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ARTICLE

Conductance quantization suppression in the
quantum Hall regime
José M. Caridad 1, Stephen R. Power 1,2,3, Mikkel R. Lotz1, Artsem A. Shylau1, Joachim D. Thomsen1,

Lene Gammelgaard1, Timothy J. Booth 1, Antti-Pekka Jauho1 & Peter Bøggild 1

Conductance quantization is the quintessential feature of electronic transport in non-

interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional

conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields

results in wider conductance plateaus within the quantum Hall regime. Electrostatic inter-

actions can change this picture qualitatively. At finite B, screening mechanisms in narrow,

gated ballistic conductors are predicted to give rise to an increase in conductance and a

suppression of quantization due to the appearance of additional conduction channels. Despite

being a universal effect, this regime has proven experimentally elusive because of difficulties

in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement.

Here, we experimentally demonstrate the suppression of conductance quantization within the

quantum Hall regime for graphene nanoconstrictions with low edge roughness. Our findings

may have profound impact on fundamental studies of quantum transport in finite-size, two-

dimensional crystals with low disorder.
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At zero magnetic �eld B, conductance quantization arises
due to the formation of transverse subbands in con�ned,
quasi one-dimensional (1D) systems such as quantum

point contacts (QPC) or quantum wires1,2. As B increases, the
system gradually enters the quantum Hall (QH) regime, where
propagating modes evolve from magnetoelectric subbands inter-
acting with both edges, to chiral edge states surrounding an
incompressible, gapped bulk1,2. Within a one-electron picture,
both propagation states lead to a quantized two-terminal con-
ductance given by G = Ne2/h (here, e is the electron charge, h the
Plank constant and N the number of conducting modes at the
Fermi level)1,2. The situation changes when taking into account
Coulomb interactions3�13 between injected carriers and/or their
coupling to an external gate. For example, the conductance of a
1D channel with repulsive electron�electron interactions vanishes
in the presence of any scattering potential at |B| = 0 T ref3. Fur-
thermore, the observation of the so-called 0.7 anomaly12 or the
0.25 feature13 in the conductance quantization of QPCs at |B| = 0
T are also signatures of electron�electron interactions. In a per-
pendicular B, the interplay between screening mechanisms and
the Hall potential causes a reconstruction of the edge states into
alternating conductive (compressible) and insulating (incom-
pressible) regions no longer strictly linked to the topology of the
conductor4�8. Compressible zones are characterized by partially
�lled Landau levels (LLs) pinned at the Fermi energy with a
variable electron concentration. Conversely, incompressible
regions (strips) consist of fully occupied LLs and display the
typical insulating behavior of a QH state4�8.

We focus on the ballistic conductance of gated quasi-1D sys-
tems, where screening theories predict conductance quantization
suppression (CQS) in the QH regime4�9. This universal transport
regime should occur in narrow, ballistic systems con�ned by
hard-wall potentials4,9,11, where a large accumulation of charge
carriers near sharp edges and a pronounced inner depletion
inhibits the formation of stable incompressible strips4�9.
Although both interactions between carriers and their coupling to
the external gate can affect conductance6,9, it is the electrostatic
screening of the gate potential which is the main contributing
mechanism4,5,10 to the CQS effect.

To date, the experimental realization of such narrow, disorder-
free, sharp-edged devices has been inherently dif�cult1,2,14�24.
Commonly studied QPCs in two-dimensional (2D) electron gases
have soft-con�ning potentials because the gates and dopant layers
are far away from the actual carrier layer1,2. Graphene, on the
other hand, provides extraordinary opportunities to examine the
physics of the QH effect16. First, it exhibits a natural hard-wall
con�nement at its borders. Furthermore, the distance to the gate
can be arbitrarily selected since electrons in strict 2D materials
reside right at the surface. Both features enable the possibility of
designing speci�c device geometries which are (heavily) domi-
nated by screening effects. An example of such a geometry is a
narrow graphene strip with a width comparable or smaller than
the thickness of the dielectric spacer9,10. Indeed, CQS in a per-
pendicular magnetic �eld has been predicted to occur in gated
graphene nanoribbons9,11. In these systems, the suppression of
conductance quantization is related solely to the simultaneous
existence of compressible strips in the center of the ribbon and
the appearance of additional counter-propagating states9,11.
Nevertheless, experiments conducted with different types of
narrow, high-quality graphene devices have so far not con�rmed
these predictions17�24.

