New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis

Kruger, Francois; Kontogeorgis, Georgios M.; von Solms, Nicolas

Published in: Fluid Phase Equilibria

Link to article, DOI: 10.1016/j.fluid.2017.11.026

Publication date: 2018

Document Version
Peer reviewed version

Citation (APA):
New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis

Francois Kruger, Georgios M. Kontogeorgis, Nicolas von Solms

PII: S0378-3812(17)30464-8
DOI: 10.1016/j.fluid.2017.11.026
Reference: FLUID 11661

To appear in: Fluid Phase Equilibria

Received Date: 12 August 2017
Revised Date: 5 November 2017
Accepted Date: 16 November 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
New Association Schemes for Mono-Ethylene Glycol

Cubic-Plus-Association parameterization and uncertainty analysis

Francois Kruger, Georgios M. Kontogeorgis, Nicolas von Solms*

* Corresponding author
Email: nvs@kt.dtu.dk

Center for Energy Resources Engineering
Department of Chemical and Biochemical Engineering
Technical University of Denmark (DTU)
DK-2800 Lyngby, Denmark

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Abstract

Accurate thermodynamic predictions for systems containing glycols are essential for the design and commissioning of novel subsea natural gas dehydration units. Previously it has been shown that the Cubic-Plus-Association (CPA) equation of state can be used to model VLE, SLE and LLE for mixtures of interest to this application. Recent developments for association schemes have shown that the use of a binary association site provided improvement for the modelling of 1-alkanols. In this work, we implement the binary association site for mono-ethylene glycol (MEG) by proposing three new association schemes (3C, 4E & 4F). New parameter sets have been regressed and uncertainty analysis, using the bootstrap methodology, was performed to obtain 95% confidence intervals for each parameter. An improved parameter set for the literature 4C scheme was also determined.

The four association schemes were tested against eight data types, with single parameter sensitivity analysis showing that new parameter sets are near optimal. The 3C scheme provides the best results for pure component properties and the liquid phase of MEG-H$_2$O, while new 4C parameters provide the best results for the MEG-H$_2$O (vapour phase) and MEG-nC$_7$ LLE. For the limited ternary (MEG-H$_2$O-CH$_4$) data and MEG-nC$_6$ LLE, the best results are achieved using the 4F scheme. Ternary modelling performance was further improved by using binary interaction parameters fitted to binary vapour phase data.

While each of the new parameter sets provided an improvement over the literature parameters, it was found that no specific scheme was universally the best option. Given the uncertainty ranges and inconsistency between literature data, additional experimental data are required.

Despite the lack of sufficient data, the value of the bootstrap method has been highlighted, both for finding improved parameter sets and transferring uncertainty from experimental data through to thermodynamic and process models.
Graphical abstract

<table>
<thead>
<tr>
<th>1,2 ethanediol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-ethylene glycol</td>
</tr>
</tbody>
</table>

Highlights

- Bootstrap methodology provides excellent mechanism for transference of uncertainty from experimental data to thermodynamic models
- Three new association schemes proposed for MEG
- Improved 4C parameters
- The new 4F scheme provides the best overall results for natural gas dehydration applications

Keywords: cubic-plus-association; parameterization; uncertainty analysis; glycols; new association scheme
1. Introduction

The presence of water in natural gas and fuel gas pipelines presents a significant risk to continuous operability. Gas hydrate formation can cause pipelines to be completely blocked, while the combination of condensed water with carbon dioxide and hydrogen leads to corrosion [1]. Gas dehydration through absorption into tri-ethylene glycol (TEG) has become the natural gas industry standard for solving this problem, while mono-ethylene glycol (MEG) and methanol are also considered for direct injection applications due to their flow properties [2] and advantageous cost [3]. Other processing options, such as adsorption, refrigeration, membrane permeation and supersonic processing are available, but have several disadvantages for upstream and offshore applications [4]. Adsorption is typically preferred for ultra-dehydration applications, but has higher capital costs and a larger plant footprint. Refrigeration requires significant pressure drops to generate sufficient cooling. Use of membranes for water removal has seen some commercial implementation, although economically significant amounts of methane are lost along with the water [5]. Supersonic separators [6] offer interesting advantages for offshore applications, but along with membrane separators [7], are still very much in development and are unlikely to see significant market penetration in the near future [4].

For absorption into liquid desiccants, TEG provides greater dew point depression capability, while direct injection with MEG provides sufficient dehydration and hydrate inhibition for flow assurance and operability. This is of particular interest in subsea networks, where essentially untreated gas is transported over long distances to central processing facilities. Occasionally di-ethylene glycol (DEG) or MEG/DEG mixtures are used to negate the higher relative volatility of MEG (which leads to losses to the gas phase), but these types of installations are less common. Statoil is currently developing the Gas-2-Pipe™ process [8], which aims to produce on-specification export gas (or Sales Gas) at the seabed. The main specifications are the hydrocarbon dew point, water dew point and glycol content of the gas according to the GASSCO
specifications [9], while the processing conditions between 50-150 bar, 5 °C (278 K) and glycol content >90 wt% are envisioned.

Proper design of dehydration and hydrate inhibition processes requires a combination of high quality experimental data and thermodynamic models. The scarcity of data for systems of interest to this investigation has been highlighted in several sources [3,10–13] and very often the available data are contradictory. Additionally, the gas phase quantification of glycols at operating temperatures and pressures is especially challenging as these compounds occur in the low ppm range, which is near the detection limits of gas chromatography [14].

The Cubic-Plus-Association (CPA) [15,16] equation of state (EoS) has been previously implemented for the thermodynamic modeling of gas-water-glycol and gas-condensate-water-glycol systems. CPA is a five-parameter equation of state which combines the repulsive and attractive terms of the Soave-Redlich-Kwong (SRK) [17] with the association term first proposed by Wertheim [18–21] and later implemented in an engineering form by Chapman et al. [22,23] into the Statistical Associating Fluid Theory (SAFT) equation(s) of state. The association term is used to account for intermolecular hydrogen-bonding using a site-specific scheme which must be defined for each molecule. Traditionally, alcohols have been described with the 2B scheme (1 positive and 1 negative site), while glycols and water have been represented with the 4C scheme (2 positive and 2 negative sites). For almost twenty years, there were relatively few developments with respect to association schemes. However, in 2009 [24] and 2011 [25], new association schemes were proposed for glycols (6D) and 1-alcohols (2C). The 2C scheme of de Villiers et al. [25] is especially interesting as it makes use of the binary site (universal bonder), which had previously only been applied for acid dimerization (1A scheme).
More recently the need has arisen for robust quantification of the uncertainty and/or sensitivity analysis of both experimental data and thermodynamic models as applied in process design. As Mathias [26] points out: “Several studies have illustrated the effects of uncertainty in the physical-property models on process design, however these publications do not provide an effective way to quantify the propagation of the property uncertainty into design variability.” Despite this need and the obvious advantages of understanding modelling uncertainty, Mathias notes that uncertainty analysis has seen limited implementation in industry. Mathias proposed a method for incorporating property uncertainty as a perturbation to the activity coefficient, using an adjustable parameter to give the magnitude of the perturbation. Asprion et al. [27] applied this concept to equations of state by perturbation of the fugacity coefficient.

Another approach was taken by Bjørner et al. [28], who applied a statistical method - called bootstrapping - to determine the confidence intervals for the parameterization of CO₂ within different variations of CPA. While this method appears more complex, the implementation is relatively straight-forward and has the added advantage of using experimental data (rather than adjustable parameters) to determine the confidence intervals or uncertainty.

Within this work, we build on the work of de Villiers et al. [25] by proposing new association schemes for glycols which incorporate the binary association site. Necessarily, new parameter sets must be regressed, for which the bootstrapping technique is applied for determining parameter confidence intervals. A thorough evaluation of the literature data is required, which will focus on light hydrocarbon, water and glycol mixtures – as the application of this work is natural gas dehydration. Higher hydrocarbons will however not be ignored, as their present risk to both operability within the dehydration process and asset management of downstream transport networks [14,29].
2. Literature Review

2.1. Literature data of interest to glycol-based dehydration studies

Both pure component (P_{sat} and ρ) and mixture data (binary LLE) have been identified as critical for the evaluation of model parameter sets [30]. As this work is geared towards natural gas dehydration applications, good modelling of glycol-water and natural gas-glycol-water systems (necessary for the design of the absorber and regeneration processes) are focussed on.

In terms of determining process feasibility, the measurement of water and glycol in the vapour phase are essential as these are critical specifications for the final gas product. Overprediction could lead to the rejection of perfectly acceptable process configurations, while underprediction will result in off-spec production and/or downstream asset integrity issues. The lack of experimental data (especially for MEG in the vapour phase) is due to the difficulty of measuring low levels of MEG using standard gas chromatography.

Gas solubility data are very important for the determination of hydrocarbon carryover into the regeneration processes and the subsequent emissions there [31]. For this purpose, other studies have also investigated mixtures including aromatic (BTEX) compounds [10,32].

2.1.1. Pure component data

For many studies, the DIPPR correlations (which are fitted to multiple experimental data) have been used to generate pseudo-experimental data at equally spaced intervals for reduced temperature (T_R) ranges of approximately 0.4-0.9. Figure 1 highlights the degree to which the correlations are extrapolated beyond the experimental data (for MEG), with 95% of the vapour pressure and density points below $T_R = 0.67$ and 0.58 respectively. For reference, the proposed subsea dehydration would occur between 273-303 K (depending
on the location of the installation) (approximately $0.38 < T_R < 0.42$), while regeneration typically occurs at higher temperatures (up to ~ 473 K which is $T_R = 0.66$). Very few data are available around $T_R = 0.4$ – especially for glycol vapour pressure, as the experimental values become very low and exceedingly difficult to quantify accurately.

