Downloaded from orbit.dtu.dk on: Feb 26, 2021

DTU Library

=
=
—

i

Low-cost GNSS sampler based on the beaglebone black SBC

Olesen, Daniel; Jakobsen, Jakob; Knudsen, Per

Published in:
Proceedings of the 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS
Signals and Signal Processing (NAVITEC)

Link to article, DOI:
10.1109/NAVITEC.2016.8060034

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Olesen, D., Jakobsen, J., & Knudsen, P. (2016). Low-cost GNSS sampler based on the beaglebone black SBC.
In Proceedings of the 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on
GNSS Signals and Signal Processing (NAVITEC) IEEE. https://doi.org/10.1109/NAVITEC.2016.8060034

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1109/NAVITEC.2016.8060034
https://orbit.dtu.dk/en/publications/65d23d55-d597-4199-8880-a9b3ad23ec96
https://doi.org/10.1109/NAVITEC.2016.8060034

Low-cost GNSS Sampler based on the BeagleBone
Black SBC

Daniel Olesen, Jakob Jakobsen & Per Knudsen
DTU Space, Dept. of Geodesy
Technical University of Denmark
Email: {danole, jj, pk}@space.dtu.dk

Abstract—This paper describes the design of a simple low cost
GNSS sampler with integrated storage. The sampler is built from
low cost, off-the-shelf components. The proposed design stores
digital IF samples from two separate front ends and record
the data to a SD card for post-mission processing. The GNSS
sampler currently supports GPS and GLONASS signals, but
could also be configured for Galileo reception. The design is
based on the popular low cost BeagleBone Black Single Board
Computer (SBC) and two evaluation Kkits of the MAX2769 GNSS
Radio Frequency (RF) front end. The design is based on two
identical coprocessors in the processor of the BeagleBone, known
as Programmable Realtime Units (PRU). The sampler has been
designed for portability and data acqusition on small Unmanned
Aerial Vehicles (UAVs).

[. INTRODUCTION

GNSS Software Defined Receivers (SDRs) are becoming
an increasingly important tool in academic research projects.
In contrast to commercial GNSS receivers, software imple-
mentations offer the ultimate level of control and flexibility
for the processing stage. A software based receiver allows
for great flexibility, offering support for various modulation
techniques, bandwidths and algorithms. In terms of GNSS
receivers, reported software implementations have steadily
grown in numbers and capabilities over the years. Licensed
implementations are offered from commercial suppliers, uni-
versities as well as free open-source versions are steadily
emerging.

A SDR gives added control and access to parameters
at the tracking loop level, which allows for research in
more advanced applications such as e.g. Ultra-Tight/Deep
Integration of GNSS and Inertial Navigation Systems (INS).
Another application, where a SDR is useful is within Space
Weather monitoring. Here the two scintillation indices S4 and
04 are traditionally used as a measure for the scintillations
caused by the ionosphere. Direct access to the correlators
and the signal filtering gives control over the quality of these
parameters, see [1]. This flexibility and low level access to
the hardware is also very useful in other research areas such
as multipath mitigation, GNSS based reflectometry, GNSS
jamming and spoofing detection.

A prerequisite for any SDR is access to Intermediate Fre-
quency (IF) samples acquired by an RF front end. To this
end, there exist a number of available commercial options
for RF front-ends to GNSS software receivers. These varies

from professional multi-purpose front ends supporting wide
frequency ranges, such as the USRP product line by Ettus
Research (National Instruments). A number of RF front ends
for radio amateurs/hobbyist has furthermore been used for
GNSS applications, even a slightly modified TV-Tuner has
been demonstrated as a workable GNSS RF front end [2]. A
number of more specialized front ends developed specifically
for GNSS reception also exist, such as the SIGE GN3S sampler
or the Stereo from Nottingham Scientific Limited (NSL).

To the authors best knowledge most dedicated GNSS SDR
front ends are designed as streaming devices, which transfer
either real or quadrature IF samples in realtime over USB
or Ethernet interfaces and thus require a PC for storage or
realtime processing. In certain applications, where weight and
size is critical, this would not be an optimal approach. Due
to this reason, we propose a simple GNSS sampler with
integrated storage for subsequent post-processing of data. The
system is built using low cost, off-the-shelf components. We
are using 2 identical RF front ends to support GPS L1 C/A
code and GLONASS L1 C/A code. This is necessary since the
used RF front ends have a bandwidth that do not cover the
frequency range of both constellations simultaneously.

