Bottom trawl fishing footprints on the world’s continental shelves

Amoroso, Ricardo O.; Pitcher, C. Roland; Rijnsdorp, Adriaan D.; McConnaughey, Robert A.; Parma, Ana M.; Suuronen, Petri; Eigaard, Ole Ritzau; Bastardie, Francois; Hintzen, Niels T.; Althaus, Franziska

Total number of authors: 57

Published in:
Proceedings of the National Academy of Sciences of the United States of America

Link to article, DOI:
10.1073/pnas.1802379115

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bottom trawl fishing footprints on the world’s continental shelves

*School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ocean and Atmosphere, Brisbane, QLD 4001, Australia; Wageningen Marine Research, Wageningen UR, 1970 AB Ulimoen, The Netherlands; Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98115; Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, 9120 Argentina; Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; Luonnontaidetutkimuskeskus/Natural Resources Institute Finland, 00790 Helsinki, Finland; National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; CSIRO Oceans and Atmosphere, Hobart, TAS 7001, Australia; National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand; GNS Science, 5040 Lower Hutt, New Zealand; Institute of Marine Research, 5817 Bergen, Norway; School of Earth and Ocean Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Marine Laboratory, Marine Scotland Science, Aberdeen, AB11 9DB, Scotland; International Council for the Exploration of the Sea, 1553 Copenhagen V, Denmark; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882; College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803; Fisheries Management, Offshore Resources, Department of Agriculture, Forestry and Fisheries of the Republic of South Africa, 8000 Cape Town, South Africa; Queensland Department of Agriculture and Fisheries, Brisbane, QLD 4001, Australia; Hühner Institute, 22767 Hamburg-Altona, Germany; Ministry for Primary Industries, 6140 Wellington, New Zealand; Instituto de Fomento Pesquero, Blanco 839, Valparaíso, Región de Valparaíso, Chile; Marine Institute, H91 R673 Oranmore, Ireland; Institute of Investigation of Hydrobiology, Universidad Nacional de la Patagonia San Juan Bosco, 9100 Trelew, Chubut, Argentina; Deutsches Zentrum für Luft- und Raumfahrt, Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 71003 Heraklion, Crete, Greece; Centre for Environment, Fisheries and Aquaculture Service, NR33 OHT Lowestoft, United Kingdom; Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, 16012 Ancona, Italy; Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia; Instituto Português do Mar e da Atmosfera, Departamento do Mar e Recursos Marinhos, 1495-165 Lisboa, Portugal; Animal Resources and Inland Waters, Hellenic Centre for Marine Research, 71003 Heraklion, Crete, Greece; Site of Environmental Data, Ministry for Primary Industries, 6140 Wellington, New Zealand; National Marine Information and Research Centre, Ministry of Fisheries and Marine Resources, Swakopmund, Namibia, 22001; Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 6920, Australia; Australian Institute of Marine Science, 5040 Lower Hutt, New Zealand; Marine Research Station, 19013 Anavyssos, Attiki, Greece; National Oceanic and Atmospheric Administration’s National Marine Fisheries Service, Juneau, AK 99802; Agri-Food and Biosciences Institute, BT9 5PX Belfast, Northern Ireland, United Kingdom; Commercial Fisheries and Aquaculture, New South Wales Department of Primary Industries, Coffs Harbour, NSW 2450, Australia; Northern Territory Department of Primary Industry and Fisheries, Darwin, NT 0801, Northern Territory, Australia; Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 71003 Heraklion, Crete, Greece; Centre for Environment, Fisheries and Aquaculture Service, NR33 OHT Lowestoft, United Kingdom; Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, 16012 Ancona, Italy; Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia; Instituto Português do Mar e da Atmosfera, Departamento do Mar e Recursos Marinhos, 1495-165 Lisboa, Portugal; Animal Sciences Unit—Fisheries and Aquaculture Production, Institute for Agricultural and Fisheries Research, 8400 Oostende, Belgium; Marine Stewardship Council, EC1A 2DH London, United Kingdom; and School of Environmental Sciences, University of East Anglia, NR4 7TJ Norwich, United Kingdom

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South China, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km² study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing regulations consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.

T

There has been sustained debate about the extent of bottom trawling impacts on marine environments (1, 2). Both the scale and severity of bottom trawl impacts varies among regions, with assistance from all coauthors.