Recent work by Crespo et al. [33] provides high pressure density data up to 950 bar and ~ 363 K for several glycols including MEG and TEG.

2.1.2. Binary data

While there are several pure component data available for vapour pressure and density (if not in the desired ranges always), there are serious concerns with respect to binary, ternary and multicomponent data. For MEG-CH_4, only Folas et al. [14] quantify both phases. Only for three data points were measured however, making thermodynamic consistency tests impractical. Furthermore, several sources from the open literature have measured CH_4 solubility in MEG [14,34–38], but only three (Folas et al. [14], Bersås [39] and Miguens et al. [40]) present data for glycol in the vapour phase. These three data sets share a common genealogy in that they stem from the same research/experimental facilities, albeit spread over at least a decade. Given this development over time, the latest data are likely to be the most accurate – as is also reflected in the quoted experimental error. A comparison of the data is provided in Figure 2.

Figure 2 does not show the data for temperatures above 298 K as these are not of interest to this study. The figure also shows five isotherms (273, 278, 283, 293 and 298 K with temperature increasing from the lowest to the highest trend) calculated with the CPA equation of state using the parameters derived by Derawi et al. [30]. Inconsistencies in the data of Folas et al. [14] are highlighted for instance by lower gas phase content at 278 K (versus other data at 283 K) and at the point at 100 bar and 298 K. However, most of the rest of the data are consistent with each other and from a modelling perspective we see that the CPA
model captures the general behaviour of the data, although increasing deviations are observed at higher pressures and temperatures.

For the gas solubility in the liquid phase, there is sufficient overlap for comparison (see Figures 3 and 4) between the various sources.

In Figure 3, three different data sources are shown for higher temperatures, and pressures, relevant to natural gas dehydration. While low experimental uncertainties are claimed (Jou et al. [34]: 2-3%, Zheng et al. [35]: “Close agreement with Jou et al.”, Galvoa et al. [38]: previous work estimates 2-20% error for their equipment), several inconsistencies are apparent:

- Considerably different solubilities were measured e.g. at ~100 bar and 373 K:
 - ~10% difference between Zheng et al. [35] and Jou et al. [34]
 - 40-50% difference between Galvoa et al. [38] and Jou et al. [34] / Zheng et al. [35]
 - Interestingly, only minor differences are observed for MEG-CO₂ between these publications

- Below 40 bar, it becomes difficult to distinguish between the solubility profiles for 323 K and 373 K suggesting that there exists no significant temperature dependency in this region

- The gradients of the solubility profiles are quite different between the various sources:
 - At 100 bar, Folas et al. [14] agrees with Jou et al. [34]
 - At 50 bar, Folas et al. [14] is roughly between Jou et al. [34] and Zheng et al. [35]
 - Galvoa et al. [38] appears more linear (at least over a larger pressure range) than the other sources

Both Wang et al. [36] and Abdi et al. [37] measured CH₄ solubility in MEG for verification purposes – comparing to Zheng et al. [35] and Jou et al. [34] respectively. Abdi et al. show roughly a 0.001-0.0015 mol/mol deviation from Jou et al. [34]. Very low experimental uncertainties are quoted, with the mole fraction error given as 0.0001. It is also noted that only 45-60 minutes were allowed for equilibrium to be
attained, which may explain the lower solubilities as compared to other sources. Wang et al. [36] report a maximum deviation between parallel runs of 5%, although their binary data do not match well with other literature sources (Figure 4).

Given the importance of accurately predicting LLE data [30], it is also necessary to consider these data in the study. Derawi et al. [41] measured seven binary mixtures, including MEG-nC₆ and MEG-nC₇, at temperatures between 305 and 353 K and 1 bar. Razzouk et al. [42] published a correction of earlier results for LLE, which also included MEG-nC₆ and later data [43] from the same research group provided fourteen binary systems, including MEG-nC₇. The MEG-nC₆ data are compared in Figure 5, where the logarithmic scale must be kept in mind to correctly compare the data. MEG solubility in hydrocarbon-rich phase (x₁ in Figure 5) data are similar, but significantly higher values (~30-40%) were found for hydrocarbon solubility in MEG (x₂). With linear extrapolation of the data from Derawi et al. to lower temperatures, significant differences for both datasets occur.

Significantly fewer discrepancies are observed in the literature data for MEG-H₂O VLE, although most of these data are measured at conditions outside the range of interest for dehydration and are more applicable for glycol regeneration: low pressure (< 1 bar) and high temperature (> 350 K).

Although natural gas is predominantly composed of methane, other components such as ethane, nitrogen and carbon dioxide may occur in significant quantities. MEG-C₂H₆ was measured by both Wang et al. [36] and Jou et al. [44]. Although no common data ranges were measured, the deviations between these data are estimated at >35%. CO₂ solubility in MEG has been studied by several authors [35, 45–48], generally at high glycol content and with only few data below 300 K being available. Zheng et al. [35] are the only source for MEG-N₂ measurements, with data at 323, 373 and 398 K available.
2.1.3. Multicomponent data

Very few multicomponent data sets, which include glycols, exist in the open literature and often the data measured for MEG-related studies use 50-60 wt% aqueous solutions. These solutions are of interest for hydrate inhibition applications [43], but contain significantly more water than what would be desired for dehydration applications. Of those available, the following are of specific interest to this work:

Abdi et al. [37] measured gas solubility (CH₄/CO₂/N₂) in ternary mixtures with aqueous MEG (40 and 60 wt%) at 150 and 200 bar and 263 and 283 K. These data are outside the desired pressure and glycol content ranges. Wang et al. [36] also measured gas solubility (CH₄/C₃H₆/CH₄ + C₂H₆) in aqueous MEG (20-100 wt%) from 50-400 bar and 283-303 K. Folas et al. [14] measured MEG-H₂O-CH₄ for two temperatures (278 & 298 K) and three pressures (50, 100 & 150 bar), where a roughly 50 wt% aqueous MEG solution was used. Both phases are quantified, with CH₄ solubility and H₂O in gas errors estimated at 5% while the MEG in gas error is given as 25%. Miguens et al. [40] measured the CH₄-C₃H₆-MEG system for a fixed 85 mol% CH₄ gas mixture at 273, 283 and 293 K as well as 50 and 100 bar. The experimental accuracy is given as +/- 10%.

Mokbel et al. [43] also measured data for seven ternary LLE for alkanes with MEG and H₂O at three temperatures 283, 303 & 323 K, with the n-hexane and n-heptane data sets being of special interest. MEG and water in mixtures with various aromatics, condensates and oils have also been measured and published [49–52], but these data are not considered in this study as they are not relevant to natural gas dehydration.
For both MEG and TEG, the Gas Processors’ Association (GPA) has several reports (e.g. RR-117, RR-131, RR-137, RR-149, RR-198) which contain experimental data. These data do not include measurements of glycol content in gas, and some references [3] have called into question their accuracy.

2.2. Thermodynamic modelling of associating systems

2.2.1. Development of SAFT-type equations of state for describing systems containing alcohols/glycols

While the first SAFT paper of Chapman and co-workers [23] presented the framework and equations relating to association, it was Maciej Radosz and Stanley Huang who first proposed (see Figure 6 below) association schemes in Tables 7 and 8 of *Equation of State for Small, Large, Polydisperse, and Associating Molecules* [53]. Of specific interest to our work, are the 1A, 2B and 4C association schemes which were proposed for acids, alcohols and water respectively. In the naming convention, the number represents the number of association sites while letters were allocated somewhat less consistently to differentiate between the types of interactions between sites. The 1A scheme (and A-schemes in general) considers association sites which will be attracted to any other site-type on another molecule. As double “bonding” between two molecules is not allowed in the underlying treatment developed by Wertheim [18–21], the 1A scheme was used to approximate the dimerization between acid molecules. In the 2B scheme, two different types of association sites are defined with like-like interactions being zero and unlike interactions being allowed. In the representation of an alcohol, one site would be allocated to the hydrogen (proton) on the hydroxyl while the other is allocated to the lone electron pairs of hydroxyl oxygen. If alcohols are treated in a rigorous fashion, then two separate association sites are defined to represent the two electron lone pairs on the hydroxyl oxygen. Although the underlying mathematical model isn’t explicitly based on
charge/polarization, it has become natural to talk of positive and negative sites due to the nature of hydrogen bonding/association. The 3B scheme (which is the rigorous physical description of alcohols, but is used almost exclusively for methanol) highlights this fact, where defining the scheme as 1 “positive” and 2 “negative” sites is mathematically identical to the definition of 1 “negative” and 2 “positive” sites. Physically speaking, the former is preferred of course [54]. Relevant association schemes from the early SAFT work are illustrated in Figure 6.

