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Rotor-bearing system integrated with shape memory alloy springs for
ensuring adaptable dynamics and damping enhancement { Theory and

experiment

S�ren Enemarka, Ilmar F Santosa,�

aDepartment of Mechanical Engineering, Technical University of Denmark, Nils Koppels All�e, building 404, DK-2800 Kgs.
Lyngby, Denmark

Abstract

Helical pseudoelastic shape memory alloy (SMA) springs are integrated into a dynamic system consisting
of a rigid rotor supported by passive magnetic bearings. The aim is to determine the utility of SMAs for
vibration attenuation via their mechanical hysteresis, and for adaptation of the dynamic behaviour via their
temperature dependent sti�ness properties. The SMA performance, in terms of vibration attenuation and
adaptability, is compared to a benchmark con�guration of the system having steel springs instead of SMA
springs.

A theoretical multidisciplinary approach is used to quantify the weakly nonlinear coupled dynamics of
the rotor-bearing system. The nonlinear forces from the thermo-mechanical shape memory alloy springs and
from the passive magnetic bearings are coupled to the rotor and bearing housing dynamics. The equations
of motion describing rotor tilt and bearing housing lateral motion are solved in the time domain. The SMA
behaviour is also described by the complex modulus to form approximative equations of motion, which are
solved in the frequency domain using continuation techniques.

Transient responses, ramp-ups and steady state frequency responses of the system are investigated ex-
perimentally and numerically. By using the proper SMA temperature, vibration reductions up to around
50 % can be achieved using SMAs instead of steel. Regarding system adaptability, both the critical speeds,
the mode shapes and the modes’ sensitivity to disturbances (e.g. imbalance) highly depend on the SMA
temperature. Examples show that vibration reduction at constant rotational speeds up to around 75 % can
be achieved by changing the SMA temperature, primarily because of sti�ness change, whereas hysteresis
only limits large vibrations. The model is able to capture and explain the experimental dynamic behaviour.

Keywords: Rotor-bearing dynamics, shape memory alloys, vibration reduction, hysteresis, passive
magnetic bearings

1. Introduction

During the last 10 years, incorporation of shape memory alloys (SMAs) into rotating systems has gained
increasing attention resulting in a variety of publications in the literature. This is due to the unique
characteristics of the material, which can be used in di�erent ways to ease the crossing of critical speeds,
enhance damping, suppress instability etc. SMAs are metallic alloys that exhibit di�erent crystallographic5

phases depending on temperature and stress levels. This means that SMAs have thermo-mechanically
dependent sti�ness properties (adaptable critical speeds). Also, solid-state transformations between the
phases or reorientations within the martensitic phase cause large recoverable deformations (actuation), and
signi�cant mechanical hysteresis (damping) [1].
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As the �rst, Nagaya et al. [2] suggested to use the actuation principle of SMAs in rotating systems. The10

on/o� SMA actuator was coupled to a sti�ness adding device in order to change the critical speeds, such
that they could be avoided during run-up or run-down. Later, the idea was experimentally validated, and
it was highlighted that the change in critical speed has to be abrupt in order not to excite eigenmodes [3].
Appropriate level of damping is required because abrupt sti�ness changes are di�cult (if not impossible)
to realise. The actuation principle was also used in [4], where SMA actuators changed the pre-tension of a15

nonlinear elastomer bearing support. Thereby the critical speeds depended on the SMA temperature.
The sti�ness of an SMA depends on its temperature. This e�ect can be used to control the critical

speeds of rotor-bearing systems and avoid high level of vibrations. Examples of SMA machine element are
composite sleeve-rings [5, 6] and springs [7, 8, 9] combined with either on/o� control [5, 6, 7, 8] or continuous
control [9] of temperature. In this respect it is necessary to have a relatively compliant bearing in order to20

be able to make the system adaptable [5]. Push-pull SMA mechanisms (antagonistic action) can be used
for increasing the bandwidth of the actuator that is limited by the rate of convection [6]. This is a general
obstacle in SMA actuation.

Hybrid approaches have also been proposed, in which both the temperature dependent sti�ness as well as
the hysteretic damping of the stress-induced transformations are utilised [10, 11]. Alves et al. [10] numerically25

investigated a 
exible rotor with an SMA wire support, where the pseudoelastic SMAs were in pre-tension
so that hysteretic damping occurred already at relatively low vibration amplitudes. Similarly, Enemark et
al. [11] investigated a system consisting of a dynamically coupled rigid rotor and passive magnetic bearing
housings with integrated pseudoelastic SMA helical springs in pre-tension. In both works it was found that
the sti�ness increases with temperature whereas the damping capabilities diminish. However, Enemark et al.30

[11] showed experimentally that a rise in temperature could result in a decrease in resonance amplitude even
though the level of hysteretic damping reduced, because also the mode shapes change with temperature.

Yet another approach is to use SMAs in backup-bearings, which has been exempli�ed in form of a
discontinuous support [12]. Numerical investigations showed that the dissipative hysteresis e�ects of the
SMAs cause more desirable dynamic behaviour compared to an elastic support. However in a similar35

investigation of a single degree of freedom impact oscillator, Sitnikova et al. [13] concluded that in some
cases the dynamic response complexity actually increases if using SMAs. This means that SMAs are not
always bene�cial in terms of vibration reduction in such systems.

Ertas et al. [14] investigated the feasibility of using metal mesh dampers made from SMAs, which
can be used for engine mounting or vibration absorbers. They found the SMA damping characteristics40

superior to e.g. copper mesh dampers when vibration amplitudes were larger than 8 �m. Similar SMA mesh
washers, or SMA metal rubber, have been suggested to be used as smart rotor support for active vibration
control [15, 16]. The sti�ness and damping properties were determined to be functions of the environmental
temperature, excitation amplitude and frequency, and the loss factor was found to be up to 0.5.

The thermo-mechanical properties of SMAs are nonlinear, which means that they may cause complex45

dynamics in general, e.g. period-multiple orbits, quasi-periodic orbits and chaos [13, 17, 18, 19]. Neverthe-
less, several authors have characterised SMA elements in terms of the complex modulus (storage and loss
modulus), which is usually used for elastomers to quantify their equivalent linear damping characteristics.
Due to the SMA nonlinearities, the complex modulus is a function of the vibration amplitude and frequency,
the level of pre-tension, the environmental temperature and the convective conditions [15, 20, 21, 22, 23]. On50

the other hand, Krack and B�ottcher [24] proposed a method involving nonlinear modes to analyse dynamic
systems with SMAs in the frequency domain, and highlighted that the complex modulus approach is not
applicable in the case of rich dynamics.

A major drawback of using SMAs for control purposes is their limited bandwidth because fast heating
and especially cooling of the elements require high level of thermal energy generation and transfer. For this55

reason control using SMAs usually involves passive adaptive approaches [7, 18]. For example, Williams et
al. [25] proposed a PI controller, whose control objective is based on the relative phase between the primary
and secondary masses for an adaptive tuned vibration absorber.

In this context the main contribution of this work lies in the integration of pseudoelastic SMA helical
springs into a weakly nonlinear multibody dynamic system. A rigid rotor interacts with two passive magnetic60

bearings, whose housings are 
exibly supported. Both the mechanical hysteresis and temperature depen-
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dent sti�ness properties of the SMA springs are explored aiming at reducing rotor lateral vibrations. The
theoretical investigation is based on a multi-physics model linking constitutive relations of SMAs, weakly
nonlinear passive magnetic bearing forces and the system dynamics. The results are compared to exper-
iments carried out at a dedicated test-rig. A benchmark con�guration of the test-rig with steel springs65

instead of SMA springs is used for comparison. The strong interplay between theoretical prediction and
experimental observations is rare in this �eld [7, 8]. The investigations take into account and re
ect on the
main disadvantage using SMAs in relation to control, i.e. slow temperature changes. It is necessary to make
abrupt sti�ness changes in order to \jump" across critical speeds [3]. Alternatives are provided.

The paper is organized as follows. First the rotor-bearing test-rig is presented (Section 2) providing70

an overview of the system components. Modelling of the steel and SMA helical springs is presented in
Section 3, including a short description of the constitutive model used and its interaction with the global
spring behaviour. Also the complex modulus and the spring attachment system are treated. The weakly
nonlinear passive magnetic bearings are described in Section 4. Section 5 concerns the multibody model,
the equations of motion and their solution to describe the system dynamics. Experimental and theoretical75

results are presented in Section 6 followed by conclusions in Section 7.

