound
phase, albeit at a high cost.

Therefore, we use both q = 2 for the collision and second-preimage case,
allowing our idealized attacker to cover a 4 rounds with the degrees of free-
dom to have a comfortable security margin.

4 Analysis of Haraka v2

In the following we give the security claims for Haraka v2 and the security
analysis which lead to the proposed parameters.

4.1 Security Claims

We claim second-preimage resistance of 256 bits for Haraka v2 against clas-
sical computers. As will been seen later in the paper, for only one additional
round (a performance penalty of around 20%) we claim 128 bits of collision
resistance. We make no claims against near-collisions or other generaliza-
tions of this property, nor against distinguishers of the underlying permu-
tation, because such properties do not seem to be needed in applications
like hash-based signature schemes [9, 13]. Overall, this leads to a conjectured
post-quantum security level of 128 bits against both collision and second-
preimage attacks.

Non-randomness that might slightly speed-up second-preimage attacks is
not excluded by our models and bounds, but we conjecture this to be negligi-
ble. To support our conjecture, consider as an example the slight speed-up of
second-preimage attacks [17, 19] on the SHA-3 candidate Hamsi [35] which
uses a very strong non-random property of the compression function. No
such strong property seems likely to exist for our proposals.
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4.2 Second-Preimage Resistance

For an output size of n = 256 the best generic attacks have a complexity of
2256 respectively 2128 on a classical- respectively quantum computer. For it-
erative hash functions, a generic attack exists which improves upon the naïve
brute force approach for finding second preimages [33]. However, this attack
requires long messages and is therefore not applicable to our construction.

Di�erential Second-Preimage Attack for Weak Messages

For finding a second-preimage the attacker can use a differential trail Q lead-
ing to a collision, that means f(x⊕α) = y. However, as the values of the state
are fixed by the output y, all differentials trails hold with probability 1 or 0.
For a random message, the probability that an attacker succeeds is bounded
by DP(Q), and if Q does not yield a second-preimage for y, then the attacker
must try another trail Q ′ 6= Q or another message.

Table 1: Lower bound on the number of active S-boxes in a differential trail for the
permutations used in Haraka v2, for the permutation when used in DM mode
and for trails leading to a collision when used in DM mode. Section C gives
the numbers for a wider choice of parameters.

Permutation DM-mode DM-mode (coll.)

Haraka-256 v2 80 80 105

Haraka-512 v2 130 128 134

Counting the number of active S-boxes gives a bound on the maximum
value of DP(Q) and can give some insights on the security. We consider both
the number of active S-boxes for the permutation itself, as well as when the
permutation is used in the DM mode. As some of the output is truncated for
Haraka-512 v2, this can potentially reduce the number of active S-boxes and
has to be taken into account. For Haraka-512 v2 the best differential trail has
a probability of DP(Q) = 2−780, while the best trail leading to a collision has
probability DP(Q) = 2−804 when used in DM mode. Similarly, for Haraka-
256 v2, those probabilities are 2−480 and 2−630, respectively. For the number
of active S-boxes for Haraka-512 v2 and Haraka-256 v2 see Table 1. Note that
this corresponds to previous work that studied second-preimage attacks for
MD4 [51] and SHA-1 [42].

Truncated Di�erentials

We can use the approach from Section 3.2 to bound the costs of finding a
second-preimage for an idealized attacker in order to determine the number
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of rounds for Haraka v2. To find a second-preimage the attacker needs to
first find a truncated differential leading to a collision and then determine
the trail with the available degrees of freedom. However, as the state is fixed
by the initial message the degrees of freedom are limited to the choice of
differences for each active byte in the truncated trail.

We denote the input column j to MixColumns (resp. SubBytes) in round t
as MCtj (resp. SBtj ) and consider the number of rounds T and the number of
AES steps per round m, as variables. We define the cost for an attacker to
fulfill the conditions of a truncated differential, starting at state Sk, as

Ctrunc =

T ·m−1∑
t=0

4b−1∑
j=0

CtMCj (1)

where the costs in the forward direction are given by decision variables Ct
MCj

satisfying

∀t : k 6 t 6 T ·m,∀j : 0 6 j < 4b : CtMCj >
(
4−

3∑
i=0

SBti,j

)
· 8 (2)

and in the backwards direction by

∀t : 0 6 t < k,∀j : 0 6 j < 4b : CtMCj >
(
4−

3∑
i=0

MCti,j

)
· 8 (3)

where SBti,j resp. MCti,j is 1 if the byte is active and 0 otherwise. Note that
here Ct

MCj
corresponds to the log2 complexity for the transitions through

MixColumns (resp. the inverse MixColumns) to satisfy the truncated differential
trail.

An additional requirement is, that the input and output difference are
equal, in order to get a valid second-preimage, that means trunc(x⊕ α) =

trunc(∆π512(x⊕ α)). The complexity depends on the number of active bytes
at the input which are not truncated

Ccollision =
∑
j∈Ic

3∑
i=0

SB0i,j · 8 (4)

where Ic is the set of column indices which are not truncated at the output.
The optimization goal for the MILP problem is then given by

minimize: Ccollision +Ctrunc. (5)

The requirements for Haraka v2 are that each attack in this model costs at
least 2256 to have a good security margin. We applied this model to explore
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how the security level evolves for different choices of T and m. For every
parameter set, we use the MILP model to find the lowest attack costs by
searching over all possible starting states Sk. The results are given in Table 2.
The time to solve the MILP problem increases quickly with the number of
rounds and for the standard parameters (T = 5, m = 2, q = 2) it takes
around 17 minutes6 to find the lower bound for an attack for all possible
starting points Sk.

Degrees of Freedom. The previous scenario does not yet take into account
the capabilities of an attacker utilizing the available degrees of freedom. For
the second-preimage scenario the attacker can freely choose the differences
in one of the states Sk to reduce the costs of the attack for q rounds in both
directions

D =

4b−1∑
j=0

3∑
i=0

Sk · 8. (6)

The costs for an attack are then given by the number of conditions which can
be reduced in the controlled rounds R = {r | k−q 6 r < k+q∧0 6 r < T ·m}

by using degrees of freedom

Creducible >
∑
t∈R

4b−1∑
j=0

CtMCj −D and Creducible > 0, (7)

and the number of conditions which can not be controlled by the attacker

Ctrunc =
∑

t∈ZT ·m\R

4b−1∑
j=0

CtMCj . (8)

The goal is now to find the minimal attack costs by solving this MILP model

minimize: Ccollision +Ctrunc +Creducible. (9)

If we do not allow the attacker to utilize any degrees of freedom, the pa-
rameters T = 4 and m = 2 would be sufficient for Haraka-512 v2, and pa-
rameters T = 2 and m = 2 would suffice for Haraka-256 v2 (see Table 2).
However, as discussed in Section 3.2, this approach would be too optimistic
(from our perspective). Taking into account the assumptions we make on the
capabilities of an attacker utilizing the degrees of freedom, at least T = 5

rounds are required (see Table 4) for the best attack to require at least 2256

steps.

6Using Gurobi 6.5.0 (linux64), Intel(R) Core(TM) i7-4770S CPU @ 3.10GHz, 16GB RAM
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Table 2: Complexity bounds (log2) of the best attack in our truncated setting, over
multiple rounds, without utilizing degrees of freedom

(a) Security for π512
m

T 1 2 3 4 5

1 0 32 48 64 64
2 32 128 96 96 96
3 48 192 176 192 192
4 112 256 256 256 256
5 128 256 256 256 256
6 208 256 256 256 256
7 224 256 256 256 256

(b) Security for π256
m

T 1 2 3 4 5

1 0 0 0 0 128
2 0 256 176 192 192
3 184 256 240 256 256
4 176 256 256 256 256
5 256 256 256 256 256
6 240 256 256 256 256
7 256 256 256 256 256

Table 4: Complexity bounds (log2) of the the best attack in our truncated setting, uti-
lizing additional degrees of freedom over 2q rounds for π512 and π256, with
m = 2 fixed. Entries which are bold are not better then the generic attacks.

(a) Second-preimage for π512
T 1 2 3 4 5 6

q = 1 0 96 144 256 256 256
q = 2 0 0 96 128 256 256
q = 3 0 0 0 96 128 256

(b) Collision for π512
T 1 2 3 4 5 6

q = 1 0 48 136 176 256 256
q = 2 0 0 40 96 168 256
q = 3 0 0 0 32 96 160

(c) Second-preimage for π256
T 1 2 3 4 5 6

q = 1 0 176 192 256 256 256
q = 2 0 128 128 192 256 256
q = 3 0 0 128 128 192 256

(d) Collision for π256
T 1 2 3 4 5 6

q = 1 0 168 176 240 256 256
q = 2 0 64 112 160 256 256
q = 3 0 0 64 112 176 256

In Figure 1, we give an example to illustrate how this attack model works
for a collision attack. The attacker starts in this case at S4 and can control
q = 2 rounds in both directions. When searching for a collision, the attacker
has control over the full state, therefore he has enough degrees of freedom
available to fulfill the conditions for the transitions through MixColumns in
the controlled rounds. The only remaining part is the transition in the first
round which happens with a probability of 2−16.

Meet-in-the-middle Attacks

A powerful technique for finding preimages are meet-in-the-middle tech-
niques and they have been applied to various AES-based hash functions,
for instance Whirlpool [44] and Grøstl [50]. The basic attack principle is to
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S0

S1

aes2−16

S2

aes2−72

S3

mix1

Sk = S4

aes2−288

aes

1

S5

mix 1

S6

aes 2−64

S7

aes 1

S8

mix 1

S9

Figure 1: Truncated model utilizing degrees of freedom for T = 3,m = 2 and q = 2.
An active byte is marked as ; a byte which is removed due to trunc is
marked with ; boxes f denotes a function f mapping one state to the
next, and the number next to it gives the transition probability. For finding
a collision, the attacker would have full control over the middle rounds,
marked in the highlighted area. As there are only 53 conditions on bytes
which all can be fulfilled with the available degrees of freedom the attack
costs for an idealized attacker would be 216.

split the function into two sub-functions, such that a part of the message only
affects the first function and another part of the message the second function.
These sub-functions are referred to as chunks (of rounds) and bytes which
only affect one them are called neutral bytes. The limiting constraint of this
attack is the number of rounds we can independently propagate our message
through these chunks.

We are interested in finding out the highest number of rounds of Haraka-
256 v2 and Haraka-512 v2 that can be attacked. In this case, the strategy is to
have a single neutral byte in the forward and backward chunk. We can check
for all possible positions of two unknown bytes after how many rounds we
still are able to find a match, meaning that the state is not unknown in all
bytes. Starting at the beginning of a Haraka v2 round in the forward direction
we can still compute the value of 16 bytes after SR ◦mix ◦MC ◦ SR ◦MC ◦ SR.
In the backwards direction we can also compute 16 bytes after SR−1 ◦MC−1 ◦
mix−1 ◦ SR−1 ◦MC−1 ◦ SR−1 ◦MC−1 ◦mix−1. In total this covers 3 rounds of
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Target value

Match

Initial Structure

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB0 SR0 MC0 AC0

SB1 SR1 MC1 AC1

SB2 SR2 MC2 AC2

SB3 SR3 MC3 AC3

SB4 SR4 MC4 AC4

SB5 SR5 MC5 AC5

SB6 SR6 MC6 AC6

mix

mix

mix

Figure 2: Meet-in-the-middle attack on 3.5 rounds of Haraka-256 v2. All are un-
known, are constant, neutral bytes backward and neutral bytes for-
ward.

Haraka v2. In an attack we can choose a different starting point, but the total
number of rounds which can be covered stays the same. The initial structure
technique [45] allows us to further extend the separation of the two chunks
by 1 round.

We can use this now to mount an attack on 3.5 rounds of Haraka-256 v2,
following the procedure given in [44] (see Figure 2):

1. Randomly select values for the constant bytes in AC4.

2. For all 28 possible choices for AC4∗,0 which keep MC40,0,MC41,0,MC42,0
constant, compute forward to obtain the state in MC0 and store the
result in a table T .

3. For all 28 possible choices for MC5∗,4 which keep AC50,4,AC51,4,AC52,4
constant, compute backward to obtain the state in AC0.

4. Check if there is an entry in T that matches with AC0 through MixColumns.
If so check whether the remaining bytes also match, otherwise repeat
from step 2 (or step 1 if necessary).
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Matching. We can check whether the states MC0 and AC0 can be matched
through MixColumns in the following way. Lets consider the first column,
which gives us the following two equations

AC02,0 = MC03,0 ⊕ 2 ·MC02,0 ⊕ 3 ·MC01,0 ⊕MC00,0 (10)

AC00,0 = 3 ·MC03,0 ⊕MC02,0 ⊕MC01,0 ⊕ 2 ·MC00,0 (11)

As we know the values for MC03,0,MC01,0,MC00,0 we can simplify this to

AC02,0 ⊕C0 = 2 ·MC02,0 and AC00,0 ⊕C1 = MC02,0. (12)

We can use this now to check whether we can fulfill:

AC02,0 ⊕C0 = 2 · (AC00,0 ⊕C1) (13)

AC02,0 ⊕ 2 ·AC00,0 = C0 ⊕ 2 ·C1, (14)

where the right side can be computed in step (2) and the left side in step (3)
of our attack.

Complexity. Computing the table T and 28 values for AC0 costs 28 3.5-
round Haraka-256 v2 evaluations and requires 28 · 8 bytes of memory, as
we only need to store 1 byte of information for each column. The success
probability for the match is 2−32 for the left half of the state and 2−64 for the
right half. Hence, on average 28 · 28 · 2−96 = 2−80 candidates will remain in
Step 4. There are still 12+ 8 byte conditions which have to be satisfied, there-
fore if we repeat step 1-4 2240 times we expect to find 2240 · 2−80 · 2−20·8 = 1

solution. The overall complexity is 2240 · 28 = 2248 evaluations of Haraka v2

to find a preimage.
We were not able to extend the attack to 4 rounds, as we would have only

two bytes in each column of MC0 and AC0. In this case we can not filter out
solutions in the matching step. For Haraka-512 v2 we can attack 4 rounds in
a very similar way (see Section D).

Attack on Haraka v1 by Jean

An attack by Jean [30] on a previous version of Haraka v2, denoted Haraka v1,
has been published. In this section we explain how the attack was possible,
and why it is not applicable to Haraka v2 presented in this paper. In [37] it
was shown that if the two halves of an AES state are equal, then applying
a keyless AES round function preserves this property. In Haraka v1, round
constants exhibited strong symmetries in the sense that i) the same constant
was used for each block, and ii) the same constant was used for each column
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in each block. The observation by Jean is, that when using the property
of [37] together with the weak constants and the fact that the mixing layer
of Haraka v2 permute the columns, one can construct an efficient structural
distinguisher that allows for collisions and preimages.

In Haraka v2 presented in this paper, this structural property has been
dealt with by destroying properties (i) and (ii) above, particularly by using
round constants based on the digits of π. We refer to Section 2 for the details.
We remark that the new choice of constants do not affect the performance of
Haraka v2. As the attack was structural, and feasible purely due to the round
constants, we believe the number of rounds for Haraka v2, which is based
on the truncated model (see Section 4.2), is still well-founded and provides
long-term security.

4.3 Collision Resistance

While we explicitly do not require collision resistance for Haraka v2, we still
discuss the security level with respect to this criteria in the following. Similar
to our arguments for second-preimage security, we can apply our truncated
model for finding collisions. The best collision attacks on AES-based hash
functions are based on the rebound attack, and these are covered by our
model. However, for finding a collision, an attacker can freely choose the
complete internal state and not only the differences. This translates to more
degrees of freedom. Therefore, the expected security level is lower for the
same number of rounds (see Table 4).

The best generic attack has a lower complexity of 2128 compared to the
second-preimage case, which might suggest that one only requires 2128 in
our truncated security model. However, this would still indicate some non-
ideal property, and it is likely that the more relaxed collision setting allows
to exploit this after using up all degrees of freedom. Consequently, we opt to
also aim for a security level of 2256 in our truncated security model, which
requires adding one round for Haraka-512 v2.

4.4 Design Choices

In the following, we interpret the security analysis of Section 4.2 which led
to the proposed parameters and design choices. We recall that T denotes the
number of rounds of either π512 or π256, and m denotes the number of AES
rounds applied to each of the b blocks in each round.



Haraka v2 – Efficient Short-Input Hashing for Post-Quantum Applications 161

Mode

As described, we use the DM mode for our permutations to define Haraka v2.
Other modes were considered, including a sponge-based construction and a
block cipher in DM mode. The choice to use a permutation in DM mode
is motivated both by performance and security considerations. We refer to
Section E for the details.

Round Parameters T and m

One of the first questions which arise is how the number of AES rounds and
frequency of mixing the individual states influences the security bounds. Our
analysis of Table 1 gives a strong indication that m = 2 is an optimal choice,
as it gives the best trade-off between number of active S-boxes and the total
number of required AES rounds Tmb. The number of rounds is chosen as
T = 5, as this gives the required security parameters in the truncated model,
even when assuming a powerful attacker controlling more rounds than the
best known attacks are capable of.

Mixing Layers

For the mixing layer, a variety of choices were considered. Our main criteria
were that the layer should be efficiently implementable (see Section 5.2) on
our target platforms, while still contributing to a highly secure permutation.
Other potential candidates for the mixing layer are discussed in Section E.
With respect to our criteria, for most choices of T and m, using the proposed
mix512 and mix256 give a significantly higher number of active S-boxes, com-
pared to other approaches discussed in Section E.

Truncation Pattern for Haraka-512 v2

There are many possible choices for the truncation pattern for Haraka-512 v2.
In our analysis, we consider truncation patterns which truncate row-wise or
column-wise, as these are most efficient to implement, due to the way words
are stored in memory. The pattern we chose is taking the two least significant
columns of the first two blocks and the two most significant columns of the
last two states. We found that this approach compared favorably, with respect
to the number of active S-boxes, to row-wise patterns or patterns choosing
the same two columns from each state.
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Table 6: Latency and inverse throughput for one-round AES instructions on target
platforms

Architecture Laes [cycles] T−1
aes

[instructions/cycle]

Haswell 7 1
Skylake 4 1

Cycles

aes (v1,1)

aes (v2,1)

aes (vb,1)

Laes

T−1
aes

aes (v1,2)

aes (v2,2)

aes (vb,2)

. . .

aes (v1,m)

aes (v2,m)

aes (vb,m)

. . .· · ·

Figure 1: Pipelined AES instructions. A box aes (v, i) denotes the application of the
ith AES round to a block v.

5 Implementation Aspects and Performance

As mentioned, Haraka v2 is designed solely for use on platforms with AES hard-
ware support. To that end, we assume the existence of a hardware instruction
pipeline, which can execute a single round of the AES with an instruction
denoted aes, with a latency of Laes cycles and an inverse throughput of T−1

aes
in-

structions per cycle (given for our target architectures in Table 6). We remark
that our Haswell test machine has an i7-4600M CPU at 2.90GHz; the Skylake
machine has an i7-6700 CPU at 3.40GHz. We furthermore expect Haraka v2

to be efficiently implementable on ARMv8 due to its support of AES instruc-
tions. We remark that the Turbo Boost technology has been switched off for
all our performance measurements.

When encrypting a single block with the AES, one must wait Laes cycles
each time the block is encrypted for one round. However, if the inverse
throughput T−1

aes
is low compared to Laes, and if additional independent data

blocks are available for processing, one can use this data independency to
better utilize the AES pipeline. Thus, in theory, if using k = Laes · T−1aes

inde-
pendent blocks for the AES, one can encrypt each of those blocks for a single
round in just (k− 1) · T−1

aes
+ Laes cycles, while m rounds of the AES can be

completed for all k blocks in just (k− 1) · T−1
aes

+ Laes ·m cycles, as illustrated
in Figure 1. As such, with Haraka v2 using several AES blocks, the pipeline
is better utilized.
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5.1 Multiple Inputs

As described above, the theoretically optimal choice of state blocks, perfor-
mance wise, would be b = Laes · T−1aes

. However, Haraka v2 uses a varying
number of blocks. To that end, we consider for both Haraka-512 v2 and
Haraka-256 v2 the parallel application of the corresponding function to mul-
tiple inputs, assuming that such are available for processing. For example, if
k = Laes · T−1aes

= 7, with a state size of b = 4 blocks, one could process two
independent inputs x and x ′ in parallel, thus artificially extending the state to
b = 8 blocks, allowing better pipeline utilization. We denote the number of
parallel inputs processed in this manner by P. For each of our constructions
and target platforms, there will be an optimal choice of P which allows good
AES pipeline utilization while, at the same time, keeping the full context in
low-level cache.

5.2 Implementation of Linear Mixing

Consider the case where P = 1, i.e. when using a single input. Even if the
number of blocks in the state is less than Laes · T−1aes

, a number of the in-
structions used for the linear mixing can be hidden after the aes operation.
For example, while the instruction to encrypt the second AES round of a
Haraka v2 round is still being executed for one or more blocks, while other
blocks have already finished, instructions pertaining to the mixing of the fin-
ished blocks can be executed while the AES instructions for the remaining
blocks are allowed to finish. To that end, more so than otherwise, choosing
instructions for the linear mixing layer with low latency and high throughput
is important.

For the implementation of mix512 and mix256, we make use of the punpck-

hdq and punpckldq instructions. On both Haswell and Skylake, those instruc-
tions have a latency of 1 clock cycle and an inverse throughput of 1 instruc-
tion/cycle. In the case of Haraka-512 v2, where the state has b = 4 blocks,
mix512 uses eight instructions in the mixing layer, while for Haraka-256 v2

we require just one call to each of the instructions.

5.3 Haraka v2 Performance and Discussion

In the following, we present the performance of Haraka v2 when imple-
mented on the Haswell and Skylake platforms, and discuss their perfor-
mance in relation to other primitives which would be other potential can-
didates for our target applications.