Ideally one would like to evaluate the choice of association schemes through experimental data e.g. spectroscopic methods, but it is difficult to identify specific OH peaks when water is present in the mixture. An alternative is to use molecular simulations. Olsen et al. [55] evaluated hydrogen bonding for 50% glycol-water mixtures for temperatures between 275-370 K finding average hydrogen bonds per glycol to be between 1.8-2.5 and 1.6-2.4 for MEG and TEG respectively. Their work indicates a higher degree of self-association versus cross-association for glycols in aqueous MEG and TEG, and that for TEG ether oxygens are less involved in hydrogen-bonding than the hydroxyl oxygens. Neutron diffraction data has been used to calculate the average number of hydrogen bonds for water at various conditions [56] finding for instance 3.6 bonds per molecule at ambient conditions. This finding has been used to support the modelling of water with the 4C association scheme.

CPA was originally proposed in 1996 [15], with an extension to associating mixtures and model simplifications introduced in 1999 [16]. The general form of the model is given by: [57]

\[
P = SRK_{rep} + SRK_{att} + SAFT_{assoc}
\]

\[
P = \frac{RT}{V_m - b} - \frac{a(T)}{V_m(V_m + b)} - \frac{RT}{2V_m} \left(1 + \rho \frac{\partial \ln g}{\partial \rho} \right) \sum_i \sum_{A_t} x_i (1 - X_{A_t})
\]

\[Eq. 1\]

Within the SRK terms above, three parameters are required:

\(^1\text{Some sources prefer electron donor and electron acceptor to positive and negative}\)
• \(b \): Co-volume [\(\text{cm}^3 / \text{mol} \)]

• \(a(T) \): Soave-type temperature-dependent energy term, which is described by

\[
a(T) = a_0 \left(1 + c_1 \left(1 - \sqrt{\frac{T}{T_R}} \right) \right)^2
\]

\[\text{Eq. 2}\]

- \(a_0 \): attractive energy term\(^2\) [bar \(\text{cm}^6 / \text{mol}^2 \)]
- \(c_1 \): attractive energy temperature-correction [dimensionless]
- \(T_R \): the reduced temperature \((T/T_c) \)

Association was incorporated into CPA with the SAFT association term in Eq. 1 and the association schemes shown in Figure 6. Association is described through the summation \(i \) over all molecules for all sites \(A \) of nonbonded sites \(\{X_{A_i}\} \). \(X_{A_i} \) is defined as:

\[
X_{A_i} = \frac{1}{1 + \rho \sum_j \sum_{B_j} (X_{B_j} \Delta^{A_iB_j})}
\]

\[\text{Eq. 3}\]

where the property \(\Delta^{A_iB_j} \) is defined as the association strength between site A on molecule i and site B on molecule j, and is described by:

\[
\Delta^{A_iB_j} = g(\rho) \left[\exp \left(\frac{\varepsilon^{A_iB_j}}{RT} \right) - 1 \right] b_{ij} \beta^{A_iB_j}
\]

\[\text{Eq. 4}\]

Eq. 4 introduces the two final pure component parameters:

- \(\varepsilon \): association energy\(^3\) [bar \(\text{cm}^6 / \text{mol} \)]
- \(\beta \): association volume [dimensionless]

\(^2\) In this work, \(a_0 \) is usually shown in its reduced form as \(\Gamma = a_0/(b \cdot R) \) [K], where \(R \) is the universal gas constant

\(^3\) In this work, the association energy is presented as \(\varepsilon/R \) [K]
Figure 7 illustrates the bond (dotted line) formed between two alcohol molecules using the 2B scheme, with the bond energy and bond length described ε and β. For mixtures, it is necessary to define combining rules for these parameters:

$$\varepsilon^{A_iB_j} = \frac{\varepsilon^{A_i} + \varepsilon^{B_j}}{2} \quad \text{(CR-1)}$$

Eq. 5

$$\beta^{A_iB_j} = \sqrt{\beta^{A_i}\beta^{B_j}} \quad \text{(CR-1)}$$

Eq. 6

$$\Delta^{A_iB_j} = \sqrt{\Delta^{A_i}\Delta^{B_j}} \quad \text{(ECR)}$$

Eq. 7

The ECR and CR-1 mixing rules are relatively similar with the only difference practically speaking that ECR also accounts for the influence of the b-term. ECR has been recommended for MEG-H_2O systems [57,58].

Combined with the three physical parameters from the SRK terms, this means that CPA has a total of 5 pure component parameters. These parameters are usually fitted to vapour pressure (P_{SAT}) and density (ρ) data, although several options are available: four parameterization approaches are discussed in the original CPA paper [15], spectroscopy data can be used where available [59,60] or the incorporation of binary data (specifically LLE) as was done for example by Derawi et al. [30] for glycols. Several potential issues regarding parameterization have also been identified e.g. identification of the best/correct parameter set among several acceptable sets [61]. The use of LLE data has been advocated as best practice, although without necessarily including it in the parameter estimation procedure i.e. used for selection between competing parameter sets.

Due this interest in modelling glycols for process design applications, five glycols (including MEG and TEG) were parameterized for CPA in 2003 [30]. Several important results are presented:

- The 4C scheme provides a superior representation for glycols to the 2B scheme
• Multiple parameter sets provide equally good description for glycol pure component properties
• Due to the uncertainty associated with and relative lack of pure component density and vapour pressure data, it is necessary to include some MEG-hydrocarbon liquid-liquid equilibria (LLE) data into the regression algorithm in order to discern the “correct” parameter sets

For the pure component properties, the DIPPR [62] correlations were fitted over a reduced temperature (T_R) range of 0.4-0.9 at equally spaced intervals of 0.01. Derawi et al. discussed in detail the effect of using different T_R ranges and different versions of the DIPPR correlations. Their recommended MEG parameters were fitted to the 2001 DIPPR correlations (which are the same as the most current version) and low absolute average (relative) deviations (%AARD) were achieved for vapour pressure (P_{SAT}) and liquid density (p). It is noted that all four trial parameter sets used for the 4C had a b-parameter greater than 50 cm3/mol. Subsequently to the work done by Derawi et al.[30], Breil and Kontogeorgis [24] proposed a new 6-site association scheme (6D) for TEG which consisted of two “positive” sites and “four” negative sites – with the two additional negative sites representing the electrons of the ether oxygens in the molecular structure.

The literature parameters for MEG and TEG are given in Table 1.

In 2011, a new association scheme was proposed by de Villiers et al. [25] for 1-alkanols (methanol to 1-decanol) with parameterization for one of the SAFT variants (sPC-SAFT). This new scheme (2C) combined one “negative” site and one “binary” site (the universal bonding site used in the 1A-scheme). For the regression algorithm objective function, heat of vapourization (Δh_{vap}) data were also included and DIPPR correlations are used ($0.5 < T_R < 0.9$).

2.2.2. Modelling applications for systems of interest for natural gas dehydration

Several models may be used for natural gas dehydration applications with equations of state, activity coefficient models and even machine learning applications found in the literature. For this study we are however interested in the SRK-based CPA using a simplified radial distribution [16].
CPA is very flexible for systems containing glycols and hydrate-inhibition applications [58]. More complete reviews [58,63–65] as well as a discussion about the limitations of the model [61] are available in the literature. Most CPA-based applications use the 4C scheme and original parameters of Derawi et al. [30] for MEG with the following applications of interest for this work: Folas et al. [14] were able to generate fairly good predictions with CPA for ternary MEG-H2O-CH4 systems using interaction parameters fitted to binary data, especially for the H2O and MEG in gas phase at pressures up to 200 bar. Miguens et al. [40] have modelled their data using CPA, noting that the model provides good description for CH4-C2H6-MEG at 50 bar, while larger deviations occur at 100 bar. Simultaneous description of VLE and LLE was obtained for glycols with aromatic compounds and water [10].

In the field of hydrate studies, several data and modelling papers have been published for systems containing MEG modelled with CPA [66–68]. Good results are achieved for the prediction of water content in the vapour phase, although temperature-dependent binary interaction parameters (BIPs) and additional model terms (e.g. van der Waals-Platteeuw term for gas hydrates) were used. For systems containing only natural gas components and water, CPA is shown to be purely predictive (no BIPs used) and comparable performance to the empirical GERG-water correlation has been achieved [69]. CPA has also been used to model more complex reservoir fluids [49–52] although BIP correlations and C7+ characterization methods are implemented. Afzal et al. [70] have measured the infinite dilution activity coefficient for several alkanes (C5-C16) with four glycols, including MEG and TEG. These data were used for deriving new BIPs, which were quite different from those fitted to LLE data. CPA has also been successfully implemented in industrial process simulators [31] specifically for modelling dehydration and hydrate inhibition systems.

Due to the intricacies of modelling CO2, there have been several studies, including a six-part series [71–76], involving acid gas mixtures (H2S/CO2 with alkanes, water, glycols in binary and multicomponent mixtures) and several data are available. The emphasis of this modelling has however been on the description of H2S/CO2 (whether inert, solvating or self-associating) and the mixing rules (and by extension BIPs) with the
MEG parameters remaining unchanged. Hydrate dissociation curves for multicomponent systems containing CO\textsubscript{2} and MEG have also been modelled successfully [68].

2.3. Uncertainty analysis and the bootstrap

Experimental data are often accompanied by an error estimate and/or confidence interval, allowing the reader to assess the degree to which the given data may be “trusted”. Although these ranges aren’t always rigorously determined, even an estimate of the data uncertainty can be most useful when implemented in parameter estimation, model optimization and process design. Several journals now require the explicit reporting of experimental error, but the widespread application of uncertainty analysis for thermodynamic modelling and process design has yet to penetrate mainstream process industries [26].