The authors declare no conflict of interest. This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data reported in this paper have been deposited in a database at the University of Washington (<https://trawlingpractices.wordpress.com/datasets>). All data are available as an S4 R object to allow interrogation of data and replication of analysis.

To whom correspondence should be addressed. Email: ramoroso@u.washington.edu.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1802379115/-/DCSupplemental.

Published online October 8, 2018.
Significance

We conducted a systematic, high-resolution analysis of bottom trawl fishing footprints for 24 regions on continental shelves and slopes of five continents and New Zealand. The proportion of seabed trawled varied 200-fold among regions (from 0.4 to 80.7% of area to a depth of 1,000 m). Within 18 regions, more than two-thirds of seabed area remained untrawled during study periods of 2–6 years. Relationships between metrics of total trawling activity and footprint were strong and positive, providing a method to estimate trawling footprints for regions where high-resolution data are not available. Trawling footprints were generally smaller in regions where fisheries met targets for exploitation rates, implying collateral environmental benefits of effective fisheries management.

and ecological consequences of trawl impacts have been highlighted, with suggestions that bottom trawls are “annually covering an area equivalent to perhaps half of the world’s continental shelf” (1). In contrast, fishing industry representatives often claim that the scale of their impact is more limited, highlighting their targeted use of well-defined fishing grounds rather than widespread “ploughing” of the seabed (3). Robust quantification of the distribution and intensity of bottom trawling would provide an evidence base to assess pressures on seabed habitats, to compare the impacts of different fisheries, to characterize fisheries, and to estimate the extent of untrawled areas outside marine protected areas (MPAs) and fisheries closures (4–9).

Distributions of trawling activity were traditionally reported at a spatial scale of several hundred square kilometers and larger, because these coarse scales were used for data collection and recording (10). Activity mapped at coarse scales inevitably provides a misleading picture of the spatial distribution of trawling. Since trawled areas combine with untrawled areas (11), local and regional studies have provided a higher-resolution view of activity from positions in vessel logbooks, analyses of plotter data, analyses of overlight data, or direct tracking of subsets of vessels. These show that trawling distributions are often highly aggregated, but coverage of vessels and areas was usually insufficient to map total trawling distributions at the shelf sea scale (12).

The introduction of vessel monitoring systems (VMSs) as a surveillance and enforcement tool revolutionized the study of fishing activity and footprints, providing high-resolution information on locations of individual fishing vessels and complete or almost complete coverage of many fleets (13–15). VMS data enable management authorities to monitor whether a vessel is in an area where it is permitted to fish. VMS data are also used by scientists to show the locations and dynamics of fishing activity, usually based on density distributions of position records or reconstructed tracks (16–18). High-resolution descriptions of trawling activity from VMS have already underpinned studies of fishing behavior and dynamics (19, 20) and trawling impacts on species, habitats, and ecosystem processes at regional scales (21–29), and they have provided indicators of fishing pressure (24, 29). They have also supported marine spatial planning (7, 9, 30, 31), including mapping fishing grounds (32–35) and providing advice on siting MPAs (7, 33) and assessment of MPA effects (13, 14). VMS data are often linked, vessel by vessel, to the fishing gears that are deployed and catches that are recorded (17).

High-resolution position data allow the aggregation of trawling to be assessed at multiple scales. Aggregation needs to be accounted for when estimating trawling impacts, because repeated passes on a previously trawled seabed each have a smaller impact than the first pass of a trawl on a previously untrawled seabed (36). Analyses at finer scales will better identify aggre-
trawling footprints will be underestimated. Although reductions in the scale of grid cell-based analyses to around 1 km² will characterize trawling footprints more accurately, these footprint estimates will still be larger than those predicted by approach A due to individual trawling tracks within cells. This is because it is impossible, or statistically unlikely, that a grid cell is trawled in its entirety when trawling intensity is low. Approaches B and C directly address this issue. Approach B provides a more accurate estimate of annual trawling footprint, because the distribution of trawling at any point within cells of close to 1 km² area has been shown to be random on annual timescales (39). Approach C is more appropriate to estimate aggregate footprint over many years, because trawling within cells tends to spread more uniformly as many years of trawl location data are aggregated. Thus, annual mean footprint is better approximated by approach B than by approach C, while the multiyear footprint is better approximated by approach C than by approach B.