In this paper, a small, portable GNSS sampler based on the
low cost BeagleBone Black Single Board Computer (SBC)
and two evaluation kit of the commercial GNSS RF front end,
MAX2769 is described. The advantages of this system are
low cost, size and flexibility. Often GNSS front end designs
are built using a Micro Controlling Unit (MCU) for USB
or ethernet communication and programmable logic, such as
a CPLD or FPGA for bit manipulation and high bandwidth
transfer of IF samples. This approach requires that the designer
is experienced with embedded electronics and digital logic
design. The setup used for our sampler is besides a few
simple electrical connections, configured solely in software
and the integration thus only require minimum expertise in
hardware. In this configuration, we believe that the proposed
setup would be an ideal starting point for researchers who
are interested in GNSS SDR applications, but are working
on limited budgets and does not necessarily have expertise in
hardware engineering.

The sampler was developed with a distinct focus on porta-
bility to ensure it can be used in small UAV applications. The
authors have previously proposed an embedded realtime GPS
SDR design based on the Parallella board and the MAX2769

Satellite Broadcast Signal

AN

Baseband Signal

AL

L1 Carrier (1575.42 MHz)

C/A code (1.023 MChips/s)

Navigation Message (50 bit/s)

Fig. 1. Principle of GPS CA code modulation

RF front end for UAV applications. [3].

II. GPS AND GLONASS SIGNALS

In this paper we only consider GNSS signals transmitted in
the L1 band from the GPS and GLONASS constellations. Both
systems have multiple signals in this band, but we will in the
following only consider the civilian (non-encrypted) Coarse /
Acquisition (C/A) signals.

A. GPS C/A code

The GPS Coarse / Acquisition (C/A) code is a 1023 chip
Pseudo Random Noise (PRN) sequence transmitted on the L1
band with a carrier frequency of 1575.42 MHz. The C/A code
is modulated on to the carrier by Binary Phase Shift Keying
(BPSK). As all GPS satellites are using the same carrier
frequency, a Code Division Multiple Access (CDMA) coding
scheme is applied on the C/A code. The C/A code is for each
satellite a unique PRN code known as a gold code. Gold codes
have a guaranteed minimum cross-correlation with other gold
codes and hence the satellite transmitting the signal can be
identified by correlation with a receiver generated replica. The
chiprate of the C/A code is 1.023 MChips/s, corresponding to a
code sequence length of 1 ms. The C/A code is modulated with
the satellite navigation message (50 bits/s) using a modulo-2
addition, which is commonly also referred to an eXclusive
OR (XOR) operation. The navigation message contains the
ephemeris, time etc. for the satellite. A visual illustration of
how the C/A broadcast signal for GPS satellites are created
are shown in Figure 1. For more technical details of the GPS
satellite signals, please refer to the GPS Interface Control
Document (ICD) [4].

B. GLONASS C/A code

The GLONASS C/A code is transmitted using Frequency
Division Multiple Access (FDMA). The GLONASS satellites
are assigned different frequency slots in the range 1597.5515—
1605.875 MHz Where each channel/slot has a separation of
562.5 kHz. There is a total of 14 seperate slots (k=-7:+6). As
the number of slots are less than the number of satellites in the
constellation, some satellites transmits on the same frequency.

GPS Front-end A 74 BN

MAX2769 —/| Acs41 /]

BeagleBone Black

GLONASS Frontend [\ 74- [\

MAX2769 V| acsa1 /|

Fig. 2. Hardware Block diagram of GNSS Sampler

The assignment of frequency slots are however done in a way,
such that satellites sharing the same slot are not visible to a
ground based receiver on the same time. The GLONASS C/A
code is a 511 chip PRN sequence, which is used for all the
satellites. This code has a chip rate of 511 MChips/s, equaling
a sequence length of 1 ms. The C/A code is modulated with
a 50 bit/s navigation message and a 100 Hz auxilary meander
sequence using modulo-2 addition. For more information, refer
to the GLONASS ICD [5].

