Risk Benefit Assessment of foods: Key findings from an international workshop

Pires, Sara Monteiro; Boué, Géraldine; Boobis, Alan; Eneroth, Hanna; Hoekstra, Jeljer; Membré, Jeanne-Marie; Persson, Inez Maria; Poulsen, Morten; Ruzante, Juliana; van Klaveren, Jacob

Published in:
Food Research International

Link to article, DOI:
10.1016/j.foodres.2018.09.021

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Risk Benefit Assessment of foods: key findings from an international workshop

Sara M. Pires1, Géraldine Boué2, Alan Boobis3, Hanna Eneroth4, Jeljer Hoekstra5, Jeanne-Marie Membré2, Inez Maria Persson1, Morten Poulsen1, Juliana Ruzante6, Jacob van Klaveren1,5, Sofie T. Thomsen1, Maarten J. Nauta1

1Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Lyngby, Denmark

2SECALIM, INRA, Oniris, Université Bretagne Loire, Nantes, France

3Faculty of Medicine, Department of Medicine, Imperial College London, United Kingdom

4Department of Risk Benefit Assessment, the National Food Agency, Uppsala, Sweden

5National Institute for Public Health and the Environment, Bilthoven, The Netherlands

6RTI International, Research Triangle Park, North Carolina, United States

Corresponding author

Sara Monteiro Pires, DVM, PhD

Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark. Kemitorvet, building 201. 2800 Kgs. Lyngby

Telephone: +45 40213489; Email: smpi@food.dtu.dk
Keywords: risk-benefit assessment, food safety, nutrition, diet, evidence-based, health impact, food policy
Abstract

Whilst risk management measures, including food policy, are developed for the protection of public health and the environment, they may also lead to a reduction in health benefits. Policy decisions require then consideration of these necessary trade-offs, which leads to an increasing need to apply formal risk-benefit assessment (RBA) of foods. In this context, the European Food Safety Authority sponsored a Risk-Benefit Assessment Workshop on “past, current and future developments within the risk-benefit assessment of foods (RBA)” held in May 2017. The overall aims of the RBA Workshop were to discuss existing methods, challenges and needs within RBA, and to draft a roadmap for future development of RBA. The specific objectives were to i) identify RBA activities in Europe and globally; ii) discuss how to further develop and optimize RBA methodology; iii) identify challenges and opportunities within RBA; and iv) increase collaboration internationally. The two-day workshop gathered 28 participants from 16 institutions in 11 countries. It included technical presentations of RBA methods and case studies, and two break-out sessions for group discussions. All participants agreed that RBA has substantial potential to inform risk-management decisions in the areas of food safety, nutrition and public health. Several activities to optimize further developments within RBA were suggested. This paper provides a summary of workshop presentations, a discussion of challenges that limit progress in this area, and suggestions of next steps for this promising approach supporting a science-based decision process in the area of risk-benefit management of foods.

1. Introduction

1.1. History of RBA of foods

Risk-benefit assessment (RBA) of foods is a relatively new decision-support tool that assesses the combined beneficial and adverse health effects of consumption of foods in one integrated methodology. It integrates
knowledge on nutrition, toxicology, microbiology, chemistry and human epidemiology for comprehensive health impact assessments. RBA is part of the Risk-Benefit Analysis paradigm that combines RBA, risk-benefit management and risk-benefit communication, similar to the risk analysis paradigm (FAO, 2007). RBA is thus useful to inform food safety policies or to provide dietary advice based on an integration of the available scientific knowledge, with the ultimate aim of preventing food-associated diseases and promoting health and wellbeing of consumers.

