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Resume (mask. 2000 char.): 
The purpose of this report is to provide an introduction on how the system 
balance in an island system can be maintained by controlling the frequency. 
The power balance differential equation, which is fundamental in 
understanding the effect on the system frequency of the unbalance between 
generation and consumption, is addressed. Basic topics on the main 
components of a generating unit, such generators, prime movers and 
governors are presented. A simple dynamic model for an island power 
system, containing realistic dynamic representations of generators, loads, 
prime movers, governors, is described specifically for the assessment of the 
performance of frequency droop control loop, i.e. primary control. 
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Introduction 
An electric power system is by definition a system where power is produced, transmitted and 
consumed in real time, namely contrarily to storage systems, power is intermittent and produced 
as demand calls for it. This means that a balance between production of electricity and 
consumption of electricity must always be maintained in a power system. A change in this 
balance alters the system frequency and if this violates a strictly predefined frequency range, it 
can threaten the stability and thus the security of the power system. Steady state frequency of 
50Hz is thus an indication that the generation and the consumption are in balance.  

As illustrated in Figure 1, on one side of the balance there are the large power plants, which 
produce electrical power. Notice that besides the traditional ones, namely the thermal and hydro 
plants, nowadays there are also more and more renewable generators like wind turbines and 
solar cells. On the other side of the balance there are the consumers, i.e. houses, hospitals, 
offices and electric vehicles. The consumers are also called loads or demand.  

The maintenance of the power balance implies that in case of too much electricity 
production (supply), the frequency will increase, while in case of too much electricity 
consumption the frequency will decrease.  

System balance is in general the responsibility of transmission system operators (TSOs), 
who utilize some predefined large power plants existing in the system to maintain the frequency 
constant at its nominal value. This balance is typically ensured through functions such as i.e. 
activation of additional generation or disconnection of loads, this last action being referred to as 
load shedding.  

The goal of the present report is to provide an introduction on how the system balance in an 
island system can be maintained by controlling the frequency.  

 
 

 
Figure 1:  Power balance between production and consumption. 
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1. General issues on power systems  
In this chapter a general introduction to power systems and their frequency control is given. It is 
not the intention to include the fundamentals of electrical engineering related with power 
systems. However some basic terminologies will be shortly addressed from time to time, when 
necessary, for the sake of completeness. The equation of motion, which is fundamental in 
understanding the effect of an instantaneous imbalance between load and generation on the 
system frequency, is described. 
 
1.1 Power system frequency 
Nowadays power systems are mostly based on alternating current (AC) applications [1]. An 
alternating current occurs typically when the voltage source (i.e. potential energy source) 
alternates around zero with nil average value over a period T. Figure 2 shows an example on 
how an alternating signal oscillates between positive and negative value.  
 

The time in seconds it takes the signal to complete one cycle is called the period 
(revolution), denoted typically by T. As indicated in Figure 2, the frequency f is the term used to 
describe the number of cycles of an alternative signal in a second1.  

The synchronous electrical angular speed ωe0 is defined as: 

]/[2 00 sradfe ⋅⋅= πω  (1) 

where f0 denotes the synchronous frequency (i.e. 50 Hz or 60Hz). 

1.2 Synchronous power systems 
A synchronous region is a regional power system that operates at a synchronized frequency 

and it is tied together during normal system operations2.  
All the grids in Europe are synchronized at 50Hz3, while those in USA operate at 60Hz. 
Figure 3 illustrates the five synchronous regions existing in the ENTSO-E association for 

European Network of Transmission System Operators for Electricity [2]: 
• Continental Europe4 synchronous grid 
• Ireland’s synchronous grid 

1  The number of cycles per second is also called hertz (Hz). 

2  Notice that small local deviations can still appear due  e.g. oscillations of the synchronous machines 

3   In Europe, the period (revolution) of al alternating signal with a synchronous frequency is 20ms. 

4   Includes the members of UCTE (Union for the Coordination of Transmission of Electricity) system, where Western 

Denmark is included. 

 
Figure 2:  Alternating signal. 
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• United Kingdom’s synchronous grid 
• Nordic synchronous grid5 
• Baltic synchronous grid 

 

The main task of ENTSO-E is to maintain the frequencies in all five synchronous power 
systems balanced around the standard nominal value of 50Hz ensuring a safe European power 
supply.  
 Electrical power is typically produced by central power plants connected to the system. 
They convert mechanical energy into electrical energy by using synchronous generators.  
These generators are normally driven by prime movers such as steam turbines, gas turbines or 
hydro turbines.  
 Frequency in the power system is directly related to the rotating speed of the synchronous 
generators connected to the system. The frequency is synchronous all over the system, but 
small deviations can happen locally owing to the oscillations of the synchronous machines.  
Figure 4 illustrates a mechanical equivalent for the power system, namely a tandem 
configuration:  the synchronous generators are running similar to a tandem, sharing the same 
load through the chain [3]. Load division between power plants is dependent on their speed-
droop characteristics [1]. 
 
 

5  Nordic region consists of Finland, Sweden, Norway and Eastern Denmark – members of TSO association NORDEL. 

 
Figure 3:  European network of transmission operators for electricity [2] 
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1.3 Why frequency control in power systems?  
Frequency in a power system is typically maintained in a narrow band. Nevertheless changes in 
frequency may occur if production or consumption exceeds its counterpart.  
 Figure 5 shows the legal operational states in the Nordic system. They are typically 
indicated by colours similar to those used in traffic lights, namely green for normal operation, 
yellow for alert operation and red for fault operation (disturbed or emergency operation). The 
colours are thus indirectly reflecting the security state of the power system. 
 The frequency in the Nordic power system is maintained during normal operation at the 
synchronous frequency 50Hz within operational limits of ±0.1Hz from the nominal value. If the 
frequency starts to deviate out of this range because of faults in the system, several 
consecutive warnings are activated in the power system. Notice that the system may still be in 
normal operation condition even in case of small power plant faults, as long as the frequency is 
maintained within the limits. However a large negative deviation can be a threat for the security 
of the system, because it might lead to potential blackout. A blackout means that the whole 
power system is going down due to problems in the generation of the electricity and as result 
the loads in the system are disconnected or are taken out of operation. On the other hand, a 
large positive deviation in frequency, due to generation exceeding the consumption, is more 
easily tackled and less harmful to the security of the entire power system. 
 

 
Figure 4:  Mechanical equivalent of the power system operation. 
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 One particular failure in the system, typically called as (n-1) dimensioning fault6 situation, 
may lead the system into an alert operation (yellow area). Notice in Figure 5 that in this 
operational state, the power system should be restored in less than 15 minutes; otherwise the 
system enters disturbed operation state.  In this situation, many systems can be protected from 
frequency collapse by importing large amounts of power from neighbouring systems to counter 
balance for the lost generation7. Beside power plants, a frequency drop in a power system is 
also registered by the loads.  Another way to solve an emergency situation and to prevent a 
frequency collapse is therefore load shedding, where the least important loads are shed/ 
disconnected first. A load shedding can be performed manually or automatically as a part of 
security protection system. In an emergency situation, it is preferred to shed loads in the system 
to avoid a complete blackout, where all power plants in the system would disconnect. In the 
extreme situation of a blackout it may take very long time to recover the frequency. Another way 
to manage an emergency situation is to split up the network and isolate the part of the grid, 
which has caused emergency situation.  
 Figure 6 indicates that in an emergency state, power actions on the HVDC (high voltage 
DC) links are taken in the Nordic system.  
 

6  A dimensioning fault is defined in the grid codes as the situation when the biggest component in the  

     system falls. 
7  Denmark can for example import power generation from Germany or Norway in case fault operation.  