First of all, it is interesting to compare Haraka v2 to SPHINCS-256-H and
SPHINCS-256-F from the SPHINCS-256 construction [9], which have identi-
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Table 7: Benchmarks for various primitives on the Haswell and Skylake platforms. We
give the implementation type as well as state size, block size and output size.
Implementations marked † are taken from SUPERCOP (see eBACS [8]); the
rest are written by us. For selected primitives, we give the performance using
a varying number of independent inputs processed in parallel, P ∈ {1, 4, 8}.

Sizes (bits)

Primitive Implementation State Block Output Haswell Skylake

P = 1 Haraka-256 v2 AES-NI 256 256 256 1.25 0.72
Haraka-512 v2 AES-NI 512 512 256 1.75 0.97
AESQ (from PAEQ) AES-NI† 512 512 512 3.75 2.19
Simpirav2[b = 2] AES-NI 256 256 256 2.59 1.94
Simpirav2[b = 4] AES-NI 512 512 512 4.47 2.38
SPHINCS-256-H AVX2

† 512 256 256 11.16 10.92
SPHINCS-256-F AVX2

† 512 256 256 11.31 11.12

P = 4 Haraka-256 v2 AES-NI 1024 256 1024 1.12 0.63
Haraka-512 v2 AES-NI 2048 512 1024 1.38 0.72
Simpirav2[b = 2] AES-NI 2048 512 1024 2.37 1.62
Simpirav2[b = 4] AES-NI 2048 512 1024 2.03 1.17

P = 8 Haraka-256 v2 AES-NI 2048 256 2048 1.14 0.66
Haraka-512 v2 AES-NI 4096 512 2048 1.43 0.92
Simpirav2[b = 2] AES-NI 2048 256 2048 1.87 1.18
Simpirav2[b = 4] AES-NI 4096 512 4096 1.56 1.35
SPHINCS-256-H AVX2

† 4096 256 2048 1.99 1.62
SPHINCS-256-F AVX2

† 4096 256 2048 2.11 1.71

cal functional signatures and similar design criteria to Haraka-512 v2 and
Haraka-256 v2 respectively. If we first consider the performance using 8-way
parallelization (i.e. using P = 8), we see from Table 7 that the SPHINCS
functions have a performance of 1.62 cpb on Skylake for the H function and
1.71 cpb for the F function. These implementations do not utilize AVX-512

(employing 512-bit registers), so it is reasonable to assume their performance
could be doubled under such circumstance. However, we note that even un-
der this assumption, in both the cases of Haswell and Skylake, Haraka v2

performs favorably in comparison to those of SPHINCS-256.
In some applications, including some of the function calls in hash-based

signatures, several calls to the short-input hash function can not be parallelized.
To that end, it is of interest to compare the performance for Haraka v2, us-
ing P = 1, to the corresponding functions from SPHINCS-256. In this case,
from the first part of Table 7, we see that Haraka-256 v2 performs very well
with 1.25 cpb and 0.72 cpb on Haswell and Skylake, respectively, while the
numbers for Haraka-512 v2 are 1.75 cpb on Haswell and 0.97 cpb on Skylake.
From benchmarking the corresponding SPHINCS-256 functions on the same
machines using P = 1, we obtain a performance of 11.16 cpb on Haswell
and 10.92 cpb on Skylake for their H function, and respectively 11.31 and
11.12 cpb for their F function on Haswell and Skylake respectively. Thus,
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when the hash function calls in hash-based signatures can not be parallelized,
Haraka v2 performs between 6.5 times and 15 times better on our tested plat-
forms.

In Table 7, we compare the performance of Haraka v2 not only with the
SPHINCS-256 functions, but also other designs which exhibit similar block-,
input- and output sizes as Haraka v2. We comment on their benchmarks in
the following.

With AESQ and Haraka v2 having very similar designs, the former having
20 AES rounds per block compared to Haraka v2 with 10, it is reasonable
that AESQ is about twice as slow as Haraka-512 v2. The remaining margin
can be accredited to AESQ employing an evolving round key update rather
than tabularized constants like Haraka v2.

Another close competitor is Simpira v2, which we implemented and bench-
marked using b = 2 and b = 4, i.e. with two and four AES blocks respectively,
thereby matching the sizes of the Haraka-256 v2 and Haraka-512 v2. Simpira
v2 uses 15 AES rounds per block. Despite this being less than AESQ, it is
slower when P = 1, because only one AES round (for b = 2) or two AES
rounds (for b = 4) can be computed in parallel due to the Feistel structure.
This is confirmed when we consider the performance of Simpira v2 with
P = 4 and P = 8. For b = 2, parallelizing over P = 4 inputs brings the per-
formance up to 2.37 cpb on Haswell and 1.62 cpb on Skylake. For b = 4, the
performance is boosted up to 2.03 cpb and 1.17 cpb for P = 4 on Haswell
and Skylake respectively. With P = 8, the effect of parallelization brings its
performance up to 1.56 cpb for Haswell and 1.35 cpb for Skylake. We remark
that in the Simpira v2 paper [22], the authors give their own benchmarks
using P = 4 independent inputs. They report performance slightly better
than ours, at 0.95 cpb for b = 2 and 0.94 cpb for b = 4 measured on a Sky-
lake machine. However, as no source code was provided, we wrote our own
optimized implementation.

From Table 7, we see that when multiple independent inputs are available
for processing, the gap between the performance of Haraka v2 and of the
Simpira v2 and SPHINCS functions diminishes. This makes sense as essen-
tially processing multiple inputs gives a source of independence to draw on,
allowing to parallelize instruction calls which would not otherwise be possi-
ble. As such, the throughput becomes more a question of the total number of
instructions needed to obtain the desired security level, and less about the in-
terplay of these instructions. With Haraka v2 still performing favorably, there
are a couple of interesting observations. First, Haraka v2 performs better with
P = 4 than with P = 8. This is simply due to the number of 128-bit registers
available; with P = 8 more overhead occurs due to otherwise unnecessary
read/write operations. Simpira v2 with its fewer parallel AES round applica-
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tions in general need to process more independent inputs to achieve its op-
timal performance, as is evident from Table 7. Second, the best performance
obtained overall is 0.63 cpb on Skylake with Haraka-256 v2 for P = 4. This
matches very well with the theoretical maximum of (20 · 4)/(32 · 4) = 0.625
cycles per processed byte.

We considered also comparing against the recent KangarooTwelve ex-
tendable output hash from the Keccak team [10]. It uses 12 rounds of the
Keccak permutation in a sponge construction, employing tree hashing when
possible. However, for a short input of only 64 bytes, only one permutation
call is needed and no parallelization can be made. The authors state a latency
of ≈ 530 cycles in this case, yielding 8.28 cpb for a 512-bit input and half
that performance for a 256-bit input, even when using Skylake-optimized
implementations. In the Simpira v2 paper, the authors compare against an
optimized SHA-256 implementation which is parallelized for P = 4 “long”
inputs, claiming a performance of 2.35 cpb. For short inputs, and also con-
sidering the P = 1 cases, the performance would be reduced to a fraction of
that, excluding also SHA-256 as a competitor. However, as no source code
was provided, we were not able to verify against our own benchmarks. With
this said, generic hash functions generally obtain their best performance for
longer input, and for most such functions their poor performance on short
inputs come as no surprise.

5.4 Performance of SPHINCS using Haraka v2

While the previous performance figures provide a good comparison between
the functions themselves, the actual performance figures relevant for a hash-
based signature scheme are the costs for key generation, signing and verify-
ing a signature. The total costs for these operations are difficult to derive by
only looking at the performance of the short-input hash function. For that
reason, we modified the optimized AVX implementation of SPHINCS given
in [9], by replacing all calls to SPHINCS-256-F and SPHINCS-256-H by our
implementations of Haraka-256 v2 and Haraka-512 v2 respectively. Parallel
calls to these functions are processed to the same extent, using P = 8 calls
at the same time, and no further optimizations have been applied. As can
be seen in Table 8, the current performance gains by using Haraka v2 are
between a factor of 1.50 to 2.86, depending on the platform and operation.

6 Conclusion and Remarks on Future Work

Together with in-depth implementation considerations on CPUs offering
AES hardware acceleration, we presented the seemingly fastest proposal
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Table 8: Comparison of the AVX implementation of SPHINCS-256 with our imple-
mentation using Haraka v2. All numbers are given as the total number of
cycles required, and are measured using SUPERCOP. The speed-up factor of
operations are given in parentheses.

Haswell Skylake

SPHINCS-256 Haraka v2 SPHINCS-256 Haraka v2

Key generation 3,295,808 2,060,864 (×1.60) 2,839,018 1,426,138 (×1.99)
Signing 52,249,518 34,938,076 (×1.50) 43,517,538 23,312,354 (×1.87)
Verification 1,495,416 695,222 (×2.15) 1,291,980 452,066 (×2.86)

for compression resp. short-input hashing on our target platforms, with a
performance of less than 1 cpb on a Skylake desktop CPU, both with and
without parallelization across multiple inputs. As a concrete application of
Haraka v2, we show that by using it inside the SPHINCS-256 hash-based
signature, we can speed up the key generation, signing and verification op-
erations by factors ×1.99, ×1.87 and ×2.86, respectively, on Intel’s Skylake
architecture.

Despite having explored a larger design-space, Haraka v2 ended up hav-
ing strong similarities with the AESQ permutation, used in the CAESAR
candidate PAEQ [11]. All implementations for Haraka v2, including code for
security analysis and for SPHINCS using Haraka v2, are publicly available7.

We cover the important differential- and meet-in-the-middle attack vec-
tors in our security analysis. We also give security arguments for Haraka v2

against various classes of attacks, without having to treat a large part of the
hash function as a black box, as is the usual approach. This, of course, does
not rule out attacks outside of the models that we consider. Hence, as for
all other cryptographic primitives, more cryptanalysis is useful to establish
more trust in the proposal.

Returning to the question: How much faster can a hash function become, if
collision resistance is dropped from the list of requirements? With Haraka v2,
we drop from T = 6 rounds to T = 5 rounds and still retain security against
second-preimage attacks. We conclude that the performance gains are limited
for the class of strategies considered, namely AES-like designs. This partic-
ularly holds when aiming at pre-quantum security levels higher than those
for collision resistance, namely 256 bits rather than 128 bits. Aiming at higher
security levels make sense, as there is evidence (at least for generic attacks),
that the post-quantum security level will be 128 bits in both cases. Of course,
this argument does not consider non-generic attacks that use capabilities of

7See supplementary material
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hypothetical quantum computers, and we leave investigations in this direc-
tion as future work.
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A Round Constants

Table 9: Round constants used in π512 and π256.
RC0 0684704ce620c00ab2c5fef075817b9d RC20 d3bf9238225886eb6cbab958e51071b4
RC1 8b66b4e188f3a06b640f6ba42f08f717 RC21 db863ce5aef0c677933dfddd24e1128d
RC2 3402de2d53f28498cf029d609f029114 RC22 bb606268ffeba09c83e48de3cb2212b1
RC3 0ed6eae62e7b4f08bbf3bcaffd5b4f79 RC23 734bd3dce2e4d19c2db91a4ec72bf77d
RC4 cbcfb0cb4872448b79eecd1cbe397044 RC24 43bb47c361301b434b1415c42cb3924e
RC5 7eeacdee6e9032b78d5335ed2b8a057b RC25 dba775a8e707eff603b231dd16eb6899
RC6 67c28f435e2e7cd0e2412761da4fef1b RC26 6df3614b3c7559778e5e23027eca472c
RC7 2924d9b0afcacc07675ffde21fc70b3b RC27 cda75a17d6de7d776d1be5b9b88617f9
RC8 ab4d63f1e6867fe9ecdb8fcab9d465ee RC28 ec6b43f06ba8e9aa9d6c069da946ee5d
RC9 1c30bf84d4b7cd645b2a404fad037e33 RC29 cb1e6950f957332ba25311593bf327c1
RC10 b2cc0bb9941723bf69028b2e8df69800 RC30 2cee0c7500da619ce4ed0353600ed0d9
RC11 fa0478a6de6f55724aaa9ec85c9d2d8a RC31 f0b1a5a196e90cab80bbbabc63a4a350
RC12 dfb49f2b6b772a120efa4f2e29129fd4 RC32 ae3db1025e962988ab0dde30938dca39
RC13 1ea10344f449a23632d611aebb6a12ee RC33 17bb8f38d554a40b8814f3a82e75b442
RC14 af0449884b0500845f9600c99ca8eca6 RC34 34bb8a5b5f427fd7aeb6b779360a16f6
RC15 21025ed89d199c4f78a2c7e327e593ec RC35 26f65241cbe5543843ce5918ffbaafde
RC16 bf3aaaf8a759c9b7b9282ecd82d40173 RC36 4ce99a54b9f3026aa2ca9cf7839ec978
RC17 6260700d6186b01737f2efd910307d6b RC37 ae51a51a1bdff7be40c06e2822901235
RC18 5aca45c22130044381c29153f6fc9ac6 RC38 a0c1613cba7ed22bc173bc0f48a659cf
RC19 9223973c226b68bb2caf92e836d1943a RC39 756acc03022882884ad6bdfde9c59da1

B Test Vectors for Haraka v2

Haraka-512 v2

Input: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output: be 7f 72 3b 4e 80 a9 98 13 b2 92 28 7f 30 6f 62

5a 6d 57 33 1c ae 5f 34 dd 92 77 b0 94 5b e2 aa

Haraka-256 v2

Input: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

Output: 80 27 cc b8 79 49 77 4b 78 d0 54 5f b7 2b f7 0c

69 5c 2a 09 23 cb d4 7b ba 11 59 ef bf 2b 2c 1c
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C Active S-boxes

Table 10: Lower bound on the number of active S-boxes in a differential trail for the
permutation and for the permutation when used in our mode for π512 ((a),
(b), (c)) and for π256 ((d), (e), (f)). The cell color indicates the number of
active S-boxes per total number of AES rounds (more transparent means
fewer active).

(a) π512 DM-permutation

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 45 50 55
3 9 45 66 75 84
4 25 80 90 100 125
5 41 130 114 125 154
6 60 150 138 150 195
7 64 170 162 175 224

(b) π512 permutation used in DM-mode

m

T 1 2 3 4 5

1 0 3 7 17 25
2 3 17 37 46 53
3 7 37 58 71 82
4 17 72 82 96 123
5 33 128 106 121 152
6 52 142 130 146 193
7 60 162 154 171 222

(c) π512 permutation used in DM-mode
leading to collision

m

T 1 2 3 4 5

1 0 9 13 17 25
2 12 34 37 46 58
3 18 76 60 71 91
4 32 93 84 96 128
5 39 134 108 121 161
6 52 159 132 146 198
7 60 198 156 171 231

(d) π256 permutation

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(e) π256 permutation used in DM-mode

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(f) π256 permutation used in DM-mode
leading to collision

m

T 1 2 3 4 5

1 13 30 21 25 34
2 20 50 42 50 65
3 38 65 63 75 99
4 35 75 84 100 130
5 56 105 105 125 164
6 55 125 126 150 195
7 73 140 147 175 229
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Target value

Match

Initial Structure

SB SR MC AC

SB SR MC AC

SB SR MC AC
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SB SR MC AC

SB SR MC AC

SB0 SR0 MC0 AC0

SB1 SR1 MC1 AC1

SB2 SR2 MC2 AC2

SB3 SR3 MC3 AC3

SB4 SR4 MC4 AC4

SB5 SR5 MC5 AC5

SB6 SR6 MC6 AC6

SB7 SR7 MC7 AC7

mix

mix

mix

mix

Figure 1: Meet-in-the-middle attack on 4 rounds of Haraka-512 v2. All are un-
known, are constant, neutral bytes backward, neutral bytes forward
and are the bytes truncated at the output.

D Meet-in-the-middle attack on Haraka-512 v2

For Haraka-512 v2 we can attack 4 rounds in the following way (see Figure 1):

1. Randomly select values for the constant bytes in AC4 .

2. For all 28 possible choices for AC4∗,0 which keep MC40,0,MC41,0,MC42,0
constant , compute forward to obtain the state in MC0 and store the
result in a table T .

3. For all 28 possible choices for MC5∗,4 which keep AC50,4,AC51,4,AC52,4
constant , compute backward to obtain the state in AC0.

4. Check if there is an entry in T that matches with AC0 through MixColumns.
If so check whether the remaining bytes also match, otherwise repeat
from step 2 (or step 1 if necessary).

Complexity. Computing the table T and 28 values for AC0 costs 28 4-round
Haraka-512 v2 evaluations and requires 28 · 16 bytes of memory. The suc-
cess probability for the match is 2−32 for each state. Hence, on average
28 · 28 · 2−128 = 2−112 candidates will remain in Step 4. There are still 12 byte
conditions which have to be satisfied in each state, which can be reduced to 4
byte conditions by using the fact that we can freely choose those bytes which
are truncated at the output. Therefore, if we repeat step 1-4 2240 times we
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expect to find 2240 · 2−112 · 2−4·4·8 = 1 solution. The overall complexity is
2240 · 28 = 2248 evaluations of Haraka-512 v2 to find a preimage.

E Considerations Regarding Modes of Operation

and Linear Mixing

When designing the general constructions for the compression functions, we
initially had three approaches in mind:

1. Davies-Meyer construction with a block cipher (referred to as dm),

2. Davies-Meyer construction with a permutation (referred to as dmperm),
and

3. Sponge construction (referred to as sponge).

For the first construction, we used a state of two blocks initialized to zero.
As part of the round function Rt, we would apply two parallel calls the
AES as part of the aes operation. The actual bits of the message would be
taken into the state over several rounds via a simple message expansion
procedure. While the block cipher approach led to a small context size, the
simplicity of the message expansion implied the possibility for the attacker to
control differences injected even after many rounds, thus obtaining collisions
by difference cancellation. While this can potentially be mitigated by a more
complex message expansion, this would in turn lead to harder analysis and
slower implementations.

In order to avoid the negative consequences on security from a too simple
message expansion, and to performance from a too complex message expan-
sion, we opted to abandon the block cipher-based approach of (1) in favor of
a permutation-based approach. In particular, we load the full message into
the state of the permutation from the beginning. As such, the state size for
Haraka-512 v2 must be at least 64 bytes, while that of Haraka-256 v2 must
be at least 32 bytes, or, equivalently b = 4 and b = 2 blocks, respectively.
With this, we considered two general approaches, namely (2) and (3) above.
Firstly, one approach is to use a Davies-Meyer construction where the mes-
sage is loaded into the state which has the size of the domain in bits. This
is the approach we landed on, and that described in Section 2 above. Finally,
with a Sponge-based approach, one would choose the state size to be larger
than the size of the domain. The state is initialized to some constant, e.g.
all zeroes. The message is XORed into the most significant |M| bits of the
state, and a permutation is applied. The output is now taken as e.g. the most
significant 256 bits in the case of both Haraka-512 v2 and Haraka-256 v2.



Haraka v2 – Efficient Short-Input Hashing for Post-Quantum Applications 177

While the dm approach above was found to lead to significantly poorer
security margins, in comparison to the dmperm and sponge approaches, we
nevertheless implemented all three approaches in C.

For the sponge approach, we used a state consisting of 6 blocks, or, equiv-
alently, 96 bytes. For dm, we used a state of 2 blocks, initialized to zero. The
message expansion consisted of shuffling message bits and XORing them to
other message bits, so, in other words, a simple linear expansion. In all cases,
the permutation applied in each round had the form of aes (consisting of m
rounds of the AES applied in parallel to each block of the state) followed by
a linear mixing. Here, we focus on a fixed mixing layer (in particular using
the blend mixing detailed below) while, in Section 5.2, we describe consider-
ations regarding different approaches to the linear mixing.

In our consideration here, the mixing layer is implemented by using the
blend (or pblendw) instruction which is available in Intel CPUs supporting
SSE 4.1. The blend instruction itself takes in two block operands and an 8-bit
mask w. Let y = blendw(a,b) be the blend operation on operands a and b
using mask w. Then the ith least significant 16-bit word of y is determined
as the corresponding word of either a or b, depending on the value of the ith
bit of w. As such, blend gives us essentially a way to mix two blocks without
permuting the byte positions. The mixing using blend is now defined as
using blendw on block i with block i+ 1 modulo the number of blocks of the
state. Fixing m = 2, i.e. using two AES rounds per round, Figure 1 details the
performance using the three general construction approaches dm, dmperm

and sponge, described above. The numbers are taken as the minimum over
choices of P in the range P = 1, . . . , 16. Note, that the optimal choice for
a particular value of P may not be constant across choices of the number
of rounds T . Evidently, the dm approach has the best overall performance.
The sponge approach is significantly slower than the dmperm approach when
T > 3. To that end, and combined with the observation regarding the security
properties of the dm approach, this led to the overall choice of the dmperm

construction used for both Haraka-512 v2 and Haraka-256 v2.
For the linear mixing layer, we considered several possible approaches:

1. The mix512 and mix256 approaches described in Section 2, using the
punpckhdq and punpckldq instructions;

2. The blend approach, as described above, using the pblendw instruction;
and

3. Using a combination of a block-wise byte shuffle and XOR (denoted
shu�e-xor) with the following state block, i.e. where block i updated
with a byte shuffle and XORed with block i+ 1 modulo the number of
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Figure 1: Performance using m = 2 for each of the three general Haraka-512 v2 con-
structions considered
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Figure 2: Effect of applying one round of the mixing layers on the state of π512.

blocks, to obtain the updated block. This approach uses the pshufb and
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The effect of each of this operations applied to the state of π512 can be
seen in Figure 2. On both the Haswell and Skylake microarchitectures, the
instructions used for those three approaches all have a latency of one clock
cycle, while the inverse throughput varies from e.g. 0.33 instructions/cycle
for the XOR operation to 1 instruction/cycle for the punpckhdq and punpckldq

instructions.
Figure 3 gives a performance comparison of the three approaches to the

linear mixing layer. As shown, with the exception of the mix512 operation
on Haswell, all other approaches have comparable performance for both
Haswell and Skylake. Concludingly, it makes sense to choose the approach
yielding the best security properties, namely the mix512 and mix256 opera-
tions.
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Abstract. We present a new tweakable block cipher family
SKINNY, whose goal is to compete with NSA recent design
Simon in terms of hardware/software performances, while
proving in addition much stronger security guarantees with re-
gards to differential/linear attacks. In particular, unlike Simon,
we are able to provide strong bounds for all versions, and
not only in the single-key model, but also in the related-key or
related-tweak model. SKINNY has flexible block/key/tweak sizes
and can also benefit from very efficient threshold implementa-
tions for side-channel protection. Regarding performances, it
outperforms all known ciphers for ASIC round-based imple-
mentations, while still reaching an extremely small area for
serial implementations and a very good efficiency for software
and micro-controllers implementations (SKINNY has the small-
est total number of AND, OR, XOR gates used for encryption
process).