III. SYSTEM DESCRIPTION

A high level diagram of the system is shown in Figure 2.
The two RF front ends uses an RF splitter to connect to a
single GNSS antenna, the ADC outputs of both front ends
are connected to digital inputs on the BeagleBone Black. The
power supply of the front ends are supplied directly from a
3.3V output from the BeagleBone. A simple line-driver/buffer
(74AC541) is used between the front ends and the digital
inputs on the BeagleBone, this was introduced to prevent
clock-jitter due to loading problems experienced from a direct
connection.

A. MAX2769 GNSS Front End

The RF front end of our GNSS sampler/data-collector is
based on two MAX2769 Integrated Circuits from Maxim
Integrated [6]. Incorporated in the chips is a complete RF pro-
cessing chain which can be configured for GPS L1, GLONASS
L1 and Galileo El reception. The RF front end features
a programmable single-conversion stage and supports both
active and passive antennas. The RF front end is available
as an evaluation kit (EV-kit) equipped with a number of SMA
connectors for evaluation of separate stages of the front end
circuitry. The EV-kit comes with a 16.368 M H z Temperature
Compensated Crystal Oscillator (TCXO) but also features an
input for use of an external oscillator, which makes it possible
to evaluate the system using different grades of reference
oscillators. A high level functional diagram of the MAX2769
is shown in Figure 3.

The RF front end is connected to either an active or
passive antenna and the signal is amplified though a Low
Noise Amplifier (LNA). The received signal then propagates

MAX2769 EV-KIT

CLK

|
|
|
|
| PLL
|

Fig. 3. Functional Diagram of MAX2769 GNSS Front End

through a quadrature mixer, where the signal is converted to
an Intermediate Frequency (IF).

The local oscillator (PLL Synthesizer) for the mixing-stage
can be programmed to any given frequency in the range 1550-
1610 MHz with 40 Hz separations.

After down-mixing the IF signal passes through a
configurable filter, which can be set to either Bandpass or
Lowpass operation. After the filter, the I and Q signals
are sent through an Programmable Gain Amplifier (PGA)
before AD conversion. The RF front end is equipped with
an Automatic Gain Control (AGC) circuit, which adjust
the PGA’s for ideal saturation of the ADC. The ADC has
a configurable sample rate of up to 50 MSamples/s. The
ADC has the ability to quantize the signal with up to 3 bits
precision for real samples and (2+2) bit precision for I/Q
sampling. The configuration of the mixer, filters etc. is done
using a Serial Peripheral Inteface (SPI). The MAX2769 also
have a number of preconfigured device-states, which can be
activated by enforcing static logic levels to the individual
signals of the SPI bus. The two sections below, describes how
the two MAX2769 RF front end was configured for GPS and
GLONASS reception.

1) GPS Reception: The carrier frequency for GPS

L1 is Fgrp = 1575.42M Hz. To configure the
front end for GPS reception, a low side injection
oscillation frequency of Fopsco = 1571.328 M H =
has been chosen. This gives an IF Frequency of

Frp = Frrp — Fosc = 1575.42 — 1571.328 = 4.092M H 2
The IF bandpass filter can be programmed to have a bandwidth
of 2.5 MHz, 4.2 MHz, 8 MHz and 18 MHz. In addition the
filter can be implemented as a 3rd or 5th order polyphase filter.
We have selected the bandwidth to 2.5 MHz using the 5th
order filter setting. For GPS reception, we use real sampling
with 2 bits resolution and a sample frequency of 16.368 MHz.

2) GLONASS Reception: In order to capture all the chan-
nels we require the bandwidth of the front end to be
1605.37T6M Hz — 1598.0625M Hz + 2 x 0.562MHz =
14.4365M H z. In order to achieve this, the Local oscillator

Beagle-Bone Black

Sitara AM335x
ARM

PRU-ICSS

12 KB
|
SharedMem

PRUO }‘*
3

PRU1 }-+
3

ARM Cortex-A8

32-bit Interconnect

Interrupt
Controller

INTC 32KB L1/
256 KB L2
| l

L3 and L4 Interconect |
]]]
L] L] L]

512 MB DDR Memory 4Gb eMMc SD Card

Fig. 4. High level Hardware Diagram of the BeagleBone Black

was tuned to Fpsc = 1600.995M Hz. The IF filter was
configured to a Sth order polyphase lowpass, with a dual sided
bandwidth of 18M Hz. The PGA’s was set in a static gain
operation. In order to capture the negative side of the spectrum,
we use quadrature/complex sampling with 2 bits precision and
a sample frequency of 16.368 MHz.