Whiting and co-workers extensively studied the sensitivity of process design to experimental errors and propose ways to quantify and apply uncertainty analysis [77–80]. While this list of studies is not exhaustive, it provides a good sampling of the type of investigations completed. Several relevant topics were considered, such as the effect on parameterization using different data sets for the same components/mixtures and error propagation (both random and systematic) in process designs, with the Monte Carlo approach used as the main analysis tool. These methods are however relatively complex, meaning that implementation has not been widespread. As a counter to this, Mathias [26] proposed an intuitive perturbation method for activity coefficient models which could more easily be implemented by the average design engineer. This method is relatively simple, but requires the user to assess the accuracy of given data sets and then apply the perturbation. The sensitivity of various process variables (e.g. reboiler duty or final product specification) can then be calculated. These methods were expanded to equation of state models by Burger et al. [27].
Returning to statistically based methodology, Bjørner et al. [28] proposed parameterization via the bootstrapping methods first proposed by Bradley Efron in the 1970s [81]. Although it took some years for the popularization of the method (even within the statistical community), its use became much more prevalent from the mid-1980s onwards [82–84] with the 1986 article of Efron and Tibshirani now having more than 2850 citations. The implementation of Bjørner et al. [28] considered a bootstrap method referred to as resampling of residuals. Following an initial optimization, the residuals are randomly sampled (with replacement), summed with the model prediction, and then parameters are refitted to this pseudo data set. When repeated a sufficiently large amount of times, parameter distributions are determined. If the parameters are normally distributed, the bootstrapped result (mean parameter set) will be relatively close to the result of a standard nonlinear regression. This is however not always the case, with highly skewed and bimodal parameter distribution being possible. These distributions indicate the possibility of multiple solutions and a larger degree of uncertainty in the optimization result – all of which is impossible to know without implementing the bootstrap methodology. Once the parameter distributions are known, obtaining the desired confidence interval is trivial and the Monte Carlo simulations can be used to generate inputs for process designs. This method has an as yet untapped potential, whereby the process simulation package developer can perform all the calculations to determine the parameter distributions and then incorporate the confidence intervals into the design software. The user can simply specify a desired confidence interval for the equation of state or activity coefficient model and produce an estimated operating range rather than a single point.
3. Methodology

New association schemes are proposed for mono-ethylene glycol, which make use of the binary association site. This follows similar thinking to that of de Villiers et al. [25] in the development of the 2C scheme 1-alkanols. Parameterization and evaluation of these schemes is done using a non-linear optimization algorithm, along with the bootstrap method for uncertainty analysis of the new parameter sets. While this work is only implemented for CPA, it could very naturally be extended to other SAFT-based equations of state.

3.1. New association schemes for glycols

MEG has traditionally been modelled using the 4C scheme after it was shown to be superior to the 2B scheme.

The implementation of the bipolar site is shown in Figure 8, where three new schemes are proposed:

- **3C**: the positive and negative sites on one side of the glycol are combined into 1 bipolar site
- **4E**: the positive and negative sites on one side of the glycol are combined into 2 bipolar sites
- **4F**: on each side of the glycol molecule, a negative site represents one of the lone electron pairs on the hydroxyl oxygen, while the 2nd pair is combined with the hydrogen to form a bipolar site

Analytical site expressions can be developed for each association scheme, but these become very complex and are unnecessary for solving the association term in the modern formulations. The association dynamics for the three new schemes are compared to the 4C-glycol 4C-water configuration in Figure 9. For the traditional 4C-4C modelling approach, perfect symmetry is seen both within and between self- and cross-association. This means that each association site has an equal chance of forming a bond and when it does bond, there is again an equal chance for a self- or cross-association bond. This is at odds with the molecular simulation results of Olsen et al. [55].
Each of the new schemes allows a greater proportion (ratio of green to orange) of self-association compared to the 4C approach (1:1 ratio), with ratios of cross-association also increasing. For the 3C and 4E schemes, the proportion of self-association to cross-association has increased (in agreement with the indications given by Olsen et al. [55]) while for the 4F there is still an equal likelihood for self- and cross-association. For the 3C scheme, there are also more cross-association configurations than self-association due to there being fewer association sites on the glycol, but this may be offset by having a maximum of three bonds per glycol.

3.2. Optimization algorithm and data selection

A weighted relative squared error function was used for parameterization of the new association schemes:

$$OF_{min}(a_0, b, c, \varepsilon, R, \beta, k_{ij}) = \sum w_i \sum \left| \frac{i_{calc} - i_{exp}}{i_{exp}} \right|^2$$

Eq. 8

The minimization was done with the lsqnonlin function in MATLAB® R2016a (Mathworks, 2016) using the Levenberg-Marquardt algorithm. The step and function tolerances were set to 10^{-9} and multiple random starts were implemented to avoid local minima issues as far as possible. In Eq. 8, i represents the various data included and w is regression weight used in the optimization algorithm. Different weighting values were also tested and although the impact was relatively small, the following weighting was used:

$$w_i = 1 - \frac{\text{data points of type } i}{\text{total data points}}$$

Eq. 9

This weighting function will increase the weight of individual data points in smaller data sets (e.g. LLE), but overall optimization will still weigh more strongly for the larger data sets (specifically P_{sat}). Data selection (see section 3.4) was found to have the largest impact, especially due to the inconsistencies seen for some
data (especially TPx for MEG-CH₄ as discussed in section 2.1.2) and the effect of using the DIPPR correlation on the bootstrap analysis (discussed later). Several different data types (P_{Sat}, \rho, \Delta H_{VAP}, TPx, TPy, LLE) were tested, with the best results given by the inclusion of saturated vapour pressure and liquid density along with LLE data i.e. i \in \{P_{Sat}, \rho, LLE\}. The remaining data (TPx, TPy) was used for fitting new BIPs (k_i) and evaluation purposes.

3.3. Bootstrap methodology

Although several bootstrap methods/variations exist, all of them revolve around the use of random sampling (with replacement) and repetition of a calculation (a statistically-significant number of times) in order to generate a distribution of the result of that calculation. Using the distribution, several statistical determinations can be made (e.g. mean, median, confidence interval etc.) and one can sample from the distribution as an input for a process input variable in error propagation studies. Given that the goal of the methodology is to calculate confidence intervals, which are very much related to the variance in the input data, the use of raw data over correlations would seem preferable.

We applied the bootstrap methodology in the following manner:

1. Pure component and binary data are chosen (see section 3.4) for parameter estimation

2. Finding the “optimum” parameters through minimization of Eq. 8 (all parameters optimized)
 a. Multiple runs with perturbed initial parameters were used
 b. Additional BIPs were optimized for TPx binary data (MEG-CH₄ and MEG-H₂O) not included in the data selection step (see section 3.4)

3. The “optimum” parameters were then bootstrapped
 a. Random selection (with replacement) from the parameter estimation data (step 1)
b. Refitting the parameters using the “optimum” parameters as the initial guess
c. Optimize additional BIPs (this was done by fitting the liquid phase of the binary)
d. Record optimized parameters and repeat bootstrap 1500 times
e. If the mean value of the parameters found in the bootstrap process was
 significantly different from the original “optimum” parameters, the bootstrap
 was repeated using the mean parameter values

4. Using the distributions for each parameter in the parameter set, the covariance,
 correlation and confidence intervals (along with the accompanying co-parameter
 confidence ellipsoids) using the same method as Bjørner et al. [28]

An important step during the method development was determining a sufficient number of repetitions.
This was done by doing three parallels of the bootstrap with 25, 50, 100, 250, 500, 750, 1000 and 1500
repetitions each. It was found that for our optimization algorithm, the bootstrapped confidence intervals
become constant to three or more significant figures between 500-750 repetitions. Despite this finding, we
decided to use 1500 repetitions as the additional calculation time (~30 minutes) was not deemed overly
expensive.

3.4. Data selection

As discussed in the literature review, several previous studies have used the DIPPR correlations to generate
pseudo pure component data (usually P_{Sat} and ρ). When only parameter fitting is done, this can be quite
useful (especially for the removal of weighting effects by the selection of equally spaced data points), but
we found that using the DIPPR correlations (and especially when combined with resampling of residuals
bootstrap) generated a significant amount of parameter correlation when evaluating the results of the
uncertainty analysis. This is the result of what could be termed as correlating a correlation and for this
reason we decided to use a selection of raw data rather than the DIPPR correlation. Generally, the raw
Experimental data is available for regions of interest (for dehydration and regeneration applications), but the reader should be aware of this when using these parameter sets at higher temperatures. Given the extrapolation done for the DIPPR correlations, the same caveat should probably apply to the standard literature parameter sets as well.

3.4.1. MEG data used in optimization (parameter regression):

Pure component vapour pressure [85–89] and density [90–93] data used for parameterization of MEG is shown in Figure 10. Relatively even data distributions were sought, which is more easily achieved for vapour pressure data than density. Newer sources were generally preferred and the DIPPR correlations were used as selection guidelines. Data points with a relative deviation of greater than ±5% and ±1% versus DIPPR were automatically excluded and the average relative deviations were calculated at 1.32% and 0.06% for saturated vapour pressure and liquid density respectively.

Binary LLE data (MEG-\(n\)C\(_6\) & MEG-\(n\)C\(_7\)) of Derawi et al. [41] were also included in the first optimization step. Following a preliminary investigation, the ECR combining rules were found to be preferable for all new association schemes which is in agreement with the literature for the 4C association scheme [57,58]. The choice of combining rule was found to be especially important for prediction of the MEG vapour phase content in MEG-H\(_2\)O-CH\(_4\) ternary system.