Secondly, we present MANTIS, a dedicated variant of SKINNY for
low-latency implementations, that constitutes a very efficient so-
lution to the problem of designing a tweakable block cipher for

This article is the full version of the paper published in the proceedings of CRYPTO
2016, ©IACR 2016. Updated information on SKINNY will be made available via https://sites.

google.com/site/skinnycipher/.
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memory encryption. MANTIS basically reuses well understood,
previously studied, known components. Yet, by putting those
components together in a new fashion, we obtain a competitive
cipher to PRINCE in latency and area, while being enhanced with
a tweak input.

Keywords: lightweight encryption, low-latency, tweakable block
cipher, MILP.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryp-
tography is currently a very active research domain in the symmetric-key
cryptography community. In particular, we have recently seen the apparition
of many (some might say too many) lightweight block ciphers, hash func-
tions and stream ciphers. While the term lightweight is not strictly defined,
it most often refers to a primitive that allows compact implementations, i.e.
minimizing the area required by the implementation. While the focus on area
is certainly valid with many applications, most of them require additional
performance criteria to be taken into account. In particular, the throughput
of the primitive represents an important dimension for many applications.
Besides that, power (in particular for passive RFID tags) and energy (for
battery-driven device) may be major aspects.

Moreover, the efficiency on different hardware technologies (ASIC, FPGA)
needs to be taken into account, and even micro-controllers become a scenario
of importance. Finally, as remarked in [4], software implementations should
not be completely ignored for these lightweight primitives, as in many appli-
cations the tiny devices will communicate with servers handling thousands
or millions of them. Thus, even so research started by focusing on chip area
only, lightweight cryptography is indeed an inherent multidimensional prob-
lem.

Investigating the recent proposals in more detail, a major distinction is
eye-catching and one can roughly split the proposals in two classes. The
first class of ciphers uses very strong, but less efficient components (like the
Sbox used in PRESENT [8] or LED [20], or the MDS diffusion matrix in LED or
PICCOLO [38]). The second class of designs uses very efficient, but rather weak
components (like the very small KATAN [13] or Simon [3] round function).1

1Actually, this separation is not only valid for lightweight designs. It can well be extended
to more classical ciphers or hash functions as well.
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From a security viewpoint, the analysis of the members of the first class
can be conducted much easily and it is usually possible to derive strong ar-
guments for their security. However, while the second class strategy usually
gives very competitive performance figures, it is much harder with state-of-
the-art analysis techniques to obtain security guarantees even with regards
to basic linear or differential cryptanalysis. In particular, when using very
light round functions, bounds on the probabilities of linear or differential
characteristics are usually both hard to obtain and not very strong. As a con-
siderable fraction of the lightweight primitives proposed got quickly broken
within a few months or years from their publication date, being able to give
convincing security arguments turns out to be of major importance.

Of special interest, in this context, is the recent publication of the Simon

and Speck family of block ciphers by the NSA [3]. Those ciphers brought a
huge leap in terms of performances. As of today, these two primitives have
an important efficiency advantage against all its competitors, in almost all
implementation scenarios and platforms. However, even though Simon or
Speck are quite elegant and seemingly well-crafted designs, these efficiency
improvements came at an essential price. Echoing the above, since the ciphers
have a very light round function, their security bounds regarding classical lin-
ear or differential cryptanalysis are not so impressive, quite difficult to obtain
or even non-existent. For example, in [27] the authors provide differential/lin-
ear bounds for Simon, but, as we will see, one needs a big proportion of the
total number of rounds to guarantee its security according to its block size.
Even worse, no bound is currently known in the related-key model for any
version of Simon and thus there is a risk that good related-key differential
characteristics might exist for this family of ciphers (while some lightweight
proposals such as LED [20], PICCOLO [38] or some versions of TWINE [42] do
provide such a security guarantee). One should be further cautious as these
designs come from a governmental agency which does not provide specific
details on how the primitives were built. No cryptanalysis was ever provided
by the designers. Instead, the important analysis work was been carried out
by the research community in the last few years and one should note that so
far Simon or Speck remain unbroken.

It is therefore a major challenge for academic research to design a cipher
that can compete with Simon’s performances and additionally provides the
essential strong security guarantees that Simon is clearly lacking. We empha-
size that this is both a research challenge and, in view of NSA’s efforts to
propose Simon into an ISO standard, a challenge that has likely a practical
impact.
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Lightweight Tweakable Block Ciphers and Side-Channel Protected

Implementations.

We note that tiny devices are more prone to be deployed into insecure en-
vironments and thus side-channel protected implementations of lightweight
encryption primitives is a very important aspect that should be taken care
of. One might even argue that instead of comparing performances of un-
protected implementations of these lightweight primitives, one should in-
stead compare protected variants (this is the recent trend followed by ciphers
like ZORRO [18] or PICARO [35] and has actually already been taken into ac-
count long before by the cipher Noekeon [17]). One extra protection against
side-channel attacks can be the use of leakage resilient designs and notably
through an extra tweak input of the cipher. Such tweakable block ciphers
are rather rare, the only such candidate being Joltik-BC [23] or the internal
cipher from SCREAM [44]. Coming up with a tweakable block cipher is indeed
not an easy task as one must be extremely careful how to include this extra
input that can be fully controlled by the attacker.

Low-Latency Implementations for Memory Encryption.

One very interesting field in the area of lightweight cryptography is memory
encryption (see e.g. [21] for an extensive survey of memory encryption tech-
niques). Memory encryption has been used in the literature to protect the
memory used by a process domain against several types of attackers, includ-
ing attackers capable of monitoring and even manipulating bus transactions.
Examples of commercial uses do not abound, but there are at least two: IBM’s
SecureBlue++ [46] and Intel’s SGX whose encryption and integrity mecha-
nisms have been presented by Gueron at RWC 2016.2 No documentation
seems to be publicly available regarding the encryption used in IBM’s solu-
tion, while Intel’s encryption method requires additional data to be stored
with each cache line. It is optimal in the context of encryption with mem-
ory overhead, but if the use case does not allow memory overhead then an
entirely different approach is necessary.

With a focus on data confidentiality, a tweakable block cipher in ECB mode
would then be the natural, straightforward solution. However, all generic
methods to construct a tweakable block cipher from a block cipher suffer
from an increased latency. Therefore, there is a clear need for lightweight
tweakable block ciphers which do not require whitening value derivation,
have a latency similar to the best non-tweakable block ciphers, and that can
also be used in modes of operation that do not require memory expansion
and offer beyond-birthday-bound security.

2The slides can be found here.

https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view
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While being of great practical impact and need, it is actually very challeng-
ing to come up with such a block cipher. It should have three main character-
istics. First, it must be executed within a single clock cycle and with a very
low latency. Second, a tweak input is required, which in the case of mem-
ory encryption will be the memory address. Third, as one necessarily has to
implement encryption and decryption, it is desirable to have a very low over-
head when implementing decryption on top of encryption. The first and the
third characteristics are already studied in the block cipher PRINCE [10]. How-
ever, the second point, i.e. having a tweak input, is not provided by PRINCE. It
is not trivial to turn PRINCE into a tweakable block cipher, especially without
increasing the number of rounds (and thereby latency) significantly.

Our Contributions.

Our contributions are twofold. First, we introduce a new lightweight family
of block ciphers: SKINNY. Our goal here is to provide a competitor to Simonin
terms of hardware/software performances, while proving in addition much
stronger security guarantees with regard to differential/linear attacks. Sec-
ond, we present MANTIS, a dedicated variant of SKINNY that constitutes a very
efficient solution to the aforementioned problem of designing a tweakable
block cipher for memory encryption.

Regarding SKINNY, we have pushed further the recent trend of having a
SPN cipher with locally non-optimal internal components: SKINNY is an SPN
cipher that uses a compact Sbox, a new very sparse diffusion layer, and a new
very light key schedule. Yet, by carefully choosing our components and how
they interact, our construction manages to retain very strong security guar-
antees. For all the SKINNY versions, we are able to prove using mixed integer
linear programming (MILP) very strong bounds with respect to differential/-
linear attacks, not only in the single-key model, but also in the much more in-
volved related-key model. Some versions of SKINNY have a very large key size
compared to its block size and this theoretically renders the bounds search
space huge. Therefore, the MILP methods we have devised to compute these
bounds for a SKINNY-like construction can actually be considered a contri-
bution by itself. As we will see later, compared to Simon, in the single-key
model SKINNY needs a much lower proportion of its total number of rounds
to provide a sufficient bound on the best differential/linear characteristic. In
the related-key model, the situation is even more at SKINNY’s advantage as
no such bound is known for any version of Simonas of today.

With regard to performance, SKINNY reaches very small area with serial
ASIC implementations, yet it is actually the very first block cipher that leads
to better performances than Simonfor round-based ASIC implementations,
arguably the most important type of implementation since it provides a very
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good throughput for a reasonably low area cost, in contrary to serial imple-
mentations that only minimizes area. We also exhibit ASIC threshold imple-
mentations of our SKINNY variants that compare for example very favourably
to aes-128 threshold implementations. As explained above, this is an integral
part of modern lightweight primitives.

Regarding software, our implementations outperform all lightweight ci-
phers, except Simonwhich performs slightly faster in the situation where the
key schedule is performed only once. However, as remarked in [4], it is more
likely in practice that the key schedule has to be performed everytime, and
since SKINNY has a very lightweight key schedule we expect the efficiency
of SKINNY software implementations to be equivalent to that of Simon. This
shows that SKINNY would perfectly fit a scenario where a server communi-
cate with many lightweight devices. These performances are not surprising,
in particular for bit-sliced implementations, as we show that SKINNY uses
a much smaller total number of AND/NOR/XOR gates compared to all
known lightweight block ciphers. This indicates that SKINNY will be com-
petitive for most platforms and scenarios. Micro-controllers are no exception,
and we show that SKINNY performs extremely well on these architectures.

We further remark that the decryption process of SKINNY has almost ex-
actly the same description as the encryption counterpart, thus minimizing
the decryption overhead.

We finally note that similarly to Simon, SKINNY very naturally encompasses
64- or 128-bit block versions and a wide range of key sizes. However, in ad-
dition, SKINNY provides a tweakable capability, which can be very useful not
only for leakage resilient implementations, but also to be directly plugged
into higher-level operating modes, such as SCT [34]. In order to provide this
tweak feature, we have generalized the STK construction [22] to enable more
compact implementations while maintaining a high provable security level.

The SKINNY specifications are given in Section 2. The rationale of our de-
sign as well as various theoretical security and efficiency comparisons are
provided in Section 3. Finally, we conducted a complete security analysis in
Section 4 and we exhibit our implementation results in Section 5.

Regarding MANTIS, we propose in Section 6 a low-latency tweakable block
cipher that reuses some design principles of SKINNY.3 It represents a very
efficient solution to the aforementioned problem of designing a tweakable
block cipher tailored for memory encryption.

The main challenge when designing such a cipher is that its latency is di-
rectly related to the number of rounds. Thus, it is crucial to find a design, i.e.
a round function and a tweak-scheduling, that ensures security already with

3For the genesis of the cipher MANTIS, we acknowledge the contribution of Roberto Avanzi,
as specified in Section 6.
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a minimal number of rounds. Here, components of the recently proposed
block ciphers PRINCE and MIDORI [1] turn out to be very beneficial.

The crucial step in the design of MANTIS was to find a suitable tweak-
scheduling that would ensure a high number of active Sboxes not only in
the single-key setting, but also in the setting where the attacker can control
the difference in the tweak. Using, again, the MILP approach, we are able
to demonstrate that a rather small number of rounds is already sufficient
to ensure the resistance of MANTIS to differential (and linear) attacks in the
related-tweak setting.

Besides the tweak-scheduling, we emphasize that MANTIS basically reuses
well understood, previously studied, known components. It is mainly
putting those components together in a new fashion, that allows MANTIS

to be very competitive to PRINCE in latency and area, while being enhanced
with a tweak. Thus, compared to the performance figures of PRINCE, we get
the tweak almost for free, which is the key to solve the pressing problem of
memory encryption.

2 Speci�cations of SKINNY

Notations and SKINNY Versions.

The lightweight block ciphers of the SKINNY family have 64-bit and 128-bit
block versions and we denote n the block size. In both n = 64 and n = 128

versions, the internal state is viewed as a 4× 4 square array of cells, where
each cell is a nibble (in the n = 64 case) or a byte (in the n = 128 case).
We denote ISi,j the cell of the internal state located at Row i and Column j
(counting starting from 0). One can also view this 4× 4 square array of cells
as a vector of cells by concatenating the rows. Thus, we denote with a single
subscript ISi the cell of the internal state located at Position i in this vector
(counting starting from 0) and we have that ISi,j = IS4·i+j.
SKINNY follows the TWEAKEY framework from [22] and thus takes a

tweakey input instead of a key or a pair key/tweak. The user can then
choose what part of this tweakey input will be key material and/or tweak
material (classical block cipher view is to use the entire tweakey input as key
material only). The family of lightweight block ciphers SKINNY have three
main tweakey size versions: for a block size n, we propose versions with
tweakey size t = n, t = 2n and t = 3n (versions with other tweakey sizes
between n and 3n are naturally obtained from these main versions) and we
denote z = t/n the tweakey size to block size ratio. The tweakey state is
also viewed as a collection of z 4 × 4 square arrays of cells of s bits each.
We denote these arrays TK1 when z = 1, TK1 and TK2 when z = 2, and
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finally TK1, TK2 and TK3 when z = 3. Moreover, we denote TKzi,j the cell
of the tweakey state located at Row i and Column j of the z-th cell array. As
for the internal state, we extend this notation to a vector view with a single
subscript: TK1i, TK2i and TK3i. Moreover, we define the adversarial model
SK (resp. TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce
differences in the tweakey state.

Initialization.

The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi
are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit block SKINNY

versions and s = 8 for the 128-bit block SKINNY versions). The initialization
of the cipher’s internal state is performed by simply setting ISi = mi for
0 6 i 6 15:

IS =

 m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15


This is the initial value of the cipher internal state and note that the state

is loaded row-wise rather than in the column-wise fashion we have come to
expect from the aes; this is a more hardware-friendly choice, as pointed out
in [29].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1,
where the tki are s-bit cells. The initialization of the cipher’s tweakey state
is performed by simply setting for 0 6 i 6 15: TK1i = tki when z = 1,
TK1i = tki and TK2i = tk16+i when z = 2, and finally TK1i = tki,
TK2i = tk16+i and TK3i = tk32+i when z = 3. We note that the tweakey
states are loaded row-wise.

Table 1: Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t

Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds

128 40 rounds 48 rounds 56 rounds
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The Round Function.

One encryption round of SKINNY is composed of five operations in the fol-
lowing order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns (see illustration in Figure 1).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 1: The SKINNY round function applies five different transformations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and
MixColumns (MC).

The number r of rounds to perform during encryption depends on the
block and tweakey sizes. The actual values are summarized in Table 1. Note
that no whitening key is used in SKINNY. Thus, a part of the first and last
round do not add any security. We motivate this choice in Section 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state.
For s = 4, SKINNY cipher uses a Sbox S4 very close to the PICCOLO

Sbox [38]. The action of this Sbox in hexadecimal notation is given by
the following Table 2.

Table 2: 4-bit Sbox S4 used in SKINNY when s = 4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1
4 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

Note that S4 can also be described with four NOR and four XOR oper-
ations, as depicted in Figure 2. If x0, x1, x2 and x3 represent the four
inputs bits of the Sbox (x0 being the least significant bit), one simply
applies the following transformation:

(x3, x2, x1, x0)→ (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times,
except for the last iteration where the bit rotation is omitted.

For the case s = 8, SKINNY uses an 8-bit Sbox S8 that is built in a similar
manner as for the 4-bit Sbox S4 described above. The construction is
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MSB LSB

MSB LSB

Figure 2: Construction of the Sbox S4.

MSB LSB

MSB LSB

Figure 3: Construction of the Sbox S8.

simple and is depicted in Figure 3. If x0, . . ., x7 represent the eight
inputs bits of the Sbox (x0 being the least significant bit), it basically
applies the below transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where
there is just a bit swap between x1 and x2. Besides, we provide in
Section A the table of Sbox S8 and its inverse in hexadecimal notations.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2,
rc1, rc0) (with rc0 being the least significant bit), is used to generate
round constants. Its update function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given
round. The bits from the LFSR are arranged into a 4× 4 array (only the
first column of the state is affected by the LFSR bits), depending on the
size of internal state: 

c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0

 ,



The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS 193

with c2 = 0x2 and

(c0, c1) = (rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4) when s = 4

(c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4) when s = 8.

The round constants are combined with the state, respecting array posi-
tioning, using bitwise exclusive-or. The values of the constants for each
round are given in the table below, encoded to byte values for each
round, with rc0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

49 - 62 09,13,26,0C,19,32,25,0A,15,2A,14,28,10,20

AddRoundTweakey. The first and second rows of all tweakey arrays are ex-
tracted and bitwise exclusive-ored to the cipher internal state, respect-
ing the array positioning. More formally, for i = {0, 1} and j = {0, 1, 2, 3},
we have:

• ISi,j = ISi,j ⊕ TK1i,j when z = 1,

• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,

• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 4: The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if
any) follows a similar transformation update, except that no LFSR is applied
to TK1.

Then, the tweakey arrays are updated as follows (this tweakey schedule
is illustrated in Figure 4). First, a permutation PT is applied on the cells



194 The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS

positions of all tweakey arrays: for all 0 6 i 6 15, we set TK1i ←
TK1PT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

and similarly for TK2 when z = 2, and for TK2 and TK3 when z = 3.
This corresponds to the following reordering of the matrix cells, where
indices are taken row-wise:

(0, . . . , 15)
PT7−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

Finally, every cell of the first and second rows of TK2 and TK3 (for the
SKINNY versions where TK2 and TK3 are used) are individually updated
with an LFSR. The LFSRs used are given in Table 3 (x0 stands for the
LSB of the cell).

Table 3: The LFSRs used in SKINNY to generate the round constants. The TK parameter
gives the number of tweakey words in the cipher, and the s parameter gives
the size of cell in bits.

TK s LFSR

TK2
4 (x3||x2||x1||x0)→ (x2||x1||x0||x3⊕x2)

8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7⊕x5)

TK3
4 (x3||x2||x1||x0)→ (x0⊕x3||x3||x2||x1)

8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0⊕x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. As in aes, in this layer the rows of the cipher state cell array
are rotated, but they are to the right. More precisely, the second, third,
and fourth cell rows are rotated by 1, 2 and 3 positions to the right,
respectively. In other words, a permutation P is applied on the cells
positions of the cipher internal state cell array: for all 0 6 i 6 15, we set
ISi ← ISP[i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].



The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS 195

MixColumns. Each column of the cipher internal state array is multiplied by
the following binary matrix M:

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 .

The final value of the internal state array provides the ciphertext with
cells being unpacked in the same way as the packing during initialization.
Test vectors for SKINNY are provided in Section B. Note that decryption is
very similar to encryption as all cipher components have very simple inverse
(SubCells and MixColumns are based on a generalized Feistel structure, so
their respective inverse is straightforward to deduce and can be implemented
with the exact same number of operations).

Extending to Other Tweakey Sizes.

The three main versions of SKINNY have tweakey sizes t = n, t = 2n and
t = 3n, but one can easily extend this to any size4 of tweakey n 6 t 6 3n:

• for any tweakey size n < t < 2n, one simply uses exactly the t = 2n

version but the last 2n− t bits of the tweakey state are fixed to the zero
value. Moreover, the corresponding cells in the tweakey state TK2 will
not be updated throughout the rounds with the LFSR.

• for any tweakey size 2n < t < 3n, one simply uses exactly the t = 3n

version but the last 3n− t bits of the tweakey state are fixed to the zero
value. Moreover, the corresponding cells in the tweakey state TK3 will
not be updated throughout the rounds with the LFSR.

We note that some of our 64-bit block SKINNY versions allow small key sizes
(down to 64-bit). We emphasize that we propose these versions mainly for
simplicity in the description of the SKINNY family of ciphers. Yet, as advised
by the NIST [32], one should not to use key sizes that are smaller than 112

bits.

4For simplicity we do not include here tweakey sizes that are not a multiple of s bits. How-
ever, such cases can be trivially handled by generalizing the tweakey schedule description to the
bit level.
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Instantiating the Tweakey State with Key and Tweak Material.

Following the TWEAKEY framework [22], SKINNY takes as inputs a plaintext
or a ciphertext and a tweakey value, which can be used in a flexible way by
filling it with key and tweak material. Whatever the situation, the user must
ensure that the key size is always at least as big as the block size.

In the classical setting where only key material is input, we use exactly the
specifications of SKINNY described previously. However, when some tweak
material is to be used in the tweakey state, we dedicate TK1 for this pur-
pose and XOR a bit set to “1” every round to the second bit of the top
cell of the third column (i.e. the second bit of IS0,2). In other words, when
there is some tweak material, we add an extra “1” in the constant matrix
from AddConstants). Besides, in situations where the user might use differ-
ent tweak sizes, we recommend to dedicate some cells of TK1 to encode the
size of the tweak material, in order to ensure proper separation. Note that
these are only recommendations, thus not strictly part of the specifications
of SKINNY.

3 Rationale of SKINNY

Several design choices of SKINNY have been borrowed from existing ciphers,
but most of our components are new, optimized for our goal: a cipher well
suited for most lightweight applications. When designing SKINNY, one of our
main criteria was to only add components which are vital for the security of
the primitive, removing any unnecessary operation (hence the name of our
proposal). We end up with the sound property that removing any component
or using weaker version of a component from SKINNY would lead to a much
weaker (or actually insecure) cipher. Therefore, the construction of SKINNY

has been done through several iterations, trying to reach the exact spot where
good performance meets strong security arguments. We detail in this section
how we tried to follow this direction for each layer of the cipher.

