Electron–phonon interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS2

Hinsche, Nicki Frank; Thygesen, Kristian Sommer

Published in:
2D materials

Link to article, DOI:
10.1088/2053-1583/aa8e6c

Publication date:
2018

Document Version
Early version, also known as pre-print

Citation (APA):
https://doi.org/10.1088/2053-1583/aa8e6c
Electron-phonon interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS$_2$

Nicki Frank Hinsche1,* and Kristian Sommer Thygesen1

1Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Dated: September 21, 2017)

Transition metal dichalcogenides have recently emerged as promising two-dimensional materials with intriguing electronic properties. Existing calculations of intrinsic phonon-limited electronic transport so far have concentrated on the semiconducting members of this family. In this paper we extend these studies by investigating the influence of electron-phonon coupling on the electronic transport properties and band renormalization of prototype inherent metallic bulk and monolayer TaS$_2$. Based on density functional perturbation theory and semi-classical Boltzmann transport calculations, promising room temperature mobilities and sheet conductances are found, which can compete with other established 2D materials, leaving TaS$_2$ as promising material candidate for transparent conductors or as atomically thin interconnects. Throughout the paper, the electronic and transport properties of TaS$_2$ are compared to those of its isoelectronic counterpart TaSe$_2$ and additional informations to the latter are given. We furthermore comment on the conventional superconductivity in TaS$_2$, where no phonon-mediated enhancement of T_C in the monolayer compared to the bulk state was found.

A. Introduction

Succeeding the many advances in fundamental science and applications of graphene, other two-dimensional materials, especially the transition-metal dichalcogenides (TMDs), have attracted remarkable interest for their appealing electrical, optical and mechanical properties. TMDs form layered compounds having a metal layer sandwiched between two chalcogen layers. These monolayers are weakly bound to each other by the dispersive van der Waals interaction, leading to a quasi-two-dimensional behavior in the monolayers1,2. Among the TMDs, exfoliated semi-conducting materials, e.g. MoS$_2$ and WS$_2$, have been extensively in focus for their promising electronic mobilities and thus a high potential in thin-film transistor applications$^{3-5}$. Recently metallic TMDs are in focus for their potential as transparent conductive electrodes and gained increasing importance for information-, optoelectronic- and energy-applications6,7. Crucial requirements for these are high electrical conductivity and high transparency; properties that are often contradicting.

Based on density functional theory and semi-classical Boltzmann transport, we will elaborate and discuss the influence of electron-phonon coupling onto the electronic transport properties and high symmetry point, reaching values of $\Delta = 2.92$ Å in the unit cell. X-ray diffraction of 2H-TaS$_2$ in powder form yield similar lattice parameters at $a_{\text{lat}} = 3.31$ Å and $c_{\text{lat}} = 12.02$ Å, containing two S-Ta-S monolayers separated by an interlayer distances of $\Delta = 2.92$ Å in the unit cell. X-ray diffraction of 2H-TaS$_2$ in powder form yield similar lattice parameters at $a_{\text{lat}} = 3.32$ Å and $c_{\text{lat}} = 12.10$ Å. For the 1H monolayer a vacuum of 15 Å was taken into account to prevent surface-surface hybridization.

While being moderately large in comparison to conventional spin-orbit driven materials, e.g. Bi$_2$Te$_3$, spin-orbit coupling (SOC) leads often to visible band splittings in two-dimensional TMDs. The H-phase owns a lattice without inversion symmetry and thus the spin degeneracy is fully removed, except for the Γ-point. TaS$_2$ is metallic due to a half-filled 5d_{z^2} orbital and these splittings are most pronounced near the Fermi energy in the vicinity of the K high symmetry point, reaching values of around 350 meV. As shown in Fig. 1 the variation in the electronic band structures of 1H and 2H-TaS$_2$ are rather small in the vicinity of E_F. Lifted degeneracies in the bulk phase at the Γ, M and K high symmetry points, as well as a closing of the electronic gap below the Fermi energy in the bulk case are the most distinct effects of
the SOC. We are aware that more sophisticated methods, e.g. hybrid functionals or GW calculations, lead to an opening of the gaps above and below E_F of around 0.5 eV. This can change e.g. optical properties and was discussed in an previous study by us.6 However, due to the metallic character of TaS$_2$ and the energetic distance of the lower p-like band to E_F, these changes do not alter the electronic transport results. This is different for bulk 2H-TaS$_2$ and further discussed in the supplemental material,8 where band structures based on the HSE06-functional are shown for all four systems, additionally.

