Forcing Data at WRF lateral Boundary Corner and its Impact on Storm Intensification - a Case Study through mid-latitude Cyclone Christian

Imberger, Marc; Larsén, Xiaoli Guo; Du, Jianting; Davis, Neil

Publication date: 2018

Document Version
Peer reviewed version

Citation (APA):
Forcing data at WRF lateral boundary corner and its impact on storm intensification – a case study through mid-latitude cyclone Christian

Marc Imberger\(^1\)
Xiaoli Guo Larsén\(^1\)
Jianting Du\(^1\)
Neil Davis\(^1\)

\(^1\)DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark

14. June 2018
About me

● 1st year PhD student (Sep. 2017), Technical University of Denmark (DTU Wind Energy)

“Advanced meteorological modeling across scales – MPAS for wind energy applications”

● Focus on mid-latitude storms influencing the North Sea

● Comparisons with currently used method (WRF nesting)
WRF “Corner Issue”: Motivation

Investigated Setups
(cyclone Christian, Oct. 2013)

- REF
- REF-South
- XWS track data

Christian / St. Jude
- Affected densely populated areas
- Immense insurance losses (ca. £ 1 billion)
- Power cuts
- Loss of approx. 2GW of wind power within 24h of storm
Forcing data (CFSv2)

WRF (18km resolution)
- Reference
- Southwards shifted domain
Investigated Settings

<table>
<thead>
<tr>
<th>Reference case</th>
<th>Applied changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18km horizontal resolution</td>
<td></td>
</tr>
<tr>
<td>51 vertical layers</td>
<td></td>
</tr>
<tr>
<td>12h spin-up + 24h simulation time</td>
<td></td>
</tr>
<tr>
<td>Forcing data: CFSv2</td>
<td>ERA5</td>
</tr>
<tr>
<td>6-hourly update</td>
<td>3-hourly, hourly</td>
</tr>
<tr>
<td>No nudging</td>
<td>Spectral and analysis nudging</td>
</tr>
<tr>
<td>4 layer relaxation zone</td>
<td>2 layer / 8 layer</td>
</tr>
</tbody>
</table>

Physics: New Thompson (microphysics), RRTMG (radiation), MYNN (surface layer), Noah Land Surface Model (land surface), MYNN Level 3 (PBL scheme), Kain-Fritsch (cumulus)

Land cover: USGS (24 categories)

WRF version: WRF Model Version 3.7.1
Results: Nudging

- Spectral nudging enhances storm intensity slightly
- Strongest: high wave numbers (nudging above 100km), nudging in all layers

Difference in sea level pressure 2013 Oct 28 UTC 0000
Results: Relaxation Zone

- Reduced relaxation zone brought biggest enhancement
- Surroundings of storm center less influenced
- Counteracts storm displacement

[Map showing difference in sea level pressure on 2013 Oct 28 UTC 0000]
Results: Forcing Data Change

- Disagreement on storm location (at same time)
- Spec. nudging necessary in both domains
 \rightarrow corner issue less pronounced
- No intensification
Results: Update Frequency

- Higher decrease of SLP in expected area and surrounding with increased frequency
Results: Update Frequency (Boundary Forcing)

- Enhancement also visible using ERA5
- Absolute decrease less pronounced

Difference in sea level pressure using ERA5 (2013 Oct 28 UTC 0000)
Conclusion

<table>
<thead>
<tr>
<th>Approach</th>
<th>Effect on storm location</th>
<th>Effect on storm intensification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Displacement of storm center</td>
<td>Marginal intensification</td>
</tr>
<tr>
<td>Nudging technique</td>
<td>Corrected location</td>
<td>Moderate, also in surroundings</td>
</tr>
<tr>
<td>Relaxation width</td>
<td>Corrected location</td>
<td>Weak, concentrated on storm center</td>
</tr>
<tr>
<td>Forcing data</td>
<td>different storm center location (at same time)</td>
<td>Not comparable without bias</td>
</tr>
<tr>
<td>Update frequency</td>
<td>Corrected location</td>
<td>Strong enhancement</td>
</tr>
</tbody>
</table>

→ Methods tackle crucial points
 (1) Correct information from large scale forcing
 (2) Reduce smoothing effect
→ Compromises
→ Biggest improvement: Update frequency
Work in progress:

Plan:

Run WRF with MPAS output to test LBC update frequency of 30min and 10min

Current status:

Analysis of MPAS output

Faced issue:

SLP field: cyclone center
Thanks!
XWS Extreme Wind Storm Catalogue

- Met Office, University of Reading & Exeter
- 50 + 2 storms
- Collection of most intense* winter storms affecting Europe
 *based on damaging area of the storm (insurance losses)