We note that one could have chosen a slightly smaller Sbox or a slightly
sparser diffusion layer, but our preliminary implementations showed that
these options represent worse tradeoff overall. For example, one could imag-
ine a very simple cipher iterating thousands of rounds composed of only a
single non-linear boolean operation, an XOR and some bit wiring. However,
such a cipher will lead to terrible performance regarding throughput, latency
or energy consumption.

When designing a lightweight encryption scheme, several use cases must
be taken in account. While area optimized implementations are important
for some very constrained applications, throughput or throughput-over-area
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optimized implementations are also very relevant. Actually, looking at re-
cently introduced efficiency measurements [24], one can see that our designs
choices are good for many types of implementations, which is exactly what
makes a good general-purpose lightweight encryption scheme.

3.1 Estimating Area and Performances

In order to discuss the rationale of our design, we first quickly describe an
estimation in Gate Equivalent (GE) of the ASIC area cost of several simple
bit operations (for UMC 180nm 1.8 V [45]): a NOR/NAND gate costs 1 GE,
a OR/AND gate costs 1.33 GE, a XOR/XNOR gate costs 2.67 GE and a NOT
gate costs 0.67 GE. Finally, one memory bit can be estimated to 6 GE (scan
flip-flop). Of course, these numbers depend on the library used, but it will
give us at least some rough and easy evaluation of the design choices we will
make.

Besides, even though many tradeoffs exist, we distinguish between a se-
rial implementation, a round-based implementation and a low-latency imple-
mentation. In the latter, the entire ciphering process is performed in a single
clock cycle, but the area cost is then quite important as all rounds need to be
directly implemented. For a round-based implementation, an entire round of
the cipher is performed in a single clock cycle, thus ending with the entire
ciphering process being done in r cycles and with a moderate area cost (this
tradeoff is usually a good candidate for energy efficiency). Finally, in a serial
implementation, one reduces the datapath and thus the area to the minimum
(usually a few bits, like the Sbox bit size), but the throughput is greatly re-
duced. The ultimate goal of a good lightweight encryption primitive is to
use lightweight components, but also to ensure that these components are
compact and efficient for all these tradeoffs. This is what Simon designers
have managed to produce, but sacrificing a few security guarantees. SKINNY
offers similar (sometimes even better) performances than Simon, while pro-
viding much stronger security arguments with regard to classical differential
or linear cryptanalysis.

3.2 General Design and Components Rationale

A first and important decision was to choose between a Substitution Permu-
tation Network (SPN), or a Feistel network. We started from a SPN construc-
tion as it is generally easier to provide stronger bounds on the number of
active Sboxes. However, we note that there is a dual bit-sliced view of SKINNY
that resembles some generalized Feistel network. Somehow, one can view the
cipher as a primitive in between an SPN and an “AND-rotation-XOR” func-
tion like Simon. We try to get the best of both worlds by benefiting the nice



198 The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS

implementation tradeoffs of the latter, while organizing the state in an SPN
view so that bounds on the number of active Sboxes can be easily obtained.

The absence of whitening key is justified by the reduction of the control
logic: by always keeping the exact same round during the entire encryption
process we avoid the control logic induced by having a last non-repeating
layer at the end of the cipher. Besides, this simplifies the general description
and implementation of the primitive. Obviously, having no whitening key
means that a few operations of the cipher have no impact on the security.
This is actually the case for both the beginning and the end of the ciphering
process in SKINNY since the key addition is done in the middle of the round,
with only half of the state being involved with this key addition every round.

A crucial feature of SKINNY is the easy generation of several block size or
tweakey size versions, while keeping the general structure and most of the
security analysis untouched. Going from the 64-bit block size versions to the
128-bit block size versions is simply done by using a 8-bit Sbox instead of a
4-bit Sbox, therefore keeping all the structural analysis identical. Using big-
ger tweakey material is done by following the STK construction [22], which
allows automated analysis tools to still work even though the input space
become very big (in short, the superposition trick makes the TK2 and TK3
analysis almost as time consuming as the normal and easy TK1 case). Be-
sides, unlike previous lightweight block ciphers, this complete analysis of
the TK2 and TK3 cases allows us to dedicate a part of this tweakey mate-
rial to be potentially some tweak input, therefore making SKINNY a flexible
tweakable block cipher. Also, we directly obtain related-key security proofs
using this general structure.

SubCells.

The choice of the Sbox is obviously a crucial decision in an SPN cipher and
we have spent a lot of efforts on looking for the best possible candidate. For
the 4-bit case, we have designed a tool that searches for the most compact
candidate that provides some minimal security guarantees. Namely, with the
bit operations cost estimations given previously, for all possible combinations
of operations (NAND/NOR/XOR/XNOR) up to a certain limit cost, our
tool checks if certain security criterion of the tested Sbox are fulfilled. More
precisely, we have forced the maximal differential transition probability of
the Sbox to be 2−2 and the maximal absolute linear bias to be 2−2. When
both criteria are satisfied, we have filtered our search for Sbox with high
algebraic degree.

Our results is that the Sbox used in the PICCOLO block cipher [38] is close
to be the best one: our 4-bit Sbox candidate S4 is essentially the PICCOLO

Sbox with the last NOT gate at the end being removed (see Figure 2). We
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believe this extra NOT gate was added by the PICCOLO designers to avoid
fixed points (actually, if fixed points were to be removed at the Sbox level,
the PICCOLO candidate would be the best choice), but in SKINNY the fixed
points are handled with the use of constants to save some extra GE. Yet,
omitting the last bit rotation layer removes already a lot of fixed points (the
efficiency cost of this omission being null).

The Sbox S4 can therefore be implemented with only 4 NOR gates and 4
XOR gates, the rest being only bit wiring (basically free in hardware). Ac-
cording to our previously explained estimations, this should cost 14.68 GE,
but as remarked in [38], some libraries provide special gates that further save
area. Namely, in our library the 4-input AND-NOR and 4-input OR-NAND
gates with two inputs inverted cost 2 GE and they can be used to directly
compute a XOR or an XNOR. Thus, S4 can be implemented with only 12
GE. In comparison, the PRESENT Sbox [8] requires 3 AND, 1 OR and 11 XOR
gates, which amounts to 27.32 GE (or 34.69 GE without the special 4-input
gates).

All in all, our 4-bit Sbox S4 has the following security properties: maximal
differential transition probability of 2−2, maximal absolute linear bias of 2−2,
branching number 2, algebraic degree 3 and one fixed point S4(0xF) = 0xF.

Regarding the 8-bit Sbox, the search space was too wide for our automated
tool. Therefore, we instead considered a subclass of the entire search space:
by reusing the general structure of S4, we have tested all possible Sboxes
built by iterating several times a NOR/XOR combination and a bit permu-
tation. Our search found that the maximal differential transition probability
and maximal absolute linear bias of the Sboxes are larger than 2−2 when we
have less than 8 iterations of the NOR/XOR combination and bit permuta-
tion. With 8 iterations of the NOR/XOR combination and bit permutation, we
found Sboxes with desired maximal differential transition probability of 2−2

and maximal absolute linear bias of 2−2 with algebraic degree 6. However,
the algebraic degree of the inverse Sboxes of all these candidates is 5 rather
than 6. In addition, having 8 iterations may result in higher latency when we
consider a serial hardware implementation. Therefore, we considered having
2 NOR/XOR combinations in every iteration and reduce the number of it-
eration from 8 to 4. As a result, we found several Sboxes with the desired
maximal differential probability and absolute linear bias, while reaching al-
gebraic degree 6 for both the Sbox and its inverse (thus better than the 8
iterations case). Although such Sbox candidates have 3 fixed points when we
omit the last bit permutation layer like the 4-bit case, we can easily reduce
the number of fixed points by introducing a different bit permutation from
the intermediate bit permutations to the last layer without any additional
cost.
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With 2 NOR/XOR combinations and a bit permutation iterated 4 times, S8
can be implemented with only 8 NOR gates and 8 XOR gates (see Figure 3),
the rest being only bit wiring (basically free in hardware). The total area cost
should be 24 GE according to our previously explained estimations and us-
ing special 4-input AND-NOR and 4-input OR-NAND gates. In comparison,
while ensuring a maximal differential transition probability (resp. maximum
absolute linear bias) of 2−6 (resp. 2−4), the aes Sbox requires 32 AND/OR
gates and 83 XOR gates to be implemented, which amounts to 198 GE. Even
recent lightweight 8-bit Sbox proposal [14] requires 12 AND/OR gates and
26 XOR gates, which amounts to 64 GE, for a maximal differential transi-
tion probability (resp. maximum linear bias) of 2−5 (resp. 2−2), but their
optimization goal was different from ours.

All in all, we believe our 8-bit Sbox candidate S8 provides a good tradeoff
between security and area cost. It has maximal differential transition prob-
ability of 2−2, maximal absolute linear bias of 2−2, branching number 2,
algebraic degree 6 and a single fixed point S8(0xFF) = 0xFF (for the Sbox we
have chosen, swapping two bits in the last bit permutation was probably the
simplest method to achieve only a single fixed point).

Note that both our Sboxes S4 and S8 have the interesting feature that their
inverse is computed almost identically to the forward direction (as they are
based on a generalized Feistel structure) and with exactly the same number
of operations. Thus, our design reasoning also holds when considering the
decryption process.

AddConstants.

The constants in SKINNY have several goals: differentiate the rounds (see Sec-
tion 4.5), differentiate the columns and avoid symmetries, complicate sub-
space cryptanalysis (see Section 4.6) and attacks exploiting fixed points from
the Sbox. In order to differentiate the rounds, we simply need a counter, and
since the number of rounds of all SKINNY versions is smaller than 64, the
most hardware friendly solution is to use a very cheap 6-bit affine LFSR (like
in LED [20]) that requires only a single XNOR gate per update. The 6 bits
are then dispatched to the two first rows of the first column (this will max-
imize the constants spread after the ShiftRows and MixColumns), which
will already break the columns symmetry.

In order to avoid symmetries, fixed points and more generally subspaces
to spread, we need to introduce different constants in several cells of the
internal state. The round counter will already naturally have this goal, yet,
in order to increase that effect, we have added a “1” bit to the third row,
which is almost free in terms of implementation cost. This will ensure that
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symmetries and subspaces are broken even more quickly, and in particular
independently of the round counter.

AddRoundTweakey.

The tweakey schedule of SKINNY follows closely the STK construction from [22]
(that allows to easily get bounds on the number of active Sboxes in the
related-tweakey model). Yet, we have changed a few parts. Firstly, instead of
using multiplications by 2 and 3 in a finite field, we have instead replaced
these tweakey cells updates by cheap 4-bit or 8-bit LFSRs (depending on
the size of the cell) to minimize the hardware cost. All our LFSRs require
only a single XOR for the update, and we have checked that the differential
cancellation behavior of these interconnected LFSRs is as required by the
STK construction: for a given position, a single cancellation can only happen
every 15 rounds for TK2, and same with two cancellations for TK3.

Another important generalization of the STK construction is the fact that
every round we XOR only half of the internal cipher state with some sub-
tweakey. The goal was clearly to optimize hardware performances of SKINNY,
and it actually saves an important amount of XORs in a round-based imple-
mentation. The potential danger is that the bounds we obtain would dramat-
ically drop because of this change. Yet, surprisingly, the bounds remained
actually good and this was a good security/performance tradeoff to make.
Another advantage is that we can now update the tweakey cells only be-
fore they are incorporated to the cipher internal state. Thus, half of tweakey
cells only will be updated every round and the period of the cancellations
naturally doubles: for a certain cell position, a single cancellation can only
happen every 30 rounds for TK2 and two cancellations can only happen
every 30 rounds for TK3.

The tweakey permutation PT has been chosen to maximize the bounds
on the number of active Sboxes that we could obtain in the related-tweakey
model (note that it has no impact in the single-key model). Besides, we have
enforced for PT the special property that all cells located in third and fourth
rows are sent to the first and second rows, and vice-versa. Since only the
first and second rows of the tweakey states are XORed to the internal state of
the cipher, this ensures that both halves of the tweakey states will be equally
mixed to the cipher internal state (otherwise, some tweakey bytes might be
more involved in the ciphering process than others). Finally, the cells that
will not be directly XORed to the cipher internal state can be left at the same
relative position. On top of that, we only considered those variants of PT that
consist of a single cycle.
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We note that since the cells of the first tweakey word TK1 are never up-
dated, they can be directly hardwired to save some area if the situation al-
lows.

ShiftRows and MixColumns.

Competing with Simon’s impressive hardware performance required choos-
ing an extremely sparse diffusion layer for SKINNY, which was in direct con-
tradiction with our original goal of obtaining good security bounds for our
primitive. Note that since our Sboxes S4 and S8 have a branching number
of two, we cannot use only a bit permutation layer as in the PRESENT block
cipher: differential characteristics with only a single active Sbox per round
would exist. After several design iterations, we came to the conclusion that
binary matrices were the best choice. More surprisingly, while most block
cipher designs are using very strong diffusion layers (like an MDS matrix),
and even though a 4 × 4 binary matrices with branching number four ex-
ist, we preferred a much sparser candidate which we believe offers the best
security/performance tradeoff (this can be measured in terms of Figure Of
Adversarial Merit [24]).

Due to its strong sparseness, SKINNY binary diffusion matrix M has only a
differential or linear branching number of two. This seems to be worrisome
as it would again mean that differential characteristics with only a single
active Sbox per round would exist (it would be the same for PRESENT block
cipher if its Sbox did not have branching number three, which is the reason of
the relatively high cost of the PRESENT Sbox). However, we designed M such
that when a branching two differential transition occurs, the next round will
likely lead to a much higher branching number. Looking at M, the only way
to meet branching two is to have an input difference in either the second or
the fourth input only. This leads to an input difference in the first or third
element for the next round, which then diffuses to many output elements.
The differential characteristic with a single active Sbox per round is therefore
impossible, and actually we will be able to prove at least 96 active Sboxes
for 20 rounds. Thus, for the very cheap price of a differential branching two
binary diffusion matrix, we are in fact getting a better security than expected
when looking at the iteration of several rounds. The effect is the same with
linear branching (for which we only need to look at the transpose of the
inverse of M, i.e. (M−1)>).

We have considered all possibilites for M that can be implemented with
at most three XOR operations and eventually kept the MixColumns matrices
that, in combination with ShiftRows, guaranteed high diffusion and led
to strong bounds on the minimal number of active Sboxes in the single-key
model.
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Note that another important criterion came into play regarding the choice
of the diffusion layer of SKINNY: it is important that the key material impacts
as fast as possible the cipher internal state. This is in particular a crucial
point for SKINNY as only half of the state is mixed with some key material
every round, and since there is no whitening keys. Besides, having a fast
key diffusion will reduce the impact of meet-in-the-middle attacks. Once the
two first rows of the state were arbitrarily chosen to receive the key material,
given a certain subtweakey, we could check how many rounds were required
(in both encryption and decryption directions) to ensure that the entire cipher
state depends on this subtweakey. Our final choice of MixColumns is optimal:
only a single round is required in both forward and backward directions to
ensure this diffusion.

3.3 Comparing Di�erential Bounds

Our entire design has been crafted to allow good provable bounds on the
minimal number of differential or linear active Sboxes, not only for the
single-key model, but also in the related-key model (or more precisely the
related-tweakey model in our case). We provide in Table 4 a comparison of
our bounds with the best known proven bounds for other lightweight block
ciphers at the same security level (all the ciphers in the table use 4-bit Sboxes
with a maximal differential probability of 2−2). We give in Section 4 more
details on how the bounds of SKINNY were obtained.

First, we emphasize that most of the bounds we obtained for SKINNY are
not tight, and we can hope for even higher minimal numbers of active Sboxes.
This is not the case of LED or PRESENT for which the bounds are tight.

From the table, we can see that LED obtains better bounds for SK. Yet,
the situation is inverted for TK2: due to a strong plateau effect in the TK2
bounds of LED, it stays at 50 active Sboxes until Round 24, while SKINNY

already reaches 72 active Sboxes at Round 24. Besides, LED performance will
be quite bad compared to SKINNY, due to its strong MDS diffusion layer and
strong Sbox.

Regarding PICCOLO, the bounds5 are really similar to SKINNY for SK but
worse for TK2. Yet, our round function is lighter (no use of a MDS layer), see
Section 3.4.

No related-key bounds are known for MIDORI, PRESENT or TWINE. Besides,
our SK bounds are better than PRESENT. Regarding MIDORI or TWINE in SK,
while our bounds are slightly worse, we emphasize again that our round
function is much lighter and thus will lead to much better performances.

5We estimate the number of active Sboxes for PICCOLO to d4.5 ·Nfe, where Nf is the
number of active F-functions taken from [38].



204 The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS

Table 4: Proved bounds on the minimal number of differential active Sboxes for
SKINNY-64-128 and various lightweight 64-bit block 128-bit key ciphers.
Model SK denotes the single-key scenario and model TK2 denotes the
related-tweakey scenario where differences can be inserted in both states TK1
and TK2.

Cipher Model
Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SKINNY SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66 75

(36 rounds) TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35 40

LED SK 1 5 9 25 26 30 34 50 51 55 59 75 76 80 84 100

(48 rounds) TK2 0 0 0 0 0 0 0 0 1 5 9 25 26 30 34 50

PICCOLO SK 0 5 9 14 18 27 32 36 41 45 50 54 59 63 68 72

(31 rounds) TK2 0 0 0 0 0 0 0 5 9 14 18 18 23 27 27 32

MIDORI SK 1 3 7 16 23 30 35 38 41 50 57 62 67 72 75 84

(16 rounds) TK2 - - - - - - - - - - - - - - - -

PRESENT SK - - - - 10 - - - - 20 - - - - 30 -

(31 rounds) TK2 - - - - - - - - - - - - - - - -

TWINE SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 -

(36 rounds) TK2 - - - - - - - - - - - - - - - -

Comparing differential bounds with Simon is not as simple as with SPN
ciphers. Yet, bounds on the best differential/linear characteristics for Simon

have been provided recently by [27].6

Assuming (very) pessimistically for SKINNY that a maximum differential
transition probability of 2−2 is always possible for each active Sbox in the
differential paths with the smallest number of active Sboxes, we can directly
obtain easy bounds on the best differential/linear characteristics for SKINNY.
We provide in Table 5 a comparison between Simon and SKINNY versions for
the proportion of total number of rounds needed to provide a sufficiently
good differential characteristic probability bound according to the cipher
block size. One can see that SKINNY needs a much smaller proportion of its to-
tal number of rounds compared to Simon to ensure enough confidence with
regards to simple differential/linear attacks. Actually the related-key ratios
of SKINNY are even smaller than single-key ratios of Simon (no related-key
bounds are known as of today for Simon).

Finally, in terms of diffusion, all versions of SKINNY achieve full diffusion
after only 6 rounds (forwards or backwards), while Simon versions with 64-
bit block size requires 9 rounds, and even 13 rounds for Simon versions with
128-bit block size [27] (aes-128 reaches full diffusion after 2 of its 10 rounds).

6Their article initially contained results only for the smallest versions of Simon, but the
authors provided us updated results for all versions of Simon.
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Table 5: Comparison between aes-128 and Simon/SKINNY versions for the proportion
of total number of rounds needed to provide a sufficiently good differential
characteristic probability bound according to the cipher block size (i.e. <
2−64 for 64-bit block size and < 2−128 for 128-bit block size). Results for
Simon are updated results taken from [27].

Cipher Single Key Related Key

SKINNY-64-128 8/36 = 0.22 15/36 = 0.42

Simon-64-128 19/44 = 0.43 no bound known

SKINNY-128-128 15/40 = 0.37 19/40 = 0.47

Simon-128-128 41/72 = 0.57 no bound known

aes-128 4/10 = 0.40 6/10 = 0.60

Again, the diffusion comparison according to the total number of rounds is
at SKINNY’s advantage.

3.4 Comparing Theoretical Performance

After some minimal security guarantee, the second design goal of SKINNY

was to minimize the total number of operations. We provide in Table 6 a
comparison of the total number of operations per bit for SKINNY and for other
lightweight block ciphers, as well as some quality grade regarding its ASIC
area in a round-based implementation. We explain in details in Section C
how these numbers have been computed.

One can see from the Table 6 that Simon and SKINNY compare very favor-
ably to other candidates, both in terms of number of operations and theoret-
ical area grade for round-based implementations. This seems to confirm that
when it comes to lightweight block ciphers, Simon is probably the strongest
competitor as of today. Besides, SKINNY has the best theoretical profile among
all the candidates presented here, even better than Simon for area. For speed
efficiency, SKINNY outperforms Simon when the key schedule is taken in ac-
count. This scenario is arguably the most important in practice: as remarked
in [4], it is likely that lightweight devices will cipher very small messages and
thus the back-end servers communicating with millions of devices will prob-
ably have to recompute the key schedule for every small message received.

