Linking algal growth inhibition to chemical activity: Excess toxicity below 0.1% of saturation

Nørgaard Schmidt, Stine; Armitage, James M.; Arnot, Jon A.; Mackay, Donald; Mayer, Philipp

Published in:
Chemosphere

Link to article, DOI:
10.1016/j.chemosphere.2018.05.168

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Graphical abstract
TITLE
Linking algal growth inhibition to chemical activity: Excess toxicity below 0.1% of saturation

AUTHORS
Stine N. Schmidt,¹ James M. Armitage,² Jon A. Arnot,² Donald Mackay³ and Philipp Mayer¹

AFFILIATIONS
¹Technical University of Denmark, Department of Environmental Engineering, Kgs. Lyngby, Denmark; ²ARC Arnot Research & Consulting Inc., Toronto, ON, Canada; ³Trent University, Department of Chemistry, Peterborough, ON, Canada

CORRESPONDING AUTHOR (*)
Stine N. Schmidt, Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet B115, DK-2800 Kgs. Lyngby, Denmark. Phone: +45 45251425. E-mail: stnsch@env.dtu.dk
ABSTRACT

Chemical activity quantifies the energetic level of an organic compound relative to its pure liquid [0-1], and several studies have reported that baseline toxicity generally requires chemical activities of 0.01-0.1. The first aim was to challenge this chemical activity range for baseline toxicity. Algal growth inhibition data (median effective concentrations, EC$_{50}$) were compiled from two recent studies and included 108 compounds categorised as non-polar (mode of action, MOA1) and polar (MOA2) narcotics. These data were linked to chemical activity by (1) plotting them relative to a regression for (subcooled) liquid solubility (S$_L$), which served as visual reference for chemical activity of unity and (2) determining EC$_{50}$/S$_L$ ratios that essentially equal median effective chemical activity (Ea$_{50}$). Growth inhibition required chemical activity >0.01 for MOA1 and >0.001 for MOA2 compounds. The second aim was to identify compounds exerting excess toxicity, i.e., when growth inhibition occurred at chemical activity <0.001. From a recent review with 2323 data entries, 315 EC$_{50}$ values passed our selection criteria. 280 of these EC$_{50}$ values were within or near the baseline toxicity range (Ea$_{50}$>0.001), and 25 compounds were found to exert excess toxicity (Ea$_{50}$<0.001). Of these compounds, 16 are pesticides or precursors. Methodologically, this study includes two methods for translating EC$_{50}$ values into the chemical activity framework, each having advantages and limitations. Scientifically, this study confirms that baseline toxicity generally requires chemical activities of 0.01-0.1 and extends the application of the chemical activity approach beyond baseline toxicity, by demonstrating its utility to identify compounds that exert excess toxicity.
Graphical abstract

Keywords: Algal growth inhibition; Chemical activity; Baseline toxicity; Excess toxicity; Environmental risk assessment

Highlights

- Algal growth inhibition data were compiled for a wide range of organic compounds
- Toxicity data were linked to chemical activity using two complementary methods
- Toxicity required chemical activity >0.01 for MOA1 and >0.001 for MOA2 compounds
- Excess toxicity was identified at chemical activity <0.001 (0.1% of saturation)
- The chemical activity approach is suggested for prioritising compounds of concern
1. INTRODUCTION

The environmental risk assessment of hydrophobic organic compounds (HOCs) is based on exposure and effect assessments and is often a time-consuming and costly endeavour. Focusing resources on and attention to the most toxic compounds would thus be highly desirable. However, this prioritisation is often not straightforward because the base set of toxicity data, expressed as median effective concentrations (EC_{50}) or median lethal concentrations (LC_{50}), offers no direct information on the intrinsic toxicity (potency) of the compounds. One crucial question in this respect is whether a given compound exerts only baseline toxicity or additionally excess toxicity. Baseline toxicity (narcosis) is defined here as a non-specific and reversible disturbance of the functioning of cell membranes, whereas excess toxicity is defined as toxicity beyond narcosis, i.e., reactive or specific toxicity (Verhaar et al., 1992; van Wezel and Opperhuizen, 1995). Excess toxicity initiates at a (much) lower level of exposure as compared to baseline toxicity (Verhaar et al., 1992; van Wezel and Opperhuizen, 1995). Thus, a scientifically sound, transparent and practical way to identify compounds with excess toxicity relative to baseline toxicity would be highly valuable to chemical risk assessors in the process of prioritising compounds for further and more comprehensive assessments.

One path forward is more extensive toxicity testing that includes measurements of critical body residues (CBRs) or even critical target concentrations (McCarty et al., 1991; Escher et al., 2011; van der Heijden et al., 2015), since baseline toxicity of HOCs typically requires internal concentrations of 2-8 mmol kg^{-1} wet weight (McCarty and Mackay, 1993) or 40-160 mmol kg^{-1} lipid (van Wezel and Opperhuizen, 1995). CBRs within this range would thus indicate baseline toxicity, whereas markedly lower CBRs would indicate excess toxicity. Unfortunately, for most compounds such CBRs are not (yet) available and their
estimation from existing toxicity data (i.e., based on external concentrations) is associated with significant uncertainty and critical assumptions (McCarty, 2015).

