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ABSTRACT The increase in bacteria harboring antimicrobial
resistance (AMR) is a global problem because there is a paucity
of antibiotics available to treat multidrug-resistant bacterial
infections in humans and animals. Detection of AMR present in
bacteria that may pose a threat to veterinary and public health
is routinely performed using standardized phenotypic methods.
Molecular methods are often used in addition to phenotypic
methods but are set to replace them in many laboratories due to
the greater speed and accuracy they provide in detecting the
underlying genetic mechanism(s) for AMR. In this article we
describe some of the common molecular methods currently
used for detection of AMR genes. These include PCR, DNA
microarray, whole-genome sequencing and metagenomics,
and matrix-assisted laser desorption ionization—time of flight
mass spectrometry. The strengths and weaknesses of these
methods are discussed, especially in the context of
implementing them for routine surveillance activities on a
global scale for mitigating the risk posed by AMR worldwide.
Based on current popularity and ease of use, PCR and
single-isolate whole-genome sequencing seem irreplaceable.

INTRODUCTION

Molecular characterization of the genetic mechanism(s)
underlying a given phenotypic result, obtained by tradi-
tional antimicrobial sensitivity testing, is now an integral
part of many clinical investigations in relation to bac-
terial infections, whether in humans or animals. In some
cases, when phenotypic results are too time-consuming,
nonconclusive, or unavailable, molecular analysis can be
used to investigate the presence of a given gene or point
mutation and thereby give direct support to ensure that
an optimal treatment or control strategy is undertaken
in a timely manner. In addition, molecular character-
ization is frequently used as an indirect method to aid in
epidemiological investigations following an outbreak,

when phenotypic data is not sufficiently detailed to
control possible outbreaks involving resistant bacte-
ria. Finally, molecular characterization of antimicrobial
resistance (AMR) determinants is also used for local,
national, or even global surveillance of AMR. Currently,
the European Food Safety Authority (EFSA) and the
European Center for Disease Control (ECDC) are in-
volved in monitoring and coordinating surveillance of
AMR in important zoonotic bacteria from food animals
and humans, and systems such as the European Anti-
microbial Resistance Surveillance System (EARSS) have
helped generate data regarding the prevalence of AMR
in many European countries. However, most of the data
are based on phenotypic characterization of isolates,
although genotypic detection of AMR genes is also being
increasingly performed by member states.

Discussing phenotypic detection of AMR in bacteria
is not meaningful unless the purpose of the analysis is
defined. In relation to treatment of clinical infections,
parameters such as sites of infection, clinical manifesta-
tion, and toxic concentration of the antimicrobial agent
used need to be considered to define a relevant clinical
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breakpoint, which distinguishes between treatable
(sensitive), potentially treatable (intermediate resistant),
and nontreatable (resistant) infections. Alternatively,
the epidemiological cutoff, or ECOFF, can be used to
differentiate between the wild type, fully susceptible
populations of bacteria, and bacteria with reduced
susceptibility due to an acquired resistance mechanism.

Acquired resistance to antimicrobial agents is corre-
lated with a multitude of molecular mechanisms de-
pending on the organism and the antimicrobial agent
involved. These mechanisms include very different ge-
netic events such as constitutive or inducible expression
of (acquired) resistance genes, upregulated expression
of resistance genes because of mutations in the pro-
moter/regulator region, and insertion of strong active
promoters as part of, e.g., insertion elements upstream
of the resistance gene, mutations in housekeeping genes
acting as targets for antimicrobial agents, and loss-of-
function mutations in regulatory elements or specific
porins (1). In addition, bacteria can be intrinsically re-
sistant to certain types or even whole classes of anti-
microbial agents when these are given in therapeutic
concentrations. For example, enterococci are inherently
resistant to cephalosporins, partly due to low binding
affinity of the penicillin binding protein 5, which is in-
volved in cell wall synthesis in this organism (2). Com-
mon causes of intrinsic resistance are lack of (or low
affinity to) the target for the antimicrobial agent,
an inability of the drug to access the target, expression
of chromosomally located resistance genes encoding
enzymes, and the presence of multidrug efflux pumps
(3).

Because of the large diversity of possible mechanisms
involved in reduced antimicrobial susceptibility, it is not
a trivial task to transform all of these mechanisms or
genes into sequence-based detection algorithms if geno-
typic methods are eventually to substitute for phenotypic
methods, especially because new genes or allelic variants
of current resistance mechanisms are continuously being
discovered. In the case of intrinsic resistance, a priori
knowledge of a given organism is required to predict if it
is intrinsically resistant to certain antimicrobials, which
makes translation of sequence-based data into predicted
susceptibility even more complicated. For example,
anaerobic bacteria are intrinsically resistant to amino-
glycosides, while Helicobacter pylori is intrinsically re-
sistant to metronidazole and Pseudomonas aeruginosa
shows natural resistance to sulfonamides and trimeth-
oprims (4-6). Conversely, some genetic resistance
mechanisms are inherently difficult to detect by classical
in vitro phenotypic methods and can therefore remain

undetected, even though they can lead to treatment
failure i vivo, thereby increasing the importance of
detecting these mechanisms by molecular methods. This
is evident for Gram-negative pathogens carrying the
blaoxa.4s gene, often conferring only a minor reduction
in their susceptibility to carbapenems (7), and some
clonal lineages of methicillin-resistant Staphylococcus
aureus (MRSA), where heterologous expression of the
mecA gene can lead to inconclusive interpretation of the
organism’s susceptibility to beta-lactams (8).

Despite the varied challenges posed by genotypic de-
tection of mechanisms leading to reduced susceptibility
to different antimicrobial agents, molecular methods
are being used extensively by both research and refer-
ence laboratories. Some of the methods employed, such
as PCR and hybridization techniques, have been used
for decades, while new methods such as whole-genome
sequencing (WGS) and matrix-assisted laser desorption
ionization—time of flight mass spectrometry (MALDI-
TOF MS) are just emerging. The most commonly used
modern molecular methods in relation to detection of
determinants involved in conferring reduced suscepti-
bility to antimicrobial agents are discussed in this article.
The main advantages and disadvantages of using the
different genotypic methods for detecting AMR will be
described individually below; a more elaborate discus-
sion of these methods has been published recently (9).