In addition to its smaller key size, we note that KATAN-64-80 [13] theoreti-
cal area grade is slightly biased here as one round of this cipher is extremely
light and such a round-based implementation would actually look more like
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Table 6: Total number of operations and theoretical performance of SKINNY and vari-
ous lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate,
X denotes a XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/ key sch. impl. area

SKINNY
36

1 N 1 N 3.25× 36 3.875× 36 1+ 2.67× 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

Simon
44

0.5 A 0.5 A 2× 44 3.5× 44 0.67+ 2.67× 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT
31

1 A 0.125 A 1.125 A 4.75× 31 5.22× 31 1.5+ 2.67× 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

PICCOLO
31

1 N 1 N 5.25× 31 5.25× 31 1+ 2.67× 4.25

-128 4.25 X 4.25 X = 162.75 = 162.75 = 12.35

KATAN
254

0.047 N 0.047 N 0.141× 254 3.141× 254 0.19+2.67×3.094

-64-80 0.094 X 3 X 3.094 X = 35.81 = 797.8 = 8.45

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1+ 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

Simon
72

0.5 A 0.5 A 2× 68 3× 68 0.67+ 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

Noekeon
16

0.5 (A + N) 0.5 (A + N) 1 (A + N) 6.25× 16 12.5× 16 2.33+ 2.67× 10.5

-128 5.25 X 5.25 X 10.5 X = 100 = 200 = 30.36

aes
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06+ 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

SKINNY
48

1 N 1 N 3.25× 48 3.81× 48 1+ 2.67× 2.81

-128-256 2.25 X 0.56 X 2.81 X = 156 = 183 = 8.5

Simon
72

0.5 A 0.5 A 2× 72 3.5× 72 0.67+ 2.67× 3

-128/256 1.5 X 1.5 X 3.0 X = 144 = 252 = 8.68

aes
14

4.25 A 2.12 A 6.37 A 20.25× 14 29.37× 14 8.47+ 2.67× 23

-256 16 X 7 X 23 X = 283.5 = 411.2 = 69.88

a serial implementation and will have a very low throughput (KATAN-64-80
has 254 rounds in total).

While Table 6 is only a rough indication of the efficiency of the various
designs, we observe that the ratio between the Simon and SKINNY best soft-
ware implementations, or the ratio between the smallest Simon and SKINNY

round-based hardware implementations actually match the results from the
table (See Section 5.3).

4 Security Analysis

In this section, we provide an in-depth analysis of the security of the SKINNY

family of block ciphers. We emphasize that we do not claim any security in
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the chosen-key or known-key model, but we do claim security in the related-
key model. Moreover, we chose not to use any constant to differentiate be-
tween different block sizes or tweakey sizes versions of SKINNY, as we believe
such a separation should be done at the protocol level, for example by deriv-
ing different keys (note that, if needed, this can easily be done by encoding
these sizes and use them as fixed extra constant material every round).

4.1 Di�erential/Linear Cryptanalysis

In order to argue for the resistance of SKINNY against differential and lin-
ear attacks, we computed lower bounds on the minimal number of active
Sboxes, both in the single-key and related-tweakey model. We recall that, in
a differential (resp. linear) characteristic, an Sbox is called active if it contains
a non-zero input difference (resp. input mask). In contrast to the single-key
model, where the round tweakeys are constant and thus do not influence the
activity pattern, an attacker is allowed to introduce differences (resp. masks)
within the tweakey state in the related-tweakey model. For that, we consid-
ered the three cases of choosing input differences in TK1 only, both TK1 and
TK2, and in all of the tweakey states TK1, TK2 and TK3, respectively. Table 7

presents lower bounds on the number of differential active Sboxes for 1 up
to 30 rounds. For computing these bounds, we generated a Mixed-Integer
Linear Programming model following the approach explained in [31, 41]. We
refer to Appendix D for more details on how these bounds were computed.

Table 7: Lowerbounds on the number of active Sboxes in SKINNY. Note that the
bounds on the number of linear active Sboxes in the single-key model are
also valid in the related-tweakey model. In case the MILP optimization was
too long, we provide upper bounds between parentheses.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66

TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49

TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35

TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

SK Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)

TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)

TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96

TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 (110) (118) (122) (128) (136) (141) (143)
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For lower bounding the number of linear active Sboxes, we used the same
approach. For that, we considered the inverse of the transposed linear trans-
formation M>. However, for the linear case, we only considered the single-
key model. As it is described in [28], there is no cancellation of active Sboxes
in linear characteristics. Thus, the bounds for SK give valid bounds also for
the case where the attacker is allowed to not only control the message but
also the tweakey input.

The above bounds are for single characteristic, thus it will be interesting to
take a look at differentials and linear hulls. Being a rather complex task, we
leave this as future work.

4.2 Meet-in-the-Middle Attacks

Meet-in-the-middle attacks have been applied to block ciphers e.g. [9, 15].
From its application to the SPN structure [37], the number of attacked
rounds can be evaluated by considering the maximum length of three fea-
tures, partial-matching, initial structure and splice-and-cut. This evaluation
approach can be seen in the proposal of MIDORI.

Partial-matching cannot work if the number of rounds reaches full diffu-
sion rounds in each of forward and backward directions. For SKINNY, full
diffusion is achieved after 6 rounds forwards and backwards. Thus, partial-
matching can work at most (6− 1) + (6− 1) = 10 rounds. The length of the
initial structure can also be bounded by the smaller number of full diffu-
sion rounds in backwards and forwards and the maximum number that all
tweakey cells impact to an Sbox. As a result, it works up to 6+ 2− 1 = 7

rounds for SKINNY. Splice-and-cut may extend the number of attack rounds
up to the smaller number of full diffusion rounds minus one, which is 6−1 =
5 in SKINNY. In the end, we conclude that meet-in-the-middle attack may
work up to 10+ 7+ 5 = 22 rounds. Consequently, the 32+ rounds of SKINNY
provides a reasonable security margin.

Remarks on Biclique Cryptanalysis.

Biclique cryptanalysis improves the complexity of exhaustive search by com-
puting only a part of encryption algorithm. The improved factor is often
evaluated by the ratio of the number of Sboxes involved in the partial com-
putation to all Sboxes in the cipher. The improved factor can be relatively big
when the number of rounds in the cipher is small, which is not the case in
SKINNY. We do not think improving exhaustive search by a small factor will
turn into serious vulnerability in future. Therefore, SKINNY is not designed
to resist biclique cryptanalysis with small improvement.
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Figure 1: 11-round impossible differential characteristic. SR and MC stand for
ShiftRows and MixColumns, respectively. SubCells, AddConstants and Ad-
dTweakey are omitted since they are not related to the impossible differen-
tial characteristic.

4.3 Impossible Di�erential Attacks

Impossible differential attack [5] finds two internal state differences ∆,∆′

such that ∆ is never propagated to ∆′. The attacker then finds many pairs
of plaintext/ciphertext and tweakey values leading to (∆,∆′). Those tweakey
values are wrong values, thus tweakey space can be reduced.

We searched for impossible differential characteristics with the miss-in-the-
middle technique. In short, 16 input truncated differentials and 16 output
truncated differentials with single active cell are propagated with encryption
function and decryption function, respectively, until no cell can be inactive
or active with probability one. Then, we pick up the pair contradicting each
other in the middle. Consequently, we found that the longest impossible dif-
ferential characteristics reach 11 rounds and there are 16 such characteristics
in total. An example of a 11-round impossible differential characteristic is as
follows (also depicted in Figure 1):

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,∆, 0, 0, 0) 12R9 (0, 0, 0, 0, 0, 0, 0, 0,∆′, 0, 0, 0, 0, 0, 0, 0).
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Figure 2: 16-round key recovery with impossible differential attack for SKINNY-64

with 64-bit tweakey and SKINNY-128 with 128-bit tweakey.

Several rounds can be appended before and after the 11-round impossible
differential characteristic. The number of rounds appended depend on the
key size. For example, when the block size and the key size are the same,
two rounds and three rounds can be appended before and after the charac-
teristic respectively, which makes 16-round key recovery. The plaintext dif-
ference becomes (0, 0, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, 0, ∗, 0, 0, ∗, 0) and the ciphertext differ-
ence becomes (∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, ∗, ∗, ∗, ∗, ∗, 0), where ∗ denotes non-zero
difference. The entire differential characteristic is illustrated in Figure 2.

The analysis is slightly different from standard SPN ciphers due to the
lack of whitening key and unique order of the AddRoundTweakey (ARK) oper-
ation. For the first two rounds, ARK can be moved after the ShiftRows (SR)
and MixColumns (MC) operations by applying the corresponding linear trans-
formation to the tweakey value, which confirms that the first round acts as a
keyless operation. Then, the analysis can start by regarding input difference
to Round 2 as the plaintext difference and this is masked by the equivalent
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tweakey for the first round. It also shows that the number of (equivalent)
tweakey cells involved is 3 in the first three rounds and 5 in the last three
rounds; hence, 8 cells in total.

The attacker constructs 2x structures at the input to Round 2 and each
structure consists of 23c values, where c is the cell size i.e. 4 bits for
SKINNY-64 and 8 bits for SKINNY-128. In total, 2x+6c−1 pairs can be con-
structed from those 2x+3c values. All the 2x+3c values are inverted by one
keyless round to obtain the corresponding original plaintexts and further
queried the encryption oracle to obtain their corresponding ciphertexts. The
attacker only picks up the pair which has 9 inactive cells after inverting the
last MC operation. 2x−3c−1 pairs are expected to remain after the filtering.
For each such pair, the attacker can generate all tweakey values for 8 cells
leading to the impossible differential characteristic by guessing 5 internal
state cells, which are 1-cell differences after MC in Round 3 and 4-cell differ-
ences before MC in Round 14 and Round 15. In the end, the attacker obtains
2x−3c−1+5c = 2x+2c−1 wrong key suggestions for 8 tweakey cells, which
makes the remaining tweakey space

28c · (1− 2−8c)2x+2c−1 = 28c · e−2x−6c−1 .

When c = 8, we choose x = 54.5, which makes the remaining key space
264 · 2−65.3 < 1. When c = 4, we choose x = 29.5, which makes the remaining
key space 232 · 2−32.6 < 1.

All in all, the data complexity amounts to 2x+3c chosen plaintexts, and
time and memory complexities are max{2x+3c, 2x+2c−1}. Hence, data, time
and memory complexities reach 288.5 for SKINNY-128 with 128-bit key (c = 8)
and 241.5 for SKINNY-64 with 64-bit key (c = 4).

4.4 Integral Attacks

Integral attack [16, 26] prepares a set of plaintexts so that particular cells
can contain all the values in the set and the other cells are fixed to a constant
value. Then properties of the multiset of internal state values after encrypting
several rounds are considered. In particular, we consider the following four
properties.

All (A) : All values in the cell appear exactly the same number.

Balanced (B) : The sum of all values in the multiset is 0.

Constant (C) : The cell value is fixed through the multiset.

Unknown (U) : No particular property exists.
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Figure 3: 10-round integral distinguisher. Rounds 5 to 10 show the property for 24

internal state values. Round 1 to 4 show which cells need to be active to
extend it to higher-order integral property.

In order to find the maximum number of rounds preserving any non-
trivial property, we follow an experimental approach. One active cell is set
to the state, and those are processed by encryption algorithm until all cells
become unknown. This is iterated many times by using different value of
constant cells and tweakey. As a result, we found that an active cell in any
of the third row will yield two cells satisfying the A property after seven
rounds.

The property is then extended to higher-order by propagating the active
cell in the backward direction. The property can be extended by 4 rounds in
backwards by activating 12 cells. In the end, 10-round integral distinguishers
can be constructed, which is illustrated in Figure 3.

Note that algebraic degree of the 4-bit Sbox is three (optimal) while alge-
braic degree of the 8-bit Sbox is six (not optimal), thus integral property of
SKINNY-128 can be longer than SKINNY-64. We did the experiment for both
versions, and found that the integral property was identical.
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Key Recovery.

One can append 4 rounds after the 10-round integral distinguisher to make
a 14-round key-recovery attack. The 4-round backward computation is de-
picted in Figure 4.

Then, the strategy proceeds as follows:

1. The attacker prepares 212c plaintexts to form the integral distinguisher.
The attacker computes inverse MixColumns operation for each of the
corresponding ciphertext, and takes parity of the 4-cell values necessary
to proceed the backward computation. This reduces the remaining text
size to 28c.

2. The attacker guesses 4 cells of the last tweakey and further computes
inverse SubCells and inverse MixColumns. Again the attack takes the
parity of 5-cell values after the inverse MixColumns. In the end, this
step performs 28c · 24c = 212c computations and obtain 25c data for
each guess of 4 cells of tweakey. Note that guess-and-compress ap-
proach can be performed column-by-column, which can improve the
complexity of this step smaller. However, we omit the very detailed
optimization here.

3. Given 25c data, the attacker guesses 2 cells of tweakey in round 13

and computes back to 2 cells after the inverse MixColumns. The attack
takes the parity of 2-cell values. 22c data are processed for 24c+2c =

26c tweakey guesses, which requires 211c computations and obtain 22c

data for each guess of 6 cells of tweakey.

4. Given 22c data, 1 cell of tweakey in round 12 can be obtained from
4-cell guess for tweakey in round 14, which allows to compute back to
the target cell in the output of the distinguisher. 22c data are processed
for 24c+2c = 26c tweakey guesses, which requires 28c round function
operations.

5. Computed results are tested if the Balanced (B) property is satisfied.
The guessed 7-cell key candidates are reduced by a factor of 2−c.

6. By iterating the analysis 5 times more, the 6-cell key candidates will be
reduced to 1, and the other 10-cells can be guessed exhaustively.

Data complexity of this attack is 212c chosen plaintexts and memory access to
deal with 212c ciphertext is the bottleneck of the complexity. The bottleneck
of the memory complexity is also for the very first stage, which stores 28c

state values after the first parity check.
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Figure 4: 16-round key recovery with integral attack for SKINNY-64 with 64-bit
tweakey and SKINNY-128 with 128-bit tweakey. The cells that are involved
during the last 2.5-round backward computation are colored in gray.

Remarks on the Division Property.

The division property was proposed by Todo [43] as a generalization of the
integral property, which is in particular useful to precisely evaluate higher-
order integral property. However, regarding application to SKINNY, experi-
mental approach can reach more rounds. This is due to the very light round
function, which allows relatively long integral property with a single active
cell. In fact, an evaluation algorithm against generic SPN ciphers presented
in [43, Algorithm 2] only leads to 6-round division property. Advanced evalu-
ation algorithm needs to be developed to improve integral attack by division
property.

A generalization of [43] described in [11] makes a link between the alge-
braic normal form (ANF) on an Sbox, and its resistance to the division prop-
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erty. In particular, for a 4-bit mapping (x0, x1, x2, x3)→ (y0,y1,y2,y3), they
compute all the 16 possible products of yi’s terms and check which of the 16

possible products of xi’s appears in the resulting ANF. The result is shown
graphically in Table 8. From an attacker point of view, the authors explain
in [11] that the sparse lines can be used to launch an attack. While the result-
ing table in the case of SKINNY-64 seems sparser than the case of PRESENT

for instance (which can be explained by the design strategy adopted), we are
still confident that our proposals offer a strong security margin regarding
this class of attacks.

Table 8: Division Property in the case of SKINNY-64 Sbox (x0, x1, x2, x3) →
(y0,y1,y2,y3). For a given column α, the binary representation of α =

α0α1α2α3 gives the ANF decomposition of the product of
∏
αi=1

yi in
terms of the products of xj’s. In particular, the four columns 1, 2, 4, 8 gives
the ANF decomposition of the Sbox.

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 X X X X

1 X X X X X X

2 X X X X

4 X X X X

8 X X X X

3 X X X X

5 X X X X X X

9 X X X X

6 X X X X

a X X X X

c X X X X X

7 X X X X X X

b X X

d X X X

e X X X X X

f X

4.5 Slide Attacks

In SKINNY, the distinction between the rounds of the cipher is ensured by the
AddConstants operation and thus the straightforward slide attacks cannot
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be applied. However, the affine LFSR, which is the source of the distinction,
has a state size of 6 bits. Hence, it occurs quite frequently that either rc5‖rc4
or rc3‖rc2‖rc1‖rc0 (the two constants cell values that depend on the round
number) collides in different rounds, which could reduce the power of the
round distinction.

We took into account all possible sliding numbers of rounds and deduced
what is the difference in the constants that is obtained every time. As these
constant differences might impact the best differential characteristic, we ex-
perimentally checked the lower bounds on the number of active Sboxes for
all these constant differences by using MILP.

In the single-key setting, by allowing any starting round for each value of
the slid pair, the lower bounds on the number of active Sboxes reach 36 after
11 rounds, and 41 after 12 rounds. All the pairs of starting rounds allowing
these bounds are listed in Table 9. These bounds are not tight. Hence, they
do not indicate the existence of exact differential characteristic matching the
bounds. Moreover, in practice, attackers do not have any control on the input
state of the middle rounds. From those reasons, we expect that slide attacks
do not threat the security of SKINNY.

Table 9: Slid round numbers achieving the minimal lower bounds. The notation (a,b)
means that the first and second values of the pair start from round a and
round b, respectively. In this table, round numbers start from 0.

36 Sboxes for 11 rounds

(12,31), (14,50), (16,30), (18,40), (1,25), (20,28), (21,38), (23,32), (26,47), (2,34),

(33,46), (36,39), (3,15), (42,49), (44,48), (4,10), (6,11), (7,17), (8,37), (9,29)

41 Sboxes for 12 rounds

(0,15), (10,45), (11,13), (12,37), (16,42), (17,18), (19,43), (21,33), (22,28), (24,29),

(25,35), (27,47), (2,44), (30,49), (34,48), (38,46), (41,50), (5,32), (7,40), (8,31)

The similar attack can be evaluated in the related-key setting. Considering
that the above discussion already assumes the very optimistic scenario for
the attacker, i.e. the attacker can make reduced-round queries by forcing the
oracle to start from any middle round of her choice, the impact to the real
SKINNY seems very limited. We would leave this evaluation as future work.

4.6 Subspace Cryptanalysis

Invariant subspace cryptanalysis makes use of affine subspaces that are in-
variant under the round function. As the round key addition translates this
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invariant subspace, ciphers exhibit weak keys when all round-keys are such
that the affine subspace stays invariant including the key-addition. Therefore,
those attacks are mainly an issue for block ciphers that use identical round
keys. For SKINNY the non-trivial key-scheduling already provides a good pro-
tection against such attacks for a larger number of rounds. The main con-
cern that remains are large-dimensional subspaces that propagate invariant
through the Sbox. We checked that no such invariant subspaces exist. More-
over, for the 8-bit Sbox, we computed all affine subspaces of dimension larger
than two that get mapped to (different) affine subspaces and checked if those
can be chained to what could be coined a subspace characteristic (cf. [19] for
a similar approach).

It turns out that those subspaces can be chained only for a very small num-
ber of rounds. Figure 5 shows as an example the affine spaces of dimension
five. Thus to conclude, the non-trivial key-scheduling and the use of round-
constants seem to sufficiently protect SKINNY against those attacks.

 01, 02, 04, 08, 40 

 01, 06, 08, 10, 20  01, 04, 08, 10, 20 

 01, 08, 10, 20, 42 

 08, 10, 20, 40, 80  09, 10, 20, 40, 80 

 02, 04, 10, 40, 80  03, 04, 10, 40, 80 

 01, 02, 08, 10, 20 

 01, 02, 04, 08, d0  01, 02, 04, 08, 50  01, 02, 04, 08, c0 

 02, 05, 10, 40, 80 

 0a, 10, 20, 40, 80  0b, 10, 20, 40, 80 

Figure 5: The graph showing all 5-dimensional affine spaces that gets mapped to
(different) 5-dimensional spaces by applying the 8-bit Sbox of SKINNY-128.
The nodes are the subspaces and the edges show which spaces are mapped
to which spaces. The affine offset is ignored in this graph. The main point
to make here is that the graph is actually a tree.

4.7 Algebraic Attacks

We argue why, not surprisingly, algebraic attacks do not threaten SKINNY. The
Sbox S4 and S8 has algebraic degree a = 3 and a = 6 respectively. We can see
from Table 4 that under the single-key scenario, for any consecutive 7-round
differential characteristic of SKINNY, there are at least 26 active Sboxes. One
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can easily check that for all SKINNY variants, we have a · 26 · b r7c≫ n, where
r is the number of rounds and n is the block size. Moreover, S4 is described
by e = 21 quadratic equations in the v = 8 input/output variables over GF(2).
The entire system for a fixed-key SKINNY permutation therefore consists of
16 · r · e quadratic equations in 16 · r · v variables. For example, in the case
of Skinny-64-64, there are 10752 quadratic equations in 4096 variables. In
comparison, the entire system for a fixed-key aes permutation consists of
6400 equations in 2560 variables. While the applicability of algebraic attacks
on aes remains unclear, those numbers tend to indicate that SKINNY offers a
high level of protection.

5 Implementations, Performance and Comparison

5.1 ASIC Implementations

This section is dedicated to the description of the different hardware imple-
mentations of all variants of SKINNY. We used Synopsys DesignCompiler ver-
sion A-2007.12-SP1 to synthesize the designs considering UMCL18G212T3 [45]
standard cell library, which is based on the UMC L180 0.18µm 1P6M logic
process with a typical voltage of 1.8 V. For the synthesis, we advised the
compiler to keep the hierarchy and use a clock frequency of 100 KHz, which
allows a fair comparison with the benchmark of other block ciphers reported
in literature.

Round-Based Implementation.

In a first step, we designed round-based implementations for all SKINNY vari-
ants providing a good trade-off between performance and area. All imple-
mentations compute a single round of SKINNY within a clock cycle. Besides,
our designs take advantage of dedicated scan flip-flops rather than using
simple flip-flops and additional multiplexers placed in front in order to hold
round states and keys. Note that this approach leads to savings of 1 GE per
bit to be stored. In order to allow a better and fairer comparison, we provide
both throughput at a maximally achievable frequency and throughput at a
frequency of 100KHz.

Table 10 gives the area breakdown for round-based implementations of all
SKINNY variants, while Table 11 compares our implementations with other
round-based implementations of lightweight ciphers taken from the litera-
ture.

In particular, SKINNY-64-128 offers the smallest area footprint compared to
other lightweight ciphers providing the same security level. Note, that even
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Table 10: Area breakdown for round-based implementations of SKINNY-64 and
SKINNY-128.

64/64 64/128 64/192 128/128 128/256 128/384

GE GE GE GE GE GE

Key Schedule 384 789 1195 768 1557 2347

> Register 384 768 1152 768 1536 2304

> Logic - 21 43 - 21 43

Round Function 839 907 988 1623 1755 1921

> Register 384 384 384 768 768 768

> Constant 42 42 42 42 42 42

> MixColumns 123 123 123 245 245 245

> Substitution 192 192 192 384 384 384

> Logic 98 166 247 184 316 482

Total 1223 1696 2183 2391 3312 4268

Simon-64-128 implemented in a round-based fashion cannot compete with
our design in terms of area although it has a smaller critical path, hence can
be operated at higher frequencies and provides better throughput. However,
comparing the throughput at a frequency of 100KHz, SKINNY provides better
results since the number of rounds is substantially lower than for Simon.