Research to inform public health policies in the area of food and diets has been traditionally focused either on food safety, i.e. assessing risks and implementing strategies to limit the presence of microbiological or chemical hazards, or on nutritional assessments, i.e. assessing both risks or benefits of a lack or surplus of foods and nutrients. RBA is a conceptual and practical shift from the separate assessment of risks or benefits, typically within toxicology, microbiology and nutrition, to an integrated and multidisciplinary assessment of both risks and benefits. International organizations such as the World Health Organization (WHO) and Food and Agriculture Organization (FAO) have conducted RBA of foods to address risk-benefit questions (FAO/WHO, 2008, 2010). In the USA, several RBA studies have been performed on health risks and benefits of seafood consumption (FDA, 2014; Gochfeld & Burger, 2005; Malden C. Nesheim and Ann L. Yaktine, 2007; Rheinberger & Hammit, 2012) Furthermore, the European Food Safety Authority (EFSA) started a discussion on RBA methodology in 2006, and in 2010 launched a scientific opinion on Guidance on human health risk-benefit assessment of foods (EFSA, 2006, 2010). Following these initial developments and discussions, important research and progress within RBA has been performed, for example within European research projects like BRAFO (Hoekstra et al., 2012), Qalibra (Hart et al., 2013), Beneris (Leino, Karjalainen, & Tuomisto, 2013), and BEPRARIBEAN (H. Verhagen et al., 2012). In these projects, important steps have been taken to develop RBA methodology, and first generation software tools were developed to facilitate RBA while taking relevant
uncertainties into account. In addition, a series of initial case studies was conducted (see e.g. Boobis et al., 2013; Hart et al., 2013; Hoekstra et al., 2012; Hoekstra, Fransen, et al., 2013). These projects were also important to identify main challenges and limitations of the implementation of RBA at that time. After the termination of these EU projects, progress in RBA has been made by individual research groups, which have addressed RBA questions in ad-hoc case studies in response to questions of food safety managers (Anonymous, 2017a; Eneroth, Wallin, Leander, Nilsson Sommar, & Åkesson, 2017; Steffensen et al., 2018) or to make further progress in RBA method development (Berjia et al., 2014; Boué, 2017).
Several of the challenges identified as a result of the European RBA projects (Boobis et al., 2013) still remain, and include data and knowledge gaps; methodological limitations; difficulties in aggregating/comparing risks and benefits and in combining human data with data extrapolated from animal studies; lack of harmonization of concepts; and complexities in communicating RBA results. Furthermore, new research questions and agendas emphasize a need for assessments that include other societal impacts such as environmental, sustainability and economic concerns, in addition to public health effects. Tackling these challenges and paving the way for further development and implementation of RBA requires commitment and contribution of international experts in all aspects of risk assessment, food safety and nutrition. International collaboration will be crucial for the establishment and consolidation of RBA as a tool to evaluate scientific evidence to inform decision makers in public health and food safety at national and international levels. Several research groups in different countries are committed to further advance the field of RBA of foods, develop methodologies and provide evidence to support risk-benefit management in food safety and nutrition at national and global level. Leveraging on these research activities, EFSA sponsored a two-day workshop to gathered international RBA experts to pave the way forward within the RBA area. This paper describes the structure, contents and overall conclusions of the workshop. It starts by providing a brief overview of the RBA process and methodology (section 2), describes examples of current developments of RBA that were presented at the workshop (section 3), as well as the most important challenges within the field (section 4), and presents the opportunities and suggestions for next steps within RBA discussed by the experts (section 5).1.2. Workshop objectives and structure
The overall aims of the RBA Workshop were to discuss methods, challenges and needs within RBA and to draft a roadmap for its future development. The specific objectives were to i) identify RBA activities in Europe and worldwide; ii) discuss how to further develop and optimize RBA methodology; iii) identify challenges and opportunities within RBA; and iv) increase collaboration internationally. The two-day workshop gathered 28 participants from 16 institutions in 11 countries in Copenhagen, Denmark, May 2017. Participants and their
affiliations are presented in the appendix 1. The workshop included scientific presentations sharing past and
current achievements in the area of RBA; break-out discussion sessions to identify challenges and to discuss
opportunities for further developments in terms of data collection; methodologies and expansion of the scope
of RBA to include other measures of impact; and an overall discussion to plan the future of RBA.

2. Risk-benefit assessment process and methodology

The process of an RBA is similar to the process of a traditional risk assessment. First, the risk-benefit question is
defined by the risk manager, describing the purpose, scope and boundaries of the assessment including at
what level (component, food or diet) the assessment is performed. As part of the problem formulation, the
scenarios to be investigated are defined and the relevant subpopulations are identified. A reference scenario,
which is usually current exposure or consumption, is compared to one or more alternative scenarios. The
alternative scenarios serve to investigate the health impacts of a change in intake, and may be defined based
on for example a worst-case exposure scenario or a recommended intake. Next, the RBA process can be
divided into five steps, where the first four are common to the ones of traditional risk assessments but applied
to risks and benefits separately (Boobis et al., 2013) (Figure 1). Lastly, risks and benefits are integrated to
answer the risk-benefit question. Hence, the RBA process includes i) the identification of adverse and beneficial
health effects associated with the consumption of food(s) and the exposure to food components considered; ii)
the assessment of food consumption or exposure to food components; iii) the characterisation of the relevant
health effects by determining the dose-response relationships for the food components or foods, describing
the association between exposure and likelihood of an effect; and iv) the characterization of risks and benefits
by integrating the information on dose-response relationships and the outcome of the exposure assessment.
The conclusion of the risk-benefit characterization (i.e. step v) can be that a change in intake scenario is
expected to lead to an increase or decrease in the incidence of the studied health effects. This conclusion may
be based on a qualitative assessment, stating that the health impact of one scenario is beneficial as compared to another without giving an estimate of the size of the health impact, but it can also be a quantitative estimate, expressing the health impact in terms of a common health metric such as incidence, mortality, disability adjusted life years (DALY) or quality adjusted life years (QALY) (Gold, Stevenson, & Fryback, 2002; Tijhuis et al., 2012). A quantitative assessment may be necessary if one scenario does not clearly stand out more beneficial or adverse compared to another in the qualitative assessment (Tijhuis et al., 2012); alternatively the aim of the RBA may be a quantitative outcome from the beginning.

RBA methods have evolved substantially over the years, allowing for improved evaluations of the health impact of foods. These developments have been equally evident in terms of data collection and analysis, and of method development and modelling (see 3.). As examples, while the first RBA studies focused on one single food (e.g. fish) (e.g Hoekstra et al., 2013; Skåre et al., 2015) or one single food component (e.g. folic acid (Hoekstra et al., 2008)) and investigated risks and benefits in the population as a whole, recent work has taken into account the health effects of substitution of foods in overall dietary patterns, or variation in the population in terms of susceptibility or dietary preferences (see 3.2. and 3.3.). The technical session of the workshop included presentations of past and present RBA case studies illustrating different approaches, some of which are summarized below.