 
Figure 5:  Operational states in the Nordic system [4]. 
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 A sudden connection of a large load or disconnection of a generating unit by the protection 
equipment may result in a significant distortion of the power balance in the power system. This 
imbalance, which is initially covered by the release of the kinetic energy of rotating masses 
connected to the system, has as result a drastic drop in the frequency - as indicated in Figure 7. 
The rate at which the frequency drops, depends on the total angular momentum (rolling inertia) 
in the system, calculated as the sum of the angular momenta of all generators and spinning 
loads connected to the system.   
 The attention in the frequency control studies existing in the literature is typically drawn to 
the under-frequency events, namely to the events that lead to frequency drops. Frequency 
drops are also in focus in the present report.   
 The process of stabilization the frequency to a steady state (constant) value is typically 
performed through the primary control function, while the process of restoring the frequency 
back to the steady state corresponding to the nominal frequency value (i.e. 50Hz in the 
European system) is known as secondary control.  
 Primary control is provided automatically (within typically 30 seconds after a frequency 
drop) by fast generating units through a frequency droop (usually proportional) control loop. In 
the case of a frequency drop, these generating units start immediately to produce more power 
to avoid a further decrease of the frequency in the system. As illustrated in Figure 7, the task of 
primary control is to bring the frequency back to short term acceptable frequency values. During 
primary control, the frequency is thus stabilized temporarily to a lower level than the initial one, 
the system being still in an alert condition (i.e. yellow area).  
 Secondary control, also called Load Frequency Control, is a supplementary control loop, 
much slower than the primary control, which re-distributes load among the various generating 
units in order to restore the frequency back to its nominal value. In secondary control, the power 
setpoints of the generators are adjusted in order to compensate for the remaining frequency 
error after the primary control function. In the Danish power system, the secondary response 
must be delivered within 15 minutes. Secondary control is made either via automatic generation 

 
Figure 6:  Frequency controlled actions in the Nordic system [4]. 
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control systems (i.e. Continental Europe synchronous grid) where available, or via manual 
intervention by the system operators (i.e. in Nordic System). 
 

 In this report, the mechanisms for primary frequency control in island power systems are 
addressed and modelled. Primary control is implemented on a purely local level (on power plant 
level), i.e. without any coordination between different power plants. 
 
1.4 Equation of motion (EoM) 
Before presenting the equation of motion of the power system, it is useful to visualise the 
analogies between quantities and relationships associated with rotational motion with those 
associated with linear motion, since the latter is more familiar and easy to understand. Table 1 
summarizes these analogies.  
 

 
Figure 7:  Frequency control in the Danish power system –  

for a fault event e.g. when a generating unit trips (disconnects). 
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 Power plants (generating units) transform other sources of energy in the process of 
producing electrical energy. For example hydraulic, heat, solar, wind sources of energy can be 
used in the production of electrical energy, as illustrated in Figure 8. Notice that the generator is 
driven by a prime mover, which can be for example a steam, gas or hydro turbine. 
 From the viewpoint of frequency control, the power system can be thought as only one 
large power plant supplying one load. Two opposite torques act on the large rotating mass, 
namely a mechanical torque Tmec and an electrical torque Telec, as shown in Figure 8. In case of 
an imbalance between these torques, the rotating mass will experience an angular acceleration 
or deceleration dω/dt according to Newton’s Second Law for rotating systems: 

[ ]22 / smkg
dt
dITT elecmech ⋅=−
ω

 
(2) 

where I is the moment of inertia of the rotational mass.  Notice that the inertia I has a 
stabilization effect, i.e. in case of an imbalance in torques, the frequency change is smaller for a 
system with high inertia compared to a system with low inertia, meaning that a high inertia 
system is more stable.  
 

Table 1:  Analogies between linear and rotational motion. Source: [1] 

 

 
Figure 8:  Simplified electric power system with a single prime mover, generator and load.  
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 The previous equation is also known as equation of motion (EoM). The equation of motion 
includes generally rotating components of the power system i.e. generating units and loads. 
Notice that a sudden increase in the generation, namely in the mechanical torque Tmec, implies 
an increase in the rotational speed ω and thus in the frequency f in the system. Vice-versa, an 
increase in the consumption, namely in the electrical torque Telec, implies a decrease in the 
frequency. It is worth noticing that the larger the inertia of the rotating mass is, the smaller the 
speed rate-of-change following a torque imbalance is. 
The equation of motion can also be expressed in power terms by using the proportional 
relationship between power and torque: 

[ ]32 /smkg ⋅= ωTP  (3) 

 By applying this relationship, the equation of motion in power terms (power balance 
equation) can be expressed as:  

dt
dM

dt
dIPP elecmech

ωωω ==−
 

 
(4) 

where Pmech is the mechanical power, Pelec is the electrical power and M is  the angular 
momentum of a rotating system, defined as: 

[ ]/smkg 2⋅= ωIM  (5) 

  

 
2. Generating units components  
The scope of this chapter is simply to provide an overview over the components of a generating 
unit, addressing shortly the role and the inputs/outputs of each component in a generating unit. 
Basic topics on generators, prime movers and governors are presented. No models are 
presented in this chapter, since this is the topic of a subsequent chapter.  
 

The principle of the balance between production and consumption in a power system can 
be best presented by considering an isolated generating unit supplying a local load, as 
illustrated in Figure 9. The electrical energy is produced by a generator driven by a prime 
mover, which is usually a turbine or a diesel engine. The turbine is equipped with a governor, 
which controls the speed of the generating unit according to a predefined power-frequency 
characteristic. 

 

 
Figure 9: Generating unit supplying isolated load.  
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2.1 Generator 
As illustrated in Figure 10, generators have typically coils of wire mounted in a certain pattern in 
a stationary housing, called stator, where the voltage is produced due to the magnetic field 
provided by the spinning rotor.  

The rotor, which is the rotating part of the generator, is responsible for the inducing 
magnetic field of the generator. A rotor can have a permanent magnet or an electromagnet. In 
the case of an electromagnet, a magnetic field is produced around the rotor windings due to the 
current flowing through them, when they are connected to a stationary voltage source8. By its 
rotation, the rotor’s magnetic field, that passes the stator windings, induces voltages at the 
stator’s terminals. A magnetic field is further created around stator’s windings (induced field), if 
current flows in the stator windings, i.e. the generator is loaded. 

When the magnetic field of the stator is following the magnetic field of the rotor at the same 
speed, the generator is called synchronous. Such generator is synchronized to the power 
system, namely its shaft speed is the same as the frequency of the voltage in the power system. 
If the magnetic fields are not following each other synchronously the generator is called 
asynchronous.  

The synchronous generator is the workhorse for the generation of electricity in the power 
system. Synchronous generators with power rating of several hundred MW are very common. 
Figure 11a) shows as an example the size of a 660MW synchronous generator. Figure 11b) 
illustrates a front side visual perspective of the generator, namely the inner rotor and the outer 
stator with the three-phase windings, separated by an airgap. 

8  The rotor windings are connected to a stationary voltage source via electrical contacts (slip rings). 

 
Figure 10:  Generator’s stator and rotor. 
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For synchronous generators in power plants, the current which generates the rotor’s 

magnetic field is normally supplied by an exciter (DC - Direct Current voltage source). 
 

2.1.1 Electricity generation - basic principles  
It is not the task of this section to provide a detailed description of the electrical system 
terminologies. However for the sake of a good understanding of how electricity in the power 
system is produced, some basic concepts are quickly addressed.  
 

There are actually two physical laws that describe how the electric power system works: 
• Faraday’s Law - says that by placing a coil of wire (conductor) next to a moving/rotating 

magnet, an AC (Alternating Current) voltage is induced in that coil. This principle is 
graphically illustrated in Figure 12 both for single-phase and three-phase AC voltage 
generation. Notice how by placing one coil of wire next to a moving magnetic field (i.e. 
magnet), a voltage is induced in the coil. Each time the North pole and the South pole 
passes the coil, with the layout adopted in the figure, the induced voltage in the coil has 
a positive peak (denoted by N) and a negative peak (denoted by S), respectively. Figure 
12 shows also that when three coils spaced physically with 120 degrees apart in a 360 
degree circle are placed in the presence of a moving magnetic field, a so called three-
phase AC voltage is induced. 

• Ampere’s law - says that a current flowing through a wire creates a magnetic field 
around the wire. This law describes how a magnetic field can be created, when the coil 
of the rotor is connected to a voltage source (e.g. battery, exciter). The induced 
magnetic field in the rotor’s coil has of course a north and a south pole. 

 
 The simple combination of these two laws depicts the phenomena behind how electric 
generators produce electricity. Generators, for example, use a moving magnetic field next to a 
coil to produce voltage, while the magnetic field is created by applying a voltage (e.g. battery) to 
a coil of wires.  
 A three-phase AC generator has basically three single-phase windings mounted on the 
stator. The windings are physically spaced so that the angle between the magnetic fields 
induced in each winding is 120 degrees – as illustrated in Figure 12. 

 
Figure 11:  a) Size example of a 660MW AC generator. 

Source: http://emadric.blogspot.com  b) Generator cross section sketch. 

a) b)
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2.1.2 Rotor poles 
Many synchronous generators in the power system have more than one pole-pair (i.e. more 
than two poles) in the rotor. They may have four, six, eight or more poles, depending on the 
desired speed of rotation. Figure 13 illustrates the effect of increasing the number of poles in the 
generator rotor, namely higher number of poles implies slower rotational speed.  
 