With our main focus being on to the impact of temperature effects onto the electronic transport properties and band renormalization, the core of the calculations are the electron-phonon matrix elements, omitting band indices,

$$g_{kq}^{\nu} = \sqrt{\frac{\hbar}{2NM\omega_{q\nu}}}(\Psi_{k+q\nu}|\partial V_{q\nu}|\Psi_k)$$

(1)

which manifest the interaction of the initial (Ψ_k) and final ($\Psi_{k+q\nu}$) electronic states via a phonon ($q\nu$). Here, $\partial V_{q\nu}$ is the first-order derivative of the Kohn-Sham potential with respect to the atomic displacements induced by a phonon mode ν with frequency $\omega_{q\nu}$. The matrix elements were initially obtained on coarse 54x54x18 (54x54x1) k-meshes and 9x9x3 (9x9x1) q-meshes for bulk 2H-TaS$_2$ (monolayer 1H-TaS$_2$), respectively. To provide a consistent methodological basis spin-orbit effects were fully taken into account while determining the vibronic properties. We applied an electronic smearing of 0.03 Ry during the calculation of the vibronic properties to prevent the systems to undergo a charge-density wave (CDW) transition, which for bulk 2H-TaS$_2$ occurs below 75 K.24,25

C. Electron-phonon coupling

The phonon band structures of bulk 2H-TaS$_2$ and its monolayer counterpart are shown in Fig. 2(a). Peculiar for 2D materials are the soft out-of-plane acoustic modes (ZA), or flexural acoustic phonons, presenting a quadratic dispersion at small momenta q. In 2H-TaS$_2$, as well as 1H-TaS$_2$, high-frequency optical modes are separated from the low-frequency modes by a gap of around 40 cm$^{-1}$, comparable to other TMDs.26 As expected, bearing in mind the weak interlayer coupling, the phonon branches are almost doubly degenerate for the 2H polytype at frequencies larger than 50 cm$^{-1}$ and no significant variation between the two material systems could be found. The most noticeable deviation can be found for small frequencies, where the bulk branches split into acoustic branches that approach zero frequency for vanishing q (corresponding to in-phase oscillation of equivalent atoms of adjacent monolayers) and optical modes that approach a finite value (corresponding to a phase-difference of π in the oscillation of adjacent monolayers).27 The total phonon bandwidth (390 cm$^{-1}$) for TaS$_2$ is noticeably smaller than for other prototype 2D materials, e.g. graphene (1700 cm$^{-1}$) or MoS$_2$ (500 cm$^{-1}$), which in turn could lead to strongly reduced lattice thermal conductivity.

With the knowledge of the electron-phonon matrix elements, the effectiveness of phonons with energy $\hbar\omega$ to scatter electrons can be expressed by means of the, a priori state-dependent, Eliashberg spectral function $\alpha^2F_{k}(E,\omega)^{18,28}$

$$\alpha^2F_{k,\pm}^{\pm}(E,\omega) = \frac{1}{N_q} \sum_{q\nu} \delta(\omega - \omega_{q\nu}) |g_{kq}^{\nu}|^2$$

$$\times \delta \left(E - E_{k+q}^{\pm} \right) \times \left(1 - \frac{\mathbf{v}_{k+q} \cdot \mathbf{v}_k}{|\mathbf{v}_{k+q}| |\mathbf{v}_k|} \right)$$

(2)