3. Current developments in quantitative RBA of foods

3.1. RBA of single foods

The majority of published RBA in the area of food safety and nutrition focused on single foods (Berjia et al., 2014; Eneroth et al., 2017; Hoekstra, Fransen, et al., 2013; Hoekstra, Hart, et al., 2013), with fish being most
frequently evaluated (Boué, Guillou, Antignac, Bizec, & Membré, 2015). These RBA studies aimed to assess the overall impact of a food consumed while considering different levels of exposure and different factors affecting human health related to the fields of nutrition and/or microbiology and/or toxicology. Although many RBA performed recognize the broad impact of chemical hazards, nutrients and pathogens, most of them limited the analysis to only a few. For instance, the first RBA studies addressing fish consumption balanced potential nutritional benefits with chemical risks without considering potential microbiological effects, whereas another study on cold smoked salmon considered microbiological risks and nutritional benefits (Berjia et al., 2012). Only three out of more than 70 RBA studies included microbiological, chemical and nutritional concerns (ANSES, 2013; NAP, 2007; VKM, 2013), but these covered microbiology only with regard to hygiene practices recommendations.

Until recently, several studies have made efforts to address the challenges of including all potential types of risks and benefits of foods (Büchner, Hoekstra, & van Rossum, 2007; FAO/WHO, 2006; VKM, 2013), but none of them were comprehensive by including the three fields of research, nor were they quantitative to enable estimation of an overall health impact. A recent study that aimed to progress on RBA method development focused on infant milk consumption during the first months of life, considering breast milk and powdered infant formula (Boué et al., 2017). Methodological developments were investigated by taking into account a limited selection of five agents relevant to the case study (Boué et al., 2017). The model was built to quantify the risk of microbiological and chemical hazards (Cronobacter sakazakii, Cryptosporidium, dioxin like polychlorinated biphenyls (dl-PCBs) and arsenic), and the benefit of nutrients (docosahexaenoic acid (DHA)) by taking into account the variability in the population and data and model uncertainty (Boué et al., 2017). In addition, to progress further on RBA methodological development, variability and uncertainty were studied separately, using second-order Monte Carlo simulation.
This study’s individual risk and benefit assessments components (microbiological, nutritional, and chemical) involved the use of different methods, highlighting the difficulty of using a single harmonized approach. Likewise, it was not possible to apply one common health metric for all health effects considered. Therefore, the assessment ended with different output measures (e.g. exposure or DALYs), which hampered the comparison of all health impacts in a single metric and thus restrained scenarios comparison. To overcome this limitation, a scoreboard table was suggested, which also facilitated communication of RBA results while providing a transparent and comprehensive overview. The RBA model developed was the first fully three-disciplinary and quantitative RBA performed for a single food and highlighted that the integration of different methods and the assessment and communication of variability and uncertainties are still some of the challenges that have to be tackled.

3.2. Health impact of substitution of foods

Changes in the intake of one food will lead to changes in the consumption of other foods, which will indirectly affect the overall health impact of the food under study. If the intake of a food product is increased or decreased, it either leads to a change in overall food intake, or it is compensated by a change of the rest of the diet. Hence, to obtain a more integrated and realistic assessment of the overall health impact of our diet, it is essential to consider the whole diet and the potential substitution of foods. Thus far, few studies have addressed food substitutions in RBA. Van der Voet et al. applied a probabilistic model to assess the health impact of substituting 10-100% of red meat (beef/pork) with fish in the Dutch diet (van der Voet, de Mul, & van Klaveren, 2007). The health impact was assessed in terms of probability of exposure being below the tolerable daily intake (TDI) of hazardous substances (dioxin) and above the adequate intake of beneficial components (n-3 long-chain polyunsaturated fatty acids, DHA and eicosapentaenoic acid (EPA)). By estimating individual probabilities, this approach allowed the authors to include variability of food consumption between consumers into the RBA. Hollander et al. 2018 (Hollander, De Jonge, Biesbroek, Hoekstra, & Zijp, 2018) assessed
qualitatively the health effects of a gram for gram substitution of meat by fish, and Temme et al. 2013 investigated the effects of replacing dairy and meat by plant based products (Temme et al., 2013). Substitutions on a nutrient level were also assessed as part of the BRAFO project, which included substitution of saturated fatty acids with mono-unsaturated fatty acids, substitution of saturated fatty acids with carbohydrates, and substitution of mono- and di-saccharides with low-calorie sweeteners (Hans Verhagen et al., 2012). However, none of the RBAs reached a quantitative health impact estimate, either due to the lack of a true risk-benefit question or inconclusive evidence. Others investigated the risk-benefit balance of substituting added sugar in beverages with artificial sweeteners, in terms of either risk of exceeding established reference doses (Husøy et al., 2008) or body mass index (BMI) (Hendriksen, Tijhuis, Fransen, Verhagen, & Hoekstra, 2011).