PCR

PCR is a technique that was developed in the 1980s by
Kary Mullis (10) and has revolutionized molecular bi-
ology, enabling rapid and exponential amplification
of target DNA sequences using a forward and reverse
PCR primer and an enzyme known as DNA polymerase
in the presence of deoxyribonucleotides. Conventional
PCR comprises three steps: (i) denaturing of the double-
stranded DNA at 95°C, (ii) annealing of the PCR
primers at 50 to 60°C, and (iii) extension of the DNA at
72°C. PCR is used routinely in microbiology laborato-
ries for detecting any genes that may be present within
bacteria, as long as a DNA sequence is available for
the whole or partial gene which can be used to design
the PCR primers. The PCR-amplified gene product
can be visualized by running agarose gels and staining
DNA with ethidium bromide or other fluorescent DNA-
chelating dyes. The whole process, including amplifica-
tion and visualization, can take between 4 and 5 h.
Since the development of PCR, there have been sev-
eral advances, which include real-time PCR (RT-PCR)
and isothermal amplifications, e.g., loop-mediated iso-
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thermal amplification (LAMP) and recombinase poly-
merase amplification (RPA). The main difference be-
tween conventional PCR and RT-PCR is that in the
latter, amplification of the target DNA sequence is
monitored in real time as it occurs, rather than at
the end, due to the presence of fluorescent dyes in the
reaction, and thus is also known as quantitative PCR
(qPCR). Therefore, in RT-PCR, agarose gel electro-
phoresis is not required; this can save considerable time
and is safer, because the use of ethidium bromide, which
is a carcinogen, is not required. RT-PCR can use either
(i) nonspecific dyes that intercalate with any double-
stranded DNA or (ii) sequence-specific DNA probes
consisting of oligonucleotides that are labeled with a
fluorescent reporter which permits detection only after
hybridization of the probe with its complementary se-
quence (11). Isothermal PCR techniques such as LAMP
and RPA, in contrast, differ from conventional or RT-
PCR in that the whole process is performed at a con-
stant temperature and does not require ramping up and
down of temperatures. For LAMP, the temperature is
around 65°C, while it is around 40°C for RPA; up to six
different primers are used for LAMP, whereas RPA uses
two primers (12, 13). The presence of intercalating dyes
in the reaction allows fluorescent detection of target
DNA amplification in real time using a real time PCR
machine, which can be considerably faster than PCR or
RT-PCR. However, LAMP and RPA PCR amplification
can also occur using a simple water bath or heating
element and be measured by photometry for turbidity,
which makes both methods amenable for point-of-care
applications and use in low-resource settings (14).
Multiplex PCR, in which several target DNA frag-
ments are amplified simultaneously, can be performed
using either conventional or RT-PCR. The application
of PCR for monitoring multiple AMR genes in bacteria
has become easier with the use of multiplexing, and this
technique is widely used today, where appropriate, to
replace PCR and RT-PCR applications to amplify single
genes. In a multiplex PCR assay, several resistance genes
can be detected simultaneously with different primers
included in the assay mix. The products must be of dif-
ferent sizes and can be visualized either by gel electro-
phoresis, if from conventional PCR, or by addition of
different dyes for RT-PCR. Multiplex PCRs are often
designed to detect different genes, all relating to the
same resistance phenotype such as detection of the most
prevalent beta-lactamases present in Gram-negative
bacteria which are involved in resistance to cephalo-
sporins (15) or carbapenems (16, 17). Therefore, by
screening for these genes simultaneously, considerable
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time and effort can be saved in detecting the possible
mechanism(s) responsible for the resistance phenotype.

The robustness of any PCR strategy relies on multiple
factors such as optimal primer design, GC content of the
target template, and presence of inhibitory molecules in
the sample. The primers require close to 100% identity
to the target DNA and are thus sensitive to the presence
of single nucleotide polymorphisms within the binding
sequence, especially at the 3’ end of the primer, where
elongation initiates. It is therefore important to select
primers in binding areas with low or no nucleotide
variation. To ensure the robustness of new PCR assays,
a thorough validation process should always be per-
formed to evaluate the specificity (number of false-
positive results) and sensitivity (number of false-negative
results) of the assay. Designing primers is relatively easy,
but to ensure that these primers have both a high spec-
ificity and high sensitivity is not a trivial task, because
this requires access to a diverse sequencing dataset re-
presenting the variation expected to be present in the
test material. If multiplexing is also required, software
programs can be employed to help in defining relevant
sets of primer pairs (18). Finally, both a positive and a
negative control are required every time a PCR assay is
performed, to ensure that the sensitivity and specificity
are maintained each time the assay is performed.

Conventional PCR assays are well suited to detect the
presence or absence of (resistance) genes but are less
suited for detection of point mutations within target
genes, unless subsequent Sanger sequencing is performed
to detect these mutations. RT-PCR can detect single
point mutations in a given gene if sequence-specific DNA
probes targeting the mutation area are used. However,
an advantage that conventional PCR has over RT-PCR
is that the latter can only be used to detect the presence
of short fragments of DNA, optimally up to 150 bp,
whereas conventional PCR can easily detect much larger
fragments.

AMR Gene Detection

The use of PCR to detect the presence of AMR genes in a
bacterial isolate or even in samples from different envi-
ronments is commonplace. Due to the ease of designing
conventional PCR primers, there are a plethora of PCRs
that have been used to detect the presence of different
AMR genes from bacteria, in both aerobes and anaer-
obes. A highly cited paper in this area is by Schwartz
et al. (19), who discuss PCR used to monitor for the
presence of vanA (encoding vancomycin resistance),
mecA (encoding methicillin resistance), and ampC (en-
coding ampicillin resistance) in wastewater systems and
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water biofilms. The authors found the vanA gene in both
wastewater and drinking water biofilms, with the vanA
gene being found in the latter in the absence of entero-
cocci. While mecA was only detected in hospital waste-
water, ampC was the most widespread and was present
in wastewater, surface water, and drinking water
biofilms. Another paper is one by Lévesque et al. (20),
which describes PCR mapping used to determine AMR
genes and the order in which they were present in
integron cassettes. In 1995, when this paper was pub-
lished, integrons were a new type of mobile element, and
this work was quite novel. A comprehensive, although
not exhaustive, list of primers to detect AMR genes is
available at the website of the European Reference
Laboratory for Antimicrobial Resistance (EURL AMR)
in bacteria from animals and food (http://www.eurl-ar
.eu/data/images/faqg/primerliste %20til%20web_07.11
2013.pdf).

Conventional PCR has also been used to detect re-
sistance genes in bacteria during infection to antibiotics
used in first-line therapy such as those associated with
extended-spectrum beta-lactamase (ESBL) resistance
(21-23). These PCR assays are often performed in ad-
dition to antimicrobial susceptibility testing of the iso-
lates because PCR results can be obtained more quickly,
enabling control measures or accurate treatment. More
recently, both PCR and RT-PCR have been used widely
across Europe and for rapid large-scale epidemiological
surveillance of archived bacterial isolates to look for the
presence of the plasmid-mediated m2cr-1 and micr-2 genes
harboring plasmid-mediated resistance to antibiotics of
last resort such as colistin, which has attracted much
interest since its detection and reporting in 2015 (24—
31). As demonstrated by the colistin outbreak, the use
of RT-PCRs as a rapid, easy, and cheap method for
targeting AMR gene detection during outbreak response
remains unrivalled by any other technology (28).