The last term in eq. 2 accounts for back-scattering effects via the change of velocity during the scattering process, which then directly leads to the transport Eliashberg spectral function. In an iterative solution of the full Boltzmann equation, this term would largely correspond to the back-scattering-in term. In Fig. 2(d) the difference between $\alpha^2F(\epsilon_F,\omega)$ and its transport counterpart are shown. We find both to be functional almost identical, with $\alpha^2F_{k,\pm}(\epsilon_F,\omega)$ being suppressed to around 64% (96%) of the value for $\alpha^2F(E,\omega)$ for the acoustic (optical) modes. While similarity of $\alpha^2F(\epsilon_F,\omega)$ and $\alpha^2F_{k,\pm}(\epsilon_F,\omega)$ is not a general trend, it has been observed before, experimentally and theoretically, for bulk metals.23,29 This trend indicates that forward scattering (small angles between $\mathbf{v}_{k'}$ and \mathbf{v}_k) is preferred over backward scattering (large angles between $\mathbf{v}_{k'}$ and \mathbf{v}_k).

Integration of the isotropic (transport) Eliashberg spectral function leads to the unitless (transport) electron-phonon coupling constant $\lambda_{\pm}(\omega) = 2 \int_0^\infty d\omega \frac{\alpha^2F_{k,\pm}(\omega)}{\omega}$ which is shown, resolved for

FIG. 1. Band structure of bulk 2H-TaS$_2$ (black solid lines) and monolayer 1H-TaS$_2$ (red dashed lines). The corresponding electrical conductivity anisotropy σ_{xx}/σ_{xx} for bulk 2H-TaS$_2$ is shown in the right panel.
transition temperature, we obtain T. An unconventionally strong coupling of phonons with $q \approx \Gamma M$ and $\omega = 120 \text{ cm}^{-1}$ was found. (c), (d), (e) the phonon density of states $\mathcal{F}(\omega)$, the isotropic (transport) Eliashberg spectral functions $\alpha^2 \mathcal{F}(\omega)$ and the frequency dependent (transport) coupling strength $\alpha^2(\omega)$, respectively. In (d) the cumulative value for the (transport) electron-phonon coupling constant λ_{tr} is additionally shown as red solid (yellow dashed) line.

phonon modes q, in Fig. 2(d)30. The electron phonon coupling spreads values of almost zero to above unity. Especially in the low frequency regime, and thus predominantly in the out-of-plane range, the coupling λ_q is largest for the in-plane ZA mode. The latter stems mainly from the fact that in the long-wavelength limit $g_{2,\text{TA}}^q$ is almost constant and thus $\lambda^2_{\text{TA}} \propto q^{-2}$. For the in-plane acoustic modes we find $g_{2,\text{LA}}^q \propto q$ and hence a constant value $\lambda^2_{\text{LA}} \approx 0.13$. Very large values of $\lambda_q \approx 1.2$ can be found nearby the M high symmetry point at frequencies of $\omega_q \approx 120 \text{ cm}^{-1}$. The latter stems to a large extent from the topology of the Fermi surface yielding a high probability, i.e. an enhanced nesting function, dominantly from intra-and interband scattering for initial electronic states k into final states $k \pm q$ with $q \approx \Gamma M$. We note that this is a material specific feature and could not be found as pronounced for monolayer 1H-TaSe\textsubscript{2}8. The cumulative electron-phonon coupling parameters, depicted in Fig. 2(d), were found to be $\lambda = 0.38$ and $\lambda_{\text{tr}} = 0.34$. For monolayer 1H-TaSe\textsubscript{2} we calculated values of $\lambda = 0.50$ and $\lambda_{\text{tr}} = 0.46$. The enhancement of λ is most prominently related to an reduced phonon bandwidth and we give further details in the supplemental material8. Applying the ALLEN-DYNES formula34 to estimate the superconducting transition temperature, we obtain $T_C = 0.54 \text{ K}$ using an Heine-Morel parameter45 of $\mu^* = 0.11$ representing the repulsive retarded Coulomb potential for bulk 2H-TaS\textsubscript{2} and monolayer 1H-TaS\textsubscript{2}, respectively. While our calculated T_C for bulk 2H-TaS\textsubscript{2} is in excellent agreement to recent experimental findings14, the superconducting transition temperature of ultra-thin TaS\textsubscript{2} was experimentally found to be larger at $T_C = 1.79 \text{ K}$. To obtain this temperature a value for the retarded Coulomb parameter of $\mu^* = 0.057$ would have to be assumed8. This would be in contrast to the fact that 2D electronic systems are rather poor at screening interactions and the Coulomb interaction between electrons should be much stronger in 2D than in 3D36, i.e. generally $\mu^*_{2D} > \mu^*_{3D}$.