Another path forward is the use of Quantitative Structure-Activity Relationships (QSARs). QSARs, as applied to toxicity data, are models relating effect concentrations to molecular structures or physicochemical properties, and they are well established within environmental risk assessment (US EPA, 2016; OECD and ECHA, 2017). Numerous QSARs have been developed over the years for different compounds, organisms and toxicological endpoints (Könemann, 1981; Schultz et al., 2003). By plotting toxicity data (e.g., EC_{50} values) for uncharacterised compounds with appropriate QSARs established for baseline toxicity, agreement with the QSAR indicates baseline toxicity whereas EC_{50} values well below the regression indicates excess toxicity. Still, the uncertainty and assumptions inherent in QSARs call for careful evaluation and validation of each model before using it for prioritising compounds based on their excess toxicity.

A new approach, receiving increased attention, is to relate toxicity to chemical activity (Gobas et al., 2018). Chemical activity (a) quantifies the energetic level, and not the mass concentration, of a HOC relative to the energetic level in its pure liquid (reference state, a=1; Reichenberg and Mayer, 2006). Several studies have linked toxicity to chemical activity, and baseline toxicity for neutral HOCs has been reported to initiate within the rather narrow range of chemical activity 0.01 to 0.1 (Reichenberg and Mayer, 2006; Mayer and Reichenberg, 2006; Mackay et al., 2009; Mackay et al., 2014). This range is fairly independent of the type of HOC and the target organism. The explanations for these observations are: (1) chemical activity controls equilibrium partitioning (from high to low chemical activity) and thereby the diffusive uptake and internal distribution of HOCs in organisms (Di Toro et al., 1991; Reichenberg and Mayer, 2006; Schmidt et al., 2013), (2)
the site of toxic action for baseline toxicity is lipid membranes, and the target site is thereby relatively alike across organisms (van Wezel and Opperhuizen, 1995) and (3) the activity coefficients in lipid/oil are small and similar across HOCs, as exemplified by measurements for polycyclic aromatic hydrocarbons (Mayer et al., 2009). These findings are in line with the “Ferguson Principle” (Ferguson, 1939), the Target Lipid Model (Di Toro et al., 2000) and the aforementioned CBR concept (van Wezel and Opperhuizen, 1995).

The well-defined range for baseline toxicity thus implies that compounds exerting toxicity at a chemical activity (well) below the lower limit for baseline toxicity (i.e., \(a=0.01\)) exert excess toxicity (Reichenberg and Mayer, 2006).

In a recent publication by Schmidt and Mayer (2015), the reported chemical activity range for baseline toxicity was supported by new algal growth inhibition data for 39 organic liquids, which were all characterised as non-polar narcotics according to the Verhaar classification scheme (Aruoja et al., 2014; Verhaar et al., 1992). On a practical level, these findings suggested that baseline toxicity requires exposure corresponding to 1% of liquid saturation, i.e., 1% of the water solubility for the liquid compounds (Schmidt and Mayer, 2015).

In the present study, we applied the chemical activity approach to much larger datasets on algal toxicity, which included a wide range of solid and liquid organic compounds, several expected modes of toxic action (MOA) and also several algal species. First, we extended the previously published analysis on the algal growth inhibition caused by non-polar narcotic liquids (MOA1; Schmidt and Mayer, 2015) with additional published effect data on solid compounds and compounds characterised as polar narcotics (MOA2) from the same research group (Aruoja et al., 2014; Aruoja et al., 2011). The aim of this extended analysis was to challenge, and possibly confirm, the chemical activity range of
0.01 to 0.1 for baseline toxicity with data on 108 compounds characterised as baseline toxicants. Second, we selected data from a recent review by Fu and co-workers (Fu et al., 2015), which includes 2323 data entries for 1081 compounds across 26 algal species, for further analysis. The strategy of this analysis was to expand and illustrate the utility of the chemical activity approach, with the aims of identifying and quantifying excess toxicity and thereby compounds of greater concern. The working hypothesis was that the conversion of concentration-based toxicity data into the chemical activity framework facilitates the direct identification and quantification of excess toxicity relative to baseline toxicity. This would make the chemical activity approach truly operational for screening-level risk assessment of existing and emerging environmental contaminants and thereby a support tool for regulatory decision-making (Mackay et al., 2011).

Two different and complementary methods were used to translate the concentration-based toxicity data from the literature into the chemical activity framework, i.e., to link toxicity to chemical activity: (1) EC$_{50}$ values were plotted against octanol to water partition ratios (K_{ow}), and a regression for (subcooled) liquid solubility (S_L) was then used as visual reference for chemical activity of unity (Mayer and Reichenberg, 2006) and (2) EC$_{50}$ values were divided by estimated S_L values in order to determine median effective chemical activities (Ea$_{50}$, unitless; Reichenberg and Mayer, 2006; Schmidt and Mayer, 2015). Finally, compounds exerting toxicity at chemical activity below 0.001 (i.e., below 0.1% of saturation) were identified as compounds with excess toxicity relative to baseline toxicity.