In more detail, the magnetoconductance of ballistic graphene
constrictions remains quantized when increasing B17,18, similar
to gate-de�ned, soft-potential, narrow ballistic graphene chan-
nels19. These discrepancies between experiments and theoretical
predictions motivate us to investigate devices which have been

designed to meet the required theoretically predicted conditions
for CQS;9,11 speci�cally, a device geometry able to produce a large
charge density gradient across the nanostructure, a narrow bal-
listic channel, and low edge disorder.

By addressing these factors, we experimentally demonstrate the
suppression of conductance quantization within the QH regime
for graphene nanoconstrictions with low edge roughness. Our
�ndings are a strong experimental con�rmation that the single-
electron picture is inadequate for describing the transport beha-
vior of �nite-size, two-dimensional crystals with low disorder.

Results
Design of narrow devices free of incompressible strips.
According to QH theories4�8, incompressible strips must be wider
than the magnetic length lB to be stable. For a given LL with level
index k, the minimum charge carrier density gradient across a
graphene nanostructure, which prevents the formation of a stable
incompressible strip, is (Methods)

dnelðxÞ
dx

����
min;x2 �W

2 ;þW
2‰ �

… �neljmin…
�vF

�2
kj j
�he

� �1=2

2 Bj jð Þ3=2; ð1Þ

where � is the permittivity of the dielectric and vF ~ 106 ms�1 the
Fermi velocity in graphene.

Figure 1a shows �neljminas a function of |B| and k, normalized
by the average density navg = 1016 m�2 �neljmin

� �
, using SiO2 as

dielectric material. Values of |B| of 0�10 T, k of 0, 1, 2, and navg
are experimentally accessible in our study. For |B| � 10 T and k �
2, an estimated threshold of �neljmin… C ~ 107 m�1 prevents
incompressible strips from forming in graphene devices.
Figure 1b, c show the simulated normalized electron density
nelðxÞ and �nelðxÞ across three quasi-1D systems, respectively.

Here, we consider two distinct geometries (ribbons and
constrictions) with different widths W and dielectric thicknesses
b to examine the stability condition (Eq. (1)). The ribbon
geometry (W = 50 nm, b = 300 nm) used for the theoretical
prediction of the CQS9 (green curve) shows �nelðxÞ>C for
distances x > 0.13W across the device. This length is comparable
to lB = 0.16W at |B| = 10 T, preventing the appearance of stable
incompressible strips. A similar situation occurs (blue curve) in
slightly wider constrictions (W = 100 nm) on a dielectric with b =
100 nm. Notably, wider geometries have the added advantage of
reducing the signi�cance of edge disorder in experimental
devices. Much wider constrictions with sizes close to samples
reported in literature17,18 (W = 300 nm, red curve) show
�nelðxÞ�C at distances an order of magnitude larger than lB at
|B| = 10 T. This condition remains satis�ed for smaller |B| and k,
and so this geometry enables the formation of incompressible
strips4�8 and results in a quantized magnetoconductance17,18.

Fabrication of graphene nanoconstrictions. Guided by these
simulations, we fabricate (Fig. 1d) graphene nanoconstrictions
with length L = W ~ 100 nm on b = 100 nm SiO2 substrates
(Methods). Our graphene �akes were exfoliated on hydrophobic
SiO2

25, resulting in mean free paths larger than L,W (lmfp ~ 200
nm at a temperature T = 4 K, Supplementary Figs. 1 and 2 and
Supplementary Note 1). Figure 2 shows the magnetoconductance
G = G(Vg,|B|) of the two types of studied sample. Their geometry
and fabrication steps are similar with the exception of the last
etching step, which de�nes the edge disorder of the nanocon-
striction26. While all our devices have a certain degree of edge
disorder, Sample type 1 (Fig. 2a) was etched using reactive ion
etching (RIE), which is known to produce less edge disorder than
the oxygen plasma ashing26 technique used in Sample type 2
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(Fig. 2b). Speci�cally, we achieve an edge roughness �1 nm in
Sample type 1 (Supplementary Fig. 3 and Supplementary Note 2).
This value is comparable to values obtained in nanoribbons with
extremely low edge roughness fabricated by unzipping carbon
nanotubes20.