Examples of the application of multiplex PCR for
detecting AMR genes in clinical samples include studies
by Strommenger et al. (32) and Chung et al. (33), in
which the resistance present in multidrug-resistant
S. aureus was determined by conventional PCR or in
which a multiplex RT-PCR was employed to detect the
presence of mecA and species-specific genes. Another
example is a multiplex PCR which is used routinely
for surveillance in reference laboratories to detect some
of the most prevalent ESBL genes: blaTEM, blaSHV,
blaCTX-M, and blaOXA (34). Using this multiplex
PCR, Randall et al. (35) determined the prevalence
of ESBL-producing Escherichia coli strains present in
pigs at slaughter in the United Kingdom in 2013 to be

23.4%. They also showed that blaCTX-M was the most
common ESBL type present in these isolates; Sanger
sequencing of the PCR product showed CTX-M-1 to be
the most prevalent variant to be carried by these isolates,
although some CTX-M-15 were also detected.

LAMP assays for the detection of resistance include
several assays which have been developed for detecting
genes encoding resistance to antibiotics for first-line ther-
apeutics or antibiotics of last resort. Examples include
LAMP assays developed for the detection of ESBLs,
AmpC genes, and carbapenemases in bacteria purified
from both humans and animals (12, 36). Due to the
rapidity of LAMP assays and the ease of conducting
them at a constant temperature, several LAMP assays
have been developed (blaVIM, blaNDM, blaKPC,
OXA-48 family, CTX-M-1 family, and CTX-M-9
family) to detect carbapenemase and ESBL-producing
Enterobacteriaceae using the eazyplex SuperBug CRE
system (Amplex Biosystems GmbH, Giessen, Germany)
(36). As with PCR, LAMP assays can be used to look
for the presence of ESBL genes in a bacterial commu-
nity rather than in single isolates. For example, Kirchner
et al. (37) have used LAMP assays to determine the
presence of blaCTX-M genes in lysates made from the
mix of bacteria present in overnight enrichment broths
prepared from neck flap and cecal samples from poultry
carcasses collected at an abattoir. The results showed
that just less than a third of the ceca from poultry
carcasses were contaminated with bacteria harboring
the blaCTX-M gene, but this figure was much higher in
skin flaps (>60%), probably due to cross-contamination.

DNA MICROARRAY TECHNOLOGY

DNA microarrays are genomic tools which have been
used successfully in the past decade to assess bacterial
genomic diversity by detecting the presence or absence
of genes in a test organism in comparison to a reference
strain or genes. The DNA microarray technology was
initially based on glass slides that were spotted with
thousands of specific DNA probes based on genes pre-
sent in one reference strain for which a whole-genome
sequence was available. As more isolates of a particular
species or genus were whole-genome sequenced, the
numbers of probes present on the microarray slide in-
creased substantially to represent accessory genes not
present in the reference strain that were part of the “pan-
genome.” Comparative genomic hybridizations were
performed whereby test and reference isolate DNA were
fluorescently labeled and hybridized to a microarray
slide (38). The presence or absence of genes in the test
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isolate, in comparison to a reference, was determined by
analyzing the hybridization results. This method enabled
comparison of the genomic diversity in a relatively large
number of test isolates (tens to hundreds) for which
WGS was not available. Examples include E. coli and
Salmonella, for which a large number of studies were
performed looking at AMRs (39-41).

However, the use of glass slides and fluorescent dyes
made the process expensive and time-consuming. Fur-
thermore, there were several advancements in the tech-
nology. Although a number of different technologies
were available and are reviewed in more detail else-
where, especially in the context of AMR (42), in this
section we will concentrate on that available from
Alere Technologies. The Alere microarrays had several
advantages that made them suitable for use in routine
diagnostic laboratories, which may receive hundreds of
samples. Advantages included adaptation of the micro-
array slide containing DNA probes to a simpler plat-
form such as the bottom of an Eppendorf test tube or a
96-well plate, the use of horseradish peroxidase instead
of expensive fluorescent dyes, simple protocols which
enable large numbers of test sample DNA to be pro-
cessed more rapidly and economically, and no require-
ment for dual hybridization including test and reference.
However, disadvantages included the numbers of DNA
probes that could be printed in comparison to the full
microarray glass slide, which were a few hundred in-
stead of several thousand. In addition, this platform is
not suitable for detecting gene expression, but only gene
presence and absence, due to inclusion of a pream-
plification step during labeling of the test DNA prior to
hybridization.

AMR Detection Using Microarrays

Several groups have used the Alere microarrays to in-
vestigate AMR and virulence genes that may be pres-
ent on mobile genetic elements such as plasmids and
transposons and can be coselected. Characterization
of enteric pathogens and commensals such as field and
clinical isolates of both human and animal origin is
important in understanding the dissemination these
genes by zoonotic bacteria that may ultimately affect
human health and therapeutics. This application was
first developed by the Animal and Plant Health Agency
(formerly the Veterinary Laboratories Agency) in col-
laboration with Alere through Identibac for determining
virulence genes present in E. coli to distinguish between
pathogenic and commensal E. coli (43), but later it was
applied for detecting AMR genes in E. coli and Salmo-
nella from food animals, as well as from human clinical
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isolates in several studies (44-50). Examples of the use of
these microarrays include the characterization of animal
isolates collected through surveillance studies, which
revealed that AMR genes in Salmonella and E. coli may
be present on different mobile genetic elements such as
plasmids and Salmonella genomic island 1 (48, 51).

The Identibac microarrays have been used to deter-
mine the presence of AMR genes in both aerobic and
anaerobic Gram-negative bacteria isolated from healthy
human feces in two longitudinal studies performed
with a cohort of healthy human subjects in the United
Kingdom and Sweden over 1 year following a course of
antibiotic treatment, as part of a European Commission
7th Framework Program project called Antiresdev (45,
52-54). Analysis of isolates from feces purified pre-
antibiotic treatment indicated widespread presence of
AMR genes in healthy individuals aged between 20
and 60, from both the Swedish and United Kingdom
groups, with certain AMR isolates persisting over time.
Following treatment, an effect was seen in individuals
treated only with amoxicillin, in which a temporary
increase in the number of isolates harboring the beta-
lactamase gene blaTEM was seen in the treated group
but not in the placebo group. No other antibiotic had
such a profound effect (45, 53). Examination of anaer-
obic gut microbiota for mobile genetic elements associ-
ated with aerobes, to determine if the former acts as an
AMR “sink,” indicated that these genes were uncom-
mon in anaerobes and that only the su/ gene, encoding
resistance to sulfonamide, was present in Bacteroides;
however, the genetic element which may be associated
with the sul gene could not be determined (54). It would
be of interest to perform a similar type of study on farms,
to determine if certain AMR bacteria and genes persist
on farms over time and the possible risk to food safety
associated with such persistence.

