Design and assessment of electrochemical zones for remediation of chlorinated solvents in natural groundwater aquifer settings

Hyldegaard, Bente Højlund; Weeth, Eline B.; Jakobsen, Rasmus; Overheu, Niels; Gent, David; Ottosen, Lisbeth

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Design and assessment of electrochemical zones for remediation of chlorinated solvents in natural groundwater aquifer settings

Bente H. Hyldegaard, COWI & DTU; Eline Weeth, COWI; Rasmus Jakobsen, GEUS; Niels Overheu, Capital Region of Denmark; David Gent, US Army Corps of Engineers; Lisbeth Ottosen, DTU

I Project objectives

- Optimization of electrochemical zone(s) for complete degradation of the harmful chlorinated solvents and their chlorinated degradation products in natural hydrogeological settings as a precautionary measure

II Motivation

- Chlorinated solvents threaten the quality of groundwater and cause health risks [1]. Consequently, extraction wells for drinking water are closed
- The compounds’ properties challenge the current treatment systems
- Commonly used pump-and-treat systems for hydraulic containment are long-term solutions with substantial operation and maintenance costs
- Optimized means of protecting the groundwater from these contaminants are requested. We propose, establishment of electrochemical zones for in situ degradation of chlorinated solvents and degradation products.

III Relevant chemical processes

- Reactants can be generated and subsequently reduce or oxidize the chlorinated solvents [3] and fast electrochemical reduction of chlorinated solvents near the electrodes can be obtained [2].

IV Relevant processes

- Reactants can be generated and subsequently reduce or oxidize the chlorinated solvents [3] and fast electrochemical reduction of chlorinated solvents near the electrodes can be obtained [2].

V Method

- We have designed 1D and 2D experimental set-ups targeting electrochemical plume control in field realistic designs
 - allows for assessment of single parameters; current density, flow and electrode material, and power consumption; lateral dispersion of reactants, electrode configuration and spacing
 - replicates site conditions: Flow-through of natural groundwater with an aged contamination of PCE in a sandy aquifer material at common groundwater flow rates and temperatures

VI The field realistic design

- The field realistic parameters

| Parameter | Optimal Concentration | Optimal Current Density | Summary
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE (µg/l)</td>
<td>40</td>
<td>4</td>
<td>Poisson's [4] 2.67</td>
</tr>
<tr>
<td>TCE (µg/l)</td>
<td>30</td>
<td>4</td>
<td>Carbon content [%] 0.95</td>
</tr>
<tr>
<td>Cis-1,2-DCE (µg/l)</td>
<td>70</td>
<td>4</td>
<td>Chalk content [%] 15</td>
</tr>
<tr>
<td>Trans-1,2-DCE (µg/l)</td>
<td>1</td>
<td>4</td>
<td>[d(0.1)] [mm] 0.2</td>
</tr>
<tr>
<td>VC (µg/l)</td>
<td>0.1</td>
<td>4</td>
<td>[d(0.5)] [mm] 0.4</td>
</tr>
</tbody>
</table>

| Parameter | Optimal Concentration | Optimal Current Density | Summary
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampled groundwater</td>
<td>pH</td>
<td>6.9</td>
<td>Conductivity [mS/cm] 1.7</td>
</tr>
<tr>
<td>Sampled sand</td>
<td>Porosity [%]</td>
<td>31</td>
<td>Grain density [g/cm³] 2.57</td>
</tr>
<tr>
<td>Sampled groundwater</td>
<td>Conc. Ca²⁺ [mg/l]</td>
<td>370</td>
<td>K⁺ [mg/l] 4</td>
</tr>
<tr>
<td>Sampled sand</td>
<td>Carbon content [%]</td>
<td>0.95</td>
<td>Chalk content [%] 15</td>
</tr>
<tr>
<td>Sampled groundwater</td>
<td>Conc. VC [µg/l]</td>
<td>0.1</td>
<td>NO₃⁻ [mg/l] 400</td>
</tr>
</tbody>
</table>

VII Challenges and opportunities

- Contaminant fate when no current is applied is unexpected; upon test completion, dissolved and gaseous fractions are collected and analyzed, microbial growth. Dependent on the microbial culture, biodegradation of the chlorinated ethylenes may establish [13].

IX References