Equilibria of ternary system Acetic Acid—Water—CO2 under subcritical conditions

JIMENEZ GUTIERREZ, Jose M. (Chema); Mussatto, Solange I.; TSOU, Joana; HAPPEL, Anton; VERLINDE, Rob; STRAATHOF, Adrie; VAN DER WIELEN, Luuk A. M.

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Equilibria of ternary system Acetic Acid—Water—CO$_2$ under subcritical conditions

Jose M. (Chema) JIMENEZ GUTIERREZ1, Solange MUSSATTO2, Joana TSOU3, Anton HAPPEL4, Rob VERLINDE4, Adrie STRAATHOF1, Luuk VAN DER WIELEN1

1 Delft University of Technology, Netherlands
2 Technical University of Denmark, Denmark
3 AkzoNobel Industrial Chemicals, Netherlands
4 Bioprocess Pilot Facility B.V., Netherlands

Carbon dioxide has been subject of research in the past decades, with special attention targeting different uses of this “greenhouse” gas as raw material, technological fluid, building block or as a carbon supply for fuels, turning it from a pollutant to a green resource. Albeit likely it will be returned to the atmosphere (as part of the carbon cycle), CO$_2$ is an inexpensive and clean source with numerous industrial applications in diverse fields: from chemical processes to biotechnological purposes (Aresta 2010).

Many of these studies have been focused on supercritical CO$_2$, due to its broad potential uses in a very wide range of applications. However, those conditions, especially the levels of high pressure required at larger scale, involve certain equipment limitations. An alternative to overcome those restrictions is to use subcritical carbon dioxide.

In order to understand the different systems to be tackled within the bio-process design comprising subcritical CO$_2$, and therefore to improve its applicability, it becomes necessary to investigate the behaviour of such gas at different conditions. Some bioprocesses which require CO$_2$ might also involve the presence of other substances in the medium, such as acetic acid in fermentations (Straathof 2014; Cabrera-Rodriguez 2017).

Thus, from a biotechnological perspective, it is highly interesting to research on the system CO$_2$—H$_2$O with different concentrations of acetic acid (HAc). Based on previous studies (Rumpf et al. 1998; Bamberger et al. 2000), this project aims to investigate the vapour/liquid equilibria (VLE) of the ternary system HAc—H$_2$O—CO$_2$ at different subcritical conditions. A proposed computer model could be validated with experimental data, leading to a certain degree of adjustment due to specific factors, such as the binary interaction parameter k_{ij}, used in the model based on the Peng-Robinson EoS coupled with the mixing rules, or in the calculation of the cross second virial coefficients (Prausnitz et al. 1986).