3.4.2. MEG data used for BIP regression and evaluation:

The following data were selected for use in sensitivity analysis, additional evaluation, and BIP regression:

- TPx MEG-CH\(_4\) of Jou et al. [34] at 298 and 323 K (closest to range of application)
- TPy MEG-CH\(_4\) of Miguens et al. [40] (all data) as well as the points \([T,P] \in [278, 100; 278, 200; 298,200; 323,200]\) from Folas et al. [14]
• MEG-H₂O VLE of Kamihama et al. [88] (isobaric Tₓ at 1 bar) were used since they achieved the best results for thermodynamic consistency

Both phases for MEG-H₂O are not included in BIP regression, but it is observed that the errors for both phases are comparable and generally rather small (~ 5-10%). The opposite was observed for MEG-CH₄, where improvement in the description of one phase would (in general) rather drastically decrease the performance for the other phase. Given that the MEG-H₂O data were measured together in the same experimental apparatus, whereas no such combined two-phase MEG-CH₄ data sets exist, this finding is not necessarily unexpected. It does however highlight the need for more complete MEG-CH₄ VLE data sets. Such data would assist the quantification of model deficiencies and prove invaluable for the identification and evaluation of possible modelling improvements.
4. Results & Discussion

4.1. Initial sensitivity analysis

Initially a sensitivity analysis was done to identify whether improvements are possible and also where the problems with the existing parameter sets may lie. Each EoS parameter \((b, \, \Gamma, \, c_1, \, \varepsilon/R, \, \beta, \, k_{ij})\) is varied in isolation, with the results presented in Figures 11-12.

The parameter sensitivity is compared to the pure component data selected in Section 3.4.1. It is seen that the \(b\)-parameter has the biggest influence on the density, while \(\varepsilon/R\) and \(\Gamma\) (or \(a_0\) since \(b\) is kept constant) have the greatest effect on the vapour pressure. Figure 11 indicates that a significant improvement for the density prediction may be possible if the \(b\)-parameter is decreased while simultaneously changing either \(\varepsilon/R\) or \(\Gamma\) to offset the effect on vapour pressure. The non-optimal description (for pure components) is partly due to evaluation against different input data (DIPPR data versus raw experimental), but even so, there remains clear room for improvement especially w.r.t. to the liquid density.

For Figure 12 the following data sets are used: MEG-CH\(_4\) and MEG-H\(_2\)O as described in Section 3.4.2, and LLE data of Derawi et al. [41]. \(\varepsilon/R\) is the most important parameter the binary data used in this analysis apart from the liquid phase of MEG-CH\(_4\). It is noted that the BIPs have a much smaller relative effect and also that the effect is opposite for the liquid and vapour phases of MEG-CH\(_4\) i.e. changing the \(k_{ij}\) in a certain direction improves the description of one phase while worsening the description of the other. The effect of the inclusion of the LLE MEG+\(nC_7\) data in the parameterization of the literature 4C scheme is evident in the bottom right-hand graph in Figure 12.

4.2. Optimization and uncertainty analysis

As discussed in the Methodology (section 3.4), several different data types were used in the parameterization and evaluation procedures. For this reason, a form of radar plot was chosen to represent
the results. In the radar plots, each data type is represented along one of eight axes. The absolute relative
deviation is plotted radially outwards, with contour lines provided for ease of reading. Therefore, the
further from the origin a point is located, the greater the fitting error for that data type. By connecting the
points of each parameter set, a regular polygon is formed. By comparing the areas/relative sizes of the
polygons, one can interpret the relative performance of various parameter sets. Data sets which were
included in the optimization and bootstrapping are marked with an asterisk (*) in the radar plots.
The results for the three new association schemes are shown in Figures 13-15 respectively along with the
95% confidence interval calculated using the distribution of errors for the 1500 bootstrap steps. Figure 16
shows the results for the existing 4C scheme.

From the figures above and Table A 5 in Appendix A, a few general trends can be observed:

- The confidence intervals are smaller (in absolute terms)\(^4\) for data types which contain a larger
 number of points (i.e. density and vapour pressure), with the LLE results generally having the
 largest uncertainty
- Each of the new schemes (including the new 4C parameter set) offer improved description for
 MEG-related systems, at least for the systems investigated here
- No single association scheme offers a universally improved result
- The new 4E and 4F schemes are virtually indistinguishable in terms of modelling accuracy
- The 4C scheme with new parameters is still able to describe LLE while simultaneously providing
 mild improvement for the important MEG content in the gas phase
- The 3C offers the best performance for pure component density and MEG in gas, but does not
 predict the MEG+\(n\)C\(_7\) LLE very well

\(^4\) Although in relative terms, only TPy (MEG-CH\(_4\)) (7%) and LLE (MEG-\(n\)C\(_6\)) (43%) do not fall within a 15-30% range as evaluated by:
\[CI_{\text{REL}} = \frac{(C_{\text{ub}} - C_{\text{lb}})}{\mu_{\text{boot}}}\]
The overall LLE results are somewhat contradictory, with the 4C scheme (old and new parameters) yielding errors of around 9% and 3% for the nC₆ and nC₇ systems respectively. The best results (~ 4%) for n-C₆ were achieved by the 4E and 4F schemes. While it may be possible to further improve these results by tinkering with the regression weights, it seems unlikely that one parameter set will satisfy both data sets.

The biggest improvements were observed for MEG saturated density as well as the MEG-H₂O binary. The MEG-3C density for instance, is shown to be 8 times better than the literature parameters (0.29% versus 2.44% AARD), while even the new 4C parameters (worst performing of the new parameter sets presented in this work) offer a 4 times better description (0.66% versus 2.44% AARD).

The parameter distributions and parameter co-variance plots from the bootstrap analysis are provided in the supplementary material. Although the distributions aren’t always normal, none of the distributions exhibit obvious bimodal nature⁵ and in general the evaluated parameter value is at or near the mean/central value of the distribution. The closest cases for true bimodal behaviour are the b-parameter for the 4C, 4E and 4F schemes, although it should be noted that the tails of this distribution are still quite far removed from the literature value of Derawi et al. [94]. By comparison, the b-distribution for the 3C scheme was very near to a normal distribution.

The BIPs exhibit a false bimodal behaviour due to sharp peaks resulting from the optimizer exiting the algorithm without changing the BIP value. This occurs as the BIPs do not influence the overall result as strongly as the other parameters and could be remedied by setting smaller tolerances for the optimizer, but would not drastically change the final result. This effect was most visible for the MEG+CH₄ and MEG+H₂O BIPs.

In general, the parameter distributions of 3C scheme exhibited the most normal behaviour. The 4-site schemes generally exhibited positively skewed distributions for SRK parameters b, a₀ and c₁, while the association parameters (ε/R and β) were negatively skewed. Figures 17 (3C) and 18 (4C) are representative.

⁵ Bimodal behaviour indicates a high probability of two “optimal” parameter values
of these differences, with the all the distributions available in the Supplementary Material. Although it is difficult to draw clear conclusions from this result w.r.t. the relative performance of the 3-site versus 4-sites schemes, it is nonetheless a distinct and interesting difference.

For the parameter distributions and co-variance plots we chose to examine a_0 rather than Γ, in order to decouple the effects of b in Γ. For the co-variance plots it is noticeable that there is significantly less correlation than seen for the methods used by Bjørner et al. [28]. The clearest case of correlation is shown for ε/R with a_0.

4.3. Analysis and application

Single parameter sensitivity analysis was also done for the new association schemes and parameter sets.

Figures 19 and 20 show the sensitivity analysis for the new 3C association scheme and are representative of the sensitivity analyses for the 4-site schemes (provided in the Supplementary Material). Naturally the pure component and LLE data achieve favourable results (meaning most of the parameters being at or near their optimal values) as they were included in the optimization and bootstrapping process. However, other data sets such as the MEG-CH$_4$ and MEG-H$_2$O (liquid) binaries are also near optimal, despite not having been included in the optimization (apart from regressing BIPs for the new parameter sets). Discrepancies are observed in the MEG-H$_2$O vapour phase modelling for all cases considered in this work. These discrepancies could be due to thermodynamic inconsistency in the data or a model deficiency, but the exact cause is difficult to pinpoint. Covariance plots for the BIPs were examined, but no clear conclusions could be drawn. However, the improvements over the literature parameters serve to highlight the power of uncertainty analysis and the bootstrapping technique for the parameterization of equations of state.
The new association schemes and parameter sets were also evaluated against newly published density data from Crespo et al. [33] which extend to pressures up to 950 bar. The results are shown in Table 2, with figures for each isotherm available in the Supplementary Materials.

In Table 2, %ARD (rather than %AARD) is shown in order to highlight the directionality of the errors. Each of the new association schemes and parameter sets provide a significant improvement over the literature 4C parameter set, which chronically underpredicts the density data. Although the 3C scheme performs the best overall, the new 4C parameter set performs better at temperatures less than 323 K. However, evaluation of the graphs reveals that the new schemes (3C, 4E and 4F) are better for pressures below 200 bar. None of the models perfectly capture the curvature of the data, but significant improvements over the literature parameters are attained.