B. BeagleBone Black SBC

In order to store the IF samples, a BeagleBone Black SBC
has been used for data storage. This platform can be purchased
for approximately $50 and has a number of hardware inter-
faces and GPIOs for external peripherals.

The transfer of the IF samples from the ADC’s is done using
a parallel interface on the MAX2769 front ends and 8 digital
inputs on the BeagleBone Black.

1) System Description: The BeagleBoard Black consists
of a Texas Instruments Sitara AM335x Processor [7]. This
features an ARM Cortex-A8 core running 1GHz. In addition
the processor is also equipped with a Programmable Real-Time
Unit SubSystem and Industrial Communication Subsystem
(PRU-ICSS) [8]. This module consist of two 32-bit RISC cores
which runs with a clock-frequency of 200 MHz. Each core
has 8 Kb of Instruction Memory and 8 Kb Data memory.
In addition the PRU-ICSS also includes 12 Kb of shared
memory. The PRU-ICSS features an interrupt controller which
is directly connected to the interrupt controller of the host-
system (ARM). The PRU-ICSS is especially useful in timing-
critical applications, as they operate independently from the
linux operating system on the ARM processor. In our design
we have utilized both cores to transfer data from the two
connected front ends. A block diagram of the core-components
and peripherals used for the system is shown in Figure 4.

The PRU cores is configured to have access to a shared
portion of the system memory and stores the samples in
that range. Two adjacent circular reception buffers for each
PRU are created to ensure continuous operation, such that
one portion of the buffer can be filled while the other is

Initiliaze
Program
Wait For _]
High Clock —® Read ADC P Shlft Datzta in
Write Register
Edge
Alternate Send Interrupt Write Word o
- to ARM
Buffer DDR memory
processor

Fig. 5. Flow-chart of continuous data-sampling in the PRU cores

being emptied. The PRUs has been configured to generate
an interrupt to the ARM processor, when one of the receive
buffers is full. In this way we offload the ARM processor, as
it only has to write the stored data onto a file on a SD card
whenever an interrupt has been is triggered.

2) Software Description: The first step in the configuration
of the BeagleBone Black as a data acquisition device, has been
to make a Device Tree Overlay to configure the pin-muxes for
the GPIO to enable PRU inputs. This overlay is then loaded
at boot-time to instruct the operating system to configure the
GPIO accordingly. Subsequently a driver package for the PRU-
ICSS has been installed [9]. This package was initially created
by Texas Instruments, but is now open-source community
driven. The package provides a linux user-space driver which
allows external memory allocation, program control functions
and interrupt handling from the ARM system. The installed
driver-package allows to write program for the PRU’s in
assembly. Texas Instruments, have also released a C compiler
for the PRU cores, but due to the time-critical operations in
the system, we have preferred to program directly in assembly.

The software for the ARM processor has been written in
C++ and compiled using the GNU Compiler Collection (gcc).
The main task of the host code is to handle interrupts from the
PRUs and transfer data from reception buffers to an sd-card.

The code executed on each PRU has been written in
assembly. A flow-chart of the continuous operation is shown in
Figure 5. The main task of this code is to read ADC data when
a high clock edge is present and store samples continuously in
the receive buffers. The PRU connected to the GPS front end
stores 4 samples in each byte (2 bit I) and the PRU connected
to the GLONASS front end stores 2 samples per byte (2 bit
I+ 2 bit Q). A write to DDR memory is initiated every time
32 bits (word) of data has been collected. Each time a write
has been done, the program checks if 2 Mb of data has been
captured, this amount correspond to half of the total buffer-
space for each PRU. If this is the case an Interrupt is raised
and the start-address of the buffer is alternated between buffer
1 or 2.

The software written for the ARM processor creates two
Interrupt handling threads which read out the reception buffers

I efir—Foildfip I

Code

i
|
|
1
L

FFT

Complex
Conjugate

‘Sin(z‘ﬂ‘f-t)‘ ‘008(2-71'»_]’-1)‘

DIF FFT

[

Threshold
IFFT H Detector

Fig. 6. Parallel Code-Phase Search

and writes blocks of data to files on the SD card.