To estimate the trawled area within grid cells, we first calculated the annual swept area ratio (SAR) for each grid cell. In general, SAR is defined as the total area swept by trawl gear over a defined time period (usually 1 y) divided by the total seabed area at a defined spatial scale (usually from grid cell to region). The total area swept within a defined area (e.g., a grid cell) is calculated as the product of trawling time, towing speed, and dimensions of gear components contacting the seabed (42) summed over the different types of trawl gear operating in the area. The estimated mean annual SAR in each grid cell is then used as the mean of an assumed random distribution (Poisson; approach B) or uniform spread (approach C) of trawling within each cell to determine the proportion of grid cell area that was trawled at least once (i.e., contributes to footprint area) or not trawled.

When using the 1-km² cell-based approach (approach A) to estimate the trawling footprint in the study period, 33.6% of the total area for which we collated ≥70% of bottom trawling activity (7.8 million km² of seabed at depths of 0–1,000 m) was trawled and 66.4% was untrawled. When we accounted for untrawled areas inside trawled grid cells assuming random trawling distributions (approach B), trawled area fell to just 11.7%, and untrawled area was 6.9 million km² or 88.3% of total area. When we assumed uniform trawling distributions within trawled cells (approach C), trawled area was 14.0%, and untrawled area was 86.0% (6.7 million km²) of total area. The overall pattern was consistent with regional patterns, with approach A yielding higher estimates of footprint than approaches B and C (Table 1 and SI Appendix, Fig. S35). We primarily report footprints based on the uniform approach C, as these best approximate the aggregate footprint of trawling over many years.

The overall footprint of trawling to a depth of 1,000 m, based on the assumption of uniform spread within grid cells (approach C), was approx. 30% of seabed area in 11 of 24 regions (Fig. 2 and Table 1). A larger fraction, from 10 to 30% of the shelf and upper slope area to 1,000-m depth, was trawled in the Irish Sea, North Benguela Current, South Benguela Current, Argentina, East Agulhas Current, and west of Scotland. The remaining seven regions, all in the northeast Atlantic and Mediterranean, had >30–81% of the shelf area trawled. The untrawled area was >50% in 20 of 24 regions. Some of the largest regions that we considered were among the least intensively trawled. Thus, trawling footprint in the largest region, New Zealand, was 8.6%, while footprints in Argentina, North Australian Shelf, and North West Australian Shelf (ranked two to four by area) were 17.6, 2.2, and 1.6, respectively (Table 1 and SI Appendix, Fig. S36). Concentration of trawling activity within footprints varied among regions. The most intensively trawled area accounting for 90% of total trawling activity (calculated with the uniform spread assumption; approach C) ranged from 0.4 to 60% of the area of the regions and comprised 52–100% of the total trawling footprint area within regions (mean 78%) (Table 1 and SI Appendix, Fig. S37). We focus on approach C when making these comparisons, because this approach provides more reliable estimates of trawling footprints on the multiyear timescales, which are relevant when considering impact and recovery dynamics of most seabed biota (50).

The frequency of trawling is another relevant metric when assessing trawling impacts on the status of seabed biota (50). We expressed the frequency of trawling disturbance as the average interval between trawling events for each of the trawled grid
cells. This metric is the inverse of the cell-specific SAR. More than one-half of the seabed area is trawled at an interval of at least once per year, on average, in the region with the highest regional SAR (Adriatic Sea) (Fig. 2). Over one-quarter of the seabed area is trawled with this frequency in five of the other eight European seas (Fig. 2). In all Australasian regions, three-quarters of the seabed is never trawled or is trawled less than once every 10 y, such as is the case in the South Benguela Current, East Agulhas Current, North California Current, East Bering Sea, Aleutian Islands, Gulf of Alaska, and South Chile (Fig. 2). Within regions, there tended to be large differences in the proportions of the seabed area untrawled in the 0- to 200- and 200- to 1,000-m depth bands (Fig. 3), likely reflecting the different foci and development of bottom trawl fisheries in these regions.