In general, we can say that the overall results (i.e. %AARD in Table 2) are very similar to those for the saturated density data used in the parameter estimation, both in terms or relative order (4C-Lit >> 4C > 4E/4F > 3C) and magnitude. This would suggest a degree of equivalence between the saturated density and these data, at least for parameter estimation purposes. This hypothesis was briefly tested by repeating the bootstrap algorithm and optimization by using the data of Crespo et al. [33] instead of the saturated density data. The optimal parameter sets were found to be very similar to those determined using saturated density data.

In terms of the application for our work, the modelling of MEG in gas phase in mixtures with water, methane and other natural gas components is crucial. From the available literature data, the new association schemes and parameter sets can be evaluated against MEG-CH₄ data of Miguens et al. [40] and the ternary MEG-H₂O-CH₄ data of Folas et al. [14].

In Figure 21, the pure predictive (no BIPs) ability of various schemes are compared and interestingly the literature 4C parameters, 4E and 4F schemes produce very similar predictions for MEG in the gas phase.
The experimental data is overpredicted, with the new 4C parameter set providing the best results. Fitting MEG-CH₄ BIPs (values shown in the first line of Table 3) to the data of Miguens et al. [40] yields in almost identical curves with an overall fitting error of ~ 7%. The new 4C parameter set yields the smallest BIP while the new 3C association schemes yields the largest.

For evaluating the model performance for MEG-H₂O-CH₄ systems, only the data of Folas et al. [14] provide both phases. The data are evaluated for in three ways: using no BIPs, using BIPs fitted to TPₓ data during the parameter estimation and bootstrapping (values shown in Tables A1-A4 in Appendix A), and using BIPs fitted to TPy data (values shown in Table 3). Where applicable, the value of -0.045 is used for the BIP of H₂O-CH₄. The results of this evaluations are summarized in Table 4 with selected graphical results in Figures 22 and 23, and the full graphical results provided in the Supplementary Material.

The following observations are made for the modelling of the ternary data:

- Without using BIPs:
 - The 4E and 4F schemes provide the best predictive results for both phases
 - All data points are overpredicted by the models

- When using BIPs fitted to liquid phase VLE:
 - The 3C and 4C schemes offer better results for H₂O in gas (y₂)
 - The 4E and 4F schemes provide better results for MEG in gas (y₁) and CH₄ in liquid (x₃)

- When using BIPs fitted to vapour phase VLE:
 - The results are universally better (even for the ternary liquid phase) compared to those using BIPs fitted to the various binary liquid phase data

- For the CH₄ solubility in the liquid phase (x₃):
 - None of the schemes capture the temperature dependency using only a single BIP

- For MEG (y₁) and H₂O (y₂) in gas:
The 3C and new 4C parameters offer only a slight difference from the literature 4C parameters.

The models capture the temperature dependency much better than for x_3.

- If the average of the three errors are calculated, the 4F scheme always achieves lowest average error.
- With respect to the data, the curvature of the MEG in gas (y_3) data at 278 K and 298 K (around 100 bar) seems inconsistent, with all the models more closely resembling the 278 K data trend.

Given the results for modelling of the ternary data, the 4F scheme would appear to be the best for modelling MEG in natural gas dehydration applications and that better predictive modelling is achieved when BIPs are fitted to vapour phase binary VLE data. It is stressed that these conclusions are based on evaluations against very small data sets and this should be kept in mind by the user. Similar evaluations were performed for the binary MEG-CH$_4$ data by fitting a BIP to one phase and then evaluating the performance for predicting the other. Simultaneous description of both phases could not be achieved with the use of a single BIP and generally resulted in poor prediction for the non-fitted data.

5. Conclusions and Future Work

Three new association schemes (3C, 4E and 4F) have been proposed for MEG for the improved thermodynamic modelling of systems related to natural gas dehydration. These association schemes each utilized the binary association site first used for acids (1A scheme) and later for alcohols (2C scheme). For MEG-H$_2$O mixtures, these new schemes introduce an asymmetry into the association ensemble which is more in line with new molecular simulation results for glycol-water systems.

Single parameter sensitivity analysis of the literature CPA-4C set identified that improved modelling descriptions were also possible and to this end the bootstrapping technique has been applied to generate four bounded parameter sets for the 3C, 4C, 4E and 4F association schemes for MEG. A combination of
pure component saturated vapour pressure and liquid density, and binary LLE data were incorporated into the optimization and bootstrapping algorithms. Each of the new parameter sets showed significantly improved results in the description of MEG saturated density and vapour pressure, as well as VLE for MEG-H$_2$O and MEG-CH$_4$ which were not included in the optimization algorithms. The results for description for MEG-hydrocarbon LLE were slightly contradictory as the 4C scheme performed the best for nC$_7$, while the 4E and 4F schemes were best for nC$_6$. Meanwhile the 3C scheme provided the best results for pure component properties and liquid phase MEG-H$_2$O. No single scheme or parameter set was found to be universally the best. Single parameter sensitivity analysis was also applied to the four new parameter sets, indicating that only incremental improvements are still likely.

A review of the uncertainty analysis (distributions of the data set errors, parameter distributions and covariance plots) revealed that:

- the available LLE data carries the most uncertainty
- the 3C scheme has normal parameter distributions
- the 4-site schemes have skewed parameter distributions with hints of bimodal behaviour which may indicate dual optimal solutions in the area of investigation
- very few parameters display correlation, likely due to the use of raw experimental data and the simplified bootstrap

For the most important application of this work (the prediction of H$_2$O and MEG in the gas phase of mixtures with natural gas components), the 4F scheme (combined with BIPs fitted to the vapour phase of binary data) provides the best overall results for the single available set of ternary data.

Analysis of the literature data already indicated a serious need for thermodynamically consistent MEG-CH$_4$ data to be produced and this, along with the need for more MEG-hydrocarbon LLE data, has been
highlighted by the uncertainty analysis. It was shown that uncertainty ranges increase when few data are available and also when the available data are inconsistent. One area for future consideration would be the BIP regression e.g. how can we improve the description of both phases for MEG-CH₄ using a single BIP? Is this a data problem or a model problem? As part of the resolution to data availability issue we are in the process of measuring new data binary, ternary and multicomponent for various glycol-water-hydrocarbon systems.

Although this work has focussed on narrow applications and data ranges, the methods used here can be extended as and when additional data becomes available. The beauty of the bootstrap method applied to chemical process design, is that it allows one to transfer uncertainty from experimental data into thermodynamic models, and later into process models and designs. Rigorous and robust implementation of this method for all compounds is impractical, but could we in the future see the same requirements of modelers to provide well-defined parameter uncertainty ranges in the same way that experimentalists are being required to provide the experimental uncertainty?
References

Acknowledgements

The authors gratefully acknowledge the financial support from Statoil A/S (Norway) for this work as part of the research project ‘Thermodynamics of Petroleum Fluids relevant to Subsea Processing’ as part of the ‘Chemicals for Gas Processing’ research programme.

Nomenclature

MEG mono-ethylene glycol
DEG di-ethylene glycol
TEG tri-ethylene glycol
CPA Cubic-Plus-Association (equation of state)
SAFT Statistical Associating Fluid Theory (equation of state)
SRK Soave-Redlich-Kwong (equation of state)

T_R Reduced temperature ($T_R = T/T_c$) [-]

b Co-volume [cm3 / mol]

a_0 attractive energy term [bar cm6 / mol2]

c_1 attractive energy temperature-correction [-]

ϵ association energy [bar cm6 / mol]

β association volume [-]

$\Gamma = a_0/(b \cdot R)$, where R is the universal gas constant [K]
OF\textsubscript{min} Objective function (for minimization)

w\textsubscript{i} Regression weight for data type i

VLE Vapour-liquid equilibrium

LLE Liquid-liquid equilibrium

SLE Solid-liquid equilibrium

TP\textsubscript{x} Data type: VLE (temperature, pressure, liquid composition)

TP\textsubscript{xx} Data type: LLE (temperature, pressure, liquid composition 1, liquid composition 2)

TP\textsubscript{y} Data type: VLE (temperature, pressure, vapour composition)

BIP / k\textsubscript{ij} Binary interaction parameter

P\textsubscript{Sat} Saturated vapour pressure [bar]

\rho Density / Pure component saturated density [mol/cm3]

AARD Absolute Average Relative Deviation (\(\text{AARD} = \frac{1}{n} \sum |\frac{t_{\text{calc}} - t_{\text{exp}}}{t_{\text{exp}}}|\))

ARD Average Relative Deviation (\(\text{ARD} = \frac{1}{n} \sum \frac{t_{\text{calc}} - t_{\text{exp}}}{t_{\text{exp}}}\))

ppm parts per million (molar)
Appendix A: Data tables

Parameter sets and confidence intervals

<< Tables A1-A4 >>

Data fit errors for optimization and uncertainty analysis

<< Tables A5 >>
Figures

Figure 1: NIST and DIPPR data for the saturated vapour pressure (left axis) and liquid density (right axis) of MEG
Figure 2: Comparison of literature data sources for MEG in CH₄ (gas phase)

Figure 3: Selected CH₄ in MEG solubility data at 323 and 373 K (data are connected with lines in order to illustrate relative trends)
Figure 4: Selected CH₄ in MEG solubility data at 298 and 303 K (data are connected with lines in order to illustrate relative trends)

Figure 5: Comparison of MEG-nC₆ LLE data from Derawi et al. [41] and Razzouk et al. [42]
Figure 6: Standardization of association schemes first shown by Huang & Radosz [53]