2. DATA AND METHODS

2.1. Selection of data
For the extended analysis on baseline toxicity, we selected two datasets published by Aruoja and co-workers (Aruoja et al., 2014; Aruoja et al., 2011). These datasets reported the algal growth inhibition caused by 50 compounds characterised as non-polar narcotics, i.e., MOA1 (Aruoja et al., 2014) and 58 compounds characterised as polar narcotics, i.e., MOA2 (Aruoja et al., 2011), according to the Verhaar classification scheme (Verhaar et al., 1992). The compiled dataset with 108 compounds included 66 liquids and 42 solids, of which nine compounds were water miscible and eight compounds were ionisable. All algal tests were carefully conducted in the same laboratory, using the green algae *Raphidocelis subcapitata* (until recently named *Pseudokirchneriella subcapitata*) and with an exposure duration of 72 h. In this way, these high-quality data form a consistent and reliable dataset for challenging, and possibly confirming, the chemical activity range for baseline toxicity.

For the analysis aiming at identifying and quantifying excess toxicity, we selected data from a recent review by Fu and co-workers (Fu et al., 2015). Fu et al. compiled algal toxicity data from a wide range of published studies and two databases in order to evaluate the data quality and the relationship between toxicity and hydrophobicity, i.e., generation of QSARs (Fu et al., 2015). The compiled dataset includes 2323 data entries for 1081 compounds across 26 algal species. Data for the present analysis were selected to meet the following criteria: (1) the compounds are predominately neutral at pH 6-8, (2) the compounds have log $K_{ow} \geq 2.00$, (3) the test organisms are freshwater green algae, (4) the test duration is 48 or 72 h and (5) the toxicity endpoint is inhibition of growth rate rather than reduction in yield or integral (Christensen et al., 2009). The acid dissociation constant of a given compound was used to determine its fraction of ionised molecules at pH 7, and compounds with $\leq 10\%$ ionised molecules were characterised as neutral at pH 6-8. A total
of 315 data entries for 253 compounds fulfilled these five criteria. The compounds were tested with the four algae species *Raphidocelis subcapitata*, *Scenedesmus obliquus*, *Chlorella pyrenoidosa* and *Desmodesmus subspicatus*.

In the Aruoja studies, EC$_{50}$ values were expressed in mg L$^{-1}$, whereas in the Fu review, toxicity was expressed as log 1/EC$_{50}$ (mol L$^{-1}$). Before further data analysis, all data were standardised as log EC$_{50}$ in the unit of mmol L$^{-1}$. The molar masses needed for the standardisation were retrieved from the US EPA based EPI Suite$^\text{TM}$ program (US EPA, 2017).

2.2. Data analyses

We applied two different and complementary methods to translate the concentration-based data into the chemical activity framework, i.e., to link toxicity to chemical activity. Following Method 1, log EC$_{50}$ (mmol L$^{-1}$) was plotted against log K$_{ow}$, and a regression for (subcooled) liquid solubility (S$_L$, mmol L$^{-1}$) was then used as visual reference for chemical activity of unity (Mayer and Reichenberg, 2006). The rationale behind is, that the chemical activity of an HOC is unity in its pure liquid (i.e., at liquid solubility/saturation). For compounds that are liquid at standard conditions, the liquid solubility is simply the water solubility. For compounds that are solid at standard conditions, the subcooled liquid solubility is the water solubility of the hypothetical liquid state of the compound, i.e., the water solubility had the solid compound been a liquid (Schwarzenbach et al., 2003). Lines representing chemical activity levels of 0.1, 0.01 and 0.001 were also included in the plot. The regression for S$_L$ (mmol L$^{-1}$) was published by Mackay and co-workers (Mackay et al., 1980):
\[
S_L \approx \frac{1797}{K_{ow}} \Rightarrow \log S_L \approx 3.25 - \log K_{ow}
\] (1)

The regression is based on solubility data for 45 HOCs with log \(K_{ow} \) values ranging from 1.97 to 7.11 (Mackay et al., 1980). The number 1797 (Eq. 1) is essentially an estimate of the (subcooled) liquid solubility or pseudo-solubility in octanol (mmol L\(^{-1}\)) and is, for many HOCs, similar in magnitude to the solubility in the lipid phase. Additional regressions were collected and used in parallel analyses (Mackay, 2000; Jain and Yalkowsky, 2001; Di Toro et al., 2007).