2. Experimental set-up

The rotor-bearing system used in this investigation is shown in Fig. 1. The system stands out in the
sense that it is designed to have a 
exible rotor-bearing housing interaction, which allows interesting dynamic
behaviour. The 
exible interaction is provided by passive magnetic bearings with the advantage of having80

very low friction. The level of damping is low, and therefore sources of damping are required. The system
consists of a vertical rigid shaft (�16�280 mm) and a disc on top with adjustable mass imbalance. The
bottom of the shaft is connected to a DC motor through a 
exible coupling that allows the rotor (shaft
and disc) to tilt around the X and Y axes constituting two degrees of freedom. The coupling connection is
shown in Fig. 1b.85

Two passive magnetic bearings support the shaft. The magnetic �elds in both bearings are generated
by 20 �10�20 mm cylinder neodymium magnets with vertical magnetization placed in a circular pattern.
One similar magnet is located inside the shaft adjacent to each bearing. The bearings are repulsive in
the lateral (horizontal) directions, which means that they are stable in the lateral direction and unstable
in the axial direction. The coupling at bottom of the rotor is rigid in the axial direction, which means90

that the rotor-bearing coupling system is stable overall. All components are made from non-magnetizable
materials (aluminium, brass, perspex) to avoid interfering with the magnetic �elds. The bearing housings are
supported by 
exible steel beams resulting in two additional degrees of freedom. The lower bearing housing
is able to move in the X direction, whereas the upper bearing is able to move in the Y direction relative to
the lower bearing. The shaft rotation is measured using an encoder (HEDS-9140#A00 and HEDS-5140#A1395

from Avago Technologies), the rotor tilt is measured using two proximitor sensors (TQ401 from Meggitt)
located near the bottom of the shaft, and the horizontal motion of the upper bearing is measured by two
accelerometers (type 4384 from Br�uel & Kj�r).

Helical springs, made from either steel or SMA, can be attached at the upper bearing housing, cf. Fig. 1,
in the positive and negative X and Y directions (a total of four). The other ends of the springs are attached100

in a mechanism allowing di�erent spring pre-tension lengths. Heat chambers can surround the springs. Two
modi�ed heat guns feed the heat chambers with hot air. A feedback control loop ensures a constant air
temperature within �0:3 �C. The electric power to the heat elements in the heat guns can be controlled
and the air temperature of the heat chambers are measured using type T thermocouples. Control of air
temperature and rotor velocity as well as data acquisition are carried out using a DS1103 dSpace board105

connected to a computer.

3. Helical springs

Two di�erent types of springs can be inserted in the test-rig. The �rst type is made from an SMA,
namely a pseudoelastic Nickel-Titanium alloy (Ni-Ti ratio of 56:44). In the following two sections the SMA
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(a) (b)

Figure 1: Test-rig: (a) fundamental part and (b) spring attachment system and details. (A) Disc on top of shaft; (B) upper
and (C) lower passive magnetic bearings supported by (D) 
exible beams; (E) SMA spring attachment point at the upper
bearing; at the bottom of the shaft is attached a (F) 
exible coupling and then a (G) DC motor. An (H) encoder measures the
rotor rotation and (I) proximity sensors measure the rotor tilt angles. (J) SMA and (K) steel springs attached in (L) variable
pre-tension mechanism. A (M) heat chamber can surround the springs fed with hot air from a (N) heat gun. The temperature
is measured using (O) thermocouples. (P) Accelerometers measure the upper bearing motion. The global coordinate system
XY Z is also highlighted. Upper part of test-rig highlighting the spring attachment system.

constitutive model and the helical spring model are brie
y outlined. Detailed descriptions and material110

parameters can be found in [23].
The second type of spring is made from spring steel (DIN 17223 C-wire) and it has a linear force-de
ection

relationship:

Ft = �Ktu� Ft0 (1)

where Kt is the sti�ness, u is the de
ection and Ft0 is a pre-tension force at the initial state, where the
spring coils are in contact. The sti�ness and pre-tension force have been determined experimentally by
tensile tests. The steel springs are used for constituting a benchmark con�guration of the rotor-bearing
system to which the SMA con�guration is compared. The basic properties of the two springs are listed in115

Tab. 1.

3.1. SMA constitutive model
The unusual properties of pseudoelastic SMAs are based on solid-state transformations between austenitic

and martensitic crystallographic phases. The transformations can be induced by changes in either temper-
ature (in the order of 10 �C) or stress (in the order of 100 MPa). The transformations result in signi�cant120
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Table 1: Basic properties of helical springs.

Spring SMA Steel

Wire diameter, 2 c (mm) 0.56 0.75
Spring diameter, 2r 0 (mm) 2.56 6.25
Initial length, h0 (mm) 6 10
Pre-tensioned length, hp (mm) 12 16
Number of windings, n 6 12
Sti�ness, K (N mm �1) 0.7 to 1.3 1.1
Initial force, F0 (N) 0 3

strains (in the order of 5 %) and mechanical hysteresis. The large transformation strains cause considerable
changes in tangential sti�ness. The mechanical hysteresis can be used for damping purposes. The transfor-
mations are exo- and endothermic processes resulting in self-heating and cooling mechanisms and because
SMAs have a tight thermo-mechanical coupling, also the strain rate becomes relevant.

A modi�ed version of the constitutive modelling framework by Lagoudas et. al [26] is used to describe the
thermo-mechanical behaviour of the SMA. The modi�ed version is presented in [23]. The spring behaviour
is primarily governed by a plane stress �eld having one normal component and a shear component, and
therefore a model reduction to two dimensions is used. The governing equations are

" = S� + " t _" t = � _� (2)

Here " = f"11; 
12g| is the strain vector, " t is the phase transformation strain, � = f�11; �12g| is the stress125

vector, � is the martensitic phase fraction ful�lling 0 � � � 1, S is the compliance tensor and it depends
on elastic moduli of austenite and martensite, Poisson’s ratio and the current value of the phase fraction,
and � is the transformation direction tensor, and it is a function of the stress state and the direction of
transformation.

Two transformation functions, �f and �r, are de�ned. They depend on the stress state � , the mate-
rial temperature T , and the martensitic phase fraction � through the composite functions ff(�f(�; �0)) and
fr(�r(�; �0)) respectively. Together with the constraints (i.e. Kuhn-Tucker conditions)

_� � 0; �f(� ; T; �) � 0; �f _� = 0 (3a)
_� � 0; �r(� ; T; �) � 0; �r _� = 0 (3b)

the transformation functions control whether or not forward (subscript f) or reverse (subscript r) trans-130

formations take place. The functions ff and fr are hardening functions that control the evolution of the
martensitic phase fraction. They are designated by B�ezier curves with curvature controlling parameters.
The functions �f and �r are sub-loop functions, and they ensure smooth behaviour when phase transforma-
tions are incomplete and change direction at an intermediate state (0 < � < 1). The sub-loop functions have
a curvature controlling parameter that controls the size of the hysteresis and the tangential sti�ness during135

sub-looping. The hardening and sub-loop functions are modi�cations to the original model, and they are
described in detail in [23].

The constitutive equations are coupled to the energy equation to take into account the latent heat of the
phase transformations so that the SMA temperature may be di�erent from the environmental conditions.
Therefore the temperature becomes a dependent variable. The energy equation reads [23]:

�cp _T + � _� + ĥ
2
c

(T � T1) = 0 (4)

where � = �(� ; �) is a function closely related to the transformation functions. Here �cp is the volume
speci�c heat capacity, ĥ is the convection coe�cient, c is the spring wire radius and T1 is the environmental
temperature. The spring temperature is assumed uniform, and conduction through the spring ends to the140

grips is neglected.
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Figure 2: Illutration of shear and normal stress distribution in the wire cross section of a helical spring, together with charac-
teristic properties of the spring in initial and loaded conditions.

The model has a number of parameters related to the speci�c material. The values of the parameters
are provided in [23] and they are based on model calibration to experimental force-de
ection tests. The
convection coe�cient ĥ may have changed from the calibration value, because the environmental conditions
related to the forced convection are slightly di�erent in this work. However the theoretical results do not145

change signi�cantly if the relative error is in the order of �10 %. The SMA springs have an initial training
period, in which their thermo-mechanical properties change. Di�erent training approaches may lead to
quantitatively (but not qualitatively) di�erent behaviour. This aspect is therefore a relevant source of error.