Experimental observation of the CQS effect. At zero B, both
types of sample show G / �Vg

� �1=2, characteristic of transport

limited by boundary scattering18,27. However, conductance values
in Sample type 1 are three times larger than those for Sample type
2. This speci�c behavior has previously been attributed to dif-
ferences in edge disorder26. Moreover, the conductance of these
samples shows periodic modulations (arrows in the insets), a clear
indication of size quantization18. These modulations are sig-
ni�cant in Sample type 1, with step heights �G up to ~ 2e2/h.
Further analysis at |B| = 0 T can be found in the Supplementary
Information (Supplementary Figs. 4�7 and Supplementary Note 3).
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For |B| � 0 T, the two sample types exhibit distinctly different
behavior. The conductance is not quantized for any of the three
shown LLs for Sample type 1 (smooth edges), dramatically
differing from the single-electron picture. Particularly, when
increasing the gate voltage Vg, G shows a peak whose value is
larger than the expected quantization plateau and cannot be
explained by accounting for geometrical corrections in spatially
uniform and homogeneous conductors28 (Supplementary Fig. 8
and Supplementary Note 4). These are signature features of
CQS9, and are predicted to disappear with increasing disorder11.

This is con�rmed for Sample type 2 (larger edge disorder),
which exhibits a quantized G at k = 0 (Fig. 2b). Furthermore, G at
k = 0 in Sample type 2 presents a dip after the plateau (marked
with �*�), in agreement with the well-known, geometrical effects
for homogeneous devices with L > W [28] (Supplementary Fig. 8
and Supplementary Note 4). Disorder is similarly responsible for
LLs k = 1, 2 in Sample type 2 showing G values lower than the
expected quantization values. These trends are con�rmed in
further devices and analysis (Supplementary Figs. 9, 10, and 15
and Supplementary Notes 5 and 6). Importantly, the extreme
sensitivity to device electrostatics and edge disorder demonstrated
here explains the absence of the CQS phenomenon (Supplemen-
tary Fig. 11 and Supplementary Note 6) in graphene devices
previously reported in literature17,18,20�24 (Supplementary Table 1
and Supplementary Note 7). These two effects are related: the
presence of edge roughness leads to a �atter nelðxÞ even within an
electrostatic approach (Supplementary Fig. 12 and Supplementary
Note 8).

Theoretical analysis of the CQS effect. The interpretation given
above is supported by tight-binding calculations, where the
inhomogeneous electrostatic potential across the device is
introduced using the analytical model proposed by Silvestrov
and Efetov10 (Methods). This potential corresponds closely to
those generated by more complex models, such as self-
consistent solutions within the Hartree approximation9,27,29.
Although such approaches can account for both Coulomb

interactions between injected carriers and their coupling to the
external gate, the electrostatic screening of the gate potential is
the primary factor determining the charge density distribution
in these systems30.

Figure 3a shows the calculated conductance with pristine edges,
and with smooth and rough edge disorder. In pristine systems,
the screening potential gives rise to additional conduction
channels, causing a larger, quantized conductance to appear near
the onset of the expected QH plateaus.

Unlike QH edge states, these conductance peaks are associated
with new states with �nite weight over a large portion of the
ribbon�s width (Fig. 3c), which emerge due to a bending of the
previously dispersionless LLs by the spatially varying gate
potential (Fig. 3d�f). This is equivalent to the formation of
compressible strips in the system9. These new dispersive states
support propagation in both directions and unlike QH states, are
susceptible to backscattering due to the overlap between forward
and backward propagating states9 and disorder9,11. Therefore the
channels lose their exact quantization as edge disorder is
increased, forming peak-like conductance features at low edge
disorder levels, before being completely suppressed by stronger
scattering (Fig. 3a). Our simulations con�rm that CQS is still
appreciable at low edge roughness (Fig. 3b), similar to that present
in our Sample type 1 (�1 nm), and vanishes for stronger edge
disorder, in agreement with our observations on Sample type 2.