Another application of the Identibac AMR micro-
arrays has been to look at the resistome of the micro-
biota, i.e., the AMR gene content present in the whole
microbial population rather than in individual iso-
lates, using human DNA. In a study by Card et al. (55),
the resistomes present in the oral and fecal microbiota
of humans from five countries were compared using
the microarray. The results showed the prevalence of
AMR genes associated with anaerobic bacteria such as
tetX and ermB, as well as blaTEM and sul2, which are
common in aerobic bacteria, present in the majority of
samples. Interestingly, a functionally based screening
approach which was also undertaken by the authors to
determine the genetic context of the AMR genes such as
blaTEM and sul2 that were detected in the microbiota
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only recovered chromosomal genes. This is probably
because AMR genes such as bIATEM and sul2 are
present in sufficient abundance to be detected by mi-
croarray, which employs a linear multiplex amplifica-
tion process, but are nevertheless not present in high
enough abundance to be present in the bacterial artificial
chromosome functional libraries that were prepared. It
was therefore indicated that microarrays may be more
suited to detect AMR genes present on mobile genetic
elements which may be present in low copy numbers
than a functional genomic approach, although micro-
arrays may be less sensitive than next-generation se-
quencing methods, in which the depth of sequencing can
be very high (see “Whole Genome Sequence Analysis to
Detect AMR?”). Although in the above study the human
oral and fecal microbiota was used, this technique can be
applied to any sample, including from farm animals and
the environment.

Other microarrays that have been described for
determining AMR include those based on glass slides,
which for example, have been applied for the charac-
terization of virulence and AMR genes present in Sal-
monella strains of human clinical relevance (56). There
are also arrays in which AMR genes associated with
both Gram-positive and Gram-negative bacteria are
present. One such array was developed for diagnostic
and surveillance activities and was used to test S. aureus
isolates recovered from milk samples from dairy farms
in Quebec, Canada (57). Other organizations, including
Alere, have also developed microarrays for detection of
virulence and AMR in S. aureus isolates recovered from
hospital, community, and farm settings (58-64). These
arrays are still widely used in both human and veterinary
settings.

WGS ANALYSIS TO DETECT AMR

Like PCR and microarrays, WGS has the potential to
detect genetic determinants (genes and mutations) con-
ferring AMR (65, 66). The main advantage of using
WGS for this purpose is the ability to cover many dif-
ferent targets at the same time and to subtype specific
gene variants. The current WGS technology and meth-
odology for analysis offers similar results as well as some
of the same shortcomings as PCR (followed by Sanger
sequencing of amplicons) and microarrays, which will
be described and discussed in detail below. However,
as opposed to microarrays, WGS also offers the possi-
bility to rapidly add new target sequences to the analysis
database as well as the ability to perform fast in silico
reanalysis on already sequenced isolates (26).

Current Technologies and Bioinformatic Tools

Sequencing platforms

WGS data are generated on highly sophisticated se-
quencing platforms, which produce large amounts
of sequence data compared to the traditional Sanger
sequencing technology. Today, the most common plat-
forms for high-throughput sequencing of bacterial ge-
nomes are Illumina and Ion Torrent machines, which
perform what has been called second-generation or next-
generation sequencing (as opposed to traditional Sanger
sequencing). Common to these machines is that the
output consists of relatively short reads (100 to 400 bp,
depending on the technology), which in most cases are
shorter than the genes conferring resistance to anti-
microbial agents. Also, the rate of randomly occurring,
as well as methodology-based, sequencing errors on
single reads originating from the next-generation se-
quencing technology is relatively high compared to
errors encountered with traditional Sanger sequencing.
To overcome this problem, a huge surplus (termed x-fold
coverage) of short-read data is produced for each ge-
nome and used for error correction by majority calling.
This surplus of (overlapping) short-read data can be
either mapped onto known references (reference as-
sembly) or used to build larger fragments (de novo as-
sembly) of sequence data (so-called contigs), which are
combined to constitute the draft genome of the isolate
(67-69).

An important prerequisite to detect the presence
of any relevant gene, including genes conferring resis-
tance to antimicrobial agents, is that the quality and
quantity of short reads are large enough to ensure
that a given gene is being correctly detected by down-
stream analysis to avoid false-negative results. Due to
the potentially high sensitivity of the analysis methods
used for WGS, another important consideration is to
ensure that the WGS data do not contain any traces
of contaminant DNA, because this can lead to false-
positive results. Unfortunately, low levels of DNA from
intraspecies contamination can be very difficult to de-
tect, and good laboratory practice when preparing the
DNA and sequencing libraries, in combination with
extensive use of appropriate negative controls, is often
the best way to avoid, or at least minimize, contamina-
tion issues (70). When WGS data from an isolate are
found free of contaminants and obtained with a suffi-
ciently high quality and quantity to ensure that relevant
genetic information is unlikely to be missing, they
can then be used to search for genetic determinants re-
lated to AMR (67; http://www.phgfoundation.org/file
/16848]/).
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Bioinformatic approaches for using WGS data
to detect genetic determinants related to AMR
Extracting the relevant information to detect genetic
determinants related to decreased antimicrobial suscep-
tibility from WGS data is far from being a simple task.
The main challenges are (i) to obtain comprehen-
sive databases containing the relevant DNA or protein
sequence targets and (ii) to apply appropriate bioin-
formatic methodologies to accurately extract the rele-
vant information from WGS data based on these target
databases. Target databases for WGS analysis are in
principle not much different from primer lists directed
toward certain PCR targets or DNA probes attached to
microarrays as described in the sections above, even
though WGS databases have the potential to contain
more targets than most PCR or microarray systems. In
many instances, a clear correlation between a specific
resistance phenotype and a given (resistance) gene exists
and has been well-characterized by another method,
e.g., PCR or microarray, which makes it relatively easy
to include these genes in a target database. However,
the task of building a comprehensive database covering
all possible genetic variations for a given AMR pheno-
type is far more complicated. As mentioned above, many
genetic mechanisms can be accountable for the AMR
phenotype, and a plethora of genetic mechanisms are
responsible for resistance phenotypes to different anti-
microbial agents. For many of these mechanisms it is
difficult to generate simplified in silico decision rules
for prediction of their corresponding resistance pheno-
type, especially because some bacterial species employ
specialized mechanisms, which may not even be well-
characterized or generally applicable beyond a given
species (71). Therefore, many of the bioinformatic tools
to detect genetic determinants conferring reduced anti-
microbial susceptibility are based on target databases
containing well-defined genes or specific single point
mutations, where a strong correlation between the ge-
netic determinant and a given phenotype exists and can
be extracted from either published peer-reviewed articles
or from pre-existing archives such as the Antibiotic Re-
sistance Gene Database (ARDB) (https://ardb.cbcb.umd
.edu/). A disadvantage of such target databases is that
they are based on a priori data and are therefore not
suitable for detecting completely new genes families,
novel genes, or new point mutations. Also, a constant
curation of the target database is required to maintain
updates when new genes are published.