3.2. Helical spring model
Because of the large transformation strains it is possible to deform the SMA springs considerably resulting

in large pitch angles of the coils. This means that geometrical nonlinearities are introduced. In these
conditions both shear and normal strains are relevant, and the maximum components in the wire cross
sections are [27]:

"11(c) =
c
r0

cos(�0) (cos(�0)� cos(�)) 
12(c) =
c
r0

cos(�0) (sin(�)� sin(�0)) (5)

The strain distributions and the spring itself are illustrated in Fig. 2. Here r0 is the initial spring radius,150

c is the wire radius and �0 and � are the initial and current pitch angles respectively. The initial angle is
�0 = arctan

�
h0

2�nr 0

�
, where h0 is the initial spring length and n is the number of windings. The current

pitch angle is � = arcsin
�

u
L + sin�0

�
, where L =

p
(2�nr0)2 + h2

0 is the constant wire length and u is the
axial deformation of the spring.

Because the strain distribution in the wire cross section is non-uniform and because of the material
nonlinearities, the two dimensional cross sectional stress distribution becomes complex. The stress distribu-
tion is used for calculating the contributing bending and shear moments. However, the martensitic volume
fraction can be considered constant throughout the wire cross section from a modelling point of view [23].
The result is a simple relation between a representative stress measure and the bending and shear moments:

MB =
4
3
c3��11 MT =

2
3
�c3��12 (6)

The representative stress � � = f��11; ��12g is found from the constitutive equations using the appertaining
representative strain " � = f"�11; 
�12g| = f 3�

16 "11(c); 3
4
12(c)g| . The resulting axial spring force is

F =
cos(�0)
r0

(MT +MB tan(�)) =
2
3
c3

r0
cos(�0)(���12 + 2��11 tan(�)) (7)

The reader is referred to [11, 23] for an insight into the force-de
ection relationship of SMA springs at155

di�erent environmental temperatures.
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3.3. Complex modulus
The intricate force-de
ection relationship of the SMA springs can be quanti�ed in terms of the complex

modulus, which consists of the storage modulus (a measure of average sti�ness) and the loss modulus (a
measure of dissipated energy). The complex modulus is widely used in the �elds of elastomers and hysteretic160

elements in general [28]. The advantage of using the complex modulus is that the relatively complicated
SMA behaviour can be simpli�ed into a single quantity having a real and an imaginary part that may be
functions of e.g. vibration amplitude, frequency and ambient temperature. By using the complex modulus
it signi�cantly ease solution of the equations of motion in the time and frequency domains. The drawback is
that some dynamic content may be lost. This is especially relevant if the response is assumed to be simple165

harmonic as it is in this case. However, it should be emphasised that if the complex modulus is a function
of the vibration amplitude and frequency and the ambient temperature, it is still possible to explore weak
nonlinearities.

To use the complex modulus the dynamic problem has to be converted to involve complex states. The
actual de
ection response u(t) that the SMA spring is subjected to is therefore written as u(t) = <fz(t)g+u0,
where z(t) is a complex state, and u0 is the static equilibrium. The complex SMA force is then

Fz(t) = �Ksz(t)� Fs0 (8)

Here Ks = ks(1 + i�) is the complex modulus1, where ks is the storage modulus, � is the loss factor, i is the
imaginary unit, and Fs0 = Fs0(u0) is the static (and real) force at the equilibrium. The actual SMA spring
force is Fs(t) = <fFz(t)g. In the case of a simple harmonic response, i.e.

u(t) =
1
2

�
Z ei!t + �Z e�i!t �

+ u0 = A cos(!t+ �) + u0 (9)

we get

Fs(t) = �
1
2

�
KsZ ei!t + �Ks �Z e�i!t �

� Fs0 = �ks

p
1 + �2A cos(!t+ �+ arctan(�))� Fs0 (10)

where ! is the frequency, A = jZj and � = argZ are the response amplitude and phase respectively. The
complex modulus can be determined either experimentally or by the use of the SMA spring model described
in the former sections. In both cases, the storage modulus and the loss factor are

ks =
H
Fs d v
�A2 � =

H
Fs du

H
Fs d v

(11)

where v(t) = =fz(t)g = 1
2i

�
Z ei!t � �Z e�i!t �

= A sin(!t + �). In this context the complex modulus and
the pre-tension force are functions of the response amplitude A, the frequency ! and the environmental170

temperature T .
The storage modulus ks, the loss factor � and the pre-tension force Fs0 calculated using the SMA spring

model may be seen in Fig. 3. All three quantities strongly depend on the ambient temperature, and ks
and Fs0 increase with temperature whereas � decreases. From 30 �C to 70 �C there is close to a factor of
two in di�erence for all three quantities. The dependencies on frequency are weaker but similar: ks and175

Fs0 increase with frequency whereas � decreases. It should be noticed that at very low frequencies (below
approximately 0.5 Hz) the behaviour is more complicated [23]. The dependencies on de
ection amplitude
are also weak compared to the temperature dependencies and they are non-monotonic. For example � has
optimal conditions in terms of amplitude. We emphasize that the SMA model has been calibrated using
data with de
ection amplitudes larger than 2 mm and frequencies lower than 10 Hz. This means that the180

behaviour having amplitudes below 2 mm or frequencies above 10 Hz are more uncertain and relies on the
overall model validity.

1In this context the complex modulus is measured in N m�1 , thus being a complex sti�ness.
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Figure 3: Complex modulus and pre-tension force of SMA spring depending on de
ection amplitude A and frequency ! and
ambient temperature T . The pre-tension length u0 = 6 mm is constant. The values are calculated using the spring model.
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Figure 4: Illustration of clamping conditions for the springs exempli�ed with the spring attached at (� hp ; 0). To the left is the
�xture, to the right the upper bearing.

3.4. Spring attachment
To the upper bearing housing there are attached four springs of either steel or SMA. They are attached

at the �X, �Y , X and Y faces of the bearing housing. The lengths of the springs are identical and equal185

to hp (cf. Tab. 1) at the equilibrium of the system.
The ends of the helical springs (both steel and SMA) are subjected to conditions similar to clamping of

a beam, which becomes signi�cant when de
ections are lateral to the spring axis. The lateral characteristics
of a spring can be approximated using equivalent properties to a beam, namely the axial, 
exural and shear
rigidities [27]:

(EA)spring =
Gc4h
4nr3 � N (EI)spring =

2hEIG
�nr(2G+ E)

� 1:1Nr2 (�AG)spring =
hEI
�nr3 � 2:6N (12)

where N is the axial tensile force of the spring at the current state, I = �
4 c

4 is the second area moment of
inertia, E = 2G(1 + �) is the elastic modulus and � � 0:3 is Poisson’s ratio. It should be noted that the
equations provided in [27] hold the assumptions that the coil pitch angle is small and that the material is
linearly elastic.190

Having these properties, the helical spring is approximated to behave as a quasi-static Timoshenko beam
subjected to an axial tensile load [29]:

�AG (w00 � �0) +Nw00 = 0 (13)
EI�00 + �AG (w0 � �) = 0 (14)

Here w is the de
ection, � is the bending angle and the moment and shear force resultants are M = �EI�0
and Q = �AG (w0 � �) + Nw0 respectively. A coordinate system X�Y � is set up as indicated in Fig. 4,
and it follows the movement of the spring end that is attached to the upper bearing housing having the
coordinates (x; y) in the XY reference. In the X�Y � reference the equivalent beam is subjected to the
following boundary conditions w(0) = w(h) = 0 and �(0) = �(h) = ��0, where h =

p
(hp + x)2 + y2 is the

deformed length of the spring. The solution to the beam equations gives the following relation between the
angle �0 and the resultant shear force at the beam ends S = Q(0) = Q(h):

�0 = S
�

hc2

2�AGc1

ec1 c2 h +1
ec1 c2 h �1

�
1
N

�
(15)

where c2
1 = N

N +�AG and c2
2 = �AG

EI . The approximative equivalent spring properties, Eq. (12), are inserted
into Eq. (15), and the resulting shear force is

S � �0Ncs ; c�1
s =

0:55h
r

e0:80h=r +1
e0:80h=r �1

� 1 (16)

The spring attached at (�hp; 0) has the angle �0 = arctan
�

y
hp +x

�
. The tensile force is found using Eq. (1)

for the steel spring and Eq. (7) for the SMA spring. It is assumed that the clamping of the SMA spring
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does not in
uence the axial force determined by Eq. (7). The forces acting on the bearing housing from the
spring attached at (�hp; 0) are

Fx; 1 = � (N cos(�0)� S sin(�0)) Fy; 1 = � (N sin(�0) + S cos(�0)) (17)

The procedure is similar for the other three springs. The axial spring force N is equal to �Ft from Eq. (1)
(steel spring) or �Fs from Eq. (7) (SMA spring). The forces are in both cases evaluated for the de
ection
u = h� h0.