IV. BASEBAND PROCESSING

This section provides a brief summary of basic GPS and
GLONASS acquistion and tracking algorithms. The focus in
this paper, has been on the hardware implementation of the
GNSS sampler and not on baseband processing algorithms.
For sake of completeness and to inform the reader, how
data has been in subsequent sections has been processed, we
present the basic methods used in this work. The code we
have used for Baseband processing is based on a modified
version of the GPS MATLAB SDR toolbox developed by
[10]. The modifications have been made to support GLONASS
acqusition and tracking.

A. Satellite Acquisition

The Satellite acquisition is based on the well known Parallel
Code Phase Search Algorithm [11], as shown in Figure 6. This
algorithm effectively performs correlation in the frequency
domain by using the cross-correlation theorem.

(f*g)(x) & F~H (F"(u)G(u) (D

where F'* is the complex conjugate of the fourier-transform
of f and G is the fourier tranform of g.

The difference between GPS and GLONASS acqusition is,
that for GPS we search through all 32 PRN codes, and in
frequency only make a coarse sweep in carrier (IF) frequency
to cover all possible doppler frequencies. For GLONASS, as
the satellites are distributed in different frequency channels and
all satellites use the same PRN sequence, the acquisition al-
gorithm was modified accordingly. Subsequent to the Parallel-
Code Phase Search, we perform a fine-frequency estimation
using a coherent sequence of 10 ms data multiplied with the
detected C/A code phase, in order to wipe off the code signal.

B. Satellite Tracking

The tracking system for GPS and GLONASS C/A code
signals are very closely related. As already explained, there
is only one PRN sequence shared for all GLONASS satel-
lites, where each GPS satellite have a unique sequence. In
terms of implementation, the primary difference has been our
use of real sampling for GPS and quadrature sampling for
GLONASS. In addition to the diagram in Figure 7, in the
quadrature case, a phase rotation is applied prior to the Early,
Prompt and Late code-correlators.

Signal Processing

(Carrier Wipeoff + Correlation PLL
- |
carrier [carrier carrier |1
generator Neo filter discriminator E
:
lo| Qe
—® ol :
z lp
L=
3
L=]
DIF Z DLL
i
discriminator | }
Q H
G Lo |
H
E P L H
PRN generator ‘ E
.................

Fig. 7. Satellite Tracking loop

V. RESULTS

A picture of the lab prototype is shown in Figure 8. The
prototype is mounted on a payload aluminium plate for use
and testing on a UAV.

A. Maximum Bandwidth and Storage Requirements

Both connected front ends have a sample clock-rate of
16.368 MSamples/s. An emperical test has shown, that the
maximum clock frequency that could be used is around 20
MHz. Higher rates is possible for short intervals, but the
operations to switch between buffers and generate interrupt
in the PRU cores limits the continuous performance. In terms
of storage, the GPS data file packs 4 (2-bits) samples into one
byte, whereas for GLONASS a byte can only store 2 samples
(2 bit I + 2 bit Q). The data throughput rate is approximately
4 MB/s for GPS and 8 MB/s for GLONASS. For a 32GB SD
card this would be approximately 45 minutes of IF data.

Fig. 8. Lab prototype of the GNSS sampler mounted on aluminium plate. In
addition to the aforementioned, components, a 5V DCDC converter is part of
the setup to power the system from a UAV battery

B. Static Test using roof-mounted Antenna

In order to test the system, we performed a static test
using a high-end GNSS antenna mounted on the roof of DTU
Space Institute building, located in Kgs. Lynbgy, Denmark.
The data collection took place the 3rd of July, 2016 at 16:24
(UTC+1). The primary aim from this test, has been to verify
that satellites could be acquired and tracked from both the
GPS and GLONASS constellations using captured data from
the developed system.

1) GPS reception: The acquisition result for the GPS
constellation, is shown in Figure 9.

ion results

Acquisition Metric

o 5 10 15 20 25 30
PRN number (no bar - SV is not in the acquisition list)

Fig. 9. Results from GPS Acquisition. The green bars indicate acquired
satellites.

From the figure, it can be seen that we could acquire 6 GPS
satellites from the recorded IF samples.