Using block sizes of 128 bits, SKINNY-128-128 is only slightly larger than
Simon-128-128, while SKINNY-128-256 again has a better area footprint. Be-
sides, the throughput behaves in a similar manner as for SKINNY-64, since
Simon-128 still has a smaller critical path (due to less complex logic func-
tions in terms of hardware gates). Still, it can be stated that SKINNY outper-
forms most existing lightweight ciphers, including Simon, in terms of area
and throughput considering hardware architectures in a round-based style.
Unrolled Implementation.

For the sake of completeness, we have investigated the area of SKINNY in
a fully unrolled fashion. Unrolled implementations offer the best perfor-
mance by computing a single encryption within one clock cycle. Therefore,
all rounds are completely unrolled and the entire encryption or decryption
function is implemented as combinatorial circuit at the disadvantage of in-
creasing the critical path. However, this implementation can refrain from us-
ing registers to store intermediate values.
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Table 11: Round-based implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 1223 1.77 32 200.00 1130.00 New

SKINNY-64-128 1696 1.87 36 177.78 951.11 New

SKINNY-64-192 2183 2.02 40 160.00 792.00 New

SKINNY-128-128 2391 2.89 40 320.00 1107.20 New

SKINNY-128-256 3312 2.89 48 266.67 922.67 New

SKINNY-128-384 4268 2.89 56 228.57 790.86 New

Simon-64-128 1751 1.60 46 145.45 870.00 [3]

Simon-128-128 2342 1.60 70 188.24 1145.00 [3]

Simon-128-256 3419 1.60 74 177.78 1081.00 [3]

LED-64-64 2695 - 32 198.90 - [20]

LED-64-128 3036 - 48 133.00 - [20]

PRESENT-64-128 1884 - 32 200.00 - [8]

PICCOLO-64-128 1773
i - 33 193.94 - [38]

i This number includes 576 GE for key storage that is not considered in the original work.

In Table 12, we list results of unrolled implementations for all SKINNY vari-
ants and compare it to appropriate results taken from the literature. Obvi-
ously, SKINNY cannot compete with PRINCE considering fully unrolled im-
plementations while it still has better area results than LED, PRESENT and
PICCOLO (at least for 64-bit block size and 128-bit keys). Unfortunately, the
literature does not provide any numbers for latency and throughput (except
for PRINCE), so we cannot compare our designs in these terms.

Serial Implementation.

As a common implementation fashion for lightweight ciphers, we have also
considered byte-, nibble-, and bit-serial architectures to examine the perfor-
mance of SKINNY.

Serial implementations have the smallest area footprint for hardware im-
plementations by updating only a small number of bits per clock cycle. How-
ever, the throughput and performance of such implementations is decreased



The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS 221

Table 12: Unrolled implementations of SKINNY-64 and SKINNY-128.

Area Delay Throughput Ref.

@100KHz @maximum

GE ns KBit/s MBit/s

SKINNY-64-64 13340 44.74 6400.00 1430.49 New

SKINNY-64-128 17454 51.59 6400.00 1240.55 New

SKINNY-64-192 21588 57.56 6400.00 1111.88 New

SKINNY-128-128 32415 97.93 12800.00 1307.06 New

SKINNY-128-256 46014 119.57 12800.00 1070.50 New

SKINNY-128-384 61044 131.96 12800.00 1000.00 New

LED-64-128 111496 - 6400.00 - [10]

PRESENT-64-128 56722 - 6400.00 - [10]

PICCOLO-64-128 25668 - 6400.00 - [10]

PRINCE 8512 13.00 6400.00 4923.08 [30]

significantly. Often, only a single instance of an Sbox is implemented and
re-used to update the internal state of the round function in a serial fashion.
Depending on the size of the Sbox, we call these implementations nibble-
serial (4-bit Sbox) or byte-serial (8-bit Sbox), respectively (as an example, see
Figure 1). Besides, we provide bit-serial implementations for SKINNY-64 and
SKINNY-128 which update only a single bit of the round state per clock cycle.
These implementations benefit from the iterative structure of both 4- and 8-
bit Sboxes of SKINNY allowing to compute them bit by bit in 4 respectively 8

clock cycles.
In Table 13, we list results for nibble-serial implementations of all SKINNY-64

variants as well as results for byte-serial implementations of all SKINNY-128
variants. Obviously, our implementations cannot compete with Simon con-
sidering nibble-serial and byte-serial implementations while area and perfor-
mance results still are comparable to results for LED, PRESENT and PICCOLO

found in the literature.
Furthermore, we provide in Table 14 results for bit-serial implementations

for all SKINNY variants. To the best of our knowledge, no bit-serial implemen-
tations are available for LED, PRESENT and PICCOLO so we only can compare
our results to Simon. Still, Simon outperforms our implementations in terms
of area and performance, but we would like to emphasize that (so far) the
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Figure 1: Hardware architecture of SKINNY-64 in a nibble-serial fashion

possibility of implementing an SPN cipher in a bit-serial way is an unique
feature of SKINNY.
Threshold Implementation.

As a proper side-channel protection scheme for hardware platforms based
on Boolean masking, we have realized first-order Threshold Implementa-
tion [33] of all variants of SKINNY. In short, thanks to the iterative architec-
ture of the Sbox in SKINNY-128, its threshold implementation, compared to
aes with the same Sbox size, is significantly smaller and faster, and does not
need any fresh randomness.

We have designed the 3-share version of Threshold Implementations,
where each single bit – in entire cipher internals – is represented with
three shares, i.e., second-order Boolean masking. Due to the transparency
of Boolean masking through linear operations, the 3-share representation
of AddConstants, AddRoundTweakey, ShiftRows and MixColumns are easily
achievable. However, the most challenging issue is to provide a uniform
sharing of the non-linear functions, i.e., SubCells.

The Sbox S4 used in SKINNY-64 is a cubic bijection which – with respect to
the categories given in [7] – belongs to the class C223, and can be decomposed
to quadratic bijections with uniform sharing. However, considering the iter-
ative construction of S4 (given in Section 2 and Figure 2), we decompose S4
into G4 and F4 in such a way that ∀x,G4 ◦F4(x) = S4(x). We define

y :< y3,y2,y1,y0 >= F4(x :< x3, x2, x1, x0 >)
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Table 13: Serial implementations of SKINNY-64 (nibble) and SKINNY-128 (byte).

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 988 1.03 704 9.09 88.26 New

SKINNY-64-128 1399 0.95 788 8.12 85.49 New

SKINNY-64-192 1806 0.95 872 7.34 77.26 New

SKINNY-128-128 1840 1.03 872 14.68 142.51 New

SKINNY-128-256 2655 0.95 1040 12.31 129.55 New

SKINNY-128-384 3474 0.95 1208 10.60 111.54 New

Simon-64-128 1000 - 384 16.7 - [3]

Simon-128-128 1317 - 560 22.9 - [3]

Simon-128-256 1883 - 608 21.1 - [3]

LED-64-64 966 - 1248 5.1 - [20]

LED-64-128 1265 - 1872 3.4 - [20]

PRESENT-64-128 1391 - 559 11.45 - [8]

PICCOLO-64-128 758
i - 528 12.12 - [38]

i This number includes 576 GE for key storage that is not considered in the original work.

as

y0 = x0 ⊕ (x2 ∨ x3)), y1 = x1, y2 = x2, y3 = x3 ⊕ (x1 ∨ x2)),

and thanks to the iterative construction of S4, we can write< y3,y2,y1,y0 >=
G4(< x3, x2, x1, x0 >) as

< y2,y1,y0,y3 >= F4(< x1, x0, x3, x2 >),

which means that an input permutation and an output permutation over F4
realizes G4.

The transformation F4 is affine equivalent to the quadratic class Q294 [7],
and its uniform sharing can be easily achieved by direct sharing. Let us
represent xi∈{0,...,3} with three shares (x1i , x2i , x3i ), where xi = x1i ⊕ x2i ⊕
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Table 14: Bit-serial implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 839 1.03 2816 2.27 22.06 New

SKINNY-64-128 1172 1.06 3152 2.03 19.15 New

SKINNY-64-192 1505 1.00 3488 1.83 18.35 New

SKINNY-128-128 1481 1.05 6976 1.83 17.47 New

SKINNY-128-256 2125 0.89 8320 1.53 17.29 New

SKINNY-128-384 2761 0.89 9664 1.32 14.88 New

Simon-64-128 958 - 1524 4.2 - [3]

Simon-128-128 1234 - 4414 2.9 - [3]

Simon-128-256 1782 - 4924 2.6 - [3]

x3i . We define a component function y :< y3,y2,y1,y0 >= f4(s, w :<

w3,w2,w1,w0 >, x :< x3, x2, x1, x0 >) as

y0 = w0 ⊕ (s∨ ((x2 ∨ x3)⊕ (w2 ∨ x3))⊕ (x2 ∨w3)),

y1 = w1, y2 = w2,

y3 = w3 ⊕ (s∨ ((x1 ∨ x2)⊕ (w1 ∨ x2))⊕ (x1 ∨w2)),

which is made of only NOR and XOR gates. It is noteworthy that the extra
input s controls the component function f4 to pass the second input w.

A uniform sharing of F4 over 3-share input (x1,x2,x3) can be realized by
three instances of f4 as

y1 = f4(s, x3, x2), y2 = f4(s, x1, x3), y3 = f4(s, x2, x1).

The same holds for G4, and by means of an input- and output permutation
over f4, we can realize its uniform sharing.

In Threshold Implementation of other ciphers, e.g., PRESENT [36], an extra
register between the decomposed functions is required. However, in case of
SKINNY, SubCells is performed prior to AddRoundTweakey, which allows us
to place the uniform sharing of F4 between the state register (see Figure 2).
Integrating the input s into the component functions f4 turns F4 to operate
as pass through which is required during MixColumns. Table 15 represents the
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area overhead and performance of Threshold Implementation of all variants
of SKINNY-64 based on a nibble-serial architecture.
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Figure 2: Hardware architecture of Threshold Implementation of SKINNY-64 in a
nibble-serial fashion

We have applied the same concept on the SKINNY-128. In order to share
the Sbox, we decompose S8 as I8 ◦H8 ◦ G8 ◦ F8, each of which is an 8-bit
quadratic bijection. We define

y :< y7,y6,y5,y4,y3,y2,y1,y0 >= F8(x :< x7, x6, x5, x4, x3, x2, x1, x0 >)

as

y0 = x0 ⊕ (x2 ∨ x3)), y1 = x1, y2 = x2, y3 = x3,

y4 = x4 ⊕ (x6 ∨ x7)), y5 = x5, y6 = x6, y7 = x7.

Other bijections are also defined over F8 as follows:

G8 : < y2,y1,y7,y6,y4,y0,y3,y5 >= F8(< x2, x1, x7, x6, x4, x0, x3, x5 >)

H8 : < y0,y3,y2,y1,y6,y5,y4,y7 >= F8(< x0, x3, x2, x1, x6, x5, x4, x7 >)

I8 : < y7,y6,y5,y4,y3,y1,y2,y0 >= F8(< x5, x4, x0, x3, x1, x7, x6, x2 >)
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For a uniform sharing of each of these 8-bit bijections, we define a compo-
nent function y :< y7,y6,y5,y4,y3,y2,y1,y0 >= f8(s, w, x) as

y0 = w0 ⊕ (s∨ ((x2 ∨ x3)⊕ (w2 ∨ x3))⊕ (x2 ∨w3)),

y1 = w1, y2 = w2, y3 = w3,

y4 = w4 ⊕ (s∨ ((x6 ∨ x7)⊕ (w6 ∨ x7))⊕ (x6 ∨w7)),

y5 = w5, y6 = w6, y7 = w7.

Similar to f4, the s input has been integrated in order to control the f8
function to pass through the w input. Following the same concept as ex-
plained above, the 3-share input (x1,x2,x3) can be given to three instances
of f8 to derive a 3-share uniform output of F8. Therefore, uniform sharing
of all aforementioned 8-bit bijections can be achieved by input- and output
permutations over the uniform sharing of F8. Further, we can place these
shared functions between the state register in a serial implementation which
avoids instantiating extra registers between the decomposed functions (see
Figure 3).
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Figure 3: Hardware architecture of Threshold Implementation of SKINNY-128 in a
byte-serial fashion

It should be noted that the above explained constructions allow extremely
efficient Threshold Implementations since

• With a few NOR gates the functions are converted to pass through
(required for MixColumns).
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• The Sbox is decomposed to smaller functions with shorter critical path
leading to designs with significantly high clock frequencies (see Ta-
ble 15).

• Extra registers are avoided compared to e.g., [36].

• Our constructions do not need any fresh randomness during the entire
operations of the cipher since we could provide the uniform sharing of
the Sboxes compared to e.g., [6, 29]. Only the input (plaintext) should
be masked using two random masks, each with the same length as the
input.

In our Threshold Implementations – similar to many other Threshold Im-
plementations reported in the literature [6, 29, 36] – only the state is masked,
not the key registers, which is adequate to provide first-order security.

Table 15: Threshold implementations of SKINNY-64 (nibble-serial) and SKINNY-128

(byte-serial).

Area Delay Clock Throughput Fresh Ref.

Cycles @100KHz @maximum Rand.

GE ns # KBit/s MBit/s bits

SKINNY-64-64 1966 0.95 704 9.09 95.69 0 New

SKINNY-64-128 2372 1.00 788 8.12 81.22 0 New

SKINNY-64-192 2783 1.00 872 7.34 73.39 0 New

SKINNY-128-128 3780 1.63 872 14.68 90.05 0 New

SKINNY-128-256 4713 1.50 1040 12.31 82.05 0 New

SKINNY-128-384 5434 1.54 1208 10.60 68.80 0 New

AES-128 11114 - 266 48.12 - 7680 [29]

AES-128 8119 - 246 52.03 - 5120 [6]

5.2 FPGA Implementations

Today, FPGAs are used more and more for high-performance applications,
even in the field of security and cryptographic applications. Since there are a
wealth of different FPGA vendors available, we decided to implement our de-
signs on Virtex-7 FPGAs provided by the market leader Xilinx. In this section,
we provide detailed results of FPGA-tailored solutions for high-performance
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implementations of SKINNY. Note, that it is almost a natural choice to imple-
ment high-throughput architectures on FPGAs using pipelining techniques
since logic resources always come in conjunction with succeeding flip-flops.
This allows to efficiently pipeline all computations at nearly no area overhead
(in terms of occupied slices of the FPGA device) while keeping the critical
path of the design at a minimum. Hence, the maximum frequency and finally
the throughput of the design can be increased.

A brief summary of implementation results for high-performance archi-
tectures on FPGAs for both, SKINNY-64 and SKINNY-128, can be found in
Table 16 providing details for used resources and achieved performance re-
sults. Note, however, that a fair comparison to existing work is rather difficult
since most reference implementations found in the literature either do not tar-
get fully pipelined and unrolled implementations or just provide results for
older FPGA technologies using 4-input LUTs instead of 6-input LUTs found
in modern devices. Still, we would like to highlight the performance figures
of all of our SKINNY implementations for FPGAs allowing to implement high-
performance architectures at a minimum of resource consumption.

Table 16: High-throughput implementations of SKINNY-64 and SKINNY-128. Results
are obtained after place-and-route for Virtex-7 XC7VX330T.

.

Logic Memory Frequency T’put Device Ref.

LUT FF MHz GBit/s Xilinx

SKINNY-64-64 3101 4000 403.88 25.85 Virtex-7 New

SKINNY-64-128 4247 6720 402.41 25.75 Virtex-7 New

SKINNY-64-192 6330 9952 400.48 25.63 Virtex-7 New

SKINNY-128-128 13389 10048 320.10 40.97 Virtex-7 New

SKINNY-128-256 17037 18048 355.62 45.52 Virtex-7 New

SKINNY-128-384 21966 28096 356.51 45.63 Virtex-7 New

ICEBERG-64-128 13616 - 297.00 19.01 Virtex-II [39]

MISTY1-64-128 10920 8480 140.00 8.96 Virtex1000 [40]

KHAZAD-64-128 11072 9600 123.00 7.87 Virtex1000 [40]
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5.3 Software Implementations

In this section, we detail how the ciphers in the SKINNY family can be im-
plemented in software. More precisely, we consider four of the latest Intel
processors using SIMD instruction sets to perform efficient parallel compu-
tations of several input blocks. We give in particular the performance figures
for a bit-sliced implementations of SKINNY.

Notes on Previous Benchmarks and Comparisons.

In most of the previous designs proposed in academic publications, the de-
signers give the full cost of encryption, including the costs to convert the
data to the required form, the actual encryption, and possibly the expansion
of the master key. This gives a broad overview of how well the cipher would
behave in a more specific context, especially for bit-sliced implementation
where packing and unpacking of the data can represent a non-negligible pro-
portion of the encryption process.

In comparison, the Simonimplementations from [2] do not include neither
the cost of key expansion nor the cost of packing/unpacking the data, which
prevents any meaningful comparison with the other lightweight ciphers hav-
ing the same level of security (the argument to drop these costs relies on a
strong restriction on the way the cipher implementations can be used).

In the following, we perform an evaluation of our proposals using four
different recent high-speed platforms (exact setting given in Table 17) at dif-
ferent rates of parallelization. While we count the costs for packing and un-
packing the data, we chose to benchmark encryption given pre-expanded
subkeys. The motivation is twofold: first, many modes of operation make
this assumption practical and second, the key schedules of our proposals are
light and would not induce big differences in the results. At the end of this
section, we also give a comparison of the speed SKINNY-64-128 can achieve
in the case where the data packing is not needed (i.e. in the highly parallel
counter mode considered in [3]).

Overall our benchmarking results show that the performance roughly fol-
lows what one would expect from Table 6. There are scenarios in practice for
which the costs of the key schedule play a non-negligible role as pointed out
in [4] and we expect the lower costs of the SKINNY key schedule to provide a
good performance.

Bit-Sliced Implementations of SKINNY.

Since the design of SKINNY has been made with hardware implementations
in mind, the conversion to bit-sliced implementations seems natural. In the
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Table 17: Machine used to benchmark the software implementations (Turbo Boost dis-
abled).

Name Processor Launch date Linux kernel gcc version

Westmere X5650 Q1 2010 3.13.0-34 4.8.2

Ivy Bridge i5-3470 Q2 2012 3.11.0-12 4.8.1

Haswell i7-4770S Q2 2013 4.4.0-22 5.3.1

Skylake i7-6700 Q3 2015 4.2.3-040203 5.2.1

following, we target different sets of instructions, namely SSE4 and AVX2,
which provide shuffling instructions on byte level, as well as several wide
128-bit resp. 256-bit registers, commonly referred as XMM or YMM registers.
From our perspective, the main differences between SSE4 and AVX2 are the
width of the available registers and the possibility to use 3-operand instruc-
tions.

In the Table 18, we give the detailed performance figures of our implemen-
tations in the case of SKINNY-64 and compare it with other ciphers. Note
that these implementations take into account all data transformations which
are required. The bit-sliced implementations for Simonprocessing 32 resp. 64

blocks have been provided by the designers to allow us a fair comparison in
the same setting.

Table 18: Bit-sliced implementations of SKINNY-64, SKINNY-128 and other 64-bit block
lightweight ciphers. Performances are given in cycles per byte, with pre-
expanded subkeys. For SKINNY-64 and Simonwe encrypted 2000 64-bit
blocks to obtain the results. Cells with dashes (-) represent non-existing
implementations to date.

Haswell Skylake Ref.

Parallelization ρ 16 32 64 16 32 64

SKINNY-128-128 - - 4.32 - - 3.96 New

SKINNY-64-128 - - 3.05 - - 2.78 New

SIMON-64-128 - 3.42 1.93 - 3.29 1.81

LED-128 22.6 13.7 - 23.1 13.3 - [4]

PRESENT-128 10.8 - - 10.3 - - [4]

Piccolo-128 9.2 - - 9.2 - - [4]
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Counter Mode Implementations of SKINNY-64-128.

As mentioned before, we can evaluate the speed of SKINNY-64-128 in the
same conditions as the benchmarks provided in [3]. Namely, the goal is to
generate the keystream from the counter mode using SKINNY-64-128 as the
underlying block cipher. The main difference to the previous scenario is that
many blocks of a non-repeating value (counter) are encrypted. This allows to
save the costs for data packing, as the values are known in advance and can
already be provided in the correct format.

The designers of Simonachieve a very high performances, by taking advan-
tage of this mode, in their implementation available on GitHub.7 We would
like to note that this CTR-mode implementation does not process the same
amount of blocks as given in Table 18 and we expect the performance of
Simonto be closer to these figures for an optimized implementation.

In our case, we devise a very similar implementation that considers 64

blocks in parallel and reaches a maximal speed of 2.63 cpb in the same setting
on the latest Intel platform Skylake. We note that the key is pre-expanded
prior to encrypting the blocks, and the 64 blocks are stored in 16 registers of
256 bits in a bit-sliced way. In detail, the four first registers contain the four
first bits of each first row of the 64 blocks. The same holds for the 12 others
registers with the remaining three rows of the states.

Then, for all the 36 rounds of SKINNY-64-128, the application of SubCells,
AddConstants, AddRoundTweakey, and MixColumns can be easily done with
bit-wise operations on registers. As for ShiftRows, we implement it as a
shuffle on bytes within each register. The benchmarks conducted on our four
platforms are shown in Table 19.

Table 19: Counter mode implementations of SKINNY-64-128, SKINNY-128-128,
Simon-64-128 and Simon-128-128. Performances are given in cycles per
byte, with pre-expanded subkeys, encrypting 16384 bytes and obtained us-
ing Supercop. Details of the machines are given in Table 17.

Westmere Ivy Bridge Haswell Skylake Ref.