Approximations of the summed forces from the four springs using small angles �0 � 1 are

Fx =
4X

i =1

Fx;i = �2
�
K +

F0

hp
(1 + cs)

�
x Fy =

4X

i =1

Fy;i = �2
�
K +

F0

hp
(1 + cs)

�
y (18)

because N = Kx+F0. Here cs is evaluated at h = hp, F0 is the spring force and K is the sti�ness evaluated
at a de
ection of hp. From these equations it is evident that the pre-tension force has a signi�cant impact195

on the provided sti�ness because K and F0
hp

are of the same order of magnitude. Note that the term F0
hp

in
Fx comes from the springs attached in the Y direction and not in the X direction. The steel springs has
cs = 0:52 and the SMA springs has cs = 0:24 evaluated at h = hp, and because these numbers are of the
order 1 it means that the addition of the clamping is signi�cant.

4. Magnetic shaft-bearing interaction200

The model for the magnetic interaction between the shaft and the bearings is thoroughly described in
[30], in which weak nonlinearities of the magnetic interaction are investigated for the same test-rig without
steel and SMA springs attached. The model is based on calculation of the magnetic 
ux density produced by
each bearing magnet. The 
ux densities are super-positioned, and the force from the collected bearing 
ux
density on the shaft magnet is calculated at di�erent shaft positions. The magnetic forces were approximated
using a Taylor series expansion with high accuracy. A maximum residual standard deviation less than 0.2
percent relative to the full scale force was achieved. The approximation is

Fm =

8
<

:

�kmxr � �x(x2
r + y2

r )
�kmyr � �y(x2

r + y2
r )

fz

9
=

;
(19)

where (xr; yr) is the relative horizontal coordinates between the shaft magnet and the bearing centre, km
is the linear lateral sti�ness, � is the cubic lateral sti�ness and fz is a constant force due to a vertical
(axial) misalignment z0 between the bearing centre and the shaft magnet as a consequence of manufacturing
inaccuracies. Because � > 0 the bearings exhibit a sti�ening e�ect.

Because of imperfections in the magnets, the bearing magnets exhibit signi�cant non-uniformity. This
means that the forces between the bearings and shaft depend on the rotation angle of the shaft. It also a�ects
the equilibrium position. However, it was shown in [30] that the magnetic non-uniformity together with
geometrical inaccuracies of the shaft can be collected into an equivalent eccentricity having an amplitude
and a phase. This means that the relative coordinate between the magnetic centre of the shaft and a bearing
is

xr = xs + e cos(� + �)� x yr = ys + e sin(� + �)� y (20)

where (xs; ys) is the horizontal coordinate of the shaft, (x; y) is the horizontal coordinate of the bearing,205

and (e; �) is the amplitude and phase of the collected magnetic and geometrical non-uniformity. The lower
bearing has the eccentricity (e1; �1), the upper bearing (e2; �2). The eccentricities result in harmonic and
nonlinear parametric excitation of the system.

The heat chambers used for the SMA springs are next to the upper bearing. This means that hot
air warms up both the bearing magnets and the appertaining shaft magnet. According to the supplier of210
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Figure 5: Schematic of dynamic system, consisting of the shaft and disc or rotor (light grey), two bearing housings (grey) and
eight 
exible beams (light red).

the magnets (Sintex a/s), the remanence (remaining magnetic 
ux density) of the magnets have a relative
temperature sensitivity of �0:11 % K�1. The remanence is proportional to the magnetization of the magnets,
and the magnetic forces are proportional to the square of the magnetization [30, 31]. This means that the
magnetic forces (and sti�nesses) of the upper bearing are reduced by approximately 1 %, 5 % and 10 %
when operating at 30 �C, 50 �C and 70 �C respectively compared to the calibration temperature of 25 �C.215

5. Modelling the dynamics

A schematic of the mechanical system is shown in Fig. 5. The rotor-bearing system has four degrees of
freedom: �, �, x and y. The two �rst degrees of freedom (�; �) denote the tilting angles of the shaft around
the Y and �X axes respectively. This means that a positive value of � corresponds to a displacement of
the tip of the shaft in the direction of positive X, and similar for � in relation to Y . The rotational angle220

of the shaft is denoted �, and _� = ! is the angular velocity controlled by the DC motor in the lower end of
the shaft. The polar inertia Ip of the shaft and disc results in gyroscopic forces. The shaft is supported by
a 
exible coupling at its bottom. The coupling is 
exible in bending (� and �), and it is sti� in torsion (�)
and in its axial direction (Z). For this reason the coupling is modelled to provide a linear angular sti�ness
kc at the shaft pivot point, and it constrains torsional and axial movement of the shaft. The shaft and225

disc is a�ected in the �Y direction by the gravitational force fg with magnitude mrg at the centre of mass,
located at the vertical distance lg from the pivot point. The rotor mass is mr and g is the gravitational
constant. Imbalance (residual and added) in
uences the shaft tilt, and it is modelled as a reaction force
from a point mass mu, with the axial distance lu and radial distance ru from the pivot point, and the point
mass is subjected to a radial acceleration of ru!2. The magnetic forces from the lower and upper bearings230

(fm1 and fm2 in Fig. 5) as described in the Section 4 act on the shaft in the axial positions l1 and l2 from
the pivot point respectively.
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The bearing housings are supported by 
exible steel beams that are modelled to provide forces with
linear sti�ness in one horizontal direction each. In the other horizontal direction, the beams are sti�, so they
constrain the bearing housing from moving. Therefore, the two last degrees of freedom, (x; y), denote the235

displacement in theXY plane of the upper bearing housing. The lower bearing housing follows synchronously
the upper bearing housing in the X direction, but it is constrained in the Y direction. For this reason the
lower bearing housing has the horizontal coordinates (x; 0). The beams connecting the �xed support and
the lower bearing housing have the collected horizontal sti�ness kb1, and kb2 is the similar sti�ness of the
beams connecting the two bearing housings. The magnetic forces acting on the bearings are opposite of the240

ones acting on the shaft by Newton’s third law. The steel or SMA spring forces act on the upper bearing
housing in the X and Y direction (fs;x and fs;y in Fig. 5) as described in Section 3.4.

The equations of motions are established using Newton’s second law for the bearing housings and Euler’s
equation about the pivot point for the collected shaft and disc (rotor). A detailed description is provided in
[30]. Assuming that �; � � 1 the equations of motion are

M�x + (C + !G) _x + Kx = fl + fnl + fs (21)

where x = f�; �; x; yg| is the state vector, M is the mass matrix, C = cmM + ckK is the mass and sti�ness
proportional structural damping matrix, G is the gyroscopic matrix, and K is the sti�ness matrix. The
matrices are

M =

2

6
6
4

It 0 0 0
0 It 0 0
0 0 m1 +m2 0
0 0 0 m2

3

7
7
5 G =

2

6
6
4

0 Ip 0 0
�Ip 0 0 0

0 0 0 0
0 0 0 0

3

7
7
5

K =

2

6
6
4

kK 0 �k1l1 � k2l2 0
0 kK 0 �k2l2

�k1l1 � k2l2 0 kb1 + k1 + k2 0
0 �k2l2 0 kb2 + k2

3

7
7
5

(22)

where It is the transversal inertia of the rotor, m1 and m2 are masses of the lower and upper bearing houses
respectively and kK = kc � lgmrg + fz1l1 + fz2l2 + k1l21 + k2l22. The magnetic sti�nesses and misalignment
forces of the lower and upper bearings are k1, fz1 and k2, fz2 respectively, cf. Section 4. At the right hand
side of Eq. (21) are linear excitation forces fl, nonlinear magnetic forces fnl, and spring force fs. The linear
excitation forces are

fl =

8
>><

>>:

u!2 cos(� + �u)� (k1l1 + fz1)e1 cos(� + �1)� (k2l2 + fz2)e2 cos(� + �2)
u!2 sin(� + �u)� (k1l1 + fz1)e1 sin(� + �1)� (k2l2 + fz2)e2 sin(� + �2)

k1e1 cos(� + �1) + k2e2 cos(� + �2)
k2e2 sin(� + �2)

9
>>=

>>;
(23)

where u = murulu is the amplitude of the imbalance moment and �u is its phase. If the rotational frequency
is constant, then � = !t.

