

Transformation of India's Transport Sector under global warming of 2°C and 1.5° C scenario

Subash Dhar, UNEP DTU Partnership

Minal Pathak, Global Centre for Environment and Energy, Ahmedabad University

P R Shukla, Global Centre for Environment and Energy, Ahmedabad University

Annual Chair Conference: Prospective for Energy-Climate Issues

22 November 2017

MINES ParisTech, Paris

UNEP DTU PARTNERSHIP.5°C and Efforts relative of 2°C environment

Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. 2015. Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. *Nature Clim. Change*, 5(6): 519-527.

India's INDC

Overall Target: Reduction in CO₂ intensity by 33% - 35% in 2030 from the 2005 level

Transport related actions

Focus Area	Actions
Rail Transport	 Enhancing share of rail from 36 % to 45 % Dedicated Freight Corridors to reduce 457 million tonnes of CO2 over a 30-year period
Coastal shipping & inland waterways	 implementation of a 1,620-km navigable channel for large commercial ships waterway transportation grid connecting waterways to roads, railways, and ports. to improve and augment capacity in India's ports, promoting efficient transportation of goods. a 7,000 km road network along the coast to provide further connectivity to the ports.
Mass transit	Urban transport to focus on moving people - investments in mass transit
Vehicle efficiency	 Efficiency targets for new cars Improve fuel standards
Alternate Fuels and Vehicles	 Incentivizing hybrid and electric vehicles in the country Promoting Biofuels

Scenarios

Strategies	NDC Scenario	2°C Scenario	1.5°C scenario		
Climate Policies	Implementation of voluntary and supported actions	Global carbon price consistent	CO ₂ emissions budget		
	aligned with NDC	with 2 °C stabilisation	consistent with 1.5 °C scenario		
Strategies that reduce or	Improvement of mass transit in cities, and overall	Demand and modal mix changed	Demand and modal mix		
	obility (Smart city and AMRUT missions). relative to change in carbon prices changed relative				
transport demand			carbon prices		
Strategies that reduce or	 Investments in semi high speed rail corridors and 	 Demand and modal mix 	 Demand and modal mix 		
substitute Intercity	high speed rail corridors.	changed relative to change	changed relative to		
passenger transport	 Modal share of Rail increased to 30% by 2050 	in carbon prices.	change in carbon prices.		
demand		 High carbon prices 	 High carbon prices 		
		incentivize rail	incentivize rail		
		electrification.	electrification.		
Strategies that reduce or	 Integration of rail with coastal shipping & 	Demand and modal mix same as	Demand and modal mix same		
substitute freight transport	waterways	NDC Scenario though high carbon	as NDC Scenario though		
demand	 Implementation of dedicated freight corridors 	prices create incentive to electrify	·		
	(DFC) shift freight to rail.	rail.	incentive to electrify rail.		
	 Modal share of Rail increased to 48% by 2050 				
Strategies that increase	 Full duty exemption and half sales tax till 2025 	Carbon Price facilitates cost	Carbon Price facilitates cost		
share of EVs	 Increased investment in charging infrastructures. 	competitiveness of EVs.	competitiveness of EVs.		
Strategies that improve	 Fuel consumption standards + additional 	Carbon price facilitates cost	Carbon price facilitates cost		
fuel economy	constraint	competitiveness of fuel efficient	competitiveness of fuel		
	 Overall fuel economy for 4 wheelers below 4 lit/100 km 	vehicles	efficient vehicles		

Methodology

- ANSWER MARKAL MODEL
- CO₂ Price and CO₂ Budget

$$CO_{2}EmissionsIndia_{1.5 \,^{\circ} C}$$

$$= CO_{2}EmissionsIndia_{2 \,^{\circ} C} x \left(\frac{CO_{2}Emissions Global_{1.5 \,^{\circ} C}}{CO_{2}Emissions Global_{2 \,^{\circ} C}} \right)$$

 Transport demand in 2°C and 1.5°C scenario

Demand Travel
$$_{2^{0}C} = \frac{Demand}{Travel} x \left(\frac{Fuel\ Price_{2^{0}C}}{Fuel\ Price_{NDC}} \right)^{\mu}$$

$$\begin{aligned} Demand\ Mode_{2^{\circ}C} &= Demand\ Mode_{NDC} \\ &\times \left(\frac{CO_{2}\ Price_{2^{\circ}C}}{CO_{2}\ Price_{NDC}} \times \frac{CO_{2}\ Intensity_{2^{\circ}C}}{CO_{2}\ Intensity_{NDC}}\right)^{\mu} \end{aligned}$$

Global CO₂ budgets (GtCO₂) for 2°C and 1.5°C scenario

Source: UNEP (United Nations Environment Programme), 2016. The Emissions Gap Report 2016

Implcit carbon price: NDC Scenario

Passenger Demand

Overall

Rail

4 Wheeler

2 Wheeler

Results: Energy Mix

Results: Environment

CO₂ Emissions

• NDC scenario itself achieves significant improvement in environment and CO₂ co-benefits

Decarbonisation due to demand reduction

Passenger Transport Demand in 2050

CO₂ Emissions in 2050*

* without any fuel/tech change

- Overall demand reduction is around 8.3% however reduction in CO₂ emissions is 12.6%
- Demand reduction and shift to sustainable modes would require integrated planning, and redirecting of investments

Technology Mix

Fuel Mix BAU Scenario: 2050

Share of Electric /H2 Vehicles

Deep decarbonisation would need a strong push towards electrification

PARTNERSHIP Electricity Decarbonisation UN© environment

	2020	2025	2030	2035	2040	2045	2050
2°C	0.80	0.64	0.44	0.31	0.22	0.13	0.09
1.5°C	0.51	0.22	0.17	0.02	0.01	0.01	0.00

Conclusions

- India's <u>NDC measures</u> will improve <u>sustainable development</u> indicators and <u>decoupling of CO₂ emissions</u> compared to BAU.
- NDC alone however not sufficient to achieve Paris ambition.
- The transitions to global <u>2°C scenario</u> will require policy support for <u>clean transport technologies</u>, <u>electrification of transport</u> and increased <u>shift towards public transport</u>
- Transition to <u>low CO₂ intensity of electricity</u> supply essential for decarbonisation of transport.
- The <u>1.5°C scenario</u> is transformative and differentiates from other scenarios in the <u>urgency and intensity</u> of implementation.
- Deep decarbonisation would require additional financing and redirecting of financing.