Because comprehensive knowledge of genetic deter-
minants for AMRs varies among bacterial species,
the sensitivity of gene-based target databases can be too

low to be applied for WGS as a first-line decision tool
for treatment due to the risk of false-negative results.
To unveil the current status of employing WGS data
for antimicrobial susceptibility testing, EUCAST re-
cently initiated a consultation involving leading ex-
perts in the field (71; http://www.eucast.org/fileadmin
[src/media/PDFs/EUCAST _files/Consultation/2016
/EUCAST WGS report _consultation 20160511.pdf).
Here, the applicability of WGS for this purpose was
thoroughly evaluated in relation to the most common
human pathogens, with the main conclusion being that
the available published evidence does not currently
support the use of WGS inferred susceptibility to guide
clinical decision making. However, target databases can
still be a valuable tool for local, regional, and global
surveillance of AMR, because they offer unprecedented
resolution of gene variants, which are difficult to obtain
by phenotypic as well as most other genotypic methods.
Finally, a WGS-based approach enables fast in silico
reanalysis of existing data each time the database is
updated to ensure backward screening for the presence
of new genes or single nucleotide polymorphisms. This
approach was successfully used to rapidly reanalyze
existing WGS data from Denmark shortly after the first
report of the emergence of a mobile colistin resistance
gene from China, termed mcr-1 (24). Here, the mcr-1
gene was retrieved from GenBank as soon as it became
available and was added to the ResFinder database,
described below, which was used in combination with
the CGE Bacterial Analysis Platform (72) to reanalyze
534 bacterial genomes from humans and 380 bacterial
genomes from animal and food samples within 2 days
after the release of mcr-1, thus enabling detection and
reporting of mcr-1 to the scientific community outside
China within 3 weeks of the original publication (26).
The two most common bioinformatic approaches
to detect the presence of relevant genes are so-called
mapping analysis of raw sequencing reads and BLAST-
based analysis of (de novo assembled) draft genome
contigs against a reference target database (67). In gen-
eral, the reference mapping approaches using raw reads
are more sensitive than BLAST-based analysis of draft
genomes when it comes to detecting AMR genes because
de novo assembly is not required for reference mapping.
The lower sensitivity of the BLAST-based approach is
most likely to be caused by the inability of de novo as-
sembler algorithms to assemble all reads into complete
genes, either because the raw read coverage of the par-
ticular DNA segment containing the resistance gene is
too low for full assembly or because several resistance
genes with almost identical sequences are present in the
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isolate, which will cause most assemblers to split the
sequence into separate DNA fragments, thus also split-
ting the resistance gene (73). Conversely, the higher
sensitivity of the mapping algorithms is more prone to
produce false-positive results from samples with unde-
tected contamination, because the contaminating DNA
may not always be assembled into full-length genes
by the de novo assemblers and therefore may not be
reported by the BLAST alignment, but the algorithm will
still be able to map to the target genes, though poten-
tially with lower coverage than correctly mapping reads.

Currently available bioinformatic tools to
detect genetic determinants for AMR

The number of freely available bioinformatic tools for
detecting genetic determinants for AMR in WGS data
is constantly increasing. The tools are available as web
services, as standalone programs to be downloaded
on a local computer through a graphical user interface,
or as command-line tools, which means that the user is
required to download the program and run it command-
line on a computer running a Unix-based operation
system. A selection of the most commonly used, publicly
availably tools will be presented below and summarized
in Table 1. A more exhaustive list and in-depth presen-
tation and discussion of bioinformatic tools for detecting
molecular mechanisms conferring reduced susceptibility
to antimicrobial agents has recently been published (74).
In addition, some of the target databases, which these
tools are using for detection, have been implemented
into commercial software solutions such as the CLCbio
Genomic Workbench from Qiagen (http:/www.qgiagen
.com) and the Bionumerics Seven software from Applied
Math (http://www.applied-maths.com). Below, only the
noncommercial solutions will be presented and dis-
cussed in more detail. However, the numbers and di-
versity of AMR tools are vast, with many government
and research institutions using their own custom-made
databases and analytical approaches, some of which
may not be publicly available (27, 75-79).

ResFinder

ResFinder (65) is a web server composed of a BLAST-
based alignment for detection of acquired AMR genes
in assembled WGS data and a curated database in
FASTA format containing the resistance genes. The
BLAST output is sorted, so only the best hit within a
given position in the data, with a 30-bp overlap allow-
ance, is given as a result. This makes it possible to de-
tect the same gene located in multiple positions of the
genomic data. ResFinder allows user selection of the

minimum percent identity and minimum percent length
of the sequence alignment and reports only the best hit
for each gene target which meets these parameters. The
ideal percent identity and percent length to employ are
dependent on the purpose as well as the quality and type
of sequence data.

ResFinder allows upload of both preassembled ge-
nomes as well as raw data from various sequencing
platforms; when raw WGS data is uploaded, it is as-
sembled by Velvet before being analyzed by ResFinder.
ResFinder has been included in a web service called the
CGE Bacterial Analysis Platform to allow for automated
bulk analysis (72).

Because ResFinder detects only acquired genes, it does
not detect genetic elements such as chromosomal muta-
tions and multidrug transporters, as well as intrinsic
resistance genes. This makes ResFinder well suited for
surveillance of AMR in relation to acquired mechanisms
but less suited to be used as an alternative for phenotypic
antimicrobial sensitivity testing in the clinic.

CARD

The Comprehensive Antibiotic Resistance Database
(CARD) is a web service and has two analysis options:
BLAST and RGI (Resistance Gene Identifier) (80, 81).
The BLAST option performs standard BLAST searches
on smaller sequences uploaded by the user (but not
whole genomes) against the CARD reference sequences.
The RGI supports two detection model types: (i) protein
homolog models, which employ BLAST sequence simi-
larity cutoffs to detect AMR genes, and (ii) protein var-
iant models for detection of mutations conferring AMR.
Currently, the RGI only analyzes protein sequences,
and if assembled contigs are submitted to the tool, the
RGI first predicts open reading frames and then analyzes
the predicted protein sequences. The RGI is also devel-
oped as a command-line tool for bulk analysis of many
genomes simultaneously.