Instruction Set sse4 sse4 sse4 avx2 sse4 avx2

SKINNY-64-128 7.87 5.27 5.14 2.92 4.79 2.63 New

Simon-64-128 7.64 5.85 5.93 3.12 5.26 2.71 [47]

SKINNY-128-128 - - 7.41 4.05 7.02 3.76 New

Simon-128-128 11.52 8.87 8.70 4.39 7.99 4.00 [47]

7Available at https://github.com/lrwinge/simon_speck_supercop/.

https://github.com/lrwinge/simon_speck_supercop/
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5.4 Micro-Controller Implementations

In this section, we describe the main performance figures when implement-
ing SKINNY on micro-controllers. We omit details of the implementation and
mainly describe the results of the implementation.

To evaluate the suitability of SKINNY for usage in embedded environments,
we implemented SKINNY for the ATmega644 microcontroller (avr5-core). Note
that we choose to exclude the C-interface related overhead since this is often
depending on the chosen environment and compiler.

The three main indicators for performance are:

1. Speed, measured in cycles per byte. The figures given below correspond
to the execution time of the encryption function. It is expected that a
pointer to the RAM-residing preprocessed key is passed to the encryp-
tion function.

2. RAM size, measured in bytes. This includes all RAM used for the en-
cryption process. Especially global data structures like Sboxes or round
constants are included if they are stored in RAM. Also the RAM used
to hold the preprocessed key is accounted.

3. ROM size, measured in bytes. This corresponds to the complete foot-
print of the algorithm needed to initialize global data structures, pre-
process the key and to encrypt data. Especially also the memory is
accounted for data which is only copied into RAM (known as .data

segment).

All our implementations allow changing the key at runtime and some of
them require the initialisation of global data structures.

A lot of different trade-offs can be made, which is a real strength of SKINNY,
since different applications may have very different requirements and total
costs would be computed very differently, sometimes justifying sacrifices
which would be unacceptable in most cases. In Table 20, we provide sev-
eral of those trade-offs, each optimizing for another of the three criteria men-
tioned above.

Table 20: Implementation figures for SKINNY-128-128 on an ATmega644

Cycles per byte 222 257 258 288 297 328

RAM 576 287 576 287 31 31

ROM 676 616 492 436 774 594

To compare, for example, with Simon-128-128 on the same platform, note
that, according to [3], Simon-128-128 can be implemented to optimize speed
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with 510 byte of ROM and 544 bytes of RAM running at 337 cycles per byte.
Thus, it can be seen that SKINNY-128-128 can be significantly faster (while
sacrificing some ROM and RAM size).

6 The Low-Latency Tweakable Block Cipher

MANTIS

In this section, we present a tweakable block cipher design which is opti-
mized for low-latency implementations.

The low-latency block cipher PRINCE already provides a very good start-
ing point for a low-latency design. Its round function basically follows the
aes structure, with the exception of using a MixColumns-like mapping with
branch number 4 instead of 5. The main difference between PRINCE and aes

(and actually all other ciphers) is that the design is symmetric around a lin-
ear layer in the middle. This allows to realize what was coined α-reflection:
the decryption for a key K corresponds (basically) to encryption with a key
K⊕ α where α is a fixed constant. Turning PRINCE into a tweakable block
cipher is (conceptually) well understood when using e.g. the TWEAKEY
framework [22]. First, define a tweakey-schedule and than simply increase
the number of rounds until one can ensure that the cipher is secure against
related-tweak attacks.

However, the problem is that the latency of a cipher is directly related to
the number of rounds. Thus, it is crucial to find a design, i.e. a round func-
tion and a tweak-scheduling, that ensures security already with a minimal
number of rounds. Here, components of the recently proposed block ciphers
MIDORI [1] turn out to be very beneficial. In MIDORI, again an aes-like design,
one of the key observations was that changing ShiftRows into a more gen-
eral permutation allows to significantly improve upon the number of active
Sboxes (in the single key model) while keeping a MixColumns-like layer with
branch number 4 only. On top, the designers of MIDORI designed a 4-bit Sbox
that was optimized with respect to circuit-depth. This directly leads to an
improved version of PRINCE itself: replace the PRINCE round function by the
MIDORI-round function while keeping the entire design symmetric around
the middle to keep the α-reflection property. This simple change would re-
sult in a cipher with improved latency and improved security (i.e. number
of active Sboxes) compared to PRINCE. It is actually exactly this PRINCE-like
MIDORI that we use as a starting point for designing the low-latency block
cipher MANTIS. The final step in the design of MANTIS was to find a suitable
tweak-scheduling that would ensure a high number of active Sboxes not only
in the single-key setting, but also in the setting where the attacker can con-
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trol the difference in the tweak. Using, again, the MILP approach, we are
able to demonstrate that a slight increase in the number of rounds (from 12

to 14) is already sufficient to ensure the resistance of MANTIS to differential
(and linear) attacks in the related-tweak setting. Note that MANTIS is certainly
not secure in the related-key model, as there always exist a probability one
distinguisher caused by the α-reflection property.
MANTISr has a 64-bit block length and works with a 128-bit key and 64-bit

tweak. The parameter r specifies the number of rounds of one half of the
cipher. The overall design is illustrated in Figure 1.

R1 R2 R3 R4 R5 R6 S M S R−1
6 R−1

5 R−1
4 R−1

3 R−1
2 R−1

1

h h h h h h h−1 h−1 h−1 h−1 h−1 h−1

k1k1 k1 k1 k1 k1 k1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1k0

m

T

c

k
′
0

Figure 1: Illustration of MANTIS6.

We acknowledge the contribution of Roberto Avanzi to the design of
MANTIS. He first suggested us to combine PRINCE with the TWEAKEY frame-
work, and also to modify the latter by permuting the tweak independently
from the key, in order to save on the Galois multiplications of the tweak cells.
He then brainstormed with us on early versions of the design.

6.1 Description of the Cipher

MANTISr is based on the FX-construction [25] and thus applies whitening keys
before and after applying its core components. The 128-bit key is first split
into k = k0 || k1 with 64-bit subkeys k0,k1. Then, (k0 || k1) is extended to
the 192 bit key

(k0 || k
′
0 || k1) := (k0 || (k0≫ 1)⊕ (k0 � 63) || k1),

and k0,k
′
0 are used as whitening keys in an FX-construction. The subkey k1

is used as the round key for all of the 2r rounds of MANTISr. We decided
to stick with the FX construction for simplicity., even so other options as
described in [12].

Initialization.

The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi
are 4-bit cells. The initialization of the cipher’s internal state is performed by
setting ISi = mi for 0 6 i 6 15.



The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS 235

The cipher also receives a tweak input T = t0‖t1‖ · · · ‖t15, where the ti
are 4-bit cells. The initialization of the cipher’s tweak state is performed by
setting Ti = ti for 0 6 i 6 15. Thus,

IS =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 T =


t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15


The round function.

One round Ri(·, tk) of MANTISr operates on the cipher internal state depend-
ing on the round tweakey tk as

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstanti ◦ SubCells.

In the following, we describe the components of the round function.

SubCells. The involutory MIDORI Sbox Sb0 is applied to every cell of the
internal state. A description of the Sbox is given in Table 21. Using the
MIDORI Sbox is beneficial as this Sbox is especially optimized for small
area and low circuit depth.

Table 21: 4-bit involutory MIDORI Sbox Sb0 used in MANTIS.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0[x] c a d 3 e b f 7 8 9 1 5 0 2 4 6

AddConstant. In the i-th round, the round constant RCi is XORed to the
internal state. The round constants are generated in a similar way as for
PRINCE, that is we used the first digits of π to generate those constants
(actually the very first digits correspond to α defined below). The round
constants can be found in Table 22. Note that, in contrast to PRINCE, the
constants are added row-wise instead of column-wise.

AddRoundTweakey. In round Ri, the (full) round tweakey state hi(T)⊕ k1
is XORed to the cipher internal state. In the i-th inverse round R−1

i , the
tweakey state hi(T)⊕ k̄1 := hi(T)⊕k1⊕αwith α = 0x243f6a8885a308d3

is XORed to the internal state. Note that this α, as the round constants,
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Table 22: Round Constants used in MANTIS.

Round i Round constant RCi

1 0x13198a2e03707344

2 0xa4093822299f31d0

3 0x082efa98ec4e6c89

4 0x452821e638d01377

Round i Round constant RCi

5 0xbe5466cf34e90c6c

6 0xc0ac29b7c97c50dd

7 0x3f84d5b5b5470917

8 0x9216d5d98979fb1b

is chosen as the first digits of π. Thereby, it is h(T) = th(0)‖th(1) ·
‖th(15), where the tweak permutation h is defined as

h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11].

PermuteCells. The cells of the internal state are permuted according to
the MIDORI permutation

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

Note that the MIDORI permutation ensures a higher number of active
Sboxes compared to the choice made in PRINCE.

MixColumns. Each column of the cipher internal state array is multiplied
by the binary matrix used in MIDORI and shown below.

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

Encryption.

In the following, we define Hr as the application of r rounds Ri and one
additional SubCells layer. Similarly, we define H−1

r as the application on
one inverse SubCells layer plus r inverse rounds. Thus,

Hr(·, T ,k1) = SubCells ◦Rr(·,hr(T)⊕ k1) ◦ · · · ◦R1(·,h(T)⊕ k1)
H−1
r (·, T , k̄1) = R−1

1 (·,h(T)⊕ k̄1) ◦ · · · ◦R−1
r (·,hr(T)⊕ k̄1) ◦ SubCells.

With this notation, it is

Enc(k0,k ′0,k1)(·, T) = AddTweakeyk ′0⊕k1⊕α⊕T ◦H
−1
r (·, T ,k1 ⊕α)

◦ MixColumns ◦Hr(·, T ,k1) ◦ AddTweakeyk0⊕k1⊕T
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Decryption.

It is Enc−1
(k0,k ′0,k1)

(·, T) = Enc(k ′0,k0,k1⊕α)(·, T) because of the α-reflection
property.

6.2 Design Rationale

The goal was to design a cipher which is competitive to PRINCE in terms
of latency with the advantage of being tweakable. In contrast to SKINNY, we
distinguish between tweak and key input. In particular, we allow an attacker
to control the tweak but not the key. Thus, similar to PRINCE, we do not claim
related-key security. In order to reach this goal, again, several components
are borrowed from already existing ciphers. In the following, we present
the reasons for our design. Note that, as we aim for an efficient unrolled
implementation, one is not restricted to a classical round-iterated design.

α-Re�ection Property.

MANTISr is designed as a reflection cipher such that encryption under a key
k equals decryption under a related key. This significantly reduces the im-
plementation overhead for decryption. Therefore, the parameter r denotes
only half the number of rounds, as the second half of the cipher is basically
the inverse of the first half. It is advantageous that the diffusion matrix M is
involutory since we need the middle part of the cipher to be an involution.
Unlike in the description of PRINCE, we use the same round constant for the
inverse R−1

i of the i-th round and apply the addition of α to the round key
k1.

The Choice of the Di�usion Layer.

To achieve low latency in an unrolled implementation, one is limited in the
number rounds to be applied. Therefore, one has to achieve very fast dif-
fusion while guaranteeing a high number of active Sboxes. To reach these
requirements, we adopted the linear layer of MIDORI. It provides full diffu-
sion only after three rounds and guarantees a high number of active Sboxes
in the single-key setting. We refer to Table 4 for the bounds.

The Choice of the Sbox.

For the Sbox in MANTIS we used the same Sbox as in MIDORI. The MIDORI

Sbox has a significantly smaller latency than the PRINCE Sbox. The maximal
linear bias is 2−2 and the best differential probability is 2−2 as well.
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The Choice of the Tweakey Permutation h.

Our aim was to choose a tweak permutation h such that five rounds (plus one
additional SubCells layer) guarantee at least 16 active Sboxes in the related-
tweak setting. This would guarantee at least 32 active Sboxes for MANTIS5
which is enough to bound the differential probability (resp. linear bias) be-
low 2−2·32. Since there are 16! possibilities for h, which is too much for an
exhaustive search, we restricted ourself on a subclass of 8! tweak permuta-
tions. The restriction is that two complete rows (without changing the posi-
tion of the cells in those rows) are permuted to different rows. In our case, the
first and third row are permuted to the second and fourth row, respectively.
The bounds were derived using the MILP tool. We tested several thousand
choices for the permutation h and found out that 16 active Sboxes were the
best possible to reach over H5. Out of these optimal choices, we took the per-
mutation that maximized the bound for MANTIS5, and as a second step for
MANTIS6. We refer to Table 23 for the actual bounds.

Table 23: Lower bounds on the number of linear (and differential) active Sboxes in
the single-key model and of differential active Sboxes in the related-tweak
model.

MANTIS2 MANTIS3 MANTIS4 MANTIS5 MANTIS6 MANTIS7 MANTIS8

Linear 14 32 46 62 70 76 82

Related Tweak 6 12 20 34 44 50 56

Security Claim.

For MANTIS7, we claim that any adversary who in possession of 2n chosen
plain/ciphertext pairs which were obtained under chosen tweaks, but with a
fixed unknown key, needs at least 2126−n calls to the encryption function in
order to recover the secret key. Thus, our security claims are the same as for
PRINCE, except that we also claim related-tweak security. Moreover, already
for MANTIS5 we claim security against practical attacks, similar to what has
been considered in the PRINCE challenge. More precisely, we claim that no
related-tweak attack (better than the generic claim above) is possible against
MANTIS5 with less than 230 chosen or 240 known plaintext/ciphertext pairs.
Note that because of the α-reflection, there exists a trivial related-key distin-
guisher with probability one. We especially encourage further cryptanalysis
on the aggressive versions.
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6.3 Security Analysis

As one round of MANTIS is almost identical to one round in MIDORI, most
of the security analysis can simply be copied from the latter. This holds in
particular for meet-in-the-middle attacks, integral attacks and slide attacks.
We therefore only focus on the attacks where the changes in round constants
and by adding the tweak actually result in different arguments.

Invariant Subspaces.

The most successful attack against MIDORI-64 at the moment is an invariant
subspace attack with a density of 296 weak keys. The main observation here
is that the round constants in MIDORI are too sparse and structured to avoid
certain symmetries. More precisely, the round constants in MIDORI-64 only
affect a single bit in each of the 16 4-bit cells. Together with a property of the
Sbox this finally results in the mentioned attack. For MANTIS, the situation is
very different as the round constants (in each half) are basically random val-
ues. This in particular ensures that the invariant subspace attack on MIDORI

does not translate into an attack on MANTIS.

Di�erential and Linear Related-Tweak Attacks.

Using the MILP approach, we are able to prove strong bounds against related-
tweak linear and differential attacks. In particular, no related tweak linear or
differential distinguisher based on a characteristics is possible for MANTIS5,
that is already for 12 layers of Sboxes. As MANTIS7 has four more rounds, and
additional key-whitening, we believe that is provides a small but sufficient
security margin.

6.4 Implementations

In Table 24 and Table 25, we list results of unrolled implementations for
MANTIS constrained for the smallest area and the shortest latency respec-
tively. In particular, it can be seen that for MANTIS5, the difference in area
compared to PRINCE corresponds quite exactly to the additional costs of the
XOR gates needed to add the tweak. However, by constraining the synthesis
to a particular latency, MANTIS5 outperforms PRINCE mainly due to its under-
lying MIDORI Sbox. A complete overview of the latency versus delay for all
variants of MANTIS compared to PRINCE is shown in Figure 2.
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Table 24: Unrolled implementations of
MANTIS constrained for the
smallest area (both encryption
and decryption).

Area Delay Ref.

GE ns

MANTIS5 8544 15.95 New

MANTIS6 9861 17.60 New

MANTIS7 11209 20.50 New

MANTIS8 12533 21.34 New

PRINCE 8344 16.00 [30]

Table 25: Unrolled implementations of
MANTIS constrained for the
shortest delay (both encryption
and decryption).

Area Delay Ref.

GE ns

MANTIS5 13424 9.00 New

MANTIS6 18375 10.00 New

MANTIS7 23926 11.00 New

MANTIS8 30252 12.00 New

PRINCE 17693 9.00 [30]
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Figure 2: Latency versus area of MANTIS compared to PRINCE.
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A 8-bit Sbox for SKINNY-128

/* SKINNY-128 Sbox */

uint8_t S8[256] = {

0x65 ,0x4c ,0x6a ,0x42 ,0x4b ,0x63 ,0x43 ,0x6b ,0x55 ,0x75 ,0x5a ,0x7a ,0x53 ,0x73 ,0x5b

,0x7b ,

0x35 ,0x8c ,0x3a ,0x81 ,0x89 ,0x33 ,0x80 ,0x3b ,0x95 ,0x25 ,0x98 ,0x2a ,0x90 ,0x23 ,0x99

,0x2b ,

0xe5 ,0xcc ,0xe8 ,0xc1 ,0xc9 ,0xe0 ,0xc0 ,0xe9 ,0xd5 ,0xf5 ,0xd8 ,0xf8 ,0xd0 ,0xf0 ,0xd9

,0xf9 ,

0xa5 ,0x1c ,0xa8 ,0x12 ,0x1b ,0xa0 ,0x13 ,0xa9 ,0x05 ,0xb5 ,0x0a ,0xb8 ,0x03 ,0xb0 ,0x0b

,0xb9 ,

0x32 ,0x88 ,0x3c ,0x85 ,0x8d ,0x34 ,0x84 ,0x3d ,0x91 ,0x22 ,0x9c ,0x2c ,0x94 ,0x24 ,0x9d

,0x2d ,

0x62 ,0x4a ,0x6c ,0x45 ,0x4d ,0x64 ,0x44 ,0x6d ,0x52 ,0x72 ,0x5c ,0x7c ,0x54 ,0x74 ,0x5d

,0x7d ,

0xa1 ,0x1a ,0xac ,0x15 ,0x1d ,0xa4 ,0x14 ,0xad ,0x02 ,0xb1 ,0x0c ,0xbc ,0x04 ,0xb4 ,0x0d

,0xbd ,

0xe1 ,0xc8 ,0xec ,0xc5 ,0xcd ,0xe4 ,0xc4 ,0xed ,0xd1 ,0xf1 ,0xdc ,0xfc ,0xd4 ,0xf4 ,0xdd

,0xfd ,

0x36 ,0x8e ,0x38 ,0x82 ,0x8b ,0x30 ,0x83 ,0x39 ,0x96 ,0x26 ,0x9a ,0x28 ,0x93 ,0x20 ,0x9b

,0x29 ,

0x66 ,0x4e ,0x68 ,0x41 ,0x49 ,0x60 ,0x40 ,0x69 ,0x56 ,0x76 ,0x58 ,0x78 ,0x50 ,0x70 ,0x59

,0x79 ,

0xa6 ,0x1e ,0xaa ,0x11 ,0x19 ,0xa3 ,0x10 ,0xab ,0x06 ,0xb6 ,0x08 ,0xba ,0x00 ,0xb3 ,0x09

,0xbb ,

0xe6 ,0xce ,0xea ,0xc2 ,0xcb ,0xe3 ,0xc3 ,0xeb ,0xd6 ,0xf6 ,0xda ,0xfa ,0xd3 ,0xf3 ,0xdb

,0xfb ,

0x31 ,0x8a ,0x3e ,0x86 ,0x8f ,0x37 ,0x87 ,0x3f ,0x92 ,0x21 ,0x9e ,0x2e ,0x97 ,0x27 ,0x9f

,0x2f ,

0x61 ,0x48 ,0x6e ,0x46 ,0x4f ,0x67 ,0x47 ,0x6f ,0x51 ,0x71 ,0x5e ,0x7e ,0x57 ,0x77 ,0x5f

,0x7f ,

0xa2 ,0x18 ,0xae ,0x16 ,0x1f ,0xa7 ,0x17 ,0xaf ,0x01 ,0xb2 ,0x0e ,0xbe ,0x07 ,0xb7 ,0x0f

,0xbf ,

0xe2 ,0xca ,0xee ,0xc6 ,0xcf ,0xe7 ,0xc7 ,0xef ,0xd2 ,0xf2 ,0xde ,0xfe ,0xd7 ,0xf7 ,0xdf

,0xff

};

/* Inverse SKINNY-128 Sbox */

uint8_t S8_inv [256] = {

0xac ,0xe8 ,0x68 ,0x3c ,0x6c ,0x38 ,0xa8 ,0xec ,0xaa ,0xae ,0x3a ,0x3e ,0x6a ,0x6e ,0xea

,0xee ,

0xa6 ,0xa3 ,0x33 ,0x36 ,0x66 ,0x63 ,0xe3 ,0xe6 ,0xe1 ,0xa4 ,0x61 ,0x34 ,0x31 ,0x64 ,0xa1

,0xe4 ,

0x8d ,0xc9 ,0x49 ,0x1d ,0x4d ,0x19 ,0x89 ,0xcd ,0x8b ,0x8f ,0x1b ,0x1f ,0x4b ,0x4f ,0xcb

,0xcf ,

0x85 ,0xc0 ,0x40 ,0x15 ,0x45 ,0x10 ,0x80 ,0xc5 ,0x82 ,0x87 ,0x12 ,0x17 ,0x42 ,0x47 ,0xc2

,0xc7 ,

0x96 ,0x93 ,0x03 ,0x06 ,0x56 ,0x53 ,0xd3 ,0xd6 ,0xd1 ,0x94 ,0x51 ,0x04 ,0x01 ,0x54 ,0x91

,0xd4 ,

0x9c ,0xd8 ,0x58 ,0x0c ,0x5c ,0x08 ,0x98 ,0xdc ,0x9a ,0x9e ,0x0a ,0x0e ,0x5a ,0x5e ,0xda

,0xde ,

0x95 ,0xd0 ,0x50 ,0x05 ,0x55 ,0x00 ,0x90 ,0xd5 ,0x92 ,0x97 ,0x02 ,0x07 ,0x52 ,0x57 ,0xd2

,0xd7 ,

0x9d ,0xd9 ,0x59 ,0x0d ,0x5d ,0x09 ,0x99 ,0xdd ,0x9b ,0x9f ,0x0b ,0x0f ,0x5b ,0x5f ,0xdb

,0xdf ,

0x16 ,0x13 ,0x83 ,0x86 ,0x46 ,0x43 ,0xc3 ,0xc6 ,0x41 ,0x14 ,0xc1 ,0x84 ,0x11 ,0x44 ,0x81

,0xc4 ,

0x1c ,0x48 ,0xc8 ,0x8c ,0x4c ,0x18 ,0x88 ,0xcc ,0x1a ,0x1e ,0x8a ,0x8e ,0x4a ,0x4e ,0xca

,0xce ,
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0x35 ,0x60 ,0xe0 ,0xa5 ,0x65 ,0x30 ,0xa0 ,0xe5 ,0x32 ,0x37 ,0xa2 ,0xa7 ,0x62 ,0x67 ,0xe2

,0xe7 ,

0x3d ,0x69 ,0xe9 ,0xad ,0x6d ,0x39 ,0xa9 ,0xed ,0x3b ,0x3f ,0xab ,0xaf ,0x6b ,0x6f ,0xeb

,0xef ,

0x26 ,0x23 ,0xb3 ,0xb6 ,0x76 ,0x73 ,0xf3 ,0xf6 ,0x71 ,0x24 ,0xf1 ,0xb4 ,0x21 ,0x74 ,0xb1

,0xf4 ,

0x2c ,0x78 ,0xf8 ,0xbc ,0x7c ,0x28 ,0xb8 ,0xfc ,0x2a ,0x2e ,0xba ,0xbe ,0x7a ,0x7e ,0xfa

,0xfe ,

0x25 ,0x70 ,0xf0 ,0xb5 ,0x75 ,0x20 ,0xb0 ,0xf5 ,0x22 ,0x27 ,0xb2 ,0xb7 ,0x72 ,0x77 ,0xf2

,0xf7 ,

0x2d ,0x79 ,0xf9 ,0xbd ,0x7d ,0x29 ,0xb9 ,0xfd ,0x2b ,0x2f ,0xbb ,0xbf ,0x7b ,0x7f ,0xfb

,0xff

};

B Test Vectors

B.1 Test Vectors for SKINNY

The keys are given as the concatenation of (up to) three tweakey words: TK1,
TK1‖TK2, or TK1‖TK2‖TK3.