 

 

 
Figure 12:  Single-phase and three-phase voltage generation. 

 
Figure 13:  Three phase generators with different rotor poles: 

a) Generator with two poles (one pole-pair Npp=1) 
b) Generator with four poles (two pole-pairs Npp=2) 
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In a synchronous generator the generated frequency is determined by the rotational speed 

and the number of poles in the generator. Synchronous generators, even with differing number 
of poles, can thus operate in parallel at the same synchronous frequency, due to their different 
rotational speeds.  

The synchronous rotor speed ωgen0 of a generator with two poles (Npp = 1) is equal to the 
synchronous electrical angular speed ωe0, namely it corresponds to the synchronous frequency 
of the AC (Alternating Current) voltage on the terminals. This means that the rotor speed of a 
synchronous generator with one pole pair can be provided by a measurement of the frequency 
of the voltage: 

]/[21 000 sradfN egenpp ⋅⋅==→= πωω  (6) 

Figure 13 shows that for a generator with two pole-pairs, the windings in the coil for each 
phase of the stator are rearranged according to the increased number of poles in the rotor. In 
this case, one cycle of voltage corresponds to only half rotation compared to that for a 
generation with one pole-pair, namely: 

]/[
2

2
2

2 00
0 sradfN e

genpp
⋅⋅

==→=
πω

ω  (7) 

Increasing the number of magnetic poles on the rotor enables thus the generator’s rotor 
speed to be slower and still maintain the same electrical output frequency f0.  

For a certain number of pole-pairs Npp, the rotor speed of the synchronous generator ωgen0 

can be expressed as follows: 

]/[2 00
0 srad

N
f

N
N

pppp

e
genpp

⋅⋅
==→

πω
ω  

(8) 

Its expression in rotations per minute [rpm] is:  

[ ]rpm
N
f

n
pp

gen
0

0 60 ⋅=

 

(9) 

 The electrical power Pgen produced by a synchronous generator is depending on its 
rotational speed ωgen0 and torque Tgen as follows: 
  

]W[TP gengengen 0ω=  (10) 

 Notice that  slower rotational speed implies higher torque to get the same electrical power, 
i.e. if a 2-poles and a 4-poles synchronous generator provide same electrical  power, then the 
torque of the 4-poles generator is two times bigger the torque of the 2-poles generator. 

 
2.2 Prime mover 
As illustrated in Figure 9, the production of electrical energy by mechanical means always 
requires a prime mover to drive a generator. 
  A prime mover is mainly a turbine or a diesel engine, used to convert an energy source 
(i.e. steam, hydro, wind) into mechanical rotational movement of the rotor of a generator. A 
prime mover has typically a throttle valve, which position (open/close) is adjusted continuously 
by a control device called governor.  
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 The input of the prime mover is a power flow related with the position of the throttle valve, 
while its output is the mechanical power, which drives the generator. 
 A simple model for a prime mover is presented in Section 5.3. 
 
2.3 Governor 
Each prime mover is equipped with a governor that senses the speed changes of the turbine 
and controls it to a predefined setpoint value. Governor is thus a mechanism, which controls the 
unit speed by adjusting (increasing or decreasing) the power flow into the prime mover to 
change the mechanical power output to compensate for load changes and thus to maintain 
frequency (speed) at a desired value.  
 For many years governors were of mechanical-hydraulic type, which was based on the 
widely used Watt flyballs centrifugal mechanism, shown in Figure 14, as the speed responsive 
device. Depending on turbine speed, the flyballs actuate a mechanical-hydraulic system to open 
or close the throttle valve of the prime mover and adjust (i.e. increase or decrease) the energy 
input to the prime mover. In this way, the governor manages to maintain the frequency (speed) 
at a desired value. As illustrated in Figure 14b), an increase in the speed ω causes the flyballs 
to move away from the rotating shaft, which forces the throttle valve to close a little. This action 
implies that the power flow through the prime mover is reduced and the frequency (speed) is 
controlled back to its setpoint.  
 

 
Nowadays, electronic governors are more frequently applied. They measure the frequency and 
actuate hydraulic devices to control gate or throttle position without the use of flyballs [5]. 
 There are two types of governors: 

•  The isochronous governor9, which is the simplest type governor, controls and 
maintains the frequency regardless of the generator loading. It adjusts the prime 
mover’s valve to bring the frequency back to its setpoint value. This governor mode is 
also referred to as frequency control operation mode. Such governor works 
satisfactorily when only one generator in the system has to respond to changes in load. 
This type of governor is problematic to use when several generators, connected to run 

9  Isochronous means constant speed. 

 
Figure 14:  James Watt flyballs governor: a) in repose b) in action  

a) b)

ω
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in parallel, have to share the load in the system, because they can work against each 
other, trying to control the frequency to their own settings [6]. 

• The speed-droop governor controls the frequency taking the generator loading into 
account. It provides the primary control function, described in Section 1.3. It is utilized 
when two or more generating units connected to the power system have to share a 
load change. 

 

3. Generating unit characteristics  
The scope of this chapter is to explain the basic characteristics of a generating unit, like droop, 
power setpoint, nominal power, frequency bias and how multiple generating units can share 
load changes in the system.   

 
3.1.1 Droop characteristic 
The droop characteristic of a generating unit is a steady-state power-speed characteristic, as 
illustrated in Figure 15. It reflects an idealized relation between the system frequency and the 
power, which can be delivered by a generating unit into the system during its operation. Notice 
that the power of the unit slides back and forth along the droop characteristic in the attempt to 
stabilize supply and demand regardless of the frequency. According to the droop curve a 
decrease in frequency yields to a higher power production and vice-versa. 
 By definition: 

• The power setpoint Pref of a unit is the power, which is delivered by the unit at the 
nominal frequency fn.  

• The nominal power Pn of the unit is the maximum power, which can be continuously 
produced by the unit, and as illustrated in Figure 15, it corresponds to full load 
condition. 

 

 
Besides providing a graphical definition of droop, Figure 16 also illustrates the effect of 

changing the droop of a generating unit.  The droop R of a unit is defined as the percentage of 

 
Figure 15:  Steady-state droop characteristic.  
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the frequency change required for a governor to move a unit from no-load to full-load or vice-
versa10. Notice that by definition the droop is a non-negative value. 

 

Figure 17 indicates graphically different characteristics related to a generating unit: the 
droop R, the nominal power Pn, the frequency bias B, the change in power ∆P from power 
setpoint and the frequency deviation ∆f from the initial steady state.  By writing the proportional 
relations sketched in Figure 17, the mathematical expression of the droop can easily be 
obtained as follows: 

[ ]% 
P/P
f/f

R
P
P

fR
f

n

n

nn ∆
∆

−=⇒
∆

−=
⋅
∆

 

(11) 

 

 
 This is the mathematical expression of the power balance between generation and 
demand, when the system is in steady state. 

10  For example, a 4% droop means that a 4% frequency deviation causes 100% change in the power output of the 

generating unit. 

 
Figure 16:  Graphical signification of droop. 

 
Figure 17:  Droop R and frequency bias B graphically illustration.  
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If the generating units in a power system do not have the same droops, an equivalent 
droop RPS for the whole power system can be calculated according to the following expression: 
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∑
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==
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units

N

i
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R
1

,

1

,
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(12) 

 
where Ri and Pn,i denote the droop and the nominal power of unit i, respectively. Nunits is the 
number of generating units in the system. Notice that if the individual droops are equal, the total 
droop of the system is equal with one individual droop. 

 
3.2 Frequency bias 
Another characteristic of a unit, illustrated graphically in Figure 17, is the frequency bias B.  

Frequency bias reflects the power ability (reserve) of the unit in [MW] to compensate for a 
frequency deviation of 1Hz, as following11: 

[MW/Hz]  
Δf
ΔPB −=

 

(13) 

Notice that the frequency bias is per definition a positive value and can further be 
expressed as: 

[MW/Hz]
n

n

fR
P

B
⋅

=

 

 
(14) 

This formula can also be used to calculate the bias of a whole power system BPS, when it is 
assumed that all units existing in a power system are sharing the same nominal frequency fn 
and droop R: 

[MW/Hz],

n

PSn
PS fR

P
B

⋅
=  

 
(15) 

where Pn,PS is the nominal power of the whole power system. Otherwise the total bias of the 
power system BPS has to be calculated by simply adding the biases of the individuals generating 
units Bi, as follows: 

[MW/Hz]
1
∑
=

=
unitsN

i
iPS BB  

 
(16) 

 Notice that the larger the number of generating units running in a power system is, the 
larger the frequency bias may be. The droop characteristic of a system with a very large number 
of units tends to be almost horizontal. This means that frequency deviation in a system with a 

11 For example, if the bias of a unit is B=100 [MW/Hz], it means that for a decreasing in frequency of 1Hz, the unit is 

able to increase its power production with 100MW. 
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very large number of units due to a change in power may be very small even for a large power 
change. 