Following Method 2, the EC\(_{50}\) (mmol L\(^{-1}\)) of each compound was divided by a compound-specific \(S_L \) (mmol L\(^{-1}\)), as this ratio essentially equals the median effective chemical activity (\(E_{a_{50}} \), unitless) for compounds with log \(K_{ow} \geq 2 \) and defined water solubility (Reichenberg and Mayer, 2006; Ferguson, 1939). The EC\(_{50}/S_L \) ratios were then plotted against their respective log \(K_{ow} \), and lines representing chemical activity levels of 1, 0.1, 0.01 and 0.001 were included in the plot to serve as visual references. A given \(S_L \) value (mmol L\(^{-1}\)) was estimated as the ratio of the water solubility (\(S_w \), mmol L\(^{-1}\)) of the compound and its maximum chemical activity (\(a_{\text{max}} \), unitless; Reichenberg and Mayer, 2006), which equals its fugacity ratio:

\[
S_L \approx \frac{S_w}{a_{\text{max}}}
\] (2)

The maximum chemical activity is by definition 1 for liquid compounds. Solid compounds crystallise before reaching a chemical activity of unity, and the thermodynamic stability of the crystal structure of a given compound then defines its \(a_{\text{max}} \) (Mayer and Reichenberg, 2006). For each solid compound, \(a_{\text{max}} \) (unitless) was estimated from its melting
temperature (T_M, K) and the ambient temperature (T, 298 K) according to Yalkowsky et al. (Yalkowsky et al., 1979), assuming the entropy of melting to be 56 J mol$^{-1}$ K$^{-1}$ (i.e., Walden’s rule):

$$a_{\text{max}} \approx e^{6.8 \times (1 - \frac{T_M}{T})}$$

(3)

The log K_{ow}, S_w and T_M values used in the analyses were all retrieved from EPI Suite$^\text{TM}$ (US EPA, 2017). The program was operated in the batch mode function (input using SMILES) for the KOWWIN v1.68, WSKOWWIN v1.42 and MPBPWIN v1.43 modules and empirical and predicted values were compiled for those three parameters respectively. If available the experimental values were used, otherwise the estimated values were used.

2.3. Identifying and quantifying excess toxicity

Excess toxicity was identified visually relative to the regression for S_L. Toxicity below chemical activity 0.001, which corresponds to 0.1% of liquid saturation, was identified as excess toxicity. For the identified compounds, E_{a50} values were estimated in order to quantify the excess toxicity. Following Method 1, E_{a50} was quantified as the ratio of EC_{50} and S_L, estimated from the regression for S_L (Eq. 1). Following Method 2, E_{a50} was quantified as the ratio of EC_{50} and compounds-specific S_L, estimated from S_w and a_{max} (Eqs. 2 and 3).

3. RESULTS AND DISCUSSION

3.1. Challenging the chemical activity range for baseline toxicity
The extended analysis on baseline toxicity included 108 compounds characterised as MOA1 and MOA2 compounds. The first chemical activity based analysis of these toxicity data was done using a regression for S_L (Fig. 1A), that served as visual reference for chemical activity of unity (Method 1; Mayer and Reichenberg, 2006). Also, lines representing chemical activity of 0.1, 0.01 and 0.001 were added, and the chemical activity range for baseline toxicity ($a=0.01$-0.1) was shaded to visually help interpretation (Fig. 1A).

The EC$_{50}$ values for all MOA1 compounds (from Aruoja et al., 2014) were within or very near the reported range for baseline toxicity of 0.01 to 0.1, whereas the EC$_{50}$ values for the MOA2 compounds (from Aruoja et al., 2011) were largely within the chemical activity range of 0.001 to 0.1 (Fig. 1A). The average EC$_{50}$/S$_L$ ratio was 0.085 for the MOA1 compounds (range: 0.008 to 0.356, $n=50$) and 0.034 for the MOA2 compounds (range: 0.001 to 0.221, $n=58$), with the S_L values being estimated via log K_{ow} (Eq. 1, Fig. 1A).

Further, the method proved applicable for both liquid and solid compounds (Fig. 1A) with an average EC$_{50}$/S$_L$ ratio of 0.070 for the liquid compounds (range: 0.003 to 0.356, $n=66$) and somewhat lower ratios for the solid compounds (average: 0.038, range: 0.001 to 0.173, $n=42$).

The second chemical activity based analysis of the 108 narcotic compounds was done by calculating EC$_{50}$/S$_L$ ratios (\approxEa$_{50}$) and then plotting these ratios against log K_{ow} (Method 2, Fig. 1B). In the same plot, lines representing chemical activity of 1, 0.1, 0.01 and 0.001 were added, and the chemical activity range for baseline toxicity ($a=0.01$-0.1) was shaded to visually help interpretation (Fig. 1B; Schmidt and Mayer, 2015). The total range of Ea$_{50}$ values was clearly larger for both the MOA1 and MOA2 compounds when using this method relative to the first method, with the lowest Ea$_{50}$ value being below 0.0001. The average EC$_{50}$/S$_L$ ratio was 0.057 for the MOA1 compounds (range: 0.001 to
0.352, \(n=50 \)) and even lower for the MOA2 compounds (average: 0.010, range: 0.0001 to 0.062, \(n=58 \)), with the \(S_L \) values being estimated via \(S_w \) and \(a_{max} \) (Eqs. 2 and 3, Fig. 1B).

Again, the method proved applicable for both liquid and solid compounds (Fig. 1B).