Among regions, there was a strong relationship between regional SAR and the total trawling footprint based on the uniform assumption (Fig. 4). This relationship between regional SAR and regional trawling footprint implies that regional SAR estimates, calculated from basic information on fishing effort (measured as time trawling) and some knowledge of gear and vessel characteristics, may be used to predict trawled and untrawled areas of seabed at regional scales. For example, for mean regional SAR = 1 y⁻¹, the prediction probability intervals for footprint [where the mean estimate of footprint by region = SAR/(b + SAR), with b = 2.072; SE = 0.154] indicate >95 probability that at least 23% of the region remains untrawled and 0.90 probability that 33–54% is trawled (Fig. 4). For SAR ≤ 0.1 y⁻¹, as in 8 of our 23 regions, there was a >95% probability that at least 90% of the seabed was untrawled. For SAR of 7.93 y⁻¹, equal to the highest SAR recorded (Adriatic Sea), there is a >95% probability that more than 70% of the seabed was trawled.

Regions were included in the main analyses when catch or effort data indicated that the trawling activity recorded with VMS or observer data was at least 70% of total activity. Alternative cutoffs of 80% or 90% did not lead to significant changes in the mean relationships shown in Fig. 4, but confidence and prediction intervals increased substantially if only the few regions with >90% activity were included. This relationship between regional SAR and trawling footprint allows us to approximate the increase in trawling footprint that would result if we had
Fig. 2. Mean interval between trawling events and the proportion of untrawled area at depths 0–1,000 m for regions in (A) the Americas, (B) Europe, (C) Australasia, and (D) Africa. Black lines indicate boundaries of study regions, pale blue tones indicate depths of 0–200 m in the study regions, darker blue tones indicate depths of 200–1,000 m in the study regions, and all deeper areas and areas outside study regions are shown in white. In all numbered regions, the proportion of bottom trawling included in this analysis exceeds 70% of total activity (Table 1). Region codes follow Fig. 3 and Table 1.

been able to include 100% of known trawling activity in our analyses. If we assume that the relationship between SAR and trawling footprint applies in all of the cases where coverage is <100%, then the combined trawling footprint across all regions would increase by 71,000 km², or 0.9% of the 7.8 million-km² study area, if we obtained data on all trawling activity. This would represent an increase of 8.2% in the total area trawled across all 24 regions, with higher regional increases in regions where coverage of effort was closer to 70%.

We calculated regional SAR with high-resolution data, but it can also be calculated as the product of total annual hours of trawling, mean towing speed, and gear width without information on the location of trawlers at subregional scales. Regional SAR calculated from this more widely available information might then be used to predict trawling footprint using the relationship in Fig. 4. We applied this approach to the bottom trawl shrimp fisheries off the US coast of the Gulf of Mexico, a region for which we had no VMS data. The area of the northern Gulf of Mexico shelf and slope to a depth of 1,000 m is ∼4.6 × 10⁶ km², and the swept area in the years 2007–2009 was 2.8 × 10⁶ km² year⁻¹. This leads to a mean SAR of 0.64 year⁻¹. If the relationship described in Fig. 4 applies to these bottom trawl fisheries, then there is a 0.9 probability that 16–43% of this region of the Gulf of Mexico is trawled based on the uniform assumption and a 0.95 probability that more than 56% is untrawled (SI Appendix, Text S4). Bottom trawling may impact a range of seabed types within a given footprint. For regions where ≥70% of trawling activity was recorded, we quantified the intersection of trawling with four broad seabed types. We defined seabed types based on sediment composition obtained from the dbSEABED database of marine substrates (51). A simple sediment classification rather than a more highly resolved habitat classification was adopted to enable equitable treatment of habitat across all regions and for consistency with habitat types reported in most trawling impact studies (36, 52–55). Grid cells were classified to sediment types by denoting “gravel” if gravel >30%, else “sand” if mud <20%, else “mud” if sand <20%, and else “muddySand” (53). Sediment data could be obtained for 90% of cells in all regions, except for New Zealand (86%), Aleutian Islands (72%), Gulf of Alaska (68%), and Argentina (52%).

Within all regions, the bottom trawling footprint on each sediment type was correlated with total area by sediment type (SI Appendix, Fig. S38). This result implies that bottom trawling activity is not consistently directed toward certain sediment types. This is expected, since we compiled activity by multiple fleets rather than individual types of bottom trawl fishery (e.g., stratified by gears, fleets) and because fishers are targeting different fish species with different trawl gears on many types of seabed (42). While this result may be more nuanced with a more highly resolved classification of habitat types (23), a consistent and highly resolved ecologically based habitat classification is not available for all regions.