Once the frequency bias BPS of a power system is determined, the steady state deviation in 
frequency from the initial steady state produced by a changing in power ∆P can be calculated 
as follows: 

[Hz]  
B
ΔPΔf

PS

−=

 

(17) 

It is worth noticing that frequency deviation ∆f refers to the new steady state (i.e. new 
constant value) the system frequency has reached after a transient change in power ΔP, as 
depicted in Figure 19. During the first seconds of the transient change ΔP, the frequency 
deviation typically gets higher values.  

 
3.3 Result of changing the droop or the power setpoint of a unit 
Figure 18 illustrates the implication of changing the droop or the power setpoint of a unit.  

Notice in Figure 18a), that the higher the droop R, the less responsive the generating unit 
is to changes ∆f  in frequency, namely the change in production ∆P of a unit with a droop 
characteristic  with a higher droop R2 is smaller than that for a unit with a droop characteristic 
with a smaller droop R1, i.e. ∆P2 < ∆P1. The change in production ∆P of a unit refers here to the 
new steady state power the unit should reach in order to compensate for the frequency change 
in the system.  

Figure 18b) illustrates that a change in the power setpoint Pref of a unit implies that the unit 
runs on a parallel droop characteristic (i.e. R1=R2).  

It has already been mentioned in the abstract that the attention of this report, as the frame 
of the present course, is directed specially towards primary control action of generating units, 
namely the frequency droop control loop.  

Generating units providing primary control in the power system are characterised by a fixed 
power setpoint Pref , namely they are producing power only according to one droop 
characteristic. This means that in primary control ∆Pref=0.  

In Section 1.3, it has been illustrated that during primary control, following a change in load, 
the frequency in the system does not return to its initial steady state. In order to force the 
frequency to return to the initial steady state, the power setpoint and thus the droop 
characteristic of the unit must be shifted (as for example illustrated in Figure 18b), from position 
1 to 2. It is said that a generating unit having this ability participates in the secondary control of 
the system. In secondary control a unit has to produce more at the same frequency. This means 

 
Figure 18:  Implication of changing the droop or the power setpoint of a unit. 
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that the power setpoint of the unit has to be changed, i.e. ∆Pref ≠0, and that the droop 
characteristic of the unit has to be moved upward, as shown in Figure 18b. Notice that no 
change in power setpoints can force a unit to exceed its nominal power. As a conclusion, the 
power output of a generating unit at a given frequency can be modified by adjusting its power 
setpoint Pref, which has as result the shifting of the droop characteristic. 

Remark that both terminologies described in this section, i.e. droop R and power setpoint 
Pref, are essential for describing precisely the operation of a generating unit. It is thus not 
sufficient to have given the droop value only for a generating unit, but also its power setpoint 
value Pref, i.e. to know how much the unit has to produce at the nominal frequency. 

 
3.4 Unit response to changes in frequency in an infinite power system  
If a unit is connected to a large interconnected system, it can be modelled, as it is connected to 
an infinite power system. In such system the outputs of the unit are locked to the system values 
and they cannot be changed by any action on the unit.  Hence the infinite power system dictates 
the frequency, while the unit only controls its power (not also the frequency). 
 Figure 19  illustrates the time response of a generating unit, when the frequency decreases 
suddenly in the infinite power system due to e.g. an increase in load. The turbine governor 
opens the main control valves to increase the flow of working fluid through the valve to the 
prime mover (turbine) and so it increases the turbine mechanical power output. The unit 
increases thus its production, as result of the decrease in the frequency. Notice that the system 
reaches another steady state lower than the nominal one, after the power output of the 
generating unit has been increased with ∆P.   
 

 
Figure 20 illustrates how the generator output slides back and forth along the droop 

characteristic in the attempt to stabilise supply and demand, when changes in frequency occur 
in the system, i.e. generator production is reduced when the frequency in the system is 
increasing and vice-versa.  

 
Figure 19:  Time response of a unit when the system frequency drops.  
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Notice in Figure 20b), that if the frequency decreases even lower than the frequency value 
corresponding to full load operation, the generating unit comes in a limited power production 
situation (as it is for example the operation case D).  In point D the unit is operating at its upper 
power limit and has therefore no ability to further compensate for deviations in frequency. The 
frequency bias of the generating unit in this situation is equal to zero. Notice thus that the 
frequency bias of the whole system is dependent on the number of units, which are not 
operating at full load. 

 
3.5 Load sharing in island power system 
All generating units connected to a power system operate at the same frequency. They share 
and supply any load change in the power system according to their droop characteristic. Figure 
21 illustrates a load share example between two units for a sudden increase in load.  

 The two generating units are initially at nominal frequency fn, with power outputs 
corresponding to their power setpoints Pref,1 and Pref,2, respectively.  Notice that an increase in 
load causes both units to slow down (as the frequency decreases) and to increase their power 
output according to their droop characteristic.  A new steady state operating frequency f’ is 
established by both units corresponding to a new balance between generation and demand. 

The change in generated power of the two units is then: 

fBPPP
fBPPP

ref

ref

∆⋅−=−=∆

∆⋅−=−=∆

22,22

11,11

 

 
(18) 

Notice that the change in the generated power of the two units is, as expected, proportional 
with their frequency bias, namely their ability to react and compensate for frequency deviations: 

 
Figure 20:  Unit response to frequency changing:  

                                    a) increase in frequency  b) decrease in frequency 

 
Figure 21:  Load sharing example between two parallel generating units. 
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This expression shows that the change in the generated power of two units with equal 
nominal powers (Pn,1=Pn,2)  is inverse proportional to their droops. This implies also that when 
the generators have equal droops, the generators share the total load in proportion to their 
nominal powers:     
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(20) 

 
In a power system with Nunits generating units: 

• The overall change in the total generated power in the system ∆PgenPS  caused by a 
deviation in frequency ∆f, can be  calculated as the sum of changes in power in all units, 
as follows: 
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• The total generated power PgenPS   can be  expressed as follows: 
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The system frequency reaches steady-state at a value that corresponds to the situation 
when power production (sum of power for on-line units MW) is equal to the system load 
(demand MW): 

loadPSgenPS PP =

 

(23) 

  
 

4. Modeling representations 
In this chapter different modeling representations, typically used in the electric power system 
literature, are described. Per-units and delta models are presented and exemplified. Some 
basics of Laplace transform are reviewed and an overview of its use in dynamic system analysis 
is given. 

 
4.1 Per-unit representation 
The per-unit system, mostly used in the electric power systems literature, is a scaling 
procedure, which normalizes the value of a variable with a corresponding base value. 
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Essentially, the idea of per-unit system is to express the value of a physical variable as 
percentage of its corresponding base value [1].  

The per-unit value xpu of a certain quantity x can be calculated as follows: 

base
pu x

x
x =  

 
(24) 

where xbase is the base value and x is the value in physical units. The base value is a 
normalization factor. For a principal variable the base value is typically chosen so that its per-
unit value is equal to one under rated conditions. In other words this means that in the per-unit 
system, 1pu corresponds to 100%.  
 The base value has always the same unit as the physical value and therefore the per-unit 
value is dimensionless. For the variables where the base values are chosen independently (i.e. 
power, frequency), the per-unit value xpu is typically in the interval 0 ≤ xpu ≤ 1 (e.g. for power 
varying from 0 to 100 %) or close to 1 (e.g. for frequency or rotational speed).  For other 
variables like inertia and angular momentum, where the base values are calculated based on 
interrelated quantities,  per-unit values can be much bigger than 1. Furthermore some other 
variables are typically maintained in the physical units, e.g. phase angle (rad).  

Table 2 provides an overview on the typical base value and on the calculation of per-unit 
value for different common quantities like: power, frequency, speed, torque, angular 
momentum, moment of inertia and damping. Notice that some base values in Table 2 are 
chosen independently (e.g. power and frequency), while other are defined directly based on 
relationships between interrelated quantities (e.g. torque, angular momentum, moment of 
inertia) 12.   