The Eliashberg spectral function $\alpha^2 \mathcal{F}(E,\omega)$ can be directly linked to the imaginary part Σ^\prime of the electron self energy induced by interaction with a phonon in state

![FIG. 2.](image-url) (a) Phonon dispersion of bulk 2H-TaS\textsubscript{2} (black solid lines) and monolayer 1H-TaS\textsubscript{2} (red dashed lines). (b) Phonon dispersion of bulk 2H-TaS\textsubscript{2}. The color code (blue to red; $\lambda = 0$ to $\lambda = 1.2$) depicts the unitless electron phonon coupling parameter λ. (c), (d), (e) the phonon density of states $\mathcal{F}(\omega)$, the isotropic (transport) Eliashberg spectral functions $\alpha^2 \mathcal{F}(\omega)$ and the frequency dependent (transport) coupling strength $\alpha^2(\omega)$, respectively. In (d) the cumulative value for the (transport) electron-phonon coupling constant λ_{tr} is additionally shown as red solid (yellow dashed) line.

![FIG. 3.](image-url) (a) Energy-averaged transport relaxation times with respect to the Fermi energy for monolayer 1H-TaS\textsubscript{2} (black solid lines) and bulk 2H-TaS\textsubscript{2} (red dash-dotted lines) at three distinct temperatures.
spectroscopic electronic linewidth as Γ_k, i.e. $\Sigma_k(i\omega_n)$ access to the total complex electron-phonon self-energy, introduce the explicit temperature dependence. One gains Fermi-Dirac distribution functions, respectively and introducing, depending on the topology of the iso-energetic surfaces, a few 10^3 free carriers as monolayer $1H$-$TaSe_2$ at temperatures d directly as $\tau_k = \frac{\hbar}{2\pi\Sigma_k(i\omega_n)}$. The pronounced peak of the carrier lifetime around the Fermi energy can be related to a freeze-out of phonons and the narrowing of the Fermi surface resulting in a limited phase space for phonon scattering. Technically, this effect is represented in Eq. 3 by weighting the electron-phonon matrix elements with the Bose-Einstein and Fermi-Dirac distribution functions $\mathcal{H}(b, f)$. The peak itself can be decomposed into phonon absorption and emission processes relative to energies below and above the Fermi energy, respectively. The lifetimes related to phonon absorption rapidly increase as the electron energy approaches the Fermi energy from below. Pronounced shoulders in the lifetimes at around $25\,\text{meV}$ at very low temperatures of $10\,\text{K}$ (c.f. inset Fig. 3) indicate the onset of scattering by optical phonons. Due to the smearing of the Fermi-Dirac distribution and the increasing availability of short-wavelength phonons the lifetime peak steadily decreases at higher temperatures. On the basis of the transport relaxation times, the electronic transport properties are subsequently obtained by solving a linearized Boltzmann equation in relaxation time approximation (RTA) under the explicit influence of electron-phonon scattering as introduced in Refs. 18, 42–44. The components of the electrical conductivity tensor can be stated as

$$\sigma_{ij} = \frac{e^2}{V_{uc}N_k} \sum_k \tau_k v_{ki}^j v_{kj}^i \left(-\frac{\partial f_k}{\partial \epsilon_k} \right)$$