The vector of nonlinear forces comprises the most pronounced nonlinearities related to the cubic terms
of the passive magnetic bearing forces:

fnl =

8
>><

>>:

��1l1xa
�
x2

a + y2
a
�
� �2l2xb

�
x2

b + y2
b
�

��1l1ya
�
x2

a + y2
a
�
� �2l2yb

�
x2

b + y2
b
�

�1xa
�
x2

a + y2
a
�

+ �2xb
�
x2

b + y2
b
�

�2yb
�
x2

b + y2
b
�

9
>>=

>>;
(24)

where

xa = l1�+ e1 cos(� + �1)� x ya = l1� + e1 sin(� + �1) (25)
xb = l2�+ e2 cos(� + �2)� x yb = l2� + e2 sin(� + �2)� y (26)
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Table 2: System parameters.

Property Value Property Value Property Value

g (N kg�1) 9.81 m r (kg) 0.616 f z1 (N) � 0:01
kc (N m) 0.7 m1 (kg) 0:474 f z2 (N) � 5:04
cm (s�1) 0:57 m2 (kg) 1:410 kb1 (N m �1) 1:18 � 103

ck (s) 16 � 10�3 I t (kg m2) 31:2 � 10�3 kb2 (N m �1) 0:72 � 103

u (kg m2) 14:8 � 10�6 I p (kg m2) 326 � 10�6 k1 (N m �1) 1:66 � 103

e1 (m) 0:11 � 10�3 lg (m) 0.188 k2 (N m �1) 1:61 � 103

e2 (m) 0:14 � 10�3 l1 (m) 0.118 � 1 (N m �3) 9:37 � 106

� u (�) 7 l2 (m) 0.263 � 2 (N m �3) 6:78 � 106

� 1 (�) 38
� 2 (�) � 118

The collected spring force vector from the four springs is (cf. Eq. (17))

fs =
4X

i =1

�
0 0 Fx;i Fy;i

	 | (27)

The system parameters are provided in Tab. 2.245

The proportional damping parameters cm and ck are determined such that the damping factor is 1 %
at 7 Hz and 13 Hz. The result is cm = 0:57 s�1 and ck = 16 � 10�3 s. This is based on the transient
responses (Section 6.1) and the ramp-ups (Section 6.2) such that the results obtained by simulation of the
steel spring system con�guration match the experimental results to a large extent. When calculating the
damping matrix C that depends on the sti�ness matrix K, the sti�nesses of the steel springs, Eq. (18), are250

also included, because the springs and their attachment indeed contribute to the damping. The damping
matrix is identical for the SMA system con�guration.

The parameter values related to the eccentricities of the shaft magnets are identical to the ones obtained
in [30]. We have added one imbalance mass on the disc having (ua; �a) = (11:9 kg mm2;�10�). Together
with the residual imbalance moment of (ur; �r) = (4:9 kg mm2; 52�) obtained in [30] the resulting imbalance255

moment becomes (u; �) = (14:8 kg mm2; 7�) by vector addition.
By transforming the equations of motion into �rst order ordinary di�erential equations, they are solved

using the Runge-Kutta-Fehlberg algorithm, which is the adaptive version of the Runge-Kutta 45 method.
The SMA temperature also evolve over time. However, this dependence is calculated internally in the SMA
model using the implicit Euler method. The equations of motions are also solved in the frequency domain260

as described in the next section.

5.1. Solution in frequency domain
In order to determine the frequency response of the system, i.e. the steady state response for constant

rotational frequency, it is convenient to solve the equations of motion in the frequency domain. It is far
less computationally expensive compared to time domain solutions. However, the solution is only approxi-265

mate because of several simplifying assumptions, which are explained below. The validity of the modelling
approach, and therefore the assumptions, is justi�ed in Section 6.3.

The only forcing frequency is the rotational frequency !, cf. Eq. (23). It is assumed that the steady state
system response is simple harmonic with the same frequency as the excitation:

x(t) =
1
2

�
z ei!t +�z e�i!t �

(28)

where z = fz� ; z� ; zx ; zyg
| is the complex representation of the response amplitude and phase. This assump-

tion is reasonable because a large extent of the system is linear and because the nonlinearities are weak.
More speci�cally, the nonlinear contributions are the magnetic bearings forces (resulting in the cubic sti�ness
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�), which also enter as parametric forcing, and the SMA spring forces, which enter through a mounting also
introducing geometrical nonlinearities. Both contributions are only weakly nonlinear. The assumed solution
is inserted into the equations of motion (21) and higher order harmonics are neglected resulting in

1
2

�
F(z; !) ei!t +F(z; !) e�i!t

�
= 0 ; (29)

F(z; !) =
�
�!2M + i!(C + !G) + K + Ks(z; !)

�
z� ql(!)� qnl(z) (30)

Equation (29) should be satis�ed for all t, implying that F(z; !) = 0. The linear external forcing term ql(!)
becomes

ql(!) =

8
>><

>>:

!2zu � (k1l1 + fz1)z1 � (k2l2 + fz2)z2
�!2izu + (k1l1 + fz1)iz1 + (k2l2 + fz2)iz2

k1z1 + k2z2
�k2iz2

9
>>=

>>;
(31)

where zu = u ei� u , z1 = e1 ei� 1 and z2 = e2 ei� 2 . The nonlinear forces qnl(z) related to the magnetic bearings
are

qnl(z) =
1
4

8
>>>>>>><

>>>>>>>:

��1l1
�
2zx ajzyaj2 + �zx a

�
3z2

x a + z2
ya

��
� �2l2

h
2zx bjzybj2 + �zx b

�
3z2

x b + z2
yb

�i

��1l1
�
2zyajzx aj2 + �zya

�
3z2

ya + z2
x a

��
� �2l2

h
2zybjzx bj2 + �zyb

�
3z2

yb + z2
x b

�i

�1
�
2zx ajzyaj2 + �zx a

�
3z2

x a + z2
ya

��
+ �2

h
2zx bjzybj2 + �zx b

�
3z2

x b + z2
yb

�i

�2

h
2zybjzx bj2 + �zyb

�
3z2

yb + z2
x b

�i

9
>>>>>>>=

>>>>>>>;

(32)

where zx a = l1z� + z1 � zx , zya = l1z� � iz1, zx b = l2z� + z2 � zx and zyb = l2z� � iz2 � zy .
The forces from either the steel or SMA springs can be represented in the frequency domain with the

use of the complex modulus as described in Section 3.3. A �rst order approximation of the fundamental
harmonic content of the spring forces are provided in Eq. (18). Combined with the complex modulus, the
total force fs becomes

fs = �
1
2

�
Ks(z; !)z ei!t + �Ks(z; !)�z e�i!t �

; (33)

Ks(z; !) = 2

2

6
6
6
4

0 0 0 0
0 0 0 0
0 0 Kx + F0y

hp
(1 + cs) 0

0 0 0 Ky + F0x
hp

(1 + cs)

3

7
7
7
5

(34)

For the steel springs we have that Kx = Ky = Kt and F0x = F0y = Ft0 +Kt(hp�h0) related to Eq. (1) and
Tab. 1. For the SMA springs, the complex sti�ness and the pre-tension forces are functions of the pre-tension270

length (which is constant), the vibration amplitude of the upper bearing housing, the oscillation frequency
and the ambient temperature, i.e. Kx = Ks(hp � h0; jzx j; !; T1) and F0x = Fs0(hp � h0; jzx j; !; T1) and
similar for the y components. Both Ks and Fs0 are calculated a priori for a number of interpolation points,
and during the solution in the frequency domain the functions are evaluated by linear interpolation between
the points.275

Notice that there are two di�erent kinds of approximations related to fs. The �rst is related to material
nonlinearities of the SMAs, which are linearised using the complex modulus. However, F0 and Ks are still
functions of z and !. The second kind is related to geometrical nonlinearities of the attachment of the
springs, where (a) only the fundamental harmonic is taken into account, and (b) a �rst order approximation
to the fundamental harmonic content is made. This is di�erent from the nonlinear magnetic forces, for280

which the fundamental harmonic content is provided to the order three.
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The system of complex equations F(z; !) = 0 is solved in an interval of frequencies using the method
of pseudo-arclength continuation. The method is described in [32]. First, a solution is found at the lowest
frequency of interest using a Newton-Raphson scheme. Secondly, a small prediction step (with a speci�ed
length) is made in the joint space of z and ! using the Jacobians of F with respect to z and !. Correction285

steps perpendicular to the prediction step follow until the equation F = 0 is ful�lled again. The sequence of
prediction and correction steps are made until the highest frequency of interest is met. Since the prediction
step direction and length in terms of ! is determined by the algorithm, it is possible to cross bifurcations (e.g.
saddle-node bifurcations). The Jacobians of F are determined algebraically as far possible. Only @Ks=@jzj,
@Ks=@!, @Fs0=@jzj and @Fs0=@! are approximated using �nite di�erence.290

5.2. Linearisation
To understand better the system dynamics, the equation of motions are linearised. This approximation

is valid if the relative rotor-bearing displacements are small such that the nonlinearities of the magnetic
bearings are negligible and if changes in the complex sti�ness Ks are slow compared to the rest of the
system dynamics. The state x(t) is substituted by the complex state z(t) such that x(t) = 1

2 (z(t) + �z(t)).
By using the same approach as in the preceding section, the linearised equation of motion becomes

M�z + (C + !G) _z + (K + Ks)z = ql(!) ei!t (35)

Introducing ~z = fz; _zg| , the di�erential equations above may be written as

~M _~z + ~K~z = ~ql(!) ei!t (36)

where

~M =
�
M 0
0 M

�
~K =

�
0 �M

K + Ks C + !G

�
~ql(!) =

�
0

ql(!)