As shown in Table 2, the base value for the torque is calculated in the similar way as the 
base value for the angular momentum: 
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(25) 

eventhough their units are different, namely [kg m2/s2] for torque and [kg m2/s] for angular 
momentum. The reason for this is that the unit for the base value of Laplace frequency operator 
s is [s-1]. 

 

12  A selection of two independent base values is typically enough to determine the base values of the others. 
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Table 3 contains basic formulas for power and angular momentum, used in physical, base and 
per-unit calculations.  
 

 
 Notice that each generation unit in a power system may have its own individual base 
corresponding to its own technology. The summation of the power generated by all the units in 

Table 2: Base and per-unit values. 
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Table 3: Examples of physical, base and per-unit relations. 

 

 Physical relations  Base relations Per-unit relations 

ω⋅= TP  basebasebase TP ω⋅=  pupupu TP ω⋅=  

ω⋅= IM  basebasebase IM ω⋅=  pupupu IM ω⋅=  
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the system is typically performed using a common base13. A power system base is usually used 
as common base. By definition, in this report, the power system base is considered to be the 
power capacity of the whole system.  
 As mentioned previosly, a per-unit value can be in general calculated referred to an 
individual (local) base or to a global base. The calculation of a per-unit value for a quantity (like 
power, torque or inertia) in a new base base_new

pux , based on its per-unit value in an old base 
base_old

pux  , can be calculated according to: 

basenew

baseoldbaseold
pu

basenew
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pu P

P
x
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xx
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__

_

_ ⋅==  
 
(26) 

where baseoldP _ and  basenewP _  are the old and the new considered power bases, respectively.  

In spite of its abstractness, per-unit system offers some advantages like: 
• Computational simplicity for both manual and automatic calculations, by 

eliminating units and expressing quantities as dimensionless ratios. 
• Quick evaluation and understanding of the system condition, i.e. the per-unit or 

percentage value of a certain variable contains more information than its 
corresponding physical value. For example, if a power plant unit is set to produce 
0.8pu, it means that the power plant unit has to produce 80% of its nominal/base 
value. The per-unit value may also convey a message whether the value is or is 
not an acceptable value.  

• Easy comparison between power plants with different ratings or speeds of 
generators with different number of pole-pairs.  

 

 In the following, some examples are given on how to calculate per-unit values for different 
quantities.  

4.1.1 Calculation of power in per-unit 
The power in per-unit is calculated as: 

base
pu P

PP =  
 
(27) 

where P is the power expressed in physical units (W), while Pbase is the power base which is 
typically defined equal to the nominal power (i.e. maximum possible continuous power). This 
means that the power per-unit value is equal to one at rated conditions (Ppu=1 when P=Pn). 
 As mentioned previously, a per-unit value can be in general calculated referred to an 
individual (local) base, or to a global (common) base, as for example the power system base.  
 The power base Pbase,i  of an individual unit i is typically defined as: i,ni,base PP = , namely 
equal with the nominal power Pn,i of the individual unit i, while the power base for the whole 
power system PbasePS is typically defined as the total sum of the individual nominal powers of all 
units in the system, i.e. the system installed capacity: 
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(28) 

13  Individual machines can be typically treated using their own base system.  However, the quantities of all components 
in the system are scaled to a common new base when the whole power system has to be analysed.   
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4.1.2 Calculation of speed in per-unit 
The electrical speed in per-unit is calculated as: 

base
pu ω

ωω =  
(29) 

where ω is the speed expressed in physical units, while ωbase is the speed base, which is 
typically defined thus that the per-unit value is equal to one under normal conditions, namely 
ωpu=1, when the speed is equal to the synchronous electrical angular speed ω=ωe0=2⋅π⋅f0. 

 The speed base for the whole power system is typically defined as illustrated in Table 2: 

0, 2 fPSbase ⋅⋅= πω  (30) 

 Notice that speed in per-units is equal with frequency in per-units: 
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 In order to calculate the base and the per-unit value of a generator speed, it is necessary to 
use the expression used in Section 2.1.2 for the generator speed, which expresses the 
generator speed depending on the electrical angular speed ωe0 and on the number of pole-pairs 
NPP.  The base and the per-unit value of a generator speed can be thus calculated as follows, 
respectively: 
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(32) 

4.1.3 Calculation of torque in per-unit 
The torque in per-units is calculated as: 

base
pu T

TT =  
 
(33) 

where T is the torque expressed in physical units, while Tbase is the torque base defined based 
on relationship between the interrelated quantities power and speed: 
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 The torque in per-units can be then calculated as: 
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 The torque base of a unit i using the individual unit base or the power system base, 
respectively, is calculated as: 
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 Similarly, the generator torque base and per-unit value can be expressed as: 
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(37) 

where Pn is the nominal power of the generator. 

 
4.1.4 Calculation of moment of inertia in per-unit 
Inertia is a very important parameter for the frequency control in the power system. The larger 
system inertia is, the smaller the frequency rate-of-change following a power imbalance is. 

The moment of inertia in per-units is calculated as: 

base
pu I

II =  
 
(38) 

where I is the inertia expressed in physical units, while Ibase is the inertia base defined as: 

2)( base

base

base

base

basebase

base

base

base
base

PT
s

TM
I

ωωωω
==

⋅
==  

 
(39) 

 where sbase=1 [s-1], as shown in Table 2. 

 The inertia base of a unit i using the individual unit base or the power system base, 
respectively, is calculated as: 
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(40) 

 
Similarly, the generator inertia base and per-unit value can be expressed as: 
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where Pn is the nominal power of the generator. 
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4.1.5 Calculation of angular momentum in per-unit 
The angular momentum in per-units is calculated as: 

base
pu M

MM =  
 
(41) 

where M  is the angular momentum expressed in physical units, while Mbase is the base of 
the angular momentum.  The expression can be further extended as follows: 
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(42) 

Notice that the angular momentum is variable with speed, while inertia is a constant 
variable. Assuming now small variations in speed (to make possible the linearization of 
differential equation of EoM), as it is the case for synchronous generators in conventional power 
plants, it means that: 

pupupue IMconst ≈→≈→=≈ 10 ωωω  (43) 

The per-unit expression of the angular momentum can be approximated to be equal with 
the per-unit value of the inertia. 

4.1.6 Calculation of inertia constant in per-unit 
Inertia constant H is defined as the ratio of stored kinetic energy at rated (nominal) speed 

to the rated power: 
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(44) 

Notice that the inertia constant is expressed in seconds. An inertia constant of 4 seconds 
means that the energy stored in the rotating part could supply the nominal load during 4 
seconds.  

The inertia constant in per-units is calculated as: 
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where  H  is the inertia constant expressed in physical units, while Hbase is the inertia base and it 
is equal to 1.  The expression of the inertia constant in per unit can be further expressed as: 
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(46) 

The angular momentum in per-unit Mpu can be then expressed as: 

 

pupu HM ⋅= 2  (47) 

 

30 DTU Wind Energy E-0103  



 

4.2 Delta representation 
Delta representation is another modelling approach often applied together with per-unit 
representation in electrical systems literature. It is typically used to describe deviations of 
quantities from initial steady-state values [6]. 
 The idea of delta representation is that any variable x can be expressed at any moment t 
as the sum of its initial value denoted by x0=x(0) and a small deviation ∆x(t) from its initial value, 
as follows: 

)t(xx)t(x o ∆+=  (48) 

with the condition of course that in the steady state initial condition the deviation is zero, i.e. 
00 =∆ )(x .  

 The delta model can then be expressed as: 
00 =∆−=∆ )(xandx)t(x)t(x o  (49) 

Notice that delta models are very convenient to use, as their states do not need to be 
initialised, since they start automatically in zero. 

 
In the following a small example is given on how to calculate the delta model for the equation of 
motion (EoM), described in Section 1.4.  

4.2.1 Equation of motion – delta representation example 
Consider the equation of motion (EoM) expressed in power, as described in Section 1.4: 
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Suppose that the variables of EoM can be expressed as the sum of their initial value (i.e. 

Pmech0 for Pmech) and a small variation (i.e. Pmech for ∆Pmech), as follows:  
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By applying the superposition principle, the equation can be then rewritten like: 
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Notice that the steady state quantities can be factored out, since: 
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=

=

dt
d

PP elecmech

ω  
 
(53) 

and further assuming small deviations in speed,  the terms involving products of ∆ω with 

)( ω∆
dt
d

can be neglected. The power balance equation can then be approximated as: 

 

ωωω ∆=∆≈∆−∆
dt
dM

dt
dIPP elecmech 00  

 
(54) 
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This delta representation of EoM  is going to be used in Section 5.1 as the basic 
formulation of a generator model. 