Thus, overall the analysis performed using Method 1 (Fig. 1A) confirmed the reported chemical activity range for baseline toxicity of MOA1 compounds (0.01-0.1), whereas MOA2 compounds exerted their toxicity within a somewhat larger range (0.001-0.1). The analysis performed using Method 2 (Fig. 1B) was less clear with respect to confirming the chemical activity range for baseline toxicity, as the \(E_{a_{50}} \) values were generally lower and spanned a larger range. Based on the two data analyses, we selected Method 1 (Fig. 1A) for subsequent analyses due to (1) the clear results with narcotic compounds, (2) its simplicity and practicality and (3) the minimised risk of error propagation (see also section 3.3). Chemical activity of 0.001 was chosen as the operational threshold for identifying excess toxicity in the subsequent analysis of a larger set of algal growth inhibition data, as none of the narcotic compounds were below this threshold when following Method 1.

3.2. Identifying and quantifying excess toxicity

The chemical activity based analysis aiming at identifying and quantifying excess toxicity included 315 data entries, covering 253 compounds across four algal species, selected from a recent review by Fu and co-workers (Fu et al., 2015). The plot used for analysing this larger set of algal growth inhibition data (Fig. 2) was created as described in section 3.1, and results from the different algal species are highlighted in Fig. S1. The vast majority (88.9\%) of the \(E_{C_{50}} \) values were within the chemical activity range of 0.001 to 1 (Fig. 2, white symbols). Based on the extended analysis on baseline toxicity (see Section 3.1), these compounds were characterised as baseline narcotics towards the tested algae.
A total of 27 data entries for 25 compounds (corresponding to 8.6% of the data) had EC$_{50}$/S$_L$ ratios below 0.001 and were thus identified as compounds exerting excess toxicity (Fig. 2, red symbols). The 25 compounds and associated EC$_{50}$/S$_L$ ratios are listed in Table 1, and the ratios ranged from 3.3×10^{-8} to 9.4×10^{-4}. Of these compounds, 16 are registered as pesticides, biocides or precursors (Table 1). Excess toxicity (i.e., reactive or specific toxicity) to algae was thus to be expected a priori for these 16 compounds, and the analysis thus validated the chemical activity approach for identifying chemicals exerting excess toxicity. The excess toxicity of the remaining nine compounds on the list is very interesting and could trigger further investigations and assessments. The graphical display of excess toxicity in Fig. 2 has been previously suggested by Maeder and co-workers (Maeder et al., 2004) in their development of the concept of “Toxic Ratio” (TR) as an indicator of intrinsic toxicity for PBT (persistent, bioaccumulative and toxic) evaluations. The scientific basis of the TR concept was the pioneering studies by Veith, Könemann, Lipnick and their colleagues (Veith et al., 1979; Könemann, 1981; Lipnick et al., 1987).

Eight compounds, corresponding to just 2.5% of the data, had EC$_{50}$/S$_L$ ratios above 1 and thus EC$_{50}$ values above the estimated liquid solubility (Fig. 2, grey symbols). Five of these eight compounds had log K$_{ow}$$>6$ and/or air to water partition ratios (K$_{aw}$, L L$^{-1}$) approaching unity, which makes these compounds very challenging to test in terms of establishing, maintaining and measuring exposure concentrations in the tests. Compounds with high log K$_{ow}$ are generally difficult to dissolve and they tend also to sorb to the algal biomass or exudates, which can lead to freely dissolved concentrations in the test being markedly lower than the nominal concentrations (Mayer et al., 2000). Compounds with K$_{aw}$ approaching unity are prone to evaporative losses from open tests and still have considerable losses when conducting a closed test with headspace (Mayer et al., 2000;
Birch et al., 2017). For these five compounds, the EC$_{50}$/S$_L$$>1$ can be used as a valuable trigger for additional quality checking of the original toxicity data. For the other three compounds, it remains less clear whether the EC$_{50}$/S$_L$$>1$ is due to errors and uncertainty in the EC$_{50}$ value or errors and uncertainty related to the estimated log K$_{ow}$ and S$_L$.

3.3. Two complementary methods to link toxicity to chemical activity

There are several reasons for using Method 1, applying a regression for S$_L$. It is very convenient to read EC$_{50}$/S$_L$ as a distance between an EC$_{50}$ value and the regression for S$_L$ in the logarithmic plot. Additionally, S$_L$ (mmol L$^{-1}$) is approximately inversely related to the activity coefficient in water (γ_{water}, L mmol$^{-1}$), which largely determines the membrane to water partitioning of those compounds that are well dissolved in the membrane (i.e., low activity coefficient in the membrane, $\gamma_{membrane}$, L mmol$^{-1}$). This method allows a chemical activity based analysis of toxicity data without any data conversion. This is not only very simple and practical, it also minimises the propagation of errors associated to input data and model assumptions. The disadvantages of this method are related to the underlying assumptions for regressions for S$_L$, and particularly the assumption of the constant entropy of melting (i.e., Walden’s rule; Yalkowsky et al., 1979). Further, different regressions for S$_L$ have been published and could lead to different results. However, these differences were found to be limited in a recent study (Mayer and Schmidt, 2017) and also in the present study, at least when plotting and analysing the data in a logarithmic framework (Figs. S2 to S4).