�
(37)

The eigenstructure of the system is � ~M�1 ~K = V�V�1, where V contains the eigenmodes (mode shapes)
and � is a diagonal matrix containing the eigenvalues (representing natural frequencies). Using the eigen-
structure and ~z = Vv, Eq. (36) is diagonalized:

_v = �v +
�

~MV
� �1

~ql(!) ei!t (38)

Note that the di�erential equations are independent, because � is diagonal. Equation (38) is used to explain
some of the dynamic behaviour observed in the following section.

6. Results and discussion

Results of transient responses, ramp-ups and steady state frequency responses are presented below for295

the two system con�gurations using either steel or SMA springs. The con�guration with steel springs is
investigated at room temperature, and tests of the SMA con�guration are made at 30 �C, 50 �C and 70 �C to
explore the in
uence of temperature. Examples of applications are also presented. The system con�guration
with steel springs also changes its dynamic behaviour with temperature. However, tensile tests of the steel
springs at di�erent temperatures con�rm that their sti�ness is not temperature dependent. The changes300

in the system are not due to the steel springs but are caused by the sti�ness of the magnetic bearings
that decreases with temperature, cf. Section 4. Comparison between model predictions and experimental
observations of the eigenfrequencies veri�es this assumption. The changes are not signi�cant, and in order
to maintain focus on the SMAs, these results are left out.
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(a) (b)

(c) (d)

Figure 6: Oscillation frequency and damping factor depending on vibration amplitude for �ve di�erent system con�gurations:
(a) and (b) are obtained experimentally, and they are based on six tests for each system con�guration, (c) and (d) are
simulations. The markers are measurements, and the black lines indicate the trends and are made from smoothing splines, and
they are not used for mathematical evaluation otherwise.

6.1. Transient responses305

The rotor and bearing housings are released from an initial position without the rotor rotating in order to
excite the lowest resonance frequency. When the rotor is not rotating, the system consists of two decoupled
subsystems (�; x) and (�; y) as may be seen from the structure of the equations of motions (21). The two
subsystems have two resonance frequencies each, and the �rst two modes consist of in-phase motion between
rotor and bearing housings and the next two modes consist of counter-phase motion. It is not experimentally
feasible to excite the �rst mode alone, and therefore a low-pass �lter is used during post-processing to remove
higher modes. It is important to highlight that the �ltering method does not produce any phase lag. The
transient responses are analysed by �tting locally in time the transient response of a linear system:

x(t) = x0 e��! o t sin(!o
p

1� �2t+ �0) (39)

Measurement points for the �tting are obtained when the displacement reaches a maximum or minimum
(corresponding to the sine factor equalling �1 or 1). Each �t is only based on three measurement points,
which ensures almost perfect �ts that however are subjected to measurement noise to some extent. From
this, it is possible to extract the development of the oscillation frequency !o and the damping factor � as
function of the amplitude x0 e��! o t in time. The results obtained experimentally and by simulation are310

shown in Fig. 6 for the (�; x) subsystem.
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From the experimental point of view, the system con�guration with steel springs have an oscillation
frequency and damping factor that are almost independent of the vibration amplitude. Therefore this system
con�guration behaves almost linearly. The damping factor is approximately 1 %. The SMA con�guration
exhibits higher level of damping: up to 7 % at 30 �C, up to 5 % at 50 �C and up to 2 % at 70 �C. Also,315

the oscillation frequency decreases with amplitude and increases with environmental temperature. This is
typical behaviour for dynamic systems involving SMAs [33]. The frequencies of the steel con�gurations and
the SMA con�gurations are close, which means the steel con�guration is a valid candidate for benchmarking.
If the resonance frequencies of the two con�gurations di�ered signi�cantly, it would have a crucial impact on
the mode shapes and it would not be possible to compare the results. This is also treated in the following320

section.
The theoretical results, Figs. 6c and 6d, are in good agreement with the experiments for the steel spring

con�guration. For the SMA con�guration, the tendencies are similar to but not as pronounced as the
experimental results. The damping factors are roughly half of the values obtained experimentally, which
means that the model is conservative. The oscillation frequency decreases approximately 1.3 Hz during325

experiments but only 0.2 Hz in simulation for the 30 �C SMA case for example. However, in all cases
there is a good agreement in frequency at high oscillation amplitudes. The discrepancies between model
predictions and experimental results have several reasons: The transients obtained from experiments are
�ltered digitally because they originally contain more rich dynamics, which could be a source of error.
Because the SMAs are hysteretic elements, their initial conditions, in terms of the martensitic volume330

fraction, have an impact on the dynamic response. Also, the SMA model is calibrated using data having
oscillation amplitudes higher than 2 mm only, which corresponds to approximately 1�. For this reason the
model cannot necessarily be expected to perform well at lower oscillation amplitudes. Finally it should
be noted that di�erences in the necessary training process of the SMA springs that includes non-stabilized
behaviour has a considerable impact on the stabilized behaviour [23]. Namely, the SMA force decreases335

during training, which corresponds to a fall in oscillation frequency.
The transient results for the (�; y) subsystem are very similar to the results of the (�; x) subsystem, and

they are not shown here. The oscillation frequencies in (�; y) range from 7 Hz to 9 Hz and the damping
factors range from 1 % to 5 %.

6.2. Ramp-ups340

The rotor is accelerated from rest at 0 Hz to 20 Hz in 25 s with constant angular acceleration. The
experiment is carried out four times for each system con�guration with di�erent initial rotor angles �. Then
the envelope of the rotor vibrations along time are obtained from the time signals. The results, experimental
and theoretical, are shown in Fig. 7 for four di�erent system conditions.

From the experimental results, Fig. 7a, it is clear that the system crosses four resonances resulting in four345

vibration peaks. The peak amplitudes and positions in time (corresponding to frequencies) depend on the
system con�guration and temperature. The four peak amplitudes are of the same order of magnitude. This
property is due to the designed relation between the masses and the sti�nesses of the system components,
which determines the (linear) mode shapes. This design has been chosen in order to make the four resonances
equally important in terms of vibration reduction and also equally sensitive to the adaptive properties of350

the SMA springs. The high sensitivity also means that just small errors in terms of spring sti�ness result in
relatively large discrepancies when comparing the model prediction with the experimental results.

The experimental and theoretical results related to the steel con�guration are very similar, see Figs.
7a and 7b. The peak vibration amplitudes are matched very well by the model. The tendencies related
to the SMA con�gurations are also matched in simulation. However, the (quantitative) discrepancies are355

larger. The reason for this is the same as mentioned in the former section: the SMA spring forces are
slightly underestimated because of di�erences in the training process of the springs. This results in an
underestimation of the sti�ness of the system, which is related to the resonance frequencies and the mode
shapes and therefore also the peak amplitudes.