 
4.3 Dynamic modelling in frequency domain (Laplace transform) 
Understanding dynamic systems in Laplace and time domains is extremely important in the 
study of process dynamics and control. Dynamic system modelling in frequency domain, using 
Laplace transform, is often used in the analysis of continuous time dynamical systems. It is not 
the scope here to describe Laplace transform in details, as it can be found in relevant literature. 
The chapter focuses on the application of Laplace transform in analysis of process dynamics. 
The transfer function of a dynamic system is also addressed. 
 
4.3.1 Linear time domain modelling 
Any dynamic linear system can be completely characterized in time domain by its impulse 
response. This means that for any input function x(t) of the system, the output function y(t) of 
the system can be calculated in terms of the input x(t) and the impulse response h(t).  
 The impulse response h(t) of a dynamic system is defined as the output of the system, 
when it has as input an impulse δ(t). The impulse δ(t) can be modeled as a Dirac delta function 
for continuous time, as follows:   

1)(and
0
00

)( =




=∞
≠

= ∫
∞

∞−
dtt

tfor
tfor

t δδ  
(55) 

 The Dirac delta function δ(t) is roughly speaking, a pulse of unbounded amplitude and zero 
duration.  
 The output of the system y(t) is then determined by the input x(t) according to the 
convolution defined as follows: 

∫ −+=
t

dxthtyty
0

0 )()()()( τττ  
 
(56) 

 Notice thus that output y(t) of a linear system in time domain requires the convolution of the 
input x(t) with the impulse response function h(t). The convolution technique, 
described in more details in [7], is based on a decomposition of the input signal x(t) into 
impulses, while the output y(t) is expressed as a sum of the responses resulting from the 
individual impulses.  
 The calculation of the output of the system in time domain is quite difficult and it requires 
the use of integrals. The calculation is much easier to perform in Laplace domain, where the 
convolution turns into a simple multiplication of two algebraic functions.  
 
4.3.2 Formal definition and characteristics of Laplace transform 
The Laplace transform of a function f(t) is represented by a continuous sum of exponential 
functions of the form  e-st, where the operator ‘s’ is defined as a complex frequency14, namely: 

{ } ∫
∞

−==
0

)()()( dtetftfLsF st  
 
(57) 

14 The Laplace operator s, already mentioned in Table 2, is a complex variable. It is defined as s≡ơ+jɷ. For the analyse 

of the frequency response in steady state, s≡jɷ is used. 
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where L{.} is used to denote Laplace transformation. The function f(t) is a function of time, s is 
the Laplace operator, and F(s) is the transformed function.  Notice that the Laplace transform 
converts functions with a time dependent variable into functions with a complex dependent 
variable, such as frequency (known as Laplace frequency), represented by operator ‘s’. 
 Table 4 contains the most fundamental properties of Laplace Transforms. More 
comprehensive lists of Laplace transforms may be found in numerous control literatures e.g. [7]. 
 

 
 Notice that operation such as differentiation and integration in time domain can also be 
replaced by simple algebraic operations in Laplace domain.  
 Laplace transform is used extensively in electrical engineering. Laplace transform is for 
example a strong technique to solve linear differential equations, as it overcomes some of the 
complexities encountered in the time domain solution of differential equation. Laplace transform 
is used to transform time domain relationships to a set of equations expressed in terms of the 
Laplace operator ‘s’. Thereafter, the solution of an original problem can be found by simple 
algebraic manipulations in the Laplace domain rather than the time domain. To return to the 
time domain from the Laplace domain, the inverse Laplace Transform L-1 is used [7]. 

Example of solving differential equation using Laplace transform 
Consider the linear differential equation to be solved: 

1158 =++ )t(f)t(f)t(f   

with initial conditions 000 == )(f)(f   

 
Applying Laplace transform: 

}{ { } { } { } 11581158 2 =++⇒=++ )t(fL)t(fsL)t(fLs)t(f)t(f)t(fL   

Table 4: Some Laplace properties and transforms. 
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as { } )s(F)t(fL =  then the equation can be written as: 

11582 =++ )s(F)s(Fs)s(Fs  

This can be further written and decomposed as: 

5
50
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50
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2 +
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+
=

++
=

s
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s
.

ss
)s(F

 

Applying the inverse Laplace transformation, the solution of the differential equation can be then 
found as follows: 

tt e.e.)t(f 53 5050 −− −=  

Notice that the condition f(0)=0 is also satisfied. 

 
4.3.3 Transfer function of a linear system 
In system analysis, the Laplace transform is seen as a transformation from the time domain, in 
which inputs and outputs are functions of time, to the frequency domain, where the same inputs 
and outputs are functions of operator ‘s’ (complex frequency). Laplace transform provides thus 
an alternative functional description that simplifies the process of analysing the behaviour of the 
system. 
  Figure 22 sketches graphically how the Laplace transform can be used to transfer a time 
domain modeling into frequency domain modeling and back again. 
 

  
 Notice that in order to make the transformation from time domain in frequency domain, it is 
preferable  to work with delta values, i.e. ∆x(t), because in this way the initial value of the 
variable x  is automatically included in the analysis. The dynamic of variable x is the same as 
the dynamic of ∆x, if of course initial condition is zero, i.e.  x(0)=0. 

 
Figure 22:  Application of Laplace transform. 
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 As illustrated in Figure 22, the corresponding variables in frequency domain are: 

• Input Laplace transform ∆X(s) 

• Output Laplace transform )s(X)s(H)s(Y ∆⋅=∆  

• Transfer function H(s), which fully describes the system dynamic through the relation 
between the input ∆X(s)  and the output ∆Y(s),  as follows: 

)s(X
)s(Y)s(H

∆
∆

=  
 
(58) 

 The transfer function H(s) is thus the Laplace transform of the impulse response function 
h(t).  It is a linear function and ratio of polynomials in ‘s’. The Laplace transform of a system’s 
output can thus be determined by the multiplication of the transfer function with the input 
function the Laplace domain. The output function in time domain may be then calculated by 
applying the inverse Laplace transform. 
 As illustrated in Figure 22, the transfer function shows the flow of signal through a system, 
from the input to the output, describing thus the dynamics in operational sense.  
 The general procedure to find the transfer function from input to output of a system 
modeled by a linear differential equation is to apply the Laplace transform on both sides of the 
differential equation and to solve for the ratio of the output Laplace over the input Laplace. 
 Transfer functions play a central role in the analysis of a dynamic system, because it is 
usually easier to analyze systems using transfer functions instead of impulse response 
functions.  
 
Example of first order differential system 
Consider a linear system characterized by the following differential equation: 

)()()( tyb
dt

tydatx +=  

where the input signal is 




≥
<

=
01
00

)(
tfor
tfor

tx  

The output y(t) of the system to the input x(t) is determined by applying Laplace transformation. 
Based on formulas presented in Table 4, the differential equation can be expressed in Laplace 
domain as follows: 

)s(Yb)s(Ysa)s(X ∆+∆=∆  

The transfer function of the system is then given by: 

bsa)s(X
)s(Y)s(H

+
=

∆
∆

=
1

 

 

By using further the notation k=1/b and τ=a/b, the transfer function can also be expressed as: 

1+
=

s
k)s(H

τ
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k is the final value, while τ denotes typically  the time constant. Based on Table 4, the output y(t) 
of the system in time domain can be  then expressed and illustrated as in Figure 23. 
4.3.4 Block diagram of a system 

Using block diagram is another way to represent dynamic systems pictorially. Each block 
represents a transfer function, while the signal flow between the blocks is illustrated by the block 
connections.  
 Dynamic systems can thus be easily visualized through block diagrams. Figure 24 
illustrates examples for three basic arrangements of transfer functions and their respective 
equivalent transfer functions. Notice that transfer functions can consist of combinations of other 
transfer functions. 

 

 
4.3.5 Initial and final value theorems 
Initial and final value theorems, illustrated in Figure 25,  permits one to calculate the output of a 
dynamic system approached at time t=0, i.e. y(0),  and after very long time t, i.e. y(∞), 
respectively, for  a certain input x(t), directly from the transfer function H(s), without the need of 
applying inverse Laplace transform. 
 

 
Figure 23:  Output of a first order system at a step input. 