International calls for MPAs coverage of 10% of ocean area (56) to 30% or more (57) often focus on the protection of seabed from bottom trawling. Our results show that ≥30% of the seabed was not trawled during the study period in all regions except the Adriatic Sea. In 20 of 24 regions, ≥50% of the seabed was not trawled during the study period. This proportion of untrawled seabed is already much greater than the proportion proposed for protection within MPAs (56, 57), showing opportunities in many regions to site MPAs in areas that have not been affected by and would not displace trawling activity. Furthermore, since trawling footprints were distributed more or less evenly in relation to broad sediment types, the large proportions of untrawled area in a region may imply a relatively representative range of seabed types currently remain untrawled. However, as described in relation to the habitat analysis, this conclusion may not hold when
Fig. 4. Relationship between the regional SAR and the trawling footprint (approach C, assumes uniform spread in grid cells; in the text). (Left) Symbol sizes indicate the proportion of total fishing activity recorded in each region (all >70%), and numbers in symbols identify the regions listed in Fig. 3 and Table 1. (Right) The black line is the fitted relationship footprint = SAR/(b + SAR); dark blue shading indicates 95% confidence intervals for model fit, and light blue shading indicates 90% prediction intervals for footprint.

habitat types are more highly resolved or when active management intervention affects the distribution of fishing activity.

Finally, we assessed relationships between regional SAR and metrics of the intensity of fisheries exploitation. There was a significant but noisy positive relationship between regional SAR and relative rates of fishing mortality F (expressed as the ratio between recorded F and the reference point F_{MSY}) (Fig. 5 and SI Appendix, Table S3 and Text S5). Broadly, when regional SAR was ≤0.25, as in 12 of our 24 study regions, fishing rates on all stocks for which we had data were close to or below F_{MSY}. Conversely, when regional SAR was >0.25, F was greater than F_{MSY} for 85% of the stocks. A regional SAR of 0.25 corresponds to a trawling footprint spanning of around 10% of the area of a region based on the uniform assumption and the relationship between SAR and footprint (approach C) (Fig. 4; SI Appendix, Fig. S39 has the direct relationship trawling footprint and relative F). When regional SAR exceeded three, as recorded in two Mediterranean regions and one Baltic region, all stocks for which we had data were fished at or above F_{MSY} (Fig. 5). When we conducted a more constrained analysis, which only included those stocks with distributions spanning at least 50 or 70% of the region to which they were assigned, the breakpoint remained close to SAR = 0.25 in both cases (SI Appendix, Figs. S40 and S41). The relationships between trawling footprints (approach C) and relative F (SI Appendix, Fig. S39) also held when we only included those stocks with distributions spanning at least 50 or 70% of the region to which they were assigned (SI Appendix, Figs. S42 and S43). Thus, in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, trawling footprints based on approach C were typically ≤11% of region area. These patterns imply that fisheries management systems that effectively meet reference points for exploitation rates on bottom dwelling stocks will achieve collateral environmental benefits, because SAR and thus, trawling footprint will be lower.

Our group made significant efforts internationally to obtain high-resolution trawling activity data for regions where these data are recorded. The seabed area, including the continental shelf area to 1,000 m, globally approximates 42.5 million km2; thus, the data that we acquired covered 18.4% of this. Our data accounted for a similar proportion (19.5%) of estimated global landings by bottom trawlers (3.78 million tons year$^{-1}$; assuming mean global landings of 19.35 million tons year$^{-1}$) (Table 1 and SI Appendix, Text S1). Regions where data were not available to us included some areas where we expect high levels of bottom fishing activity (e.g., Bay of Biscay, the east coast of the United States and Canada, Brazil shelf, and Southeast Asia).