ARG-ANNOT

Antibiotic Resistance Gene-Annotation (ARG-ANNOT)
(66) uses a local BLAST algorithm in conjunction with
the BioEdit software (http://www.mbio.ncsu.edu/BioEdit
/bioedit.html), which allows the user to analyze se-
quences on a local computer without Internet access once
the software is installed. Unfortunately, BioEdit does not
currently run on Mac OS environments. ARG-ANNOT
provides the user with three databases in FASTA format
with phenotypic information in the FASTA header, ac-
quired AMR genes with nucleotide or protein sequences,
and a mutational gene database. Currently, the ARG-
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TABLE 1 Overview of different open-access bioinformatic tools for identification of antimicrobial resistance

Method
ARG-ANNOT

Method for gene detection

Local BLAST program in Bio-Edit software.
Program is downloaded and run on users
computer does not work on MAC
User selective settings, % identity
Analyzes assembled data
Analyze without Web interface
User sort output results
Possible to run with user-created database
Analyzes assembled data
Two analysis tools; BLAST and RGI
BLAST method
BLASTn, BLASTp, BLASTX, tBLASTN, tBLASTx

CARD

Against CARD protein or nucleotide database

RGI (currently only analyze protein sequences)
Uses BLAST and curated SNP matrices
Possible to download:

RGI command-line tool to bulk analyze (Unix)

Heatmap
BLAST output (excel)
ORFs FASTA

ResFinder BLASTNn

User selective settings, % identity and % coverage

Program sort output according to user selected
thresholds, outputs only best matches.

Possible to analyze assembled data or raw reads

Possible to download:

Results as text

Results as tab separated file

FASTA with hit in genome

FASTA with found resistance genes
Mapping using K-mers
Analyses raw reads

KmerResistance

Calculates quality of the raw reads and uses this to

set threshold for detected genes

Predicts the species of the genome

Possible to run as web-server or to download
program and run command-line

Possible to run with user-created database
Mapping using Bowtie2
Analyzes raw reads

SRST2

Threshold for detected genes has been set to 90%

identity and 90% coverage

Program is downloaded from GitHub and is a
command-line tool (Unix)

Possible to run with user-created database

Database Reference

FASTA format (66)
Three databases:

Nucleotide sequences for acquired resistance

gene database and corresponding protein

database

Mutational gene database
Do not state when/if the databases are updated

FASTA format
Four nucleotide databases with corresponding
protein databases
Resistance genes and mechanisms
rRNA mutation genes
Mutational genes
Wild type genes
State on download page when database is updated

3
2

FASTA format (65)
One database for each antimicrobial class with
nucleotide sequences for acquired resistance genes
Note file with phenotypic information on resistance
genes

State on homepage and download page when

database is updated

Uses the ResFinder database (73)

Can only handle databases in FASTA format with a (82)
specific header format

Choose between the ARG-ANNOT database or the
ResFinder database, the databases is not regularly
updated

RGI; Resistance Gene Identifier. ORF; Open Reading Frame. SNP; Single Nucleotide Polymorphism.

ANNOT system does not detect mutations automatically
but outputs the sequence that matches the reference
genes so the user is manually able to search from possi-
ble mutations. It is also possible for the user to make
a custom-made database for specific analysis through
ARG-ANNOT.

KmerResistance
KmerResistance (73) is a mapping tool and is avail-
able both as a web server and as a command-line tool.

KmerResistance performs mapping against the ResFinder
gene database by examining the number of co-occurring
k-mers between the raw sequence data and the database.
A k-mer is a subsequence of the length k.

To detect possible resistance gene contaminants, a
novel quality validation estimation of the data has been
added to minimize false-positive results. This is done by
predicting the bacterial species from the genome data,
which gives an estimate of both coverage and depth
of the data, and thereby the quality of the data. With this
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quality measure of the data, the exponential survival
function is used to measure the quality of detected genes.
Only genes above the quality threshold set by the expo-
nential survival function are given as output, under the
assumption that hits to genes with a significantly lower
k-mer coverage than the k-mer hits to the chromosome
originate from contamination as described above.

SRST2
Short Read Sequence Typing for Bacterial Pathogens
(SRST2) (82) is a command-line tool based on the
mapping tool Bowtie2 (83). SRST2 maps raw sequence
reads directly against an input database of preference, for
example, resistance genes. SRST2 also enables further
analysis of the identified genes, such as mutations com-
pared to reference sequence. The authors have set the
threshold of SRST2 to 90% identity and 90% coverage.
In addition to the above-mentioned programs, other
programs and methods for detecting AMR genes, not
only for single isolates but also for metagenomic sam-
ples, are available online for free download, most of
them as command-line tools. In the future, comparison
of results obtained using the same WGS data set but
different programs or tools will be useful to understand
the benefits and possible shortcomings of each and to
determine whether under certain circumstances some
tools will provide more accurate results than others.

Detection of antimicrobial

determinants in complex samples

The tools mentioned above are best suited for the de-
tection of AMR determinants in WGS data from single
(pure) isolates, even though they may to some extent also
be applicable for complex samples containing whole
bacterial communities. However, more dedicated tools
for the analysis of DNA samples originating from whole
bacterial communities (often called the microbiome)
do exist, even though they are still in their infancy.
Such microbiome DNA samples are often referred to as
whole-community metagenomic samples and should not
be confused with traditional metagenomic samples, in
which only species-relevant targets such as 16S DNA,
are sequenced and used to estimate species distributions
in complex samples. The latter is now often referred to
as microbial community profiling to avoid confusion
with metagenomic sequence analysis. These methods
will be able to cover not only bacteria and AMR, but
also other pathogens such as viruses, fungi, and para-
sites. Additionally, part of the sample can also be tested
for chemicals/residues in parallel, thus increasing the
amount of information about the sample. Analysis of

whole-community metagenomic samples can be useful
especially for AMR surveillance, but other applications
such as rapid investigation of clinical samples have also
been demonstrated (84-86). As a proof-of-concept for
whole-community metagenomics in AMR surveillance,
shotgun Illumina sequencing of toilet waste from 18
international airplane flights arriving at Copenhagen
Airport, Denmark, was performed and mapped against
the ResFinder database using the online tool MGmapper
(https://cge.cbs.dtu.dk/servicessMGmapper/), which builds
on a combination of the Burrows-Wheeler Aligner (BWA)
algorithm and SAMtools software packages (87, 88). An
average of 0.06% of the reads from the samples were
assigned to (known) resistance genes, with genes encoding
resistance to tetracycline and macrolide and beta-lactam
resistance genes as the most abundant in the samples (89).

An initial challenge is to ensure that a representa-
tive sampling is performed and then to ensure that
the DNA purification method is able to extract DNA
from all species present at an equal ratio, especially if
the downstream analysis includes quantification and
comparison of (resistance) gene distributions for AMR
surveillance. Knudsen and Bergmark recently evaluated
eight commercial kits for extracting DNA from three
microbiome sample types and found large variation in
species composition obtained between the different kits
(90). This makes it virtually impossible to compare micro-
biome data across studies unless the same methodology
has been used. DNA extracted from whole-community
metagenomic samples covers not only species-related in-
formation but all available DNA information present in
the sample, including that originating from the host, the
environment, and bacteria of interest (74).