Current work at DTU Food investigates the health impact of changing from the current Danish diet to a diet that follows the Danish National Dietary Guidelines (Thomsen et al., 2018). The approach weighs nutritional benefits against nutritional and toxicological risks, and accounts for the substitution of foods. The model is based on a case study on substitution of red and processed meat with fish in the Danish adult diet. In this case study, the observed individual mean daily fish intakes for all adult individuals (> 15 years) in the Danish National Survey of Diet and Physical Activity are increased to 50 g/day as recommended in the guidelines (350 g/week). Using pre-defined substitution factors that take portion sizes and meal-specific differences into account, a corresponding decrease in the intake of red and processed meat was modelled. Four substitution scenarios addressing the impact of varying chemical and nutrient exposures on the final health impact were investigated and the net health gain or loss of the substitutions was measured in DALYs. Other foods could potentially be added to the model to reflect a more realistic substitution and the whole diet. The approach may account for changes in energy intake associated with substitutions, as well as the health impact of these
changes. To our knowledge, this is the first quantitative RBA that uses DALYs as health metric whilst taking substitution of foods into account.

3.3. Optimization of personalized dietary recommendations

Even though official dietary guidelines are developed to motivate the population to follow healthy food consumption patterns, repeated national surveys have shown that most individuals do not meet the intakes recommended by the food and health authorities (Pedersen et al., 2010; Tetens et al., 2013). To investigate how to inform dietary advice that has a higher adherence by individuals, recent studies have applied mathematical optimization techniques to propose personalized intake recommendations (Maillot et al., 2009; Maillot, Vieux, Amiot, & Darmon, 2010; Persson et al., 2018). Personalized recommendations may be perceived as more relevant, because they can account for individual preference, needs, and beliefs (Brug, Campbell, & van Assema, 1999).

In a case-study on consumption of fish in the Danish adult population, quadratic programming models were applied to generate personalized fish intake recommendations fulfilling pre-defined criteria in terms of intake recommendations for EPA, DHA, and vitamin D and tolerable intake levels for methyl mercury, dioxins, and dl-PCBs, while simultaneously deviating as little as possible from observed individual intakes (Persson et al., 2018). Such an approach has the potential to increase compliance with dietary guidelines by targeting the individual consumers and minimizing the need for large and potentially unrealistic changes in consumption patterns. The output is a range of intakes for different fish species that can be proposed as a personalized recommendation for each individual in the population.

The approach of optimization of a single food recommendation can be improved by taking into account individual exposures to nutrients and contaminants from other sources than the food of interest, which enable refined minimum and maximum exposure criteria. The approach can also be used to optimize whole diets
Barre et al., 2016; Maillot et al., 2009, 2010). Environmental or other specific individual background exposures may still require consideration in both cases. Current research at DTU Food analyses the impact of individual exposures due to foods other than fish, dietary supplements and the environment, by expanding the case study of fish intake in Denmark (Persson et al., 2018) with individual data on this background exposure. Lastly, the optimization approach can be expanded to include other food-related issues beyond public health, such as sustainability (Horgan, Perrin, Whybrow, & Macdiarmid, 2016; Kramer, Tyszler, Veer, & Blonk, 2017), economic impact (Darmon, Ferguson, & Briend, 2002; Maillot, Vieux, Delaere, Lluch, & Darmon, 2017) or both (Van Dooren, Tyszler, Kramer, & Aiking, 2015).

4. Current challenges within RBA

Although significant progress has been made in the development of RBA, several challenges remain (Maarten J. Nauta et al., 2018). RBA has to face challenges of traditional risk assessment in the different disciplines, which are not specific for RBA, i.e. challenges related to data availability, variability between groups of consumers and individuals, strength of evidence and uncertainty in the dose response. In addition, there are challenges in defining how uncertainties should be presented to policymakers and the general public, and what guidance can be given to help policymakers make decisions based on uncertain evidence. Because of the parallel streams assessing adverse and beneficial impacts of foods or components, RBA faces additional challenges, including the integration of diverse data sources (e.g. from experimental animal studies and human epidemiological studies); heterogeneity of information between risks and benefits, classification of approaches for different types of risk-benefit questions (i.e. focusing on foods, food components or diets); scenario development including relevant policy options; and selection of metrics to evaluate and compare risks and benefits. Lastly, there are also challenges related to the current need to incorporate more than just health risks and benefits (e.g.: sustainability and economic consequences) to allow policymakers to make better informed decisions, and
the consequent requirement to further develop methodologies and approaches to perform those “expanded
RBA”. During the workshop, two categories of challenges were discussed in working groups, those related to
“health RBA” and those specific to “expanded RBA”.