Discussion
We have demonstrated the suppression of conductance quanti-
zation in the QH regime due to electrostatic interactions in gated
graphene nanoconstrictions with low edge roughness. Although
demonstrated here in graphene, this is a universal phenom-
enon4,9�11,27 occurring in ballistic, narrow conducting systems
exhibiting hard-wall potential con�nement such as semi-
conducting and metallic 2D crystals or cleaved-edged overgrown
quantum wires31. In a wider perspective, our study demonstrates
radical disruptions of the conduction properties of atomically thin
materials subject to inhomogeneous electron density distribu-
tions, emphasizing the critical relevance of device geometries and
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processing methods when studying interacting-electron transport
physics in nanoscaled devices. Our �ndings have particular
relevance for quantum transport and information studies15,16, the
production of resistance standards,15,16 and plasmonics32.

Methods
Graphene nanoconstrictions free of incompressible strips. The competition
between the Hall and screened potentials determines the stability of incompressible
strips in a perpendicular magnetic �eld4�8. The condition for a stable strip of width
ak with level index k requires ak>lB, where lB … �he�1 Bj j�1� �1=2

is the magnetic
length. Although the stability/collapse of an incompressible strip is a direct �nding
of a self-consistent calculation, a rough estimate of the stability condition can be
done from electrostatic calculations by Chklovskii et al.4,7. According to this the-
ory, ak is estimated by the equation:

ak …

����������������������������
2�Ek

�2e2 dnelðxÞ
dx

���
k

� 	
vuut ; ð2Þ

where nel(x) is the electron density across the device at |B| = 0 T, � is the dielectric
constant of the insulating material, dnelðxÞ

dx

���
k

is the charge density gradient evaluated
at the center of the kth incompressible strip, and Ek is the Landau spectrum. In the

case of spin-degenerate graphene, we get Ek … 2e�hv2
F

Bj j kj j
� 	1=216. Thus, for the

graphene nanodevice to be free of incompressible strips, the charge carrier density
gradient dnelðxÞ

dx across the nanostructure has to obey the following inequality:

dnelðxÞ
dx

�
�vF

�2
kj j
�he

� �1=2

2 Bj jð Þ3=2; ð3Þ

where the corresponding equality is Eq. (1) in the main text.

Electrostatic simulations. Spatial carrier density pro�les across graphene
devices nel(x) can be calculated33 using the expression nelðxÞ … �

e EzðxÞ, where
Ez(x) is the perpendicular electric �eld component in the corresponding gated
devices at y = 0 at a distance z = 0.5 nm above the �ake and � = 3.9�0 is the
permittivity of the SiO2. Ez(x) can be obtained for any geometry by solving the
Poisson equation in the device using a �nite-element method33 solver (Fig. 1a,
inset).

The carrier density pro�le normalized with respect to the average electron
density across the constriction navg is then given by nelðxÞ

navg
… EzðxÞ

Eavg
, where

Eavg …

R W=2
�W=2EzðxÞdx

W
ð4Þ

is a �ctitious electric �eld across the constriction which would generate navg. We
note how in the case of nanoribbon geometries (Fig. 1b, green), the numerically
calculated nelðxÞ

navg
agrees excellently with the analytical expression obtained in ref. 10

(Supplementary Fig. 13).

Fabrication of graphene nanoconstrictions. We fabricate devices with �eld-effect
mobility � ~ 20,000 cm2 V�1 s�1 (estimated mean free paths lmgp ~ 200 nm),
achieved by the mechanical exfoliation of graphene on hydrophobic25 Si/SiO2
substrates (SiO2 thickness b = 100 nm) and contact resistance Rc below 600 � . To
test these initial device parameters (�,Rc), we �rst shape, contact and measure the
magnetotransport properties of rectangular two-terminal devices with a width of
~1 µm (Supplementary Fig. 1). This is a common procedure undertaken to assess
the graphene quality24 before patterning the actual nanoconstriction devices. We
contact these devices by evaporating Ti (5 nm) and Au (30 nm) at low pressure
(<5 × 10�7 mbar). The subsequent de�nition of the nanoconstrictions is done via
electron beam lithography using polymethyl-methacrylate developed at �5 °C in a
1:3 IPA:H2O solution.