Following Method 2, the compound-specific S$_L$ values can be estimated from regressions for S$_L$ or using more sophisticated methods. Alternatively, activity coefficients can be used to translate EC$_{50}$ to Ea$_{50}$ values (Ea$_{50}$=EC$_{50}$×γ_{water}; Reichenberg and Mayer,
The advantage of this method is thus the flexibility for using different simple and more advanced estimation methods, with the possibility of obtaining very accurate S_L estimates for well-characterised compounds. Conversely, the disadvantage of the method is the possibility for considerable error propagation from various input data and model assumptions. Indeed, the increased Ea_{50} range in Fig. 1B, as compared to Fig. 1A, could be caused by error propagation associated to the conversions, more specifically error and uncertainty in the input variables (S_w and T_M) and the applied equations (Eqs. 2 and 3). Diminishing the risk of error propagation would include empirical determination of accurate S_w values and the use of compound-specific entropy of melting. For many HOCs, such data are not (yet) available.

Following the two methods, S_L was either used as a visual reference or as a conversion factor for the analyses within the chemical activity framework. A special issue is thus related to water miscible compounds, not having a defined solubility value. Aruoja and co-workers included nine water miscible compounds in their study (Aruoja et al., 2014). Following Method 1, these compounds were still within the expected chemical activity range for baseline toxicity (Fig. S5), whereas applying Method 2 to these water miscible compounds involved the assignment of a pseudo-solubility value (1000000 mg L$^{-1}$, Fig. S6). We decided to exclude water miscible compounds from the larger analysis of the dataset from Fu and co-workers (within selection criterion (2), Section 2.1) and suggest for future studies that conversion from EC_{50} to Ea_{50} preferably should be done using activity coefficients ($Ea_{50} = EC_{50} \times \gamma_{water}$). However, it should be recognised that estimates of γ_{water} for miscible compounds are relatively scarce (e.g., Sherman et al., 1996) and therefore values calculated using property prediction software (e.g., SPARC or CosmoTHERM) will likely have to be used.
Another special issue relates to ionisable compounds. Eight ionisable compounds were included in the original dataset by Aruoja and co-workers (Aruoja et al., 2011). Following Method 1, the EC$_{50}$/S$_L$ ratios for these compounds were, somewhat surprisingly, within or very near the expected chemical activity range for baseline toxicity (Fig. S5). Following Method 2, the compounds had EC$_{50}$/S$_L$ values within or near the chemical activity range 0.001 to 0.01 (Fig. S6). Future analyses with ionisable compounds should determine the applicability domain for the chemical activity approach when assessing these challenging compounds, and no ionisable compounds were included in the data selected from the review by Fu and co-workers (selection criterion (1), Section 2.1).

3.4. Application of the chemical activity approach within risk assessment and regulatory decision-making

The present study included two methods of analysing an algal growth inhibition dataset of 108 MOA1 and MOA2 compounds within a chemical activity framework. Using a regression for S$_L$, the analysis overall confirmed the reported chemical activity range for baseline toxicity of MOA1 compounds ($\alpha=0.01$-0.1), whereas MOA2 compounds exerted their toxicity within a somewhat larger range ($\alpha=0.001$-0.1). It is now straightforward to use these ranges for assessing new toxicity data of existing and emerging environmental contaminants, with the purpose of characterising them as being in the baseline toxicity range or with excess toxicity relative to baseline toxicity (as illustrated in the data analysis of the second dataset, Fig. 2). It remains crucial to use strict quality criteria on all input data and also to be critical with regards to the applicability domain of the chemical activity approach. While it is obvious that the approach is best suited for organic compounds with log $K_{ow}>2$ and that are predominantly neutral at pH 6-8, additional work is now required to
set the limits of the applicability domain. However, we expect a rather wide applicability domain of the chemical activity approach for the type of analysis done here, since some error (e.g., factor $2 \approx 0.3$ log units) is acceptable when interpreting toxicity data on a logarithmic scale with the purpose of distinguishing compounds as being either in the baseline toxicity range or exerting excess toxicity (see also Figs. S2 to S4).

We envision that this simple and fast characterisation of compounds within these two groups can guide risk assessment and decision-making, as well as help focus further (testing) efforts on those compounds with significant excess toxicity relative to baseline toxicity.

4. CONCLUSION

Chemical activity based analyses of algal growth inhibition data were performed to (1) challenge the chemical activity range for baseline toxicity ($a=0.01-0.1$) and (2) identify and quantify excess toxicity. Plotting the EC$_{50}$ values relative to a regression for S_L confirmed the chemical activity range for baseline toxicity of MOA1 compounds ($a=0.01-0.1$), whereas the MOA2 compounds exerted toxicity within a somewhat larger range ($a=0.001-0.1$). The method was then applied for analysing a large dataset with several expected MOA, and the chemical activity of 0.001 was chosen as the operational threshold for identifying excess toxicity. In this analysis, 25 compounds were identified with excess toxicity relative to baseline toxicity, and 16 of them are registered for use as pesticides, biocides or precursors and thus expected to have reactive or specific MOA. The remaining nine compounds could trigger further investigations and assessments. On the scientific level, this study extends the application of the chemical activity approach beyond baseline toxicity and demonstrates its utility for comparing toxicity data across compounds and
species and to identify compounds with excess toxicity relative to baseline toxicity. On the practical level, these findings imply that excess toxicity occurs below 0.1% of liquid saturation. On the risk assessment level, it is now straightforward to use these limits for assessing new toxicity data with the purpose of characterising them as being in the baseline toxicity range or exerting excess toxicity. This could also help industries at an early stage to identify compounds with considerable excess toxicity.

