Measuring the effects of central softening of drinking water in households and industries in Brøndby

Godskesen, Berit; von Bülow, Dorthe; Rygaard, Martin

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Measuring the effects of central softening of drinking water in households and industries in Brøndby, Denmark

B. Godskesena, Dorthe von Bülowb, M. Rygaarda

aTechnical University of Denmark, Dept. of environmental engineering, e-mail:mryg@env.dtu.dk
bHOFOR, Greater Copenhagen Utility

\textbf{Introduction}

- Drinking water hardness affects the economy, environment and convenience experienced by the water user.
- We want to provide actual measurements of the effects before and after introducing central softening in Brøndby, Copenhagen.
- In Denmark economic cost-benefit analysis (CBA)1,2 and environmental life-cycle assessment (LCA)3 show significant benefits from introducing central softening at waterworks where water hardness levels are above 250 mg/L as CaCO\textsubscript{3}.
- Most CBA and LCA conclusions are based on theoretical assumptions.

\textbf{Methods and participants in the project}

- Measurements are carried out before (371 mg/L) and after (205 mg/L) introducing central softening. A comparison of the two sets of measurements shows the effects of water softening.
- Participants and measurements:
 - 30 private households: Consumption of descaling agents, dishwasher salt, laundry detergents, fabric softener, time for removing scaling.
 - 4 Industries: Water heating efficiency, salt consumption (ion exchanger), precipitation in tap aerators and toilet cisterns.

\textbf{Preliminary results – Private households}

- Consumption of: laundry detergent; descaling agents for kettle and coffee maker; and salt addition in dishwasher is reduced with softened water.

\textbf{Preliminary results - Industries}

- Efficiency of one central heating installation before and after softening:
 - Heat efficiency decreases 0.8% with softened water compared to 8% with very hard water during a 4 month period between services.

\textbf{Salt consumption in ion exchanger}

- Consumption of salt for decentralised water softening devices is decreased.

1COWI (2011). Central blødgøring af drikkevand.
2Ramboll (2017). Blødt vand i en cirkulaer økonomi.
3Godskesen et al. (2012). Life cycle assessment of central softening of very hard drinking water. J.env.man.(105) 83-89