where V_{uc} is the unit cell volume and N_k is the number of initial electronic states in the reciprocal space. One obtains the sheet conductance for a film of thickness d directly as $\sigma_{\square} = \frac{d}{4}(\sigma_{xx} + \sigma_{yy})$ and the unipolar phonon limited electron mobility tensor at a given charge carrier concentration n as $\mu_{ij} = \sigma_{ij}/ne$. The convergence of the sums in Eq. 2 and Eq. 4 is ensured by employing adaptive tetrahedron schemes 17, 18, 45 and using, depending on the topology of the iso-energetic surface, a few 10^4 (10^3) k-points and 10^5 (10^3) q-points for bulk and monolayer, respectively. In Fig. 4(a) we show the electronic mobilities for bulk and monolayer...
TaS$_2$, as well as monolayer TaSe$_2$, in comparison to other two-dimensional materials and well studied bulk systems. The in-plane mobilities of TaS$_2$ are found to be $\mu = 10.5 \, \text{cm}^2/\text{Vs}$ at 300 K. Thus TaS$_2$ classifies itself as a good metal, right in between bulk Cu ($\mu = 43 \, \text{cm}^2/\text{Vs}$) and Pb ($\mu = 2.2 \, \text{cm}^2/\text{Vs}$). These values are lower or comparable to those of heavily doped46 two-dimensional materials, e.g. MoS$_2$, phosphorene or graphene. The mobilities decrease as expected at rising temperature, when the phonon phase-space increases and enlarges the probability of electron-phonon scattering. At high temperatures, where the phonon modes contribute almost equally to the scattering, the semi-classical limit $\mu \propto T^{-1}$ is achieved.47

The in-plane mobility of monolayer 1H-TaSe$_2$ was found to be $\mu = 5.8 \, \text{cm}^2/\text{Vs}$ at 300 K, almost a factor two lower than its isostructural counterpart 1H-TaS$_2$. One reason is the enhanced electron-phonon coupling and hence reduced electron-phonon relaxation times. Second to that we also found the Fermi-surface averaged velocities to be around 17% smaller in 1H-TaSe$_2$ compared to 1H-TaS$_2$. We show more details on the electronic, vibronic and el-ph properties of 1H-TaSe$_2$ the supplemental material8, where conclusions can be drawn in a similar way as done here for monolayer 1H-TaS$_2$.

As expected almost the entire temperature-dependence of μ arises from the temperature-dependence of the relaxation times introduced via Eq. 3. The remaining band structure kernel in Eq. 4 varies only a few percent over the whole temperature range, mainly linked to a change of the temperature-dependent chemical potential.

We also highlight the out-of-plane mobility for bulk 2H-TaS$_2$, noting $\mu = 0.35 \, \text{cm}^2/\text{Vs}$ at 300 K (c.f. red dotted line in Fig. 4(a)). The reduction stems dominantly from heavily reduced out-of-plane carrier velocities in the vicinity of the Fermi energy. As shown by the conductivity anisotropy in the right panel of Fig. 1, out-of-plane mobilities very close to in-plane mobility values can be achieved under heavy electron doping. This scenario would assume almost filling up the half-filled 5d_{z^2} band, which seems to be unfeasible to achieve by chemical doping. However an inherent pseudo-doping of about 0.3 electrons was recently observed for epitaxially grown monolayer 1H-TaSe$_2$. Accessing high out-of-plane mobilities via electrical field gating turns out to be very challenging. Assuming a SrTiO$_3$ substrate of 100 nm thickness and a film thickness of 10 nm 2H-TaSe$_2$ would still require a gating voltage in the order of 100 V to gain values close to $\mu_{||} \approx \mu_{\perp}$. We note, that $\mu_{\perp} > \mu_{||}$ can be achieved for $-1.5 \, \text{eV} < E - E_F < -0.3 \, \text{eV}$, which originates largely from p-orbitals forming highly dispersive bands with high out-of-plane velocities. As mentioned before and shown in the supplemental material, applying GW or hybrid functional calculations, these bands will be shifted downwards in energy by about 0.6 eV, making them unlikely to be accessed by hole doping.7,8