ACKNOWLEDGEMENTS

We acknowledge the financial support from the CEFIC Long-range Research Initiative (CEFIC-LRI, ECO30). Also, we would like to thank the other project team members and the ECOTOX liaison team for good discussions on the work leading to the present paper.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at …
FIG. 1

(A) Log EC_{50} (mmol L$^{-1}$)

(B) Log EC_{50}/S_L

- MOA1 liquid (n=46)
- MOA1 solid (n=4)
- MOA2 liquid (n=20)
- MOA2 solid (n=38)
FIG. 2

![Graph showing the relationship between Log EC₅₀ (mmol L⁻¹) and Log K_{ow}. The graph includes data points for different concentrations of a (S) at a = 1, a = 0.1, and a = 0.01, with n values of 8, 280, and 27.](image)
Table 1. The 25 compounds with excess toxicity relative to baseline toxicity (Fig. 2). All values are from tests with algae *Raphidocelis subcapitata* (see also Fig. S1).

<table>
<thead>
<tr>
<th>CAS number</th>
<th>Compound</th>
<th>Common name</th>
<th>Log K_{ow}</th>
<th>EC_{50}/S_{L}</th>
<th>Pesticide?</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-06-2</td>
<td>Trichloronitromethane</td>
<td>Chloropicrin</td>
<td>2.09</td>
<td>0.000000033</td>
<td>Insecticide & nematicide</td>
</tr>
<tr>
<td>545-06-2</td>
<td>Trichloracetonitrile</td>
<td></td>
<td>2.09</td>
<td>0.000030</td>
<td>Insecticide (former)</td>
</tr>
<tr>
<td>1014-70-6</td>
<td>2,4-bis(ethylamino)-6-methylthio-1,3,5-triazine</td>
<td>Simetryn</td>
<td>2.80</td>
<td>0.000035</td>
<td>Herbicide</td>
</tr>
<tr>
<td>886-50-0</td>
<td>2-tert-butylamino-4-ethylamino-6-methylthio-1,3,5-triazine</td>
<td>Terbutryn</td>
<td>3.74</td>
<td>0.000043</td>
<td>Herbicide</td>
</tr>
<tr>
<td>100-14-1</td>
<td>4-nitrobenzyl chloride</td>
<td></td>
<td>2.61</td>
<td>0.000051</td>
<td>Herbicide</td>
</tr>
<tr>
<td>28159-98-0</td>
<td>2-tert-butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazine</td>
<td>Cybutryne</td>
<td>4.07</td>
<td>0.000060</td>
<td>Herbicide</td>
</tr>
<tr>
<td>30125-65-6</td>
<td>2-tert-butylamino-4-amino-6-methylthio-1,3,5-triazine</td>
<td>Terbutryn</td>
<td>2.73</td>
<td>0.000065</td>
<td>Fungicide</td>
</tr>
<tr>
<td>51218-49-6</td>
<td>n-propoxyethyl-n-chloroacetyl-2,6-diethylaniline</td>
<td></td>
<td>4.08</td>
<td>0.000069</td>
<td>Herbicide</td>
</tr>
<tr>
<td>97-00-7</td>
<td>1-chloro-2,4-dinitrobenzene</td>
<td></td>
<td>2.17</td>
<td>0.000074</td>
<td>Herbicide</td>
</tr>
<tr>
<td>117-80-6</td>
<td>2,3-dichloro-1,4-naphthoquinone</td>
<td>Dchlone</td>
<td>2.65</td>
<td>0.000080</td>
<td>Herbicide</td>
</tr>
<tr>
<td>122-34-9</td>
<td>2,4-bis(ethylamino)-6-chloro-1,3,5-triazine</td>
<td>Simazine</td>
<td>2.18</td>
<td>0.000093</td>
<td>Herbicide</td>
</tr>
<tr>
<td>58-27-5</td>
<td>2-methyl-1,4-naphthoquinone</td>
<td></td>
<td>2.20</td>
<td>0.00012</td>
<td>Herbicide</td>
</tr>
<tr>
<td>5329-12-4</td>
<td>2,4,6-trichlorophenylhydrazine</td>
<td></td>
<td>2.73</td>
<td>0.00012</td>
<td>Herbicide</td>
</tr>
<tr>
<td>5915-41-3</td>
<td>2-tert-butylamino-4-chloro-6-ethylamino-1,3,5-triazine</td>
<td>Terbuthylazine</td>
<td>3.21</td>
<td>0.00014</td>
<td>Herbicide</td>
</tr>
<tr>
<td>33693-04-8</td>
<td>2-tert-butylamino-4-ethylamino-6-methoxy-1,3,5-triazine</td>
<td>Terbumeton</td>
<td>3.10</td>
<td>0.00019</td>
<td>Herbicide</td>
</tr>
<tr>
<td>23184-66-9</td>
<td>2’,6’-diethyl-N-butoxymethyl-2-chloroacetanilide</td>
<td>Butachlor</td>
<td>4.50</td>
<td>0.00019</td>
<td>Herbicide</td>
</tr>
<tr>
<td>1912-24-9</td>
<td>2-ethylamino-4-isopropylamino-6-chloro-1,3,5-triazine</td>
<td>Atrazine</td>
<td>2.61</td>
<td>0.00019</td>
<td>Herbicide</td>
</tr>
<tr>
<td>122-57-6</td>
<td>Benzalacetone</td>
<td></td>
<td>2.07</td>
<td>0.00025</td>
<td>Herbicide</td>
</tr>
<tr>
<td>91-59-8</td>
<td>2-naphthylamine</td>
<td></td>
<td>2.28</td>
<td>0.00037</td>
<td>Herbicide</td>
</tr>
<tr>
<td>110-66-7</td>
<td>1-pentanethiol</td>
<td></td>
<td>2.74</td>
<td>0.00042</td>
<td>Herbicide</td>
</tr>
<tr>
<td>28249-77-6</td>
<td>S-4-chlorobenzyl diethylthiocarbamate</td>
<td>Thiobencarb</td>
<td>3.40</td>
<td>0.00050</td>
<td>Herbicide</td>
</tr>
<tr>
<td>1484-13-5</td>
<td>9-vinylcarbazole</td>
<td></td>
<td>4.13</td>
<td>0.00082</td>
<td>Herbicide</td>
</tr>
<tr>
<td>111-88-6</td>
<td>1-octanethiol</td>
<td></td>
<td>4.21</td>
<td>0.00087</td>
<td>Herbicide</td>
</tr>
<tr>
<td>350-30-1</td>
<td>3-chloro-4-fluoronitrobenzene</td>
<td></td>
<td>2.66</td>
<td>0.00088</td>
<td>Herbicide</td>
</tr>
<tr>
<td>95-33-0</td>
<td>N-cyclohexyl-2-benzothiazolesulfenamide</td>
<td></td>
<td>3.47</td>
<td>0.00094</td>
<td>Herbicide</td>
</tr>
</tbody>
</table>