4.1. Challenges related to RBA of health impact of foods

Aligning the Risk-Benefit question and the methodological approaches

The formulation of a risk-benefit question precedes the RBA and is of crucial importance to ensure that the
RBA is focused, fit for purpose, and well-structured (Boobis et al., 2013; Hoekstra et al., 2012). The risk-benefit
question will guide the choice of the RBA methodology and also the choice of risk-benefit metric. It is usually
the risk-benefit manager that asks the RBA question, refined as necessary in dialogue with the risk-benefit
assessors. Risk-benefit managers may be regulatory agencies such as national governments. However, policy
makers with focus in the various aspects of food are often scattered in different regulatory bodies, with distinct
interests, areas of action and potentially RBA questions. In addition, food companies and consumers may also
have the “risk-benefit manager role” and will have different interests for such assessments. As an example,
regulatory bodies may be primarily interested in defining safety criteria, priority setting and public health,
whereas consumers may have more interest in their personal dietary choices and the anticipated health
impacts of these choices. Hence, a broad range of risk-benefit questions and objectives are possible. For
example, RBA may want to consider different levels of aggregation (e.g. a food component, food product or the
whole diet), or the objective may be to compare specific scenarios and/or sub-populations to assess if the risk
exceeds the benefit or vice versa (Hans Verhagen et al., 2012). The goal may also be to identify the most
advantageous intake scenario (Berjia et al., 2014), or to provide a quantitative estimate of the overall health
impact. RBA can include only health effects or be “expanded” to include non-health factors such as economy,
sustainability and consumer preference (Ocké MC, Toxopeus IB, Geurts M, Mengelers MJB, Temme EHM, 2017;
Development of guidance on the approaches that can be adopted for different types of risk-benefit questions would facilitate the framing and the performance of RBA, and would support methodological harmonization in the future. Depending on the type of question, such guidance could for example assist in the selection of food components and foods as well as the health effects to be included in the RBA, and point out when quantitative approaches are needed. In general, clear and continuous communication between risk-benefit assessors and risk-benefit managers about the risk-benefit question and the methodological approach of choice is of crucial importance to ensure fit for purpose RBA.

Variability between groups of consumers and individuals

The inherent differences between individuals may lead to the risks and benefits differing between individuals and certain subpopulations (e.g. children, pregnant women, elderly). If this variability is ignored in RBA, certain (groups of) vulnerable individuals suffering from higher health risks may be ignored in its conclusions, even if an intake scenario, on average, is beneficial for the population. However, inclusion of variability demands knowledge on potential differences in health effects between groups of consumers and individuals, and this knowledge may not be available. Also, it increases the complexity of the RBA.

Variability is for example a concern for decisions on fortification, such as folic acid fortification of bread and iodine fortification of salt. This fortification may be considered beneficial for the majority of the population, or beneficial as expressed by overall population health gain, but may have negative health effects for subgroups (Hoekstra et al., 2008). Food policies such as fortification may lead to (health) winners and losers and it is an ethical political question whether such a policy should be implemented. However, it is the responsibility of the risk-benefit assessor to inform the policy maker of the effects on different subpopulations. Due to this different
susceptibility among the population groups, the application of folic acid fortification is still debated (Eckner, Bjørn, Lunestad, & Rosnes, 2014). Taking the variability into account is crucial in RBA and can reveal population groups that are at high risk or that will gain large benefit. It enables evaluation of the effect of specific interventions (i.e. assessing which groups gain the largest benefit and which population group might experience a health loss due to the intervention), thus enabling better informed policy decisions (Hart et al., 2013; Hoekstra, Hart, et al., 2013).

There are different levels at which the variability can be assessed in RBA. First, the entire distribution of exposures within the population can be used instead of a mean exposure estimate (Hart et al., 2013). This has been addressed by different methods in previous RBAs (Hart et al., 2013; Hoekstra, Hart, et al., 2013; van der Voet et al., 2007). Second, if detailed population statistics are available, variability between sub-population groups can also be taken into account explicitly. In such cases, RBAs are performed for each sub-population group and results are compared.

Risk-Benefit comparison metrics

There are several health metrics that can be used in RBA. Fransen et al (2010) divided risk-benefit comparison metrics into three categories: single outcome (e.g.: disease incidence, mortality); integrated (or summary) health (e.g.: DALY and QALY); and economically oriented measures such as WTP (willingness to pay). The choice of metric will depend on the type of question being asked by the risk-benefit manager and the complexity of the evaluation being done. For instance, in a situation where different components affect the same endpoint in an individual both positively and negatively, a net effect for the health outcome can be calculated, and integrated measures might not be needed (Fransen et al., 2010; Zeilmaker et al., 2013b). However, it is often the case that risk-benefit questions are more complex and involve multiple health effects, including different health effects for hazards and benefits, and therefore summary population measures such as disability
adjusted life year (DALY) can be helpful. For this reason, we focused our discussions during the workshop on
the use and challenges associated with integrated measures, more specifically DALY.

In recent years, the DALY has been frequently used in quantitative RBA as it is able to aggregate both mortality
and morbidity measures associated with several health outcomes (Murray, 1994). It is the metric of choice for
the Global Burden of Disease studies (Anonymous, 2017b), and has been shown to be a valuable instrument for
risk ranking of foodborne hazards (Havelaar et al., 2012, 2015). It has also been applied in RBA studies to
summarize the overall health impacts of foods (Berjia et al., 2014; Eneroth et al., 2017; Hoekstra, Fransen, et
al., 2013; Hoekstra, Hart, et al., 2013). While a single DALY estimate is usually the final estimate in burden of
disease studies, the difference in DALYs between a reference and an alternative scenario (ΔDALY) has been
used as the final estimate of RBA studies (Eneroth et al., 2017; Firew Berjia, Andersen, Hoekstra, Poulsen, &
Nauta, 2012).