As noted earlier, with regard to potential application as transparent conductive electrodes, the electrical sheet conductance should be the material property in focus and is shown in Fig. 4(b). TaS$_2$ clearly outperforms the conventional heavily doped semi-conducting 2D materials MoS$_2$ and phosphorene and decreases the gap to graphene by showing values of $\sigma_{||} = 2 \, \text{mS}$ at room temperature. With this still being an order of magnitude worse than the sheet conductances of heavily doped graphene or a comparable layer of Cu, the advantages of thin film TaS$_2$ are noteworthy. On the one hand, in contrast to Graphene, TaS$_2$ is an inherent metal and thus does not require to be doped or gated to achieve a feasible sheet conductances. On the other hand it can easily be exfoliated due to its weak interlayer interactions and thinned down to atomic thicknesses, bearing a huge advantage to traditional metals, e.g. Cu or Pb. These material properties, together with a high optical transmittance in the visible range, enables H-TaS$_2$ to be a promising system for application as a transparent conducting oxide7.

E. Phonon induced band renormalization

Having discussed the single-particle electronic and vibronic properties, as well as the phonon limited electronic transport properties of H-TaS$_2$, we focus in the following on the renormalization of the electronic structure due to electron-phonon-interaction. Assuming the photoemission intensity is proportional to the hole spectral function of the sample50,51, the electron spectral function

$$\omega_k(E) = \frac{1}{\pi} \frac{\left| \sum_k^\prime(E) \right|^2}{\left(E - \epsilon_k^0 - \sum_k^\prime(E) \right)^2 + \left| \sum_k^\prime(E) \right|^2}, \quad (5)$$

can be used to describe the electronic structure of a solid in the presence of many-body effects. We note, that within our framework the uncorrected self-energy corresponds to the Fan contribution52 only, which is a resonable approach for metallic systems53. $\sum_k^\prime(E = E_F) = 0$ is enforced, such that the quasiparticle Fermi level fulfills Luttingers theorem of Fermi surface volume conservation54.

Comparing to angle-resolved photoemission (ARPES), $\omega_k(E)$ can be viewed as the probability of finding an electron with energy E and momentum k at a given temperature $T^{50,51}$. In Fig. 5(d)-(f) the electron spectral function around the Fermi energy is shown for monolayer 1H-TaS2 at different temperatures. Obviously the overall linewidth broadening, i.e. $\Gamma_k = 2\pi \omega_k$ increases with increasing temperature. The linewidth broadening spreads Fermi surface-averaged values of $\Gamma = 0.025, 9.7, 54$ meV at $T = 10, 100, 300$ K. Overall, a noticeable k-anisotropy of the linewidths was found, with values of Γ_k varying almost a factor 3 throughout the Brillouin-zone.8 While the imaginary part of Σ is related to the spectroscopic linewidth broadening, the real part Σ' will enable us to analyze the electron-phonon renormalized band dispersion E_k. For
FIG. 5. The electronic spectral function $\sigma_k(E)$ with respect to the Fermi energy for monolayer 1H-TaS$_2$, (d)-(f) incorporating electron-phonon interaction as calculated via Eq. 5 at different temperatures (color scale: blue-white-red; low to high intensity. Thin black lines show the maximum highlighted in the panel above). (a)-(c) zoom-in of the corresponding extracted maximum of $\sigma_k(E)$ around E_F on the $\Gamma - K$ path (red lines). The black lines indicate the bare band structure without interactiona

a Note that the spectral functions have been obtained in a structural phase not possessing a charge-density wave.

weak to modest electron-phonon interaction, recovering the Rayleigh-Schrodinger perturbation theory56, the maximum of the electronic spectral function can be estimated to lowest order as $E_k \approx \epsilon_0^k + \Sigma'(\epsilon_0^k, T)$ and is shown in Fig. 5(a)-(c) (red lines) in comparison to the bare non-interacting band structure ϵ_0^k (black lines)53. In the low temperature regime (Fig. 5(a)) clear kinks at energies of about ± 45 meV around E_F can be found in the outlying band, roughly corresponding to maximal available phonon energy. For the inner band the scenario slightly differs. While kinks are visible for energies above E_F no states are available for high frequency phonon absorption below E_F. As consequence the local band bottom is energetically lifted and the effective mass increases. At $E_F \Sigma' = 0$ and the volume of the interacting and non-interacting Fermi surface is conserved due to Luttingers theorem54. Similar findings have been observed in the f-electron material USb$_2$, whereas renormalization due to electron-electron interaction was assumed there57. At elevating temperatures ((Fig. 5(b),(c)) the pronounced features in the real part of Σ decrease and the bare band structure is almost recovered at room temperature.