The amount and variation of DNA can be extremely
high in extractions from whole-community samples,
and it is often economically unrealistic to sequence more
than a subsample of this, even on the large-capacity
second-generation sequencing platforms. However, even
if samples are sequenced at high depth it can become
time-consuming to process the data generated due to
computational requirements. Therefore, it is rare to ob-
tain all available sequence information present in the
sample, which makes it difficult to perform de novo
assembly prior to analysis for determinants related to
reduced susceptibility to antimicrobial agents. Hence,
detection of AMR determinants in DNA from complex
communities often relies on mapping of raw sequencing
reads to gene databases using mapping approaches
similar to those mentioned above and is therefore de-
pendent on the quality of these databases. Further-
more, genes such as AMR genes may be harbored by
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organisms that are of low prevalence in the microbiota
and may be difficult to detect unless DNA extracted
from metagenomics samples is sequenced to a high
depth, which currently may not be economically viable
beyond specific purposes such as research. However, as
next-generation sequencing technologies advance, there
is no doubt that these difficulties will be overcome.

MALDI-TOF MS IN RELATION TO AMR

MALDI-TOF MS is a powerful analytical tool which has
only recently been introduced in many clinical labora-
tories. In short, MALDI-TOF MS is a technique used
to analyze biomolecules such as DNA, carbohydrates,
proteins, and peptides by their ability to become ionized
and enter gas phase and then measuring their time of
flight. Here, the mass/charge (m/z) ratio of the resulting
molecular fragments is analyzed to produce a molecular
signature. Analysis can be made directly on biological
samples of single organisms in standardized or complex
matrices including blood and urine, and each spectrum
can then be compared to commercial databases con-
taining, e.g., species-specific spectral information, which
has proved useful especially for species identification
of microorganisms (91). Furthermore, MALDI-TOF MS
offers the possibility to detect specific proteins or en-
zymes as well as smaller biomolecules such as antimi-
crobial agents and their degradation products (92).
The main explanation for the rapid implementation
of MALDI-TOF MS in clinical microbiology is probably
its ability to generate rapid and relatively reliable results
with a high throughput at a low cost. However, con-
siderable cost is required to purchase and maintain the
equipment, as is the case with most instrumentation, but
once the equipment is acquired, processing each sam-
ple is relatively inexpensive. The practical applications
of MALDI-TOF MS in relation to detecting AMR can
generally be divided into one of three categories, de-
scribed in detail below.

Species Identification and Targeted
Antimicrobial Treatment

One of the most common applications of MALDI-TOF
MS in the clinical microbial laboratory is to perform
organism (bacterial species) identification. Application
of this method is typically based on the detection of
highly abundant proteins in a mass range between 2
and 20 kDa by computing their m/z values (91, 93). The
same level of information can be obtained as from
classical culture-based species identification methods,
but with MALDI-TOF MS, where results are generated

much more rapidly than by culture, hours or even days
can be saved in initiating the correct treatment. This
can have a direct impact on the clinical outcome as
shown by Kumar et al., where the survival rate of septic
shock patients decreased by 7.6% for each hour of delay
in antimicrobial administration, for the first 6 hours
(94). Therefore, an obvious benefit of rapid organism
identification using MALDI-TOF MS is to utilize this
information to perform targeted antimicrobial treat-
ment based on a priori knowledge of expected treatment
outcomes for each bacterial pathogen or to conduct
proper antimicrobial stewardship if no pathogen can be
detected in a given sample (95, 96).

Direct Detection of AMR Determinants

A large proportion of AMR determinants are proteins,
so it is in principle possible to detect these, or proteolytic
fragments of these, directly in the molecular signature
from the MALDI-TOF MS, thus providing an on-the-fly
resistance profile (97). An initial requirement for this
detection is that the resistance genes are actually ex-
pressed, which can be an issue in relation to the inducible
resistance systems. Initial attempts, however, have not
found support for this approach. A study by Schaumann
et al., analyzing mass spectra from protein extracts of
ESBL-producing and non-ESBL-producing bacteria at
the m/z range of 2,000 to 20,000, failed to obtain reli-
able discrimination between the two populations (98).
An alternative approach is to collect spectra from un-
induced and induced (by a given antimicrobial agent)
cultures and then to perform spectral analysis of these
to identify induced peaks in the data (99). A substantial
obstacle for both of these methods is that many thou-
sands of resistance protein variants exist, thus making
it very difficult to develop specific databases covering
all variants, which would need considerable effort and
have to be done over time. In addition, signal shielding
from nonresistance protein can occur, thus masking
the relevant protein signals. This can to some extent
be minimized if spectra from protein extracts rather
than complete cell extracts are studied and by focusing
on a small subset of resistance protein groups such as
enzymes involved in resistance to critically important
antimicrobial agents such as third-generation cephalo-
sporins and carbapenems (100).

Detection of Antimicrobial Biomolecules

and their Degradation Products

Because direct detection of resistance proteins by
MALDI-TOF MS has not yet proven to be feasible
to implement at the clinical laboratory, an alternative
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approach, in which the specific antimicrobial biomole-
cules and their degradation products resulting from the
enzymatic activity are detected by MALDI-TOF MS,
has been suggested (100). This approach is targeted to
specific enzyme-drug combinations and is again mostly
relevant in relation to the subgroup of critically impor-
tant drugs, which are known to be subjected to enzymatic
degradation. Therefore, most studies have examined the
feasibility of this approach in relation to carbapenem
resistance, as a result of carbapenemase activity, and
have shown very high sensitivity and specificity (101,
102). However, one drawback of this approach in
the clinical laboratory is that detection of carbapenems
such as imipenem and meropenem, and their enzymatic
degradation products, relies on a preincubation step to
allow time for the degradation process to occur. Another
drawback is that the analysis has to be performed at a
shorter m/z range (0 to 700 m/z) than that used for spe-
cies identification because these molecules are relatively
small (103). Implementation at a clinical laboratory as
a routine analysis is therefore impeded by the need to
reset the MALDI-TOF MS machine several times daily
or by investing in two identical machines: one for each
purpose (Dennis S. Hansen, unpublished data). A final
drawback is the lack of enzymatic inactivation for several
of the clinically important antimicrobial agents such as
methicillin-resistant S. aureus and vancomycin-resistant
enterococci, which renders this approach impossible.