Figure 7: Representation of association between two 2B molecules

The "binary, positive and negative" was not used by Huang & Radosz, but is utilized as a method for characterizing the association/attraction between various sites: positive will attract negative and vice versa, while binary sites interact with all other sites.
Figure 8: New association schemes for MEG

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C-scheme</td>
<td></td>
</tr>
<tr>
<td>3C-scheme</td>
<td></td>
</tr>
<tr>
<td>4E-scheme</td>
<td></td>
</tr>
<tr>
<td>4F-scheme</td>
<td></td>
</tr>
</tbody>
</table>

- Bipolar site: [○ ○ ○ ○]
- Positive site: [● ● ● ●]
- Negative site: [● ● ● ●]

1,2 ethanediol
Mono-ethylene glycol
Figure 9: Association dynamics for MEG with 4C-water under various association schemes (Legend: orange = no association, green = self-association, green with border = cross-association)

Figure 10: Pure component MEG data selected for parameter fitting procedure
Figure 11: Single parameter sensitivity analysis for pure MEG density and vapour pressure using the literature 4C parameters.
Figure 12: Single parameter sensitivity analysis for binary MEG VLE and LLE using the literature 4C parameters
Figure 13: Radar plot and uncertainty analysis for the new 3C association scheme

Figure 14: Radar plot and uncertainty analysis for the new 4E association scheme
Figure 15: Radar plot and uncertainty analysis for the new 4F association scheme

Figure 16: Radar plot and uncertainty analysis for the new 4C parameters
Figure 17: Distribution of the co-volume for the parameterization of the 3C scheme

Parameter distribution: b_0 with a mean: 49.81 with 95% C.I. $[49.7; 49.9]$.

Figure 18: Distribution of the co-volume for the parameterization of the 4C scheme

Parameter distribution: a_0 with a mean: 1.055 with 95% C.I. $[1.05; 1.06]$.

Figure 19: Single parameter sensitivity analysis for pure MEG density and vapour pressure using the new 3C association scheme
Figure 20: Single parameter sensitivity analysis for binary MEG VLE and LLE using the new 3C association scheme
Figure 21: Comparison of various association schemes for modelling of MEG-CH₄ TPy data (Miguens et al. [40]) without BIPs

Figure 22: Modelling of gas phase composition for MEG-H₂O-CH₄, comparing the literature 4C (solid lines) and new 4F (dashed lines) association schemes using BIPs fitted to vapour phase om Table 3
Figure 23: Modelling of liquid phase composition for MEG-H₂O-CH₄, comparing the literature 4C (solid lines) and new 4F (dashed lines) association schemes using BIPs fitted to vapour phase from Table 3.
Tables

Table 1: Literature CPA parameters for MEG and TEG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>b_0 [cm3/mol]</th>
<th>Γ [K]</th>
<th>c_1</th>
<th>ϵ/R [K]</th>
<th>$\beta \times 10^3$</th>
<th>Dev. vs DIPPR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEG</td>
<td>51.4</td>
<td>2531.7</td>
<td>0.6744</td>
<td>2375.8</td>
<td>14.1</td>
<td>0.90</td>
</tr>
<tr>
<td>TEG (4C)</td>
<td>132.1</td>
<td>3562.5</td>
<td>1.1692</td>
<td>1724.4</td>
<td>18.8</td>
<td>3.04</td>
</tr>
<tr>
<td>TEG (4C)</td>
<td>128.9</td>
<td>3622.5</td>
<td>0.9676</td>
<td>1697.1</td>
<td>19.8</td>
<td>39.9</td>
</tr>
<tr>
<td>TEG (6D)</td>
<td>128.9</td>
<td>3622.5</td>
<td>0.9100</td>
<td>1420.0</td>
<td>20.0</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Table 2: Density prediction errors for the CPA-EoS over an extended pressure and temperature range (Data from Crespo et al. [33])

<table>
<thead>
<tr>
<th>T [K]</th>
<th>283.11</th>
<th>293.13</th>
<th>303.13</th>
<th>313.16</th>
<th>323.15</th>
<th>333.18</th>
<th>343.16</th>
<th>353.18</th>
<th>363.18</th>
<th>%AARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C (Lit)</td>
<td>-3.43</td>
<td>-3.22</td>
<td>-3.03</td>
<td>-2.84</td>
<td>-2.66</td>
<td>-2.46</td>
<td>-2.26</td>
<td>-2.07</td>
<td>-1.86</td>
<td>2.65</td>
</tr>
<tr>
<td>3C</td>
<td>-0.61</td>
<td>-0.47</td>
<td>-0.34</td>
<td>-0.20</td>
<td>-0.08</td>
<td>0.05</td>
<td>0.18</td>
<td>0.31</td>
<td>0.45</td>
<td>0.32</td>
</tr>
<tr>
<td>4C</td>
<td>-0.50</td>
<td>-0.28</td>
<td>-0.09</td>
<td>0.12</td>
<td>0.31</td>
<td>0.51</td>
<td>0.71</td>
<td>0.92</td>
<td>1.14</td>
<td>0.54</td>
</tr>
<tr>
<td>4E</td>
<td>-0.89</td>
<td>-0.69</td>
<td>-0.51</td>
<td>-0.33</td>
<td>-0.16</td>
<td>0.03</td>
<td>0.21</td>
<td>0.39</td>
<td>0.59</td>
<td>0.46</td>
</tr>
<tr>
<td>4F</td>
<td>-0.73</td>
<td>-0.54</td>
<td>-0.36</td>
<td>-0.19</td>
<td>-0.02</td>
<td>0.16</td>
<td>0.33</td>
<td>0.51</td>
<td>0.70</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 3: BIPs for MEG-CH$_4$ and MEG-H$_2$O estimated using vapour phase binary VLE data

<table>
<thead>
<tr>
<th>Scheme</th>
<th>4C (Lit)</th>
<th>3C</th>
<th>4C</th>
<th>4E</th>
<th>4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{ij} MEG-CH$_4$</td>
<td>0.0866</td>
<td>0.1098</td>
<td>0.0682</td>
<td>0.0855</td>
<td>0.0851</td>
</tr>
<tr>
<td>k_{ij} MEG-H$_2$O</td>
<td>-0.1284</td>
<td>-0.146</td>
<td>-0.1184</td>
<td>-0.0543</td>
<td>-0.0512</td>
</tr>
</tbody>
</table>

Table 4: Prediction errors for various CPA association schemes versus the ternary MEG-H$_2$O-CH$_4$ data of Folas et al. [14]

<table>
<thead>
<tr>
<th>yMEG</th>
<th>yH$_2$O</th>
<th>xCH$_4$</th>
<th>%AARD (no k_i)</th>
<th>%AARD (with TPx k_i)</th>
<th>%AARD (with TPy k_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C (Lit)</td>
<td>101.1</td>
<td>22.1</td>
<td>41.0</td>
<td>27.4</td>
<td>7.4</td>
</tr>
<tr>
<td>3C</td>
<td>142.8</td>
<td>24.5</td>
<td>38.8</td>
<td>23.7</td>
<td>6.5</td>
</tr>
<tr>
<td>4C</td>
<td>87.3</td>
<td>21.1</td>
<td>32.1</td>
<td>25.4</td>
<td>7.2</td>
</tr>
<tr>
<td>4E</td>
<td>62.5</td>
<td>19.3</td>
<td>28.4</td>
<td>21.5</td>
<td>14.4</td>
</tr>
<tr>
<td>4F</td>
<td>62.7</td>
<td>13.6</td>
<td>31.5</td>
<td>21.3</td>
<td>13.9</td>
</tr>
</tbody>
</table>
Table A 1: New 3C parameters along with bootstrapped mean, 95% lower bound and 95% upper bound confidence intervals

<table>
<thead>
<tr>
<th>Parameters</th>
<th>b_0 [cm3/mol]</th>
<th>Γ [K]</th>
<th>c_1</th>
<th>ε/R [K]</th>
<th>$\beta \times 10^3$</th>
<th>k_{ij} CH$_4$</th>
<th>k_{ij} H$_2$O</th>
<th>k_{ij} n-C$_6$</th>
<th>k_{ij} n-C$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set: 3C</td>
<td>49.78</td>
<td>2182.85</td>
<td>1.054</td>
<td>2602.6</td>
<td>17.58</td>
<td>0.157</td>
<td>-0.134</td>
<td>0.073</td>
<td>0.064</td>
</tr>
<tr>
<td>Bootstrap μ</td>
<td>49.81</td>
<td>2180.88</td>
<td>1.055</td>
<td>2603.5</td>
<td>17.55</td>
<td>0.159</td>
<td>-0.135</td>
<td>0.073</td>
<td>0.064</td>
</tr>
<tr>
<td>95% lb</td>
<td>49.73</td>
<td>2164.52</td>
<td>1.052</td>
<td>2594.9</td>
<td>17.47</td>
<td>0.153</td>
<td>-0.138</td>
<td>0.070</td>
<td>0.062</td>
</tr>
<tr>
<td>95% ub</td>
<td>49.91</td>
<td>2191.08</td>
<td>1.061</td>
<td>2614.8</td>
<td>17.60</td>
<td>0.165</td>
<td>-0.132</td>
<td>0.077</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Table A 2: New 4E parameters along with bootstrapped mean, 95% lower bound and 95% upper bound confidence intervals