\(^{a}\) octanol to water partition ratio (US EPA, 2017); \(^{b}\) ratio of median effective concentration and (subcooled) liquid solubility (via Eq. 1); \(^{c}\) Pesticides registered in the PPDB: Pesticide Properties Database (PPDB, 2017); \(^{d}\) TOXNET (U.S. National Library of Medicine, 2017).
FIGURE CAPTIONS

Fig. 1. (A) Regression for (subcooled) liquid solubility (S_L, mmol L$^{-1}$, $a=1$) as a function of K_{ow} (Mackay et al., 1980) and lines representing chemical activity levels of 0.1, 0.01 and 0.001. A total of 108 EC$_{50}$ values (mmol L$^{-1}$) are plotted against their K_{ow}. (B) Ratios of the 108 EC$_{50}$ values (mmol L$^{-1}$) and respective (subcooled) liquid solubility (S_L, mmol L$^{-1}$) are plotted against K_{ow}. Shaded areas are the chemical activity range 0.01 to 0.1 for baseline toxicity, which corresponds to 35 and 345 mmol L$^{-1}$ lipid, respectively, at an average activity coefficient of 0.29 L mol$^{-1}$ (Mayer et al., 2009).

Fig. 2. Regression for (subcooled) liquid solubility (S_L, mmol L$^{-1}$, $a=1$) as a function of K_{ow} (Mackay et al., 1980) and lines representing chemical activity levels of 0.1, 0.01 and 0.001. A total of 315 EC$_{50}$ values (mmol L$^{-1}$) are plotted against their K_{ow}. Grey symbols: compounds with EC$_{50}$/S$_L$>1; red symbols: compounds with excess toxicity relative to baseline toxicity, in correspondence with Maeder et al. (2004). The shaded area is the chemical activity range 0.01 to 0.1 for baseline toxicity, which corresponds to 35 and 345 mmol L$^{-1}$ lipid, respectively, at an average activity coefficient of 0.29 L mol$^{-1}$ (Mayer et al., 2009).
REFERENCES

McCarty, L.S., 2015. Data quality and relevance in ecotoxicity: The undocumented
influences of model assumptions and modifying factors on aquatic toxicity dose metrics. Regul. Toxicol. Pharm. 73, 552–561.

Highlights

- Algal growth inhibition data were compiled for a wide range of organic compounds
- Toxicity data were linked to chemical activity using two complementary methods
- Toxicity required chemical activity >0.01 for MOA1 and >0.001 for MOA2 compounds
- Excess toxicity was identified at chemical activity <0.001 (0.1% of saturation)
- The chemical activity approach is suggested for prioritising compounds of concern