The edge quality in our constrictions is de�ned with two complementary
etching processes: oxygen plasma ashing and RIE26. Devices with a higher amount
of edge disorder (Sample type 2) are de�ned by plasma ashing, which, despite being
known to introduce instabilities and localized states in graphene nanodevices, is
widely used to shape graphene nanostructures24. In contrast, devices with a much
lower amount of edge disorder (Sample type 1) were produced by RIE26 (power
~40 W, argon 40 sccm, oxygen 5 sccm). We achieve an edge roughness �1 nm with
the RIE etching procedure, as demonstrated in the transmission electron
micrograph shown in the Supplementary Fig. 3.

Prior to measuring their electrical properties, we dip our devices for 18 h in a
pure hexamethyldisilazane solution to reduce the effect of environmental
contaminants that may have been adsorbed on the basal plane of graphene or at the
edges during the processing steps34. After these 18 h, the devices are dipped for 5 s
in acetone, 5 s in IPA, and then dried with nitrogen.

Electrical measurements. Our measurements were done in an Oxford Instrument
Teslatron PT cryostat. Measurements of differential conductance were performed
using a Stanford SR830 lock-in ampli�er with an excitation voltage of 80 �V at a
frequency of 17.77 Hz.

Tight-binding calculations. In our simulations, we consider zigzag nanoribbons
with similar dimensions to the experimentally measured constrictions (L = W =
100 nm) and different degrees of edge disorder (Supplementary Note 9). Addi-
tionally, device leads are formed by semi-in�nite pristine nanoribbons.

The electronic structure is described by a single �-orbital third-nearest-neighbor
tight-binding Hamiltonian

H …
X

<ij>
tij Bð Þ̂cy

i ĉj; ð5Þ

where ĉy
i (̂ci) are the creation and annihilation operators associated with lattice site

i. The hopping parameters tij take the values t1 = �2.7 eV, t2 = �0.2 eV, and t3 =
�0.18 eV, respectively35.

The effect of a magnetic �eld is included using the Peierls� phase approach. This
involves introducing a �eld-dependent phase factor in the tight-binding hopping
parameters

tij Bð Þ … tij 0ð Þe
2�ie

h �ij ; ð6Þ

where

�ij …
Z rj

ri

Aðr�Þdr�: ð7Þ

We choose the Landau gauge A0 … Bj jxŷ to maintain periodicity in the y-
direction.

The conductance through the ribbon is evaluated in terms of the transmission

TðEÞ … Tr GRðEÞ�RðEÞGAðEÞ�LðEÞ

 �

; ð8Þ

where GR and GA are the retarded and advanced Green�s functions respectively.
The effect of a gate voltage is introduced by �xing the Fermi energy and instead

changing the onsite energy potentials according to

UðxÞ … ��hvF
��������������
�nelðxÞ

p
: ð9Þ

A uniform carrier density can be included using an in�nite plane capacitor25 n0

nelðxÞ … n0 … sgn Vg
� � �Vg

eb
; ð10Þ

while non-uniform gating pro�les can be approximated by the expression10

nelðxÞ …
navgW

�
������������������������
W=2ð Þ2�x2

q ; ð11aÞ

or equivalently

nelðxÞ …
n0W

2
������������������������
W=2ð Þ2�x2

q : ð11bÞ

Furthermore, in Fig. 3a we include a small shift (~0.2 V) to separate the charge
neutrality and zero-gating points. This is necessary to observe the very narrow CQS
peak for the LL0, which would otherwise coincide with zero gating, and thus a
uniform potential. In experiments, additional sources of non-uniform charge
density near the CNP can play a similar role. For example, a notable charge density
accumulation can occur at edges due to dangling bonds and trapped charges18,26,
which gives rise to the stronger CQS observed for LL0 in our experiments
(Supplementary Fig. 14 and Supplementary Note 10).

Data availability. The data that support the �ndings of this study are available
from the corresponding authors on request.
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