To conclude, there are large differences in trawling footprints among study regions. However, for almost all of the shelves and slopes that we studied, total footprints to depths of 200 and 1,000 m, based on the more representative assumption of uniform spread of trawling activity within cells, are well below the 50% previously suggested (1) and are less than 10% overall in almost one-half of the regions. There were strong positive relationships

Fig. 5. Relationships between the relative rate of fishing mortality and the regional SAR by region. Circles denote the ratio of fishing mortality (F; mean 2010–2012) to the F_{MSY} reference point for individual bottom dwelling stocks. The black horizontal dashed line indicates F/F_{MSY} = 1, usually treated as a desirable upper limit on fishing rates by managers. One value of F/F_{MSY} > 8 for a Mediterranean stock in a region where the regional SAR is 7.93 is excluded for clarity.
between regional SAR and footprint, providing a method to estimate trawling footprints for regions where high-resolution data from logbooks, AISs, and satellite VMSs are not available. Regional SAR and trawling footprints were generally smaller in regions where fisheries were meeting reference points for sustainable exploitation rates on bottom dwelling stocks, implying collateral environmental benefits from successful fisheries management of these bottom dwelling stocks.

Methods

Bottom Trawling Contribution to Global Landings. Marine global landings by mobile bottom fishing gears for the years 2011–2013 were estimated from FAO landings data (47) (SI Appendix, Table S1). Species or species groups not caught with mobile bottom gears were excluded as were species with mean landings of <1,000 t y⁻¹, which account for a negligible proportion of the total (<1%) but cannot be quantified precisely due to nonrecording. For remaining species or species groups, we estimated the proportion caught by mobile bottom fishing gear (SI Appendix, Table S1) and combined this with estimates of mean annual landings of marine fishes that are not identified by the FAO (48, 49, 58). The calculation excludes fish that are caught but discarded (59).

Estimating Trawling Footprints. We estimated the area trawled within each grid cell using approach B (assuming random trawling distribution) and approach C (assuming a uniform spread of trawling distribution). Both approaches required estimates of grid cell SAR. Grid cell SAR was estimated for individual cells, typically 1 x 1 km (1 km²) or 1 x 1 min of longitude and latitude (1.9 km² at 56° north or 56° south) in grids spanning each region. At these spatial scales, trawling tends to be randomly distributed within years but tends to be uniformly spread on longer timescales (39), consistent with the assumptions that we make to estimate footprint. For each grid cell, the SAR was calculated as the ratio of the total trawl swept area (estimated from gear dimensions, towing speed, and towing time) divided by grid cell area. Methods of analysis varied among regions depending on how vessels were tracked (VMS or observers, logbooks), on how fishing tracks were reconstructed from position servers, logbooks), on the intensity of the fishing pressure for stocks targeted by bottom contact fishing gears were obtained from the RAM Legacy database (60) (Version 4.30; ramlegacy.org). RAM Legacy is currently the most comprehensive repository of stock assessment data containing time series of biomass, catches, fishing mortality, recruitment, and management reference points for more than 200 fish stocks. Trawling footprint data were included in the analyses when (i) both trawl footprint data and a fishing mortality reference point were available for the years 2008–2010; (ii) the spatial distribution of the stock matched at least one of the regions with high coverage (>70%) of trawling activity; and (iii) the largest proportion of landings from the stock, by gear, is taken with bottom trawls. Additional descriptions of the methods, the stocks included, stock distributions in relation to the study regions, and resulting status estimates are provided in SI Appendix, Table S3 and Text S2.

Acknowledgments. Funding for meetings of the study group and salary support for R.O.A. were provided by the following: David and Lucille Packard Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative; American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods Inc.; Ersensen Group; Glacier Fish Company LLC US; Gortons Seafood; Independent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.; Pacific Andes International Holdings, Ltd.; SanArrawa, S.A.; Sanford Ltd. N.Z.; Seawatch Group Ltd. N.Z.; Scientific Group Limited; Space Race; Stellarton Marine and the Food and Agriculture Organisation of the United Nations. Additional funding to individual authors was provided by European Union Project BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F., H.M.G., T.P., S.K., M.L., E.G.-M., A.N.P., R.E.P., T.R., A.S., B.V., and M.J.K.); the Instituto Português do Mar e da Atmosfera, Portugal (C.S.); the International Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the Commonwealth Scientific and Industrial Research Organisation (C.R.P. and T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, University of Tasmania and the Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia (I.M.S.); and UK Department of Environment, Food and Rural Affairs Project MF1225 (to S.J.).

47. FAO (2016) Fishery and Aquaculture Statistics (FishStat) (FAO Fisheries and Aquaculture Department, Rome).