F. Conclusion

On basis of density functional perturbation theory and semi-classical Boltzmann transport, we found promising room temperature mobilities and sheet conductances in metallic bulk 2H-TaS$_2$ and its exfoliated monolayer 1H-TaS$_2$. The sheet conductances can compete with other established 2D materials and theoretically predict TaS$_2$ as a promising material system to be used as a transparent conductor or as atomically thin interconnect. We furthermore found no significant change of the electron-phonon coupling due to interlayer coupling when stacking 1H monolayers to the bulk 2H-TaS$_2$ polytype. Hence no phonon-mediated enhancement of the superconducting transition temperature in the thin film compared to the bulk state could be found. To extend and support our findings on the transition metal dichalcogenide TaS$_2$, we discussed our results at key points to comparable findings on the isoelectronic counterpart TaSe$_2$. To keep the the manuscript compact and intelligible, more detailed results on H-TaSe$_2$ can be found in the supplemental material.

Note by the authors: Shortly after acceptance of this work, we became aware of a very recent experimental study by Wijayaratne et al.58 on moment-dependent electron-phonon interaction in bulk 2H-TaS$_2$. The observed anisotropy and total values of the coupling parameter λ, as well as phonon-induced band renormalizations compare very well to our theoretical findings for TaS$_2$.

new changed notation

FIG. 5. The electronic spectral function $A_k(E)$ with respect to the Fermi energy for monolayer 1H-TaS$_2$, (d)-(f) incorporating electron-phonon interaction as calculated via Eq. 5 at different temperatures (color scale: blue-white-red; low to high intensity. Thin black lines show the maximum highlighted in the panel above). (a)-(c) zoom-in of the corresponding extracted maximum of $A_k(E)$ around E_F on the $\Gamma - K$ path (red lines). The black lines indicate the bare band structure without interactiona

a Note that the spectral functions have been obtained in a structural phase not possessing a charge-density wave.
ACKNOWLEDGMENTS

NFH received funding within the H.C. Ørsted Programme from the European Union’s Seventh Framework Programme and Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Actions grant no. 609405 (FP7) and 713683 (H2020).

REFERENCES

9. Core configuration:Ta : [Xe]4f^{14}5d^{6}6s^{2}6p^{0} and S : [Ne]3s^{2}3p^{3}d^{2}^{-2}.
15. Core configuration:Ta : [Xe]4f^{14}5d^{6}6s^{2}6p^{0} and S : [Ne]3s^{2}3p^{3}d^{2}^{-2}.
20. The energy-surface-averaged transport lifetime is defined as \(\tau_{k} = \frac{\sum_{E} |c_{k}|^{2}}{\sum_{E} E - \epsilon_{k}} \). For purposes of presentation, results of the superconducting transition temperature \(T_{c} \) in bulk and monolayer TaS\(_{2}\), as well as the site- and direction-resolved phonon band structures for bulk and monolayer TaS\(_{2}\), k-resolved el-ph relaxation times for the case of monolayer TaS\(_{2}\) including the Fermi surface topology, HSE06 electronic band structures for bulk as well as monolayer TaS\(_{2}\) and TaSe\(_{2}\), informations on the electronic band structure and el-ph relaxation times of bulk TaSe\(_{2}\) and k/q-mesh convergence checks on the electronic mobility of all materials.
argumentation using the the electronic density of states still holds.

The reader should keep in mind that 2H-TaS$_2$ undergoes an incommensurate phase transition at $T \approx 75$ K, which is not covered within our methodology.

Technically the doping is achieved, by a rigid shift of the chemical potential into the bands of the material. Experimentally electrical gating would most closely correspond to this situation.