Discrete-Time Scatter Plot ; Bits of the message .
. 6000 5000 ol M
g 4000
§ 2000 % o
s o
S 2000 -
5000 0 5000 -5000 L L
I prompt 05 1 15 ot 25 3 35 4
o orrelation results
Raw PLL 6000 LT
_GD) 0.2 . N)
goa a000f g ‘ -
£o R P e ey
1 2 3 4 20007—"" | i e S Sintts i ““"‘“"“"fi’ 3 B skt
Time (s) 05 1 15 2 25 3 35 4
Filtered PLL discri Raw DLL discriminator Time (s) Filtered DLL discrimi
g 60 P g2
3 40 3 3
2 E 21
% g £o
< 20 MW < 02 <
1 2 3 4 1 2 3 4 1 2 3 4

Fig. 10. Tracking of GPS SV26

A tracking plot for PRN26 based on 4000 ms of data is
shown in Figure 10. This figure, show a scatter plot of the
In-phase and Quadrature prompt outputs, the raw and filtered
discriminator outputs from the code- and carrier tracking. It
furthermore shows a time-series of the In-phase prompt output
as well as the combined energy in the early, prompt and late
correlations. From this metric, we can see that the tracking
maintains a solid lock on the code-phase as the energy in the
prompt correlators is approximately double of the early and
late correlators.

2) GLONASS reception: In Figure 11, the result of the
GLONASS acquisition is shown. At the time of the test, it
can be seen that 4 satellites was acquired.

GLONASS Acquisition results
T T T T

©

Acquisition Metric
= o o~
T T T T

©
T

Channel

Fig. 11. Results from Glonass Acquisition. The green bars indicate acquired
satellites.

lion message

Discrete-Time Scatter Plot Bits of the . .
4

of

4000 x
X, ZOOOMWWMWWWWWWWWWMW
g. 0 E ’ 0
& 2000 7 2000
-4000 0 4000 -4000 i

| prompt 0.5 1
Raw PLL discrimi

15 2 25
Correlation results

Amplitude
S o
2.2

1 2 3 4 i
Time (s) 05 1 15 2 25 3 35 4

Filtered PLL di Filtered DLL discrimi

]
Fy
2
o
=4
=t
=1
3
E
z

Amplitude
& o

- 8
Amplitude
66 oo
SRons
Amplitude
o

&
3

1 2 3 4 1 2 3 4 1 2 3 4
Time (s)

Fig. 12. Tracking of GLONASS satellite (frequency slot -3)

A tracking plot for the GLONASS satellite in frequency
slot -3, based on 4000 ms of data is shown in Figure 12. This
figure, show the same metrics as for the GPS tracking. Notice,
the more frequent bit changes in the time-series of the in-phase
promt correlator. This is due to the 100 Hz, meander sequence
used for GLONASS modulation. Similar to the tracking of
GPS SV26, a solid lock is obtained on the code-phase as the
energy in the prompt correlators is approximately double of
the early and late correlators.

The main challenge we faced for obtaining good reception
for GLONASS satellites has been to select a optimum gain for
the Programmable Gain Amplifiers after the mixing-stage, as
the AGC has been disabled for the GLONASS front end. Due
to the wideband setting of the IF filter, the front-end seems
also more sensitive to out-of-band interference. We have not
used external RF filters for either front ends but we believe
that optimizing the reception-chain in this manner, would lead
to better reception quality and more visible satellites.

VI. FUTURE IMPROVEMENTS

The system presented in this paper is a minimal working
prototype and proof-of-concept that the BeagleBone can be
used as an interface and storage device for two GNSS RF
front-ends. It is also possible to configure, the MAX2769
RF front end for Galilleo reception. This can be done, by
using a wide-band, low-IF setting of the GPS front-end. We
have not experimented with this possibility at the time of
writing, but it is something we will look into in the future.

a 1 4 i 4
|.:|| ;|||||| T |-|:| m |:|| |E||I:| ||

Fig. 13. Size comparison of MAX2769-EVKIT (right) and MAXIM reference
design (bottom). The BeagleBone Black SBC is shown to the left. A ruler
has been overlayed the picture for reference. The units are in cm’s.