The SMA con�guration at 30 �C has lower peak amplitudes when crossing all four resonances compared360

to the steel con�guration. The SMA con�guration at 70 �C also gives lower peaks than the steel con�guration
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(a) (b)

Figure 7: Experimental (a) and theoretical (b) ramp up from 0 Hz to 20 Hz in 25 s with constant acceleration using di�erent
system conditions.

in three of the resonances. It is interesting to notice that when crossing the �rst two resonances, the 30
�C SMA con�guration performs best in terms of vibration attenuation, whereas the 70 �C con�guration
performs best at the two next resonances. The relation is the same in simulations, see Fig. 7b. Generally,
SMAs exhibit the highest damping properties in low temperatures, which is also re
ected in the loss factor365

shown in Fig. 3. Therefore a lower peak amplitude at 70 �C seems surprising. The reason for this behaviour
is found by inspecting the linearised equations of motion in modal coordinates, Eq. (38). A change in
Ks will a�ect the eigenstructure, i.e. both natural frequencies � and mode shapes V. This means that
there is a change of the point in time at which the peak amplitudes are reached, and it also means that
there is a redistribution of the kinetic energy among the system components. Finally, a change in the370

mode shapes also a�ects how the disturbances (i.e. mass imbalance and eccentricities) in
uence the di�erent
modes themselves, which is seen from the last term in Eq. (38). A sti�ness change causes some modes to
become more sensitive or compliant to the given disturbance, and others the opposite. The e�ects of the
change in sti�ness is illustrated in Fig. 8, where the peak of the kinetic energies during a rotation cycle
of the rotor and bearing housings are plotted against time for the 30 �C and 70 �C SMA conditions. The375

relation between the energies of the bearings and rotor clearly change when the temperature change. This
corresponds to a change in mode shapes. Focusing at the two �rst resonances, the energies of the rotor
and bearings obtained experimentally are almost identical at 30 �C. At 70 �C the kinetic energy of the
rotor is signi�cantly larger than that of the bearings. Also the sum of the kinetic energies at 70 �C are
signi�cantly larger than at 30 �C because the �rst two modes have become more sensitive to disturbances at380

high temperatures. Oppositely, the two high modes are less sensitive to the disturbances at 70 �C compared
to the 30 �C case. The theoretically obtained kinetic energies show the same behaviour. Note that the
energies of the �rst two modes are slightly underestimated and that the energies of the last two modes are
overestimated which is because the average SMA sti�ness is underestimated in general.

The dissipated energy by a hysteretic element is proportional to the squared vibration amplitude, the385

storage modulus and the loss factor. Because the storage modulus is higher at 70 �C, this means that the
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(a) (b)

Figure 8: Peak of the kinetic energy during a rotor rotation along time during the ramp-ups shown in Fig. 7 obtained
experimentally (a) and by simulation (b).

Table 3: Rotor amplitudes and frequencies of resonance peaks of the steady state frequency response related to Figs. 9 and 10.
Some values are not provided because rotor-bearing impacts limit the response at the given resonance.

Experiment Simulation

Mode 1, � 2, � 3, � 4, � 1, � 2, � 3, � 4, �

Amplitude ( �)
Steel 30 �C 1.04 0.97 { 0.67 1.34 0.75 { {
SMA 30 �C 0.46 0.32 0.63 0.64 0.55 0.22 0.91 0.77
SMA 50 �C 0.55 0.42 0.54 0.60 0.70 0.39 0.77 0.68
SMA 70 �C 0.82 0.70 0.52 0.58 0.75 0.54 0.56 0.50

Frequency (Hz)
Steel 30 �C 7.0 7.9 { 13.7 6.9 7.8 { {
SMA 30 �C 6.9 7.9 12.8 13.5 6.1 7.0 12.8 13.3
SMA 50 �C 7.2 8.1 12.9 13.6 6.6 7.5 12.8 13.3
SMA 70 �C 7.4 8.4 13.3 13.8 7.1 8.1 12.9 13.4

actual damping capacity is only reduced slightly compared to at 30 �C at this level of vibration amplitudes,
cf. Fig. 3.

6.3. Steady state responses
The system is kept at a constant rotational frequency and the responses in terms of rotor and bearing390

housing vibration amplitude and phase are captured, when a steady state is reached. A small change is
made to the frequency and the procedure is repeated. The analysis is performed in the frequency range
from ! = 1 Hz to ! = 20 Hz, wherein the interesting system dynamics take place. Both an up-sweep and
a down-sweep are performed in order to explore jumps between co-existing stable states. The experimental
results in the frequency ranges close to resonance conditions may be seen in Fig. 9 for the steel con�guration395

at room temperature and the SMA con�guration at three temperature levels. Resonance peak vibration
amplitudes and frequencies of the rotor are provided in Tab. 3.

From the �gure it is possible to observe the four resonance conditions. For the SMA con�gurations
the two �rst resonances (around 7 and 8 Hz) are characterized by slightly asymmetric resonance peaks
bending towards the left because of softening. As mentioned before the softening behaviour is typical for400
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Figure 9: Experimentally obtained amplitude of the fundamental harmonic response at di�erent constant rotational frequencies.

SMA systems, and it is in agreement with the transient results presented in Section 6.1. The two highest
resonances (around 13 Hz) are almost coinciding and they are characterized by sti�ening in all system
conditions. In the steel con�guration and in the 50 �C and 70 �C SMA cases it is possible to observe
co-existing states and jump phenomena. Since the sti�ening is found both with and without SMAs, it is
evident that the SMAs are not responsible for this behaviour. The e�ect is caused by the magnetic bearings405

that are weakly nonlinear with sti�ening, cf. Section 4. The in
uence of the magnetic bearing sti�ening
is particularly signi�cant in the two highest resonances because of counter-phase motion between the rotor
and the bearing housings resulting in large relative vibration amplitudes. The peak amplitudes of the steel
con�gurations are larger than those of the SMA con�guration in all resonances and temperatures. Actually,
rotor-bearing impacts occur when trying to sweep up across the two highest resonances in the steel case.410

The four resonance frequencies increase with temperature using the SMA con�guration. The �rst three
increase by 0.5 Hz and the fourth increase by 0.3 Hz comparing 70 �C to 30 �C, which correspond to 7 %, 6
%, 4 % and 2 % respectively. The peak vibration amplitudes also increase with temperature at the �rst two
critical speeds for all states (both rotor and bearings). However, at the two next critical speeds the peak
amplitudes of the rotor (� and �) decrease with temperature, whereas the situation is the opposite for the415

bearing housings (x and y). The rotor peak amplitudes at the two �rst resonances are reduced by 43 % and
54 % respectively by decreasing the temperature from 70 �C to 30 �C. For the third and fourth resonances
the peaks are reduced by 17 % and 9 % respectively by increasing the temperature from 30 �C to 70 �C.
The observations are in agreement with the ramp-up results presented in the former section.

The frequency responses are also obtained theoretically with the use of the approximative model described420

in Section 5.1. The results may be seen in Fig. 10. The resemblance to the experimental results is good.
The two �rst resonances are characterized by light softening and the two highest by sti�ening. The steel
con�gurations exhibit the highest peak amplitudes. The peak amplitudes of the two �rst resonances increase
with SMA temperature for all states, but it is a mixture at the two highest resonances. By using the
continuation technique, it is also possible to discover the unstable branches when crossing the saddle-node425

bifurcations close to the third and fourth resonances. Using the model, it is con�rmed that the sti�ening e�ect
characterizing the two highest resonances completely vanish, if the nonlinearity of the magnetic bearings is
omitted. The magnetic nonlinearity is therefore the only cause for the right bending of the third and fourth
resonance peaks.

Because the continuation method is applied to an approximation of the model, justi�cation is needed.430
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Figure 10: Frequency responses of the rotor obtained using pseudo-arclength continuation of the approximative equations of
motion in frequency domain giving the amplitude of the fundamental harmonic content for di�erent rotational frequencies.
Dotted lines indicate unstable branches.

Figure 11: Comparison between results obtain via continuation of approximative model and simulations (sweep up or sweep
down) of full model. The amplitude of the fundamental harmonic content is shown.
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For this reason time simulations of the full model are compared to the results obtained via continuation.
An example is shown in Fig. 11. The graph shows a complete match between the two approaches. The
continuation results can be obtained within seconds, whereas the simulations take several minutes. More
importantly, the continuation method provides more rich information about the system dynamics in form
of higher resolution and unstable branches, which cannot be obtained via time simulation. It is important435

to mention that a Fourier transform of the steady state solutions obtained via time simulation reveals
that no sub-harmonics are present and that super-harmonics are at least two orders of magnitude lower
than the fundamental harmonic. The simpli�cation of only allowing the fundamental harmonic is therefore
reasonable.

6.4. Applications440

Based on the presented experimental and theoretical results it is evident that the SMA con�guration
of the system is adaptable through temperature control. Here examples are presented related to open loop
control of the temperature with the aim of reducing rotor vibrations. Figure 12 shows three cases, in which
the rotational speed is kept constant at di�erent levels. Both experimental and theoretical results are shown.
To illustrate the same qualitative behaviour, the theoretical operational speeds are altered slightly compared445

to the experimental speeds, because the resonance frequencies di�er slightly between the experiments and
the model.