 
Figure 24:  Three basic arrangements of transfer functions: 

a) in series  b) in parallel  c) in feedback form 
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Example for initial and final value theorem of first order differential system 
Consider a dynamic system with the following transfer function: 

 
12

1
+

=
s

)s(H  

 
If the input ∆X(s) into the system is a step function, the output of the system ∆Y(s) can be then 
calculated as: 

ss
)s(X

s
)s(Y 1

12
1

12
1

⋅
+

=∆⋅
+

=∆  

Applying now the initial and final value theorem the value of the output y(t) in time domain in the 
initial and final moment is as follows: 

 

 

 

 
 
 
This result means that by applying a step signal as input to this dynamic system, the output will 
start from zero and it will converge to one after a while. 
 

5. Dynamic models in frequency control loop 
In this chapter, a basic dynamic frequency model for island power systems is introduced. It is 
based on simple models for the equation of motion, prime mover, governor and load. The 
frequency dependent loads, which have a stabilizing effect on the frequency, are also modelled. 
 
Having so far described the fundamentals of the frequency control, it is now possible to model 
the frequency control loop. Such a model can be used to simulate the response of an island 
power system to a power imbalance caused, for example, by the tripping of a large generating 
unit.  
 Figure 26 sketches the block diagram of the frequency control loop. Models for the 
following components are considered: 

• Equation of motion15  
• Load  

15  Equation of motion (EoM) includes in general both generators and rotating load. However, in an island power 

system, it can be assumed that all the inertia is given by the generators. 

 
Figure 25:  Initial and final theorems. 
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• Prime mover 
• Governor  

 

Notice that the model illustrated in Figure 26 is in per-unit and delta representation. Therefore 
all the models described from now on are going to be in per-unit and delta representation. 

 
5.1 Generator model (equation of motion EoM) 
As already mentioned, the equation of motion (EoM) is expressed as follows  [1]: 

dt
dITT elecmech
ω

=−   
(59) 

 Any change in the load of the system is instantaneously reflected in the electrical torque 
Telec. This generates an imbalance between the mechanical torque Tmech and the electrical 
torque Telec, which results further in speed/frequency changes according to the dynamics of the 
equation of motion. As shown in Section 1.4, the equation of motion can be expressed in terms 
of mechanical and electrical power, as follows: 

dt
dMPP elecmech
ω

=−
 

 
(60) 

 
 As presented in Section 4.2.1, assuming very small variations in frequency, i.e. frequency 
almost constant (ω=ω0), the generator model can be simple expressed as: 

ω∆=∆−∆
dt
dMPP elecmech  

 
(61) 

 
This can be further rewritten in the Laplace domain as: 

ω∆=∆−∆ sMPP elecmech  
(62) 

  
where ‘s’ is the Laplace operator. The equation of motion can be further expressed as: 

)PP(
Ms elecmech ∆−∆=∆
1ω

 

 
(63) 

 

 This expression is graphically sketched in Figure 27. 
 
 

 
Figure 26:  Frequency control loop model (delta and per-unit). 
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where ∆Pmech is the mechanical power from the prime mover, while ∆Pelec is the electrical power 
consumed by the loads in the system. 
 
5.2 Load model 
In general, the loads in a power system consist of different types of devices. They can be: 

• frequency-dependent loads, as i.e. motors, fans, pumps 
• frequency-independent loads, as i.e. lights, heaters, computers.   
 
The total load in a power system can therefore be modelled as follows: 

 
ω∆⋅+∆=∆ DPP Lelec  (64) 

where: 

• ∆PL represents the frequency-independent load 

• D⋅∆ω represents the frequency-dependent load 
• D is known as the damping constant and in a per-unit model  it is expressed as a 

percent change in load for one percent change in frequency16.  

It is worth noticing that the frequency dependent loads, as i.e. motors in the power system, 
have a beneficial influence on the power system [1]. They have a stabilizing effect on the power 
system during a frequency drop17.  

 The block diagram for a dynamic model of a load is presented in Figure 28. 

 

 
 By combining now the generator model (EoM), shown in Figure 27, and the load model, 
presented in Figure 28, the following expression of the system frequency can be obtained: 

16  For example a value of D=2, means that a 1% change in frequency implies a 2% change in load.  
17 A frequency drop means that the frequency dependent load also decreases. This load reaction adjusts the 

momentary unbalance between production and consumption and transforms it into a new balanced situation, where the 

frequency is stabilised at a new value.   

 
Figure 27:  Generator model (delta and per-unit). 

 
Figure 28:  Load model (delta and per-unit). 
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Lmec PP

DMs
∆−∆

+
=∆ω  

 
(65) 

 This represents the integrated EoM and load model. Notice that, in the absence of the 
governor to control the speed ∆ω, the system response ∆ω to any change in load ∆PL is 
dependent only on the total angular momentum M and the damping constant D existing in the 
system. 
 The integrated EoM and load model is shown in the cascade form in Figure 29a.  This form 
can be further rearranged in the equivalent transfer function form shown in Figure 29b. 
 

 
 Typically more than one generator and load are connected to a power system. The 
collective performance of all generators in the system is in general analysed by assuming that 
they all operate synchronously at the same constant frequency. Using this assumption, all 
generators can be then represented by an equivalent lumped generator driven by the sum of all 
individual prime mover mechanical outputs [6], as illustrated in Figure 30.  
 The equivalent angular momentum Msys of the system is then equal to the sum of the 
angular momenta of all generators (rolling inertia) and spinning loads connected to the system.   
 It is worth noticing that, besides frequency dependent loads18, in a power system there are 
different devices, which through their control system contribute actively and largely to the total 
damping in the power system Dsys.  
 

 
 

18 Frequency dependent loads are not controllable, namely their damping contribution is passive.  

 
Figure 29:  Integrated EoM & load model (delta and per-unit). 

 
Figure 30:  System equivalent with lumped angular momentum and lumped damping constant 

(delta and per-unit). 
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Example of system parameter calculation 
A power system consists of two generating units and each of them has a nominal capacity of 
100MW. The system has a total load of 105 MW at 50Hz. Each generating unit has an inertia 
constant19 of 1 p.u. calculated in 100 MW base. For every 1% change in frequency the 
corresponding variation of the load is 1.2%. If there is a sudden drop in load by 5 MW: 
(a) Build the block diagram of the system expressed on 200 MW base 
(b) Calculate the corresponding frequency variation 
 
The power system calculations in per-unit are typically done using the total system power base, 
which is defined as the total nominal capacity of all generating units installed in the system. In 
this exercise the total system power base is therefore 200MW.  

The calculation of the per-unit value for the inertia constant on the 200MW base can be done 
based on its per-unit value on the 100MW base, using the formula indicated in equation 26:  

5.0
200
1001

200
100100200 =×=×= baseMW

unit
baseMW

unit HH  

The per-unit value on 200MW base of the inertia constant for the power system consisting of 
the two generating units can be then calculated as follows: 

15.022 200 =×=×= baseMW
unitHH  

The angular momentum in per-unit on 200MW base can be then expressed as: 

22 =×= HM  

 

For the load after the change (105-5=100 MW) on 200 MW base,  
1001.2 0.6
200

D = × =
 

 
The block diagram would be: 
 

 
 
And expressed in standard transfer function form (see also section 4.3.3): 
 

 
 
The parameters (gain and time constant) can be calculated according to the following: 

19 Definition in equation 44, page 28. 
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The load deviation is: 

55 0.025
200LP MW pu∆ = − = − = −

 
 
For the reduction in the load, the Laplace transformation of the change is (see also section 4.3): 
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The pu deviation in the speed is qualitatively shown here: 
 
 

3.33sτ =

ω∆

(sec)t

0.0418ssω∆ =

 
 
The time constant is 3.33 s and the steady-state speed deviation is 
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5.3 Prime mover model 
As mentioned in Section 2.2, a prime mover is a turbine, which converts steam energy, 
produced by burning some kind of fuel, into mechanical energy.  Each turbine consists typically 
of a number of stages, where the steam can be reheated.  The fuel is supplied through the 
governor valve, which controls the frequency by adjusting the fuel infeed flow. 
 Figure 29 illustrates the simplest dynamic model of a prime mover, corresponding to a non-
reheat turbine (i.e. one turbine stage). It is a first order model with a time constant TCH, known 
also as the charging time constant.  
 

 The model of a prime mover relates thus the power generated by burning fuel to the output 
mechanical power: 

fuel
CH

mech P
sT

P ∆⋅
+

=∆
1

1
 

 
(66) 

 
5.4 Governor model   
Figure 32 depicts the droop characteristic models for the two types of governors explained in 
Section 2.3, i.e. isochronous governor and speed droop governor. 

 
5.4.1 Isochronous governor model 
As shown in Figure 32a), an isochronous governor keeps the frequency constant independent 
of the generator loading (zero droop).  
 The model of an isochronous governor is shown in Figure 33: 
 

 
Figure 31:  Prime mover model (delta and per-unit). 

 
Figure 32:  Droop characteristic of: a) isochronous governor;  b) speed droop governor. 

 
Figure 33:  Model for an isochronous governor (delta and per-unit).  
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where Kp and KI are the proportional and integral parameters of the controller, respectively. 
Notice that the isochronous generator has only as input signal the deviation of the speed ∆ω, 
between the measured speed ω and the reference synchronous electrical speed ωe0. This 
speed deviation is amplified and integrated to produce the control signal ∆Pfuel, which actuates 
the throttle valve of the prime mover. Notice in Figure 34a) that the steady state operation for an 
isochronous governor is defined by the condition ∆ω=0. 

 

 

5.4.2 Speed droop governor model 
As illustrated in Figure 32b), a speed droop governor has a characteristic with a negative slope. 
It reacts to load variations by changing its speed, namely it controls the relation between power 
and frequency. This means that a higher (lower) power output is established when the 
frequency drops (rises).  
 The model of a speed droop governor is shown in Figure 35. 

where R represents the droop of the characteristic. Notice that the speed droop governor has 
two input signals, namely deviation of the speed ∆ω and the deviation of the power setpoint 
∆Pref.  
 The steady state operation for a speed droop governor is defined by the condition: 

fuelfuelref PRPRP ∆⋅−=∆⇒=∆⋅+∆⇒=∆ ωω 00  
(67) 

 If frequency drops due to e.g. an increased load, the speed droop governor will yield to an 
increased ∆Pfuel which will be order to the prime mover. 
 Speed droop governors are utilized when multiple generators have to share changes in 
load in the power system. For this sharing to be equal the speed droop governors need to have 
same droop characteristic.  
 

 
Figure 34:  Frequency response of a generating unit equipped with: 

a) Isochronous governor   b) Speed droop governor  

 
Figure 35:  Model for a speed droop governor (delta and per-unit).  
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5.5 Frequency control loop model 
Figure 36 illustrates a simplified model of the frequency control loop in an island power system. 
It consists of models for speed droop governor, prime mover and integrated equation of motion 
and load model.  
 

 
 
 This model can be used to analyze the response of the frequency control loop to deviations 
in speed (frequency) caused by i.e. a sudden disconnection of a large generating unit from the 
system or by connecting a large load into the system. 
 

6. Frequency control with wind power 
In this chapter, the frequency control loop of an island power system, presented in the previous 
chapter, is extended with a simple model of a wind turbine. 
 
Figure 37 shows an overview block diagram of an island power system including speed droop 
governor, prime mover, and equation of motion, load and wind turbine model. All generating 
units in the system are lumped together as a unique generator (equation of motion), as 
explained in Chapter 5.  

 

 Notice that, the output of the wind turbine model is added to the mechanical power 
produced by the others prime movers in the system. This is because wind turbines are seen as 
negative loads, i.e. they produce power and reduce thus the load (demand) in the system, 
independently of the system conditions and of the actions of governors and prime movers of the 
conventional power stations.  
 The additional amplification blocks Konline and wt

puphysicalK 2  are defined as follows: 

 
Figure 36:  Frequency control loop model (delta and per-unit). 

 
Figure 37:  Overview of frequency control loop model including wind turbine model  
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(68) 

where ki is 1 if unit i is online and 0 if unit i is offline and Nunits is the number of units.  The gain 
Konline is containing information about how much production capacity is in the system, e.g. how 
many units are online or not. Notice that Konline is equal to one, when all the units in the system 
are online. It adjusts properly the mechanical power in per-unit (power system base) produced 
by the aggregated prime mover model for all units in the system. wt

puphysicalK 2 is used to 
transform first the  wind turbine delta power (physical!) in the delta power of a wind farm 
consisting of Nwtr wind turbines and second from physical to per-units system (power system 
base). Remark that the power system base is by definition equal with the total power capacity, 
namely the sum of nominal power of all units installed in the system no matter whether they are 

online or not. 
physical

wtP 0 is the wind turbine power in the initial steady state condition. 

 Figure 38 sketches a more detailed block diagram of the wind turbine modeled. Description 
of the aerodynamic model is found in details in [8]. pu

gen0ω   is the generator speed in the initial 
steady state condition. 
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Figure 38:  Wind turbine model. 

Aerodynamic
model 

physical
wtPwtrω

θ

gearN
1genω

base
genω

pu
gen0ω

+

+

puω∆

vwind

Wind turbine

pu
genω

46 DTU Wind Energy E-0103  

https://www.entsoe.eu/the-association/
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/nordic/planning/070115_entsoe_nordic_NordicGridCode.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/nordic/planning/070115_entsoe_nordic_NordicGridCode.pdf


 

[5] Miller R., Malinowski J. H. [1995], Power system operation, McGraw-Hill. 

[6] Wood A.J, Wollenberg B.F. [1996], Power generation, Operation and Control, John  
Wiley and Sons. 

[7] Ogata K. [2010], Modern control engineering, Prentice-Hall International. 

[8] Hansen A.D. [2010], Introduction to wind power models for frequency control 
studies. 

 

 

DTU Wind Energy E-0103  47 



DTU Vindenergi er et institut under Danmarks Tekniske Universitet med en unik integration af forskning, uddannelse, innovation og 
offentlige/private konsulentopgaver inden for vindenergi. Vores aktiviteter bidrager til nye muligheder og teknologier inden for udnyttelse af 
vindenergi, både globalt og nationalt. Forskningen har fokus på specifikke tekniske og videnskabelige områder, der er centrale for udvikling, 
innovation og brug af vindenergi, og som danner grundlaget for højt kvalificerede uddannelser på universitetet.  
 
Vi har mere end 240 ansatte og heraf er ca. 60 ph.d. studerende. Forskningen tager udgangspunkt i ni forskningsprogrammer, der er organiseret i 
tre hovedgrupper: vindenergisystemer, vindmølleteknologi og grundlag for vindenergi. 

Danmarks Tekniske Universitet 
DTU Vindenergi 
Nils Koppels Allé 
Bygning 403 
2800 Kgs. Lyngby 
Telefon  45 25 25 25 
 
info@vindenergi.dtu.dk 
www.vindenergi.dtu.dk 
 
 


	Cover1_Frequency control modelling - basics
	Main_part_Frequency control modelling - basics
	Introduction
	1. General issues on power systems
	1.1 Power system frequency
	1.2 Synchronous power systems
	1.3 Why frequency control in power systems?
	1.4 Equation of motion (EoM)

	2. Generating units components
	2.1 Generator
	2.1.1 Electricity generation - basic principles
	2.1.2 Rotor poles

	2.2 Prime mover
	2.3 Governor

	3. Generating unit characteristics
	3.1.1 Droop characteristic
	3.2 Frequency bias
	3.3 Result of changing the droop or the power setpoint of a unit
	3.4 Unit response to changes in frequency in an infinite power system
	3.5 Load sharing in island power system

	4. Modeling representations
	4.1 Per-unit representation
	4.1.1 Calculation of power in per-unit
	4.1.2 Calculation of speed in per-unit
	4.1.3 Calculation of torque in per-unit
	4.1.4 Calculation of moment of inertia in per-unit
	4.1.5 Calculation of angular momentum in per-unit
	4.1.6 Calculation of inertia constant in per-unit

	4.2 Delta representation
	4.2.1 Equation of motion – delta representation example

	4.3 Dynamic modelling in frequency domain (Laplace transform)
	4.3.1 Linear time domain modelling
	4.3.2 Formal definition and characteristics of Laplace transform
	4.3.3 Transfer function of a linear system
	4.3.4 Block diagram of a system
	4.3.5 Initial and final value theorems


	5. Dynamic models in frequency control loop
	5.1 Generator model (equation of motion EoM)
	5.2 Load model
	5.3 Prime mover model
	5.4 Governor model
	5.4.1 Isochronous governor model
	5.4.2 Speed droop governor model

	5.5 Frequency control loop model

	6. Frequency control with wind power
	References

	Cover2_Frequency control modelling - basics