/* Skinny -64-64 */

Key: f5269826fc681238

Plaintext: 06034 f957724d19d

Ciphertext: bb39dfb2429b8ac7

/* Skinny -64 -128 */

Key: 9eb93640d088da63

76 a39d1c8bea71e1

Plaintext: cf16cfe8fd0f98aa

Ciphertext: 6ceda1f43de92b9e

/* Skinny -64 -192 */

Key: ed00c85b120d6861

8753 e24bfd908f60

b2dbb41b422dfcd0

Plaintext: 530 c61d35e8663c3

Ciphertext: dd2cf1a8f330303c

/* Skinny -128 -128 */

Key: 4

f55cfb0520cac52fd92c15f37073e93

Plaintext:

f20adb0eb08b648a3b2eeed1f0adda14

Ciphertext: 22

ff30d498ea62d7e45b476e33675b74

/* Skinny -128 -256 */

Key: 009

cec81605d4ac1d2ae9e3085d7a1f3

1

ac123ebfc00fddcf01046ceeddfcab3

Plaintext: 3

a0c47767a26a68dd382a695e7022e25

Ciphertext:

b731d98a4bde147a7ed4a6f16b9b587f

/* Skinny -128 -384 */

Key:

df889548cfc7ea52d296339301797449

ab588a34a47f1ab2dfe9c8293fbea9a5

ab1afac2611012cd8cef952618c3ebe8

Plaintext:

a3994b66ad85a3459f44e92b08f550cb

Ciphertext: 94

ecf589e2017c601b38c6346a10dcfa



248 The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS

B.2 Test Vectors for MANTIS

The keys are given as the concatenation k0‖k1.

/* MANTIS5 */

Key: 92 f09952c625e3e9 d7a060f714c0292b

Tweak: ba912e6f1055fed2

Plaintext: 3b5c77a4921f9718

Ciphertext: d6522035c1c0c6c1

/* MANTIS6 */

Key: 92 f09952c625e3e9 d7a060f714c0292b

Tweak: ba912e6f1055fed2

Plaintext: d6522035c1c0c6c1

Ciphertext: 60 e43457311936fd

/* MANTIS7 */

Key: 92 f09952c625e3e9 d7a060f714c0292b

Tweak: ba912e6f1055fed2

Plaintext: 60 e43457311936fd

Ciphertext: 308 e8a07f168f517

/* MANTIS8 */

Key: 92 f09952c625e3e9 d7a060f714c0292b

Tweak: ba912e6f1055fed2

Plaintext: 308 e8a07f168f517

Ciphertext: 971 ea01a86b410bb

C Comparing Theoretical Performance of

Lightweight Ciphers

To simplify the analysis, we omitted the constants in all our computations as
it has very little impact on the overall theoretical performance results (only a
XOR gate on a few bits is required). We note anyway that SKINNY compares
favourably to its competitors on this point since it has very lightweight con-
stants: only 7 constants bits are added per round, and thus only 7 bitwise
XORs per round are required.

SKINNY-64-128.

The round function first uses an 4-bit Sbox layer, where each Sbox requires 4

NOR and 4 XOR gates, thus amounting to 1 NOR and 1 XOR per bit of inter-
nal state. Then, the ShiftRows layer is basically free, while the MixColumns

layer requires 3 XOR gates to update 4 bits, thus amounting to 0.75 XOR
per bit of internal state. Only 32 bits of subtweakey is XORed to the inter-
nal state every round, which costs 0.5 XOR per bit of internal state. In total,
the SKINNY-64-128 round function uses 1 NOR gate and 2.25 XOR gates per
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bit of internal state. Regarding the tweakey schedule, the permutation PT is
basically free, but the LFSR update for the TK2 state requires 1 XOR gate
per 4-bit updated cell. Since only half of the cells of TK2 are updated every
round, this leads to 0.125 XOR gate per bit of internal state. Besides, every
round two halves of tweakey words are XORed together to compute the sub-
tweakey value, thus amounting to 0.5 XOR gate per bit of internal state. In
total, the SKINNY-64-128 tweakey schedule uses 0.625 XOR gate per bit of
internal state.

SKINNY-128-128 and SKINNY-128-256.

The reasoning and the computations are exactly the same as for SKINNY-64-128,
the only difference being that the LFSR update for the TK2 state in the
tweakey schedule now costs 0.5625 XOR gate per bit of internal state for
SKINNY-128-256 (since one needs 1 XOR gate per 8-bit updated cell and
since only half of the cells of TK2 are updated every round) and does not
cost anything for SKINNY-128-128.

Simon-64-128.

The round function uses 32 AND gates and 64 XOR gates per round (the
word rotations and the Feistel shift being basically free), which amounts to
0.5 AND and 1 XOR per bit of internal state. Besides, only 32 bits of subkey
is XORed to the internal state every round, which costs 0.5 XOR per bit of
internal state. In total, the Simon-64-128 round function uses 0.5 AND gate
and 1.5 XOR gate per bit of internal state. Regarding the key schedule, the
word rotations are basically free, but one counts 96 XOR gates in total. Thus,
the Simon-64-128 key schedule uses 1.5 XOR gate per bit of internal state.

Simon-128-128 and Simon-128-256.

The reasoning and the computations are exactly the same as for Simon-64-128.

KATAN-64-80.

The round function simply uses 3 AND gates and 6 XOR gates per round,
thus amounting to 0.047 NOR and 0.094 XOR per bit of internal state. Re-
garding the key schedule, each round 3 XOR gates per bit of internal state
are required.
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PRESENT-128.

The round function first uses an 4-bit Sbox layer, where each Sbox requires 3

AND, 1 OR and 11 XOR gates, which amounts to 1 AND and 2.75 XOR per
bit of internal state (we count 3 AND and 1 OR gates to be equivalent to 4

AND gates). The bit permutation layer basically comes for free, but 64 bits
of subkey is XORed to the internal state every round, which costs 1 XOR per
bit of internal state. In total, the PRESENT-128 round function uses 1 AND
gate and 3.75 XOR gates per bit of internal state. Regarding the key schedule,
the key state rotation is basically free, but 2 Sboxes are applied to it, which
amounts to 0.125 AND and 0.34 XOR per bit of internal state.

PICCOLO-128.

The round function uses an 4-bit Sbox layer, applied twice on half of the state.
Since the Sbox requires 4 NOR and 4 XOR gates, this eventually amounts to
1 NOR and 1 XOR per bit of internal state. Then, the word permutation is
basically free and the mixing layer applies a diffusion matrix very similar to
the aes matrix (except it computes in GF(24) instead of GF(28)). Computing
this matrix requires 72 XOR gates (24 for the matrix coefficients and 48 for the
elements sums). Since this matrix is applied twice to the state, this amounts
to 2.25 XORs per bit of internal state. Moreover, 32 XOR gates per round
are needed for the Feistel construction, which amounts to 0.5 XOR per bit
of internal state. Only 32 bits of subkey is XORed to the internal state every
round, which costs 0.5 XOR per bit of internal state. In total, the PICCOLO-128

round function uses 1 NOR gate and 4.25 XOR gates per bit of internal state.
The key schedule of PICCOLO-128 is basically for free as it only consisting in
wiring selecting key material.

Noekeon-128.

The Gamma function of Noekeonrequires 0.5 NOR, 0.5 AND and 1.75 XOR
gates per bit of internal state, and the Theta function requires 3.5 XOR gates
per bit of internal state. In total, the round function uses 0.5 NOR, 0.5 AND
and 5.25 XOR gates per bit of internal state. The key schedule of the “direct”
mode of Noekeonis basically for free as the key material is used as is. How-
ever, the “indirect” mode of Noekeonconsists in applying the internal cipher
to pre-process the key material, thus leading to also a cost of 0.5 NOR, 0.5
AND and 5.25 XOR gates per bit of internal state.
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aes-128.

The round function first uses an 8-bit Sbox layer, where each Sbox requires 34

NAND and 80 XOR gates, thus amounting to 4.25 NOR and 10 XOR per bit of
internal state (we count a NAND gate to be equivalent to a NOR gate). Then,
the ShiftRows layer is basically free, while the MixColumns layer requires to
apply a diffusion matrix. Computing this matrix requires 160 XOR gates (64

for the matrix coefficients and 96 for the elements sums). Since this matrix
is applied four times to the state, this amounts to 5 XORs per bit of internal
state. 128 bits of subkey is XORed to the internal state every round, which
costs 1 XOR per bit of internal state. In total, the aes-128 round function uses
4.25 NOR gates and 16 XOR gates per bit of internal state. Regarding the key
schedule, 4 Sboxes are applied, thus amounting to 1.06 NOR and 2.5 XOR
per bit of internal state. Moreover, the linear diffusion in the key schedule
requires 1 XOR per bit of internal state. In total, the aes-128 key schedule
uses 1.06 NOR and 3.5 XOR gates per bit of internal state.

aes-256.

The reasoning and the computations are exactly the same as for aes-128,
except that the key schedule is exactly twice more costly.

Estimated Theoretical Throughput Quality Grade and Area Quality Grade.

From these numbers of gates per round per bit, we can simply compute
the total number of gates per bit of internal state (with or without the key
schedule). This will give us some indication on the theoretical ranking of the
various functions studied regarding their throughput. Moreover, by using
the estimations from Section 3.1, we can evaluate the theoretical ranking of
the various functions studied regarding their ASIC area in a round-based
implementation.

D Computing Active S-Boxes using MILP and

Di�usion Test

To evaluate the resistance of our proposals in terms of differential crpytanaly-
sis, we rely on mixed-integer linear programming (MILP) to model the cipher
operations. The goal of the MILP problem consists in maximizing the objec-
tive function, which counts the number of active Sboxes in a given number
of rounds of the primitive.
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To describe the model for SKINNY, we introduce the following binary deci-
sion variables:

• {x̄i,j,k | i, j ∈ Z4,k ∈ Zr+1} indicate the activity pattern of the S-boxes.
In particular, it is x̄i,j,k = 1 if and only if the s-box in row i and column
j is active in round k.

• {ȳi,j,k | i, j ∈ Z4,k ∈ Zr} indicate the activity pattern after application
of the AddRoundTweakey layer.

• {κ̄i,j | i, j ∈ Z4} indicate the activity pattern of the initial tweakey state.

• We need two sets of auxillary variables, {d⊕i,j,k | i ∈ Z2, j ∈ Z4,k ∈ Zr}

for the AddRoundTweakey layer and {dj,k,d ′j,k,d ′′j,k | j ∈ Z4,k ∈ Zr} for
the MixColumns layer.

As the AddRoundTweakey and MixColumns layers only consist of wordwise
XOR operations, the main building blocks of the model are the particular
linear constraints on the XOR operations. For shorter notations, we define
the following sets.
Constraints for XOR. We define by C⊕[i1, i2,o,d] the set of linear constraints

{i1 6 d}∪ {i2 6 d}∪ {o 6 d}∪ {i1 + i2 + o > 2d}.

Constraints for Mixing. Similarly, by CM[i1, i2, i3, i4,o1,o2,o3,o4,d1,d2,d3]
we define the set of linear constraints

C⊕[i1, i3,o4,d1]∪ C⊕[o4, i4,o1,d2]∪ C⊕[i2, i3,o3,d3]∪ {o2 = i1}.

For SK, we have to optimize the following MILP model:

Minimize ∑
i,j∈Z4

∑
k∈Zr

x̄i,j,k

Subject to:

1. Excluding the trivial solution

{
∑
i,j∈Z4

x̄i,j,0 > 1}

2. Application of the linear layer⋃
k∈Zr

∪j∈Z4
CM[x̄P−1(·,j),k, x̄(·),j,k+1,dj,k,d ′j,k,d ′′j,k]

Thereby,

x̄(·),j,k+1 :=
(
x̄0,j,k+1, x̄1,j,k+1, x̄2,j,k+1, x̄3,j,k+1

)
x̄P−1(·,j),k :=

(
x̄P−1(0,j),k, x̄P−1(1,j),k, x̄P−1(2,j),k, x̄P−1(3,j),k

)
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For TK1, we have to optimize the following MILP model:

Minimize ∑
i,j∈Z4

∑
k∈Zr

x̄i,j,k

Subject to

1. Excluding the trivial solution

{
∑
i,j∈Z4

x̄i,j,0+ κ̄i,j > 1}

2. Application of the TWEAKEY addition to half of the state⋃
k∈Zr

∪i∈{0,1} ∪j∈Z4
C⊕[x̄i,j,k, κ̄PkT (i,j), ȳi,j,k,d⊕i,j,k] ∪

∪i∈{2,3} ∪j∈Z4
{ȳi,j,k = x̄i,j,k}

3. Application of the linear layer⋃
k∈Zr

∪j∈Z4
CM[x̄P−1(·,j),k, x̄(·),j,k+1,dj,k,d ′j,k,d ′′j,k]

Thereby,

x̄(·),j,k+1 :=
(
x̄0,j,k+1, x̄1,j,k+1, x̄2,j,k+1, x̄3,j,k+1

)
x̄P−1(·,j),k :=

(
x̄P−1(0,j),k, x̄P−1(1,j),k, x̄P−1(2,j),k, x̄P−1(3,j),k

)

On The Tightness of the MILP Bounds.

The solution of these models determines a lower bound on the number of dif-
ferential active Sboxes for any (non-trivial) r-round characteristic in the SK,
resp. TK1 scenario. If we consider the word-wise application of the Sbox as a
black box, all of the computed bounds for SK are tight in the sense that one
can construct a valid differential characteristic for a specific choice of Sboxes.
In other words, the bound is tight if the Sbox can be chosen independently
for every cell and every round. This is less clear in the related-tweakey sce-
nario. So, in this case, we only claim lower bounds and the actual number of
active Sboxes might be even better.

Developing New MILP Modeling for TK2 and TK3.

For TK2 and TK3, the model for round function is the same as TK1. The main
difference from TK1 is that the cancellation of difference occurs in active cells
in the tweakey words, and this must be modeled properly. We stress that this
is completely non-trivial, and in fact there has not been proposed any MILP
modeling to deal with TK2 and TK3. In this section we, for the first time
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in the symmetric-key cryptography community, develop the MILP model to
deal with TK2, TK3, and more generally TKx for an integer x.

The difficulty lies in the property when we simulate the result of XORing
each tweakey state. For example in TK2, the i-th cell of the round tweakey
RK[i] is computed by TK1[i]⊕ TK2[i]. With the standard method, we model
this XOR with

{a 6 d}∪ {b 6 d}∪ {c 6 d}∪ {a+ b+ c > 2d},
where a,b, c are binary variables to denote active/inactive of RK[i], TK1[i],
TK2[i] and d is a dummy variable. However, if both of TK1[i] and TK2[i] are
active, i.e. their values are 1, the model allows to cancel the difference, and
this continues for the entire rounds. Namely, as long as the same cell position
in TK1 and TK2 are active, difference will never be propagated into the data
processing part.

A bad argument in the above discussion is that it ignores the fact that once
TK1[i] = TK2[i] holds, they never cancel each other for a certain number of
rounds because the value of TK1[i] is not updated while the value of TK2[i]
is update by LFSR. This fact shows that by following the cell-wise method in
previous work, MILP cannot return any meaningful lowerbounds. However,
converting the cell-wise model into bit-wise model is quite costly, and the
model quickly reaches infeasible runtime, especially for 128-bit block version
of SKINNY.

Here, our approach is modeling the extracted property of TWEAKEY up-
date instead of modeling the exact specification. First, we focus on a cell in
TK1[i] and a cell in TK2[i] which are located in the same cell position. Sup-
pose that X and Y are differences of those two cells. Those cells are XORed
to generate a round-key cell in every two rounds. Thus, the equation for a
round-key cell in each round becomes as follows.

Round 1: X⊕ Y, Round 2: not generated,

Round 3: X⊕ LFSR(Y), Round 4: not generated,

Round 5: X⊕ LFSR2(Y), Round 6: not generated,

Round 7: X⊕ LFSR3(Y), Round 8: not generated,

· · · · · ·
Round 29: X⊕ LFSR14(Y), Round 30: not generated.

The LFSR has cycle length 15, namely, Y = LFSR15(Y) and LFSRi(Y) 6=
LFSRj(Y) for all 0 6 i, j 6 14 such that i 6= j. As a result, it is ensured that
cancellation between two tweakey states occurs at most once up to round 30

for each cell.8

8Note that the LFSR is clocked every two rounds.
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To model this property, we first define 16 binary variables LANE0, . . . ,
LANE15, which indicates whether the i-th cell in the initial state is active in
at least one of the tweakey states TK1 and TK2. Note that LANEi is 0 only
if both of TK1[i] and TK2[i] are 0. We then also define 16 binary variables
representing active/inactive for each round key (results of XORing TK1 and
TK2), i.e.

tk0, tk1, . . . , tk15 for Round 1,

tk16, tk17, . . . , tk31 for Round 2,

· · · · · ·
tk16r−16, tk16r−15, . . . , tk16r−1 for Round r.

Cell positions will change after the tweakey permutation is applied in each
round. For example, the position of LANE0 corresponds to tk0 for Round 1,
tk24 for Round 2, tk34 for Round 3, tk58 for Round 4, and so on. If LANE0 =

0, all of these tk0, tk24, tk34, . . . , tkr ′ must be 0, where 16r−16 6 r ′ 6 16r−1.
If LANE0 = 1, at least r− 1 of tk0, tk24, tk34, . . . tkr ′ are 1 because number
of cancellations is upperbounded by 1 during the first 30 rounds. In the end,
we obtain the following constraints for LANE0;

tk0 − LANE0 > 0,

tk24 − LANE0 > 0,

tk34 − LANE0 > 0,

· · ·
tkr ′ − LANE0 > 0,

tk0 + tk24 + tk34 + · · ·+ tkr ′ − r · LNAE0 6 −1.

By generating the constraints similarly for all the LANEi, one can properly
handle the cancellation of tweakey state cells.

For TK3, the difference in comaparison to TK2 is the number of maximum
cancellations within 30 rounds, where a cancellation can occur at most twice
for each LANEi. Thus, TK3 can be modeled by modifying the last inequality
by:

tk0 + tk24 + tk34 + · · ·+ tkr ′ − r · LNAE0 6 −2.

Moreover, the general case TKx can be modeled by replacing the right hand
side of the last inequality by x− 1.

Di�usion Test.

The cipher achieves full diffusion after r rounds if every bit of the internal state
after the application of r rounds depends on every input bit. For a word-
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oriented SPN like SKINNY, the diffusion properties depend both on the linear
layer and on the Sbox. Let s denote the word length of the Sbox. To com-
pute these properties, we define the diffusion matrix Ds as described in the
following.

Ds is a 16×16 block matrix which consits of blocks of size s× swith binary
entries. Since SKINNY applies a word-wise binary diffusion matrix and a cell
permutation as the linear layer, one can express the linear layer as a binary
16× 16 matrix L. In particular,

L =



1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0



.

Furthermore, for an Sbox S, we define the dependency matrix Dep(S) as

Dep(S)i,j =

1 if ∃x : Si(x) 6= Si(x+ ej)

0 else
.

Thereby, Si denotes the i-th coordinate function and ej the j-th unit vector.
In particular, for the SKINNY Sboxes we have

Dep(S4) =


1 1 1 1

1 1 1 1

0 1 1 1

1 0 1 1

,
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Dep(S8) =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 0 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 1 1 1 1 1

1 0 1 1 0 0 0 0

0 0 0 0 1 0 1 1

1 0 1 1 1 1 1 1


.

Now, we can define the diffusion matrix Ds for s ∈ {4, 8} as a 16× 16 block
matrix such that

Dsi,j =

Dep(Ss) if Li,j = 1

0s if Li,j = 0
,

where 0s denotes the all-zero matrix of dimension s× s.
Now, the cipher achieves full diffusion after r rounds, if Drs contains no

zero entry when Ds is interpreted as a 16s× 16s matrix over the integers. In
this case, every bit of the internal state after r rounds will depend on every
input bit.

For SKINNY-64 and SKINNY-128, we made sure that full diffusion is
achieved after 6 rounds, both in forward direction and for the inverse. Note
that the diffusion matrix of the inverse has to be computed seperately.
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