In the �rst case, Figs. 12a (experiment) and 12b (simulation), the operational speed is close to the second
critical speed at 70 �C. Instead of changing the operational speed, it is possible to move away the critical
speed by decreasing the temperature of the SMA springs. At t = 200 s, when the SMA environmental450

temperature is close to 30 �C, the vibration amplitude is reduced approximately 75 % in the � direction of
the experiments. The � direction is only a�ected to small extent. The theoretical results show the same
tendency. Both the initial and �nal vibration amplitudes are smaller compared to the experiments, and the
reduction is around 95 %.

The second case, Figs. 12c (experiment) and 12d (simulation), starts just below the second critical speed455

at 70 �C. In this case, the critical speed moves closer to the rotational speed when decreasing the SMA
temperature to 50 �C thus resulting in vibration ampli�cation in the � direction. However, vibrations in
the � direction are reduced. By further reducing the SMA temperature to 30 �C, the second critical speed
moves away from the operational speed and vibrations in � reduce. Therefore, the overall vibrations are
reduced when taking both � and � into account. The theoretical results are very similar. This example460

also shows the potential of crossing a critical speed by a change in temperature instead of ramping up. This
approach has been proposed by several authors [2, 3, 7, 8, 16, 34, 35]. The idea is to \jump" directly from
high temperature (70 �C) to low temperature (30 �C) and thus avoid exciting the mode that is crossed.
However, it is not possible to jump directly because the changes in temperature are slow (in the order of 10
s) as may be seen from the experimental results, and it is inevitable to avoid exciting the mode as a result.465

It is therefore important to have considerable dissipation in the system to reduce the peak amplitude when
crossing the critical speed and to attenuate subsequent transients. The decrease of SMA sti�ness due to the
temperature fall is clearly visible when plotting the SMA forces against the bearing housing displacement,
Fig. 13a. Only at 50 �C it is possible to observe small amounts of hysteresis. The hysteresis is therefore
not present in the optimal conditions, in which the vibrations are small. The hysteresis is only useful for470

limiting large vibrations.
The system is close to its fourth critical speed at 30 �C in Figs. 12e and 12f. Here, vibrations in �

are large. In order to reduce the vibrations the temperature is increased. However, this means that the
third critical speed related to the � direction comes closer. In order to reduce the overall vibrations, an
intermediate state close to 50 �C could therefore be understood as an optimum. This highlights that it may475

be useful to have a continuous temperature interval at disposal and not only \cold" and \hot" conditions in
order to obtain optimal conditions. This can also be used to tune anti-resonances close to the operational
speed [7, 11]. Figure 13b shows the simulated SMA forces against the bearing housing displacement related
to the case in Figs. 12e and 12f. The SMA sti�ness clearly increases with temperature in both x and y.
There is signi�cant hysteresis at 30 �C in the x direction where vibrations are large. On the other hand, the480

vibration amplitudes of � and x are smallest at 70 �C, at which there is no hysteresis in the x direction.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Examples of applications related to temperature control of SMAs in the rotor-bearing systems at constant rotational
speeds. There are three pairs consisting of experimental results (a), (c) and (e) followed by numerical simulations (b), (d) and
(f). Environmental temperatures are plotted together with the envelope of rotor vibrations. In experiments TA denotes the
temperatures of the heat chambers located at the positive X and Y faces of the upper bearing, and TB for the negative X and
Y faces. In simulations the temperatures are equal.
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(a) (b)

Figure 13: Simulated SMA forces against bearing housing displacement during steady state conditions. (a) corresponds to Fig.
12d and (b) to Fig. 12f.

(a) (b)

Figure 14: Experimental (a) and theoretical (b) ramp ups from 0 Hz to 20 Hz in 50 s with constant acceleration using either
constant (blue and yellow) or time varying (red) SMA environment temperatures. The heat chamber temperatures and the
envelope of the rotor vibrations are shown.
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Section 6.2 highlighted ramp-ups of the system with di�erent SMA temperatures. We concluded that the
smallest peak amplitudes are obtained at 30 �C when crossing the �rst two critical speeds and at 70 �C when
crossing the third and fourth critical speeds. In order to reduce the overall vibrations during a ramp-up,
it is therefore necessary to change the SMA temperature during the process. This aspect is shown in Figs.485

14a and 14b for experiments and simulation respectively. Here three cases are compared, in which the SMA
environment temperature is either 30 �C, 70 �C or changes over time. In the third case, the temperature is
30 �C when crossing the �rst two resonances, and the response is therefore close to the static 30 �C case.
Around t = 20 s the reference of the temperature controller is set to 70 �C. When the system crosses the
third and fourth critical speeds the system has changed its characteristics, and the response therefore follows490

the static 70 �C case. This way the overall vibrations are minimized.
As shown in Figs. 12c and 12d, it is also possible to pause during a ramp-up just before a resonance

and then cross it by a temperature change and afterwards continue ramping. However, this approach is not
useful in terms of vibration attenuation for this system: Even though the environmental temperature of the
heat chamber is altered instantaneously, the SMA springs still uses around �ve seconds to drop from 70 �C495

to 30 �C because of their heat capacity, which can be predicted by the model. The shift in temperature is
therefore not instantaneous and transients have time to build up. Secondly, by using a temperature shift it
would mean that the resonance is encountered at an intermediate temperature. As shown before, it is best
to cross a resonance at either the lowest and highest temperature, and not at an intermediate temperature,
depending on the resonance in question. Finally, because the system resonances are closely spaced in pairs500

and because the temperature controller does not control the SMA springs individually but together, it is
complex to determine an optimal temperature path.

7. Conclusions

A rotor-bearing system having four degrees of freedom (rotor tilt and bearing housing lateral motion) is
investigated theoretically and experimentally. The upper bearing housing is suspended by four helical springs505

made from either steel or a pseudoelastic SMA. The steel con�guration of the system is used as benchmark
so the performance of the SMAs can be quanti�ed. Large extents of the system have linear characteristics,
but the passive magnetic bearings contain weak nonlinearities with sti�ening, and also the SMA springs
behave weakly nonlinearly depending on strain rate, stoke length and temperature. The combination of the
linear parts and the weak nonlinearities governs the system dynamics.510

Transient responses of the system with SMA suspension excited in its �rst mode show that the oscillation
frequency as well as damping characteristics depend on the vibration amplitude. The damping, which is
related to mechanical hysteresis in the SMA springs, is highest at high amplitudes and low temperatures.
The damping factor is up to seven times higher than that of the steel con�guration based on experimental
results, whereas numerical simulations of the system gives a factor of three. Also the vibration frequency vary515

with the SMA temperature (up to 7 %) de�ning the system adaptability, and it also varies with vibration
amplitude (softening). This is con�rmed by the model even though the dependencies are not as pronounced
as in experiments. Both experiments and simulations show reductions in the order of 50 % during ramp-up
of the system.

A change in the environmental temperature of the SMA springs has several implications for the system520

dynamics: The resonance frequencies and the mode shapes change. This means that the distribution of
energy among the system components is a�ected and it also a�ects the sensitivities to disturbances (e.g.
imbalance) of the di�erent modes. For these reasons, the rotor peak amplitude actually decreases with
temperature when crossing the third and fourth modes even though the hysteresis diminishes. In order
to achieve this kind of behaviour, a holistic approach is required during the design phase, meaning that525

the SMA machine elements and the rest of the system components (i.e. masses and sti�nesses) are treated
simultaneously.

Steady state frequency responses are obtained experimentally and also theoretically via an approximative
model using continuation techniques. Comparison between time simulations and continuation results con-
�rms that the assumptions used in the approximative model are valid, the main assumption being that the530

steady state system response only contains the fundamental frequency of the excitation thus being simple
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harmonic. Therefore the system does not show any strong nonlinear behaviour. The steady state frequency
responses also show slight softening of the two �rst resonances and clear sti�ening of the third and fourth
resonances resulting in jump phenomena and co-existing states. The slight softening is due to the SMA
springs, and the sti�ening behaviour is solely due to the nonlinearities of the magnetic bearings and is not535

related to the SMAs.
Vibration attenuation during constant rotational speed can also be achieved by changing the environ-

mental temperature of the SMAs. The optimal SMA temperature depends on the operational speed. Large
vibration attenuations are primarily caused by changes in the resonance frequencies, which move relative to
the operational frequency. The consequent changes in mode shapes, mode sensitivity and damping capacity540

due to hysteresis are only secondary factors. The hysteresis only works at high vibration amplitudes and
therefore only limits large vibrations and do not de�ne optimal conditions.
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