A nice-to-have addition to the current design would be to
establish an SPI interface to both MAX2769 front ends. This
task is certainly possible, as the BeagleBone embeds two SPI
controllers. This interface would allow us to reprogram the
front-ends directly from BeagleBone and thus make it possible
to implement run-time reconfigurations. From the MAX2769,
it would furthermore have been possible to obtain the IF
samples over this interface as the SPI controllers are internally
connected to a Direct Memory Access (DMA) controller,
which can be used for automatic addressing of incoming data.

Another thing, which we will work on for a future revision,
is to use a common reference oscillator for both front ends,
to ensure receiver clock-offset and drift rates would be same
for both GPS and GLONASS.

As discussed in the introduction, portability and compact-
ness is a major concern for experimenting with SDR on UAV’s.
The MAX2769 EV-KITS used as the basis for this paper are
very flexible and great for evaluation, but in terms of size
and weight they are suboptimal. The authors are currently
working on a second revision of the system, in which the
EV-Kits will be replaced with a more compact PCB, based on
a reference design from Maxim Integrated [12]. The revised
PCB measures only 25mm x 25mm. For a size comparison,
see Figure 13.

The second revision of the GNSS sampler, is still under
developement, but a photo of the current prototype is shown
in Figure 14. The new design is made as a cape, which directly
can be plugged into the BeagleBone’s pin headers.

VII. CONCLUSION

In this paper a portable low cost GNSS sampler with
integrated storage built from off-the-shelf components was
presented. The design does not require expertise in hardware
engineering and thus could be a good starting point, for

(31

(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]

Fig. 14. Second-revision prototype. Two RF front-ends based on the MAXIM
reference design are mounted on a perfboard, which has direct connections
to the pin-headers on the BeagleBone Black SBC.

researchers and students interested in getting started with
Software-Defined GNSS receivers. To the authors best knowl-
edge, commercial GNSS Front-ends for SDRs are built as
streaming device to support real-time processing. In many
applications, post-mission processing is adequate and the
purpose of this work was to design a simple, small-size, self-
contained GNSS sampler where the IF samples can be stored
on a removable media. This was accomplished by utilizing the
two coprocessors featured in the processor on the BeagleBone
Black SBC.

We have shown the feasibility of this design and verified
the integrity by performing a static test from which, we
could acquire 4 GLONASS satellites and 6 GPS satellites by
standard baseband processing algorithms. The design of the
sampler was initiated in order to perform IF data-collection
from small-UAVs.

ACKNOWLEDGMENT

The authors would like to thank the Innovation Fund
Denmark for partial funding of the first author’s PhD study.
We would also like to thank Michael H. Avngaard, assistant
engineer at DTU Space for his help and assistance in the
laboratory during the development of the GNSS sampler.

REFERENCES

[1] J. T. Curran, M. Bavaro, J. Fortuny, and A. Morrison, “Developing an
ionospheric scintillation monitoring receiver,” InsideGNSS, vol. 9, no. 5,
2014.

[2] C. Fernndez-Prades, J. Arribas, and P. Closas, “Turning a television
into a gnss receiver,” in Proceedings of the 26th International Technical
Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS+ 2013), Nashville, TN, September 2013, pp. 1492-1507.

D. Olesen, J. Jakobsen, and P. Knudsen, “Software-defined gps receiver
on the parallella-16 board,” in Proceedings of the 28th International
Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS 2015), Tampa, FL, September 2015, pp. 3171-3177.
Navstar GPS Interface Specification (IS-GPS-200H), 2013.

GLONASS Interface Control Document, ver. 5.1, 2008.

MAX2769 Datasheet, Maxim Integrated, 2010.

Sitara AM335x ARM Cortex-8 Microprocessors, Texas Instruments,
2013.

AM335x PRU-ICSS Reference Guide, Texas Instruments, 2013.
“Github repository for beaglebone black pru-icss api,”
https://github.com/beagleboard/am335xprupackage, accessed: 2016-06-
24

K. Borre, D. Akos, N. Bertelsen, P. Rinder, and S. Jensen, A Software
Defined GPS and Galileo Receiver. Birkhauser, 2007.

J. Bao and Y. Tsui, Fundamentals of Global Positioning Receivers: A
Software Approach. John Wiley and sons, 2000.

MAX2769 GPS Reference Design, APP4279, Maxim Integrated, 2008.