DISCUSSION

This article has demonstrated that molecular methods
for characterizing AMR genes are not only important
because they provide insight to the possible mechanism
of resistance, but are also increasingly becoming com-
monplace. For example, methods such as PCR are
routinely used by laboratories worldwide both for sur-
veillance and for research and are still irreplaceable
in terms of cost and throughput compared with other
molecular methods. However, methods such as WGS,
which are increasingly being used for molecular char-
acterization of AMR determinants and provide a more
comprehensive picture of all AMR genes that may be
present in an isolate, could supersede PCR in the future
if the cost of WGS continues to fall and if analytical
processes are further simplified. WGS provides an ad-
vantage over methods such as microarray because once
isolates are sequenced, the data are in theory available
in perpetuity and can be interrogated infinitely with
new genes or data sets. In comparison, microarrays,
once performed using a set of genes, cannot be interro-

gated again for new genes. Designing and printing new
primers and probes for genes iz silico to update micro-
arrays is not an inconsiderable bioinformatic effort.
Any new probe and primer not only have to be specific
for that gene, but they also cannot cross-react with
any other, and they have to have melting temperatures
similar to all other existing probes present on the micro-
array. In addition, the cost of printing new arrays with
new primers and probes often means that these additions
are performed as batch updates, so ad hoc immediate
response to new outbreaks, such as the global mcr-1
outbreak response, is difficult to perform.

However, the rise of WGS and its application in rou-
tine AMR surveillance poses the problem of implemen-
tation and harmonization of this methodology globally.
With some resource-limited countries still struggling to
implement simple molecular methods such as PCR in
routine surveillance activities, it is unlikely that they will
acquire the funds or infrastructure required to perform
WGS and ensuing bioinformatic analysis of the data.
This will probably affect mitigation and control of AMR,
because AMR is a global issue, with new variants likely
to arise in different areas of the world but being able to
disseminate worldwide due to international trade of food
and animals and extensive human travel.

However, with the introduction of WGS, researchers
and primary investigators can now have an unprece-
dented resolution of sequence information, which shifts
the workload from running the assay to analyzing the
WGS data. Also, for PCR, RT-PCR, and microarrays,
results are in most cases either negative or positive, de-
pending on a given cutoff criterion. For instance, a PCR
product with the expected size is interpreted as a positive
result, even though it may not be 100% identical at the
nucleotide level to the result from the positive control.
When analyzing WGS data, if nucleotide variations in
the genes of interest are reported, the investigator has
to decide (or prove) if the phenotype associated with
the reference gene is also applicable to the new variant
present in the WGS data. For surveillance and infection
control purposes, this may not be of primary concern,
but if WGS results are used to guide clinical treatment,
matters may be different and require further work to
gain experimental proof.

Detection of genetic determinants conferring reduced
susceptibility to antimicrobial agents requires applica-
tion of validated analytical methods and target data-
bases for these genotypic-phenotypic correlations to
be fully useful. Combining the right bioinformatic and
biological competences often requires interdisciplinary
collaboration, where construction of the software algo-
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rithms and target databases are thoroughly documented
and validated by the use of well-documented test sets.
Furthermore, it is important to ensure that all genetic
mechanisms are correctly and comprehensively assigned
to particular resistance phenotypes, which are then
added to target databases. This is a complex task which
requires in-depth knowledge of AMR genes and includes
periodic updating and curation of the databases. In
addition, a common nomenclature for genes belonging
to the same family, and for reporting the results from
various analytical tools, is needed if not only WGS data,
but also results of WGS data analysis, are to be shared
beyond the local setting. Finally, appropriate quality
assurance testing protocols to test the quality of all steps
of WGS and WGS analysis will need to be developed and
implemented routinely in the future. This is an important
criterion to ensure that WGS and data interpretation
performed from different laboratories are comparable.
Similar quality assurance testing protocols have been
implemented for a number of phenotypic and molecular
tests of isolates by reference laboratories across Europe,
e.g., antimicrobial susceptibility testing for Enterobac-
teriaceae and variable-number tandem repeat testing for
Salmonella.

Another important point for consideration of the use
of genotypic data for detecting resistance, as discussed
by Anjum (9), is that new variants may be overlooked by
PCR, microarrays, and WGS, because these detect the
presence of genes using primers, probes, and sequences
based on prior knowledge. Therefore, as demonstrated
by the mcr-1 gene (24), resistance to even critical anti-
biotics may be overlooked if only molecular methods are
used. Therefore, it is important to continue to perform
both methods in reference laboratories, but care must be
taken in correlating genotypic and phenotypic data,
as already mentioned, because there may be redundancy,
i.e., more than one gene or genetic mechanism that can
result in the same phenotype. For instance, continuing
with the colistin example, Anjum et al. (27) showed that
colistin-resistant E. coli and Salmonella isolates could
harbor both the mcr-1 gene and single nucleotide poly-
morphisms in several chromosomal genes associated
with colistin resistance that would account for the
colistin-resistance phenotype seen in these isolates. Until
recently, when only chromosomal changes were known
to be associated with colistin resistance, detection of
single nucleotide polymorphism variants in relevant
chromosomal genes was sufficient to declare colistin re-
sistance to be present in Enterobacteriaceae; researchers
did not look further. Because these chromosomal mu-
tations are rarely transferable in nature, it was there-

fore deemed safe to use colistin for animal husbandry.
However, identification of a transferable plasmid-borne
colistin-resistance gene which has been shown to be
prevalent worldwide has been a game changer. It has
resulted in the recommendation for limited use of colistin
in animal husbandry by competent authorities such as
the European Medicines Agency (http://www.ema.europa
.eu/docs/en GB/document library/Scientific_guideline
/2016/05/WC500207233.pdf). The impact and risk of the
presence of the mcr-1 transferable plasmid in Entero-
bacteriaceae is still being assessed in many countries, in-
cluding in China, where it was first detected and may have
been present for longer than previously known (104).

MALDI-TOF MS is a relatively new method which
holds promise and could become more commonplace in
the future for AMR characterization, but this requires
further exploration and validation of data. An impor-
tant point for consideration when using this method is
the upfront cost of buying MALDI-TOF MS equipment
solely for AMR diagnostics, which at current prices may
not be cost-effective. It may, however, be cost-effective
for use in laboratories where the machine is already
available for other purposes. For example, MALDI-TOF
MS is used routinely in hospitals and other reference
laboratory settings in many countries for rapid identifi-
cation of bacteria isolated from clinical specimens. If any
AMR are present in these isolates that could also be
accurately characterized using MALDI-TOF, then it
would no doubt aid both rapid clinical diagnosis and
treatment of bacterial infections. MALDI-TOF also has
the added advantage that it is a “phenotypic” method so
in principle should be able to detect new and variant
forms of proteins or enzymes that may be responsible for
AMRs attributed to bacterial isolates.

This article has undertaken to review some of the
most common and popular molecular methods that have
been or are currently used by researchers and reference
laboratories working with AMR. This review is not an
exhaustive list of all approaches available but aims to
provide readers, especially those new to the field, with
some ideas and examples of work being implemented in
this area, and some of the possible pitfalls. Because the
field of AMR is an area of growing importance, it is
expected that other molecular methods, which are not
included in this review, may come to prominence in
the future. Microbial community profiling and metage-
nomic sequence analyses are some of the rapidly devel-
oping methods which will probably be used for AMR
gene detection in the future, although based on current
popularity and convenience, the use of PCR and single-
isolate WGS seems irreplaceable.
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