<table>
<thead>
<tr>
<th>Parameters</th>
<th>b_0 [cm3/mol]</th>
<th>Γ [K]</th>
<th>c_1</th>
<th>ε/R [K]</th>
<th>$\beta \times 10^3$</th>
<th>k_{ij} CH$_4$</th>
<th>k_{ij} H$_2$O</th>
<th>k_{ij} n-C$_6$</th>
<th>k_{ij} n-C$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set: 4E</td>
<td>50.14</td>
<td>2297.11</td>
<td>0.883</td>
<td>2224.7</td>
<td>12.74</td>
<td>0.126</td>
<td>-0.054</td>
<td>0.048</td>
<td>0.036</td>
</tr>
<tr>
<td>Bootstrap μ</td>
<td>50.18</td>
<td>2296.56</td>
<td>0.884</td>
<td>2224.4</td>
<td>12.72</td>
<td>0.127</td>
<td>-0.054</td>
<td>0.048</td>
<td>0.037</td>
</tr>
<tr>
<td>95% lb</td>
<td>50.09</td>
<td>2289.13</td>
<td>0.881</td>
<td>2220.9</td>
<td>12.64</td>
<td>0.123</td>
<td>-0.057</td>
<td>0.046</td>
<td>0.035</td>
</tr>
<tr>
<td>95% ub</td>
<td>50.29</td>
<td>2301.41</td>
<td>0.890</td>
<td>2228.0</td>
<td>12.76</td>
<td>0.131</td>
<td>-0.051</td>
<td>0.051</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Table A 3: New 4F parameters along with bootstrapped mean, 95% lower bound and 95% upper bound confidence intervals

<table>
<thead>
<tr>
<th>Parameters</th>
<th>b_0 [cm3/mol]</th>
<th>Γ [K]</th>
<th>c_1</th>
<th>ε/R [K]</th>
<th>$\beta \times 10^3$</th>
<th>k_{ij} CH$_4$</th>
<th>k_{ij} H$_2$O</th>
<th>k_{ij} n-C$_6$</th>
<th>k_{ij} n-C$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set: 4F</td>
<td>50.02</td>
<td>2407.04</td>
<td>0.806</td>
<td>2347.7</td>
<td>11.99</td>
<td>0.130</td>
<td>-0.023</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>Bootstrap μ</td>
<td>50.08</td>
<td>2405.18</td>
<td>0.809</td>
<td>2347.4</td>
<td>11.96</td>
<td>0.132</td>
<td>-0.024</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>95% lb</td>
<td>49.98</td>
<td>2393.44</td>
<td>0.805</td>
<td>2342.1</td>
<td>11.86</td>
<td>0.128</td>
<td>-0.028</td>
<td>0.050</td>
<td>0.039</td>
</tr>
<tr>
<td>95% ub</td>
<td>50.22</td>
<td>2411.52</td>
<td>0.818</td>
<td>2352.4</td>
<td>12.01</td>
<td>0.136</td>
<td>-0.021</td>
<td>0.055</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Table A 4: New 4C parameters along with bootstrapped mean, 95% lower bound and 95% upper bound confidence intervals

<table>
<thead>
<tr>
<th>Parameters</th>
<th>b_0 [cm3/mol]</th>
<th>Γ [K]</th>
<th>c_1</th>
<th>ε/R [K]</th>
<th>$\beta \times 10^3$</th>
<th>k_{ij} CH$_4$</th>
<th>k_{ij} H$_2$O</th>
<th>k_{ij} n-C$_6$</th>
<th>k_{ij} n-C$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set: 4C</td>
<td>49.84</td>
<td>2542.30</td>
<td>0.650</td>
<td>2385.6</td>
<td>14.55</td>
<td>0.134</td>
<td>-0.113</td>
<td>0.049</td>
<td>0.036</td>
</tr>
<tr>
<td>Bootstrap μ</td>
<td>49.94</td>
<td>2541.44</td>
<td>0.652</td>
<td>2384.9</td>
<td>14.53</td>
<td>0.136</td>
<td>-0.114</td>
<td>0.050</td>
<td>0.037</td>
</tr>
<tr>
<td>95% lb</td>
<td>49.80</td>
<td>2531.56</td>
<td>0.648</td>
<td>2379.9</td>
<td>14.40</td>
<td>0.133</td>
<td>-0.118</td>
<td>0.047</td>
<td>0.035</td>
</tr>
<tr>
<td>95% ub</td>
<td>50.16</td>
<td>2548.73</td>
<td>0.660</td>
<td>2388.6</td>
<td>14.59</td>
<td>0.140</td>
<td>-0.112</td>
<td>0.052</td>
<td>0.039</td>
</tr>
</tbody>
</table>
Table A 5: Error data for Figures 13-16

<table>
<thead>
<tr>
<th></th>
<th>P_{Sat}</th>
<th>p</th>
<th>$\text{TP}_x (\text{H}_2\text{O})$</th>
<th>$\text{TP}_y (\text{H}_2\text{O})$</th>
<th>$\text{TP}_x (\text{C}_1)$</th>
<th>$\text{TP}_y (\text{C}_1)$</th>
<th>$\text{TP}_{xx} (\text{nC}_6)$</th>
<th>$\text{TP}_{xx} (\text{nC}_7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C - Lit</td>
<td>1.96</td>
<td>2.44</td>
<td>4.40</td>
<td>11.1</td>
<td>12.8</td>
<td>23.5</td>
<td>8.69</td>
<td>3.24</td>
</tr>
<tr>
<td>Set: 3C</td>
<td>0.97</td>
<td>0.29</td>
<td>1.87</td>
<td>6.64</td>
<td>5.46</td>
<td>18.2</td>
<td>6.93</td>
<td>6.50</td>
</tr>
<tr>
<td>Average</td>
<td>0.99</td>
<td>0.31</td>
<td>1.86</td>
<td>6.67</td>
<td>5.55</td>
<td>18.3</td>
<td>7.42</td>
<td>6.76</td>
</tr>
<tr>
<td>95% lb</td>
<td>0.95</td>
<td>0.28</td>
<td>1.73</td>
<td>6.06</td>
<td>5.37</td>
<td>17.5</td>
<td>5.66</td>
<td>6.46</td>
</tr>
<tr>
<td>95% ub</td>
<td>1.07</td>
<td>0.42</td>
<td>2.07</td>
<td>7.37</td>
<td>6.11</td>
<td>19.3</td>
<td>10.2</td>
<td>7.72</td>
</tr>
<tr>
<td>Set: 4E</td>
<td>1.13</td>
<td>0.48</td>
<td>2.14</td>
<td>10.0</td>
<td>3.67</td>
<td>16.5</td>
<td>4.02</td>
<td>7.74</td>
</tr>
<tr>
<td>Average</td>
<td>1.14</td>
<td>0.50</td>
<td>2.14</td>
<td>10.1</td>
<td>3.75</td>
<td>16.5</td>
<td>4.23</td>
<td>7.83</td>
</tr>
<tr>
<td>95% lb</td>
<td>1.08</td>
<td>0.48</td>
<td>2.02</td>
<td>9.00</td>
<td>3.55</td>
<td>16.0</td>
<td>3.87</td>
<td>6.88</td>
</tr>
<tr>
<td>95% ub</td>
<td>1.28</td>
<td>0.58</td>
<td>2.30</td>
<td>11.3</td>
<td>4.30</td>
<td>17.1</td>
<td>5.54</td>
<td>8.90</td>
</tr>
<tr>
<td>Set: 4F</td>
<td>1.32</td>
<td>0.47</td>
<td>2.00</td>
<td>10.5</td>
<td>3.71</td>
<td>16.9</td>
<td>4.05</td>
<td>8.16</td>
</tr>
<tr>
<td>Average</td>
<td>1.31</td>
<td>0.48</td>
<td>1.94</td>
<td>10.3</td>
<td>3.86</td>
<td>17.1</td>
<td>4.30</td>
<td>8.31</td>
</tr>
<tr>
<td>95% lb</td>
<td>1.23</td>
<td>0.46</td>
<td>1.77</td>
<td>8.91</td>
<td>3.65</td>
<td>16.5</td>
<td>3.88</td>
<td>7.19</td>
</tr>
<tr>
<td>95% ub</td>
<td>1.45</td>
<td>0.55</td>
<td>2.10</td>
<td>11.3</td>
<td>4.42</td>
<td>17.8</td>
<td>5.77</td>
<td>9.88</td>
</tr>
<tr>
<td>Set: 4C</td>
<td>1.10</td>
<td>0.66</td>
<td>2.28</td>
<td>5.2</td>
<td>2.79</td>
<td>19.6</td>
<td>8.95</td>
<td>3.11</td>
</tr>
<tr>
<td>Average</td>
<td>1.10</td>
<td>0.61</td>
<td>2.27</td>
<td>5.2</td>
<td>2.94</td>
<td>19.7</td>
<td>9.16</td>
<td>3.34</td>
</tr>
<tr>
<td>95% lb</td>
<td>1.05</td>
<td>0.55</td>
<td>2.06</td>
<td>4.68</td>
<td>2.77</td>
<td>19.2</td>
<td>7.98</td>
<td>2.94</td>
</tr>
<tr>
<td>95% ub</td>
<td>1.22</td>
<td>0.74</td>
<td>2.52</td>
<td>5.7</td>
<td>3.45</td>
<td>20.4</td>
<td>10.42</td>
<td>4.20</td>
</tr>
</tbody>
</table>