Several limitations of the DALY have been identified, both in terms of how the metric is communicated and
perceived, and in the assumptions behind the method. Underlying the DALY metric is the idea that many
people suffering from a mild disease is as bad as few people suffering from a severe disease. The DALY provides
an expected value for the population and does not clearly reflect the two dimensions used for its calculation:
the probability of effect for individuals in the population and the severity of these effects. As an illustration,
consider a population of 100,000 people with a remaining life expectancy of 20 years, where all individuals get
infected by a pathogen. If the single effect of this infection is a probability of immediate death of one in a
million (0.0001%), this yields a loss of 100,000 * 0.000001 * 20 = 2 DALYs. If the single effect is that 10% of the
people get 1 day of mild diarrhea, with severity weight 0.074 (Salomon et al 2015), this also yields a loss of
100,000*1/365*0.074*0.1 = 2 DALYs. Despite the same DALY estimation, the two scenarios are clearly
different: in the first case, it is most likely that none of the 100,000 people involved will suffer from anything; in
the second case, 10% of the people get ill, so around 10,000 people will be affected. If risk managers are only
informed about the 2 DALY and not about this difference (about 10,000 ill people versus maybe one death),
they may base their decisions on incomplete information. Hence, the advantage of an integrated metric, i.e.
that it summarizes complex issues into one figure allowing direct comparison of multiple risks and benefits,
may also be a disadvantage if improperly used or misinterpreted. Care should therefore always be given to
presenting all of the relevant underlying information (such as the basic assumptions and estimates of
incidence, mortality and attending uncertainty) to the decision makers. Likewise, because multiple health
outcomes may be considered in the total DALY estimate, the impact on the net health of one subgroup may be
clearly greater than for another subgroup in the population. Again, an example would be folic acid fortification
in which one group benefits whereas another group experiences the risks (Hoekstra et al. 2008).

Quality adjusted life years (QALY) were not the focus of the discussions, but have also been used as integrated
measures in RBA (EFSA, 2006; Ponce et al., 2000). QALY has similar advantages and disadvantages as the DALY
and is also part of the Qalibra software tool (Hart et al., 2013).

The strength of evidence and uncertainty

Weighing and integrating evidence represents a substantial challenge because RBA involves various individual
risks and benefits assessments, for which the current scientific strength of evidence might be different (Dorne
et al., 2016). Consequently, evidence for each health is collected from different types of studies (e.g.
epidemiological and toxicological studies). To date, all lines of evidence considered in RBA are reported only
qualitatively, as advised by the EFSA guidance on RBA and the BRAFO approach (EFSA, 2010; Hoekstra et al.,
2012). This qualitative integration does not allow for integrating the strength of evidence in the final output of
quantitative RBA (e.g. DALY), which introduces an additional source of uncertainty.

The criteria for minimum weight of evidence are different in toxicology and nutrition. In general, the evidence
accepted to refer to a toxicological hazard as “hazard” may be much weaker than the evidence needed to refer
to a benefit as “benefit”. In risk assessment, it is likely that a precautionary approach will be applied if there are indications of a potential risk, even if the evidence is weak (Boobis et al., 2013; Hoekstra, Hart, et al., 2013; M.J. Nauta et al., 2018; Tijhuis et al., 2012). In contrast, claims for beneficial or adverse health effects of a food or nutrient need to be supported by convincing scientific evidence before they are acknowledged (Boobis et al., 2013). If the established criteria for inclusion of adverse and beneficial health effects are used, toxicological risks with a low level of evidence may be more likely to be included than nutritional benefits with the same low level of evidence. This may lead to a skewed RBA. For example, the relative risk of colorectal cancer from folate supplements is around 1, with an upper 95% confidence interval of around 1.2, but as high as 1.7 is some studies (see (SACN, 2017)). The relative risk of a neural tube affected pregnancy is 0.29 after folic acid supplements, with 95% CI of 0.12-0.71 (MRC Vitamine Study Research Group, 1991), An approach to assess an upper bound risk of up to 77% increased incidence from a non-significant risk against a significant benefit of a 70% reduction, on average, in NTDs is still not available. This is clearly an area of RBA that needs further development, such that risks and benefits can be weighted in some way for the respective levels of evidence.

The characterization of the risks and benefits (i.e. the estimated health impact) is not necessarily affected by this discrepancy, unless uncertainty factors that address the high uncertainty for low level evidence effects are included in the dose response. However, if effects with a low level of evidence i.e. high uncertainty of occurring, but potentially high health impact are ignored, the assessment could give a misleading suggestion. Therefore, in communication with policymakers or risk managers, it is important to clearly address the intentions of the RBA, and carefully demonstrate the assumptions in the inclusion and exclusion criteria of adverse and positive health effects and their level of evidence. RBA should not be misused to play down health risks associated with foods, nor should it overemphasize or ignore potential health benefits. This implies again that transparency is of crucial importance for RBA, and that communication is an essential component of the
RBA process. Ultimately, it is the RBA manager that is responsible for the policy decision, and to support this decision, it is the role of the RBA assessor to provide all relevant information, including an assessment of the uncertainties, in as clear and transparent manner as possible, to support this.

Within RBA, strength of evidence is closely connected to the uncertainty assessment, which expresses the belief in the obtained results. Uncertainties are propagated for example via the derived dose-response models to the final DALY estimate and may, if not quantified, lead to misleading conclusions (Benford et al., 2018). This stresses the need for quantification, or at least a qualitative assessment, of uncertainties in RBA (Hart et al., 2013). For RBA, the EU project Qalibra has developed a tool to include uncertainty in stochastic quantitative models (Hart et al., 2013). The methodology of uncertainty assessment is still in development, it is not specific to RBA but inherent to any science-based decision: the lack of knowledge generates imprecision in the results. The impact of this imprecision has to be assessed before making decision. Sensitivity analysis is a powerful technique to assess this impact (Saltelli, 2002). In particular, it helps prioritizing additional data collection or research. However, when quantification is not possible, reporting a qualitative expression of uncertainty is still important as advised in the BRAFO tiered approach (Hoekstra et al., 2012) and illustrated in (Hoekstra, Hart, et al., 2013) and (Boué, 2017).

Uncertainty in the dose response

One of the major sources of uncertainty in RBA is the relationship between intake of a food or food component and a health effect. The ideal scientific studies to establish causality between exposure to a component and a health effect are randomized control trials with human participants. However, these are often not feasible for ethical and/or economic reasons. Other types of studies, such as (human or animal) observational studies that may reveal associations between intake of food components, contaminants, foods and diets and the likelihood of a health effect, may be used alternatively. Systematic reviews and meta-analyses of all available epidemiological evidence (e.g. derived by longitudinal cohort studies), which are suitable for ensuring a higher
level of evidence compared to using single studies available, are commonly used to describe the change in risk of health effects associated with dietary patterns and chronic exposure to chemicals (e.g. (Aune et al., 2015; Aune, Ursin, & Veierød, 2009; Hoekstra, Hart, et al., 2013)). Data from animal studies may be used to establish dose-response relations for chemical hazards, preferably supported by epidemiological studies.

For establishing the dose response relation, different types of evidence may be used in toxicology, microbiology and nutrition. Specifically in microbiological risk assessment, animal experiments are often not informative to establish a dose response relation, because the response to exposure to human pathogens is not comparable between humans and animals. The evidence often originates from either experimental studies with human volunteers, usually healthy young people that are not representative for the whole population (Teunis, Nagelkerke, & Haas, 1999), or outbreak studies that typically involve the more virulent strains or more vulnerable people (Teunis et al., 2010). In nutrition, whilst some data may be available from controlled clinical studies, more often reliance is on observational human epidemiological studies, which demand advanced statistical analysis, and interaction and confounding plays an important role: as only association can be studied, the evidence for causal relations may be weak (Tijhuis et al., 2012). In toxicological risk assessment, extrapolation/uncertainty factors are used to account for intra-species differences, and interspecies differences when translating observations from animal experiments into anticipated human health effects (van der Voet & Slob, 2007). Another challenge is that adverse effects observed in animal studies may not be easily translated into human disease. Similarly, extracting the time of onset of a disease can be difficult, often requiring debatable assumptions. Examples of how in some cases exposure to chemicals is converted in DALYs can be found in (Gibb et al., 2015; Hoekstra, Hart, et al., 2013; Zeilmaker et al., 2013a).

The difference in methods for deriving dose response relations in RBA may be associated with different biases and systematic errors, and the attending uncertainties are of a different nature. Within a research discipline, these biases and errors may be relatively unimportant when risks or benefits that are derived by the same
methods are compared. But in RBA these differences may have a large impact on the output of the RBA.

Currently, no established methods are available to overcome these differences. Performing a sensitivity analysis to highlight which sources contribute more to the overall uncertainty is recommended.

Data availability

The availability and quality of data is a common challenge in RBA, just as it is in traditional nutrition and risk assessments. Previous reviews have identified a number of data needs and general challenges, and most of these still remain (Boobis et al., 2013; EFSA, 2010; Maarten J. Nauta et al., 2018). There are different types of data to consider: data on food consumption, levels of nutrients and contaminants in foods, microbial contamination of food, background data on human disease (e.g. incidence, disability weights, pattern of disease progression), and dose-responses relationships. Food consumption data may be available from national dietary food surveys, which have been expanded and improved continuously (e.g. (ANSES, 2017; Pedersen et al., 2010)), but it may be difficult to compare them between countries, due to differences in their design. Regional databases such as the EFSA Comprehensive Food Consumption Database and harmonization guidance (e.g. the EFSA’s general principles for the collection of national food consumption data in the view of a pan-European dietary survey, known as the EU Menu) are a valuable resource to overcome these limitations and ensure comparability (EFSA, 2011, 2014b). National food databases usually include information on nutrient content of foods, but national monitoring data on the concentration of contaminants in foods may not be available. Data from which dose-response relationships can be constructed are crucial to enable risks and benefits to be estimated quantitatively. The type of data and source of information greatly differ between microbiology, toxicology, nutrition, and epidemiology; and between foods, food components, and contaminants. If using an integrated metric such as the DALY to compare risks and benefits, data on life expectancy, disability weights and duration associated with the different health effects are needed.
These data are specific to the sub-population of interest but rarely available at the national level. In addition, even though substantial amounts of data were published, these may be available in different formats or not directly suitable for use in RBA. Increased efforts to establish available, transparent and easily accessible database(s), with suitable contextual information i.e. the metadata, are needed to fill these data gaps for RBA. If observational or experimental data are lacking, another option is to gather information through expert elicitation (Cooke, 1991; EFSA, 2014a; EPA, 2009). This technique is already used in microbial risk assessment (Albert et al., 2012; Pujol, Johnson, Magras, Albert, & Membré, 2015; Van der Fels-Klerx, Cooke, Nauta, Goossens, & Havelaar, 2005) and more generally in food safety (Hald et al., 2016).

4.2. Challenges related to RBA including non-health related impact

RBA research has so far built on the principles of risk analysis for food safety, where the end-point is the human health impact of food intake scenarios. However, decision makers must take into consideration factors other than human health when making policy decisions (FAO/WHO, 2011; FAO, 2017). Thus, what the risk benefit manager needs is a comprehensive understanding and a way to consider and balance the health impacts of changes in food intake with effects on other factors such as sustainability, consumer preferences, the economy, and societal values. For clarity, the question whether other disciplines should be included in the RBA must be included in the risk-benefit question. Often, this question is in line with the general interests of society, e.g. discuss how risk and benefits are balanced in other disciplines, including pharmaceutical drugs (H. Verhagen et al., 2012). There is consensus that, in the longer-term, RBA based only on health will not be sufficient to address risk management and societal questions, and including non-health factors is inevitable and necessary. This need is not unique to RBA and has been thoroughly discussed in different food-related policy areas such as food safety, agriculture, the environment and nutrition (Anonymous, 2018; FAO, 2017). Clear
priorities need to be identified at national and international levels in order to make best use of finite resources, and to ensure that decisions to ensure food safety do not negatively impact on other dimensions essential for development, e.g. trade, economics, food security, tourism, social well-being (FAO, 2017). An integrated approach requires an interdisciplinary procedure as well as exchange of data from the different disciplines involved. Bringing together data on safety (e.g. contamination), health aspects (e.g. nutrient composition), sustainability indicators (e.g. land use) and other characteristics (such as price) concerning the same products is important in order to facilitate interdisciplinary research. However, adding such factors makes the analysis more complex, potentially less transparent and harder to be updated as new data becomes available. Also, it increases the number of stakeholders involved, and requires a methodology in which those effects can be transparently weighted and compared. Multi-criteria decision analysis (MCDA) has been designed to address such complex decision problems, while making the analysis transparent and systematic. MCDA has been used in innumerable fields from emerging technologies (Bates et al., 2016) to establishing priorities for foodborne illness (Juliana Martins Ruzante et al., 2010). It is a robust decision analysis tool that integrates different factors (i.e. criteria), while considering the preference and values of policy makers as well as stakeholders (FAO, 2017). MCDA has been used to balance risk and benefits of pharmaceutical drugs (Hsu, Tang, & Lu, 2015; Tervonen, van Valkenhoef, Buskens, Hillege, & Postmus, 2011), emerging technologies (Tsang, Bates, Madison, & Linkov, 2014), and just recently a framework was proposed describing how it could be applied to foods (Juliana M. Ruzante et al., 2017). The challenges associated with incorporating other factors relevant to policy decision besides the typical RBA will not be related directly to the application of MCDA, but rather with the different magnitudes of uncertainty and the data availability to characterize those other factors. The field of medical products and drug development is more advanced in this area than food and nutrition, and has guidelines to gather and incorporate patient’s perspective into their RBA analysis of future drugs (FDA, 2013; Nixon et al., 2016), which can be used as an example for RBA of foods.
At the workshop, sustainability was mentioned as being on the shortlist of aspects to include in the RBA. However, sustainability is not easily quantified by a single indicator. Several indicators in the area of food exist, such as greenhouse gas emission, water use, biodiversity, and others (Agovino, Cerciello, & Gatto, 2018; Chaudhary, Gustafson, & Mathys, 2018; Dora et al., 2015; Hallström, Carlsson-Kanyama, & Börjesson, 2015; Horgan, Perrin, Whybrow, & Macdiarmid, 2016; van Wagenberg et al., 2017). The choice for the most suitable indicator and/or weighing between them must be made depending on the assessment. Economic factors and consumer preferences were mentioned as other aspects that are important in a food policy assessment.

Sustainability factors have been incorporated in some studies (e.g. (Donati et al., 2016; Masset, Soler, Vieux, & Darmon, 2014)). In another example, Temme et al. 2013 investigated the health and sustainability effects if meat and dairy were to be replaced by plant derived foods. Health effects were expressed as saturated fatty acid (SFA) and iron (Fe) intake in women, and sustainability was expressed as land use. An integrative metric was not necessary as all indicators pointed in the same direction: replacement of meat and dairy foods by plant-based foods reduced land use for food consumption, and SFA intake of young females and did not compromise total Fe intake. Seves et al. 2015 examined the health and sustainability effects of the consumption of different fish species. Sustainability was measured by land use (by fish farms) and greenhouse gas emission, and having a sustainability label which was partly a measure for overfishing. The health benefits were expressed by the EPA and DHA (fish oil) content of the fish species. The study concluded that herring and salmon (cultivate and wild-caught with ASC/MSC logo) are species favorable in terms of beneficial for health and the environment. In 2017, RIVM published a large study involving the current and future Dutch diet (Ocké MC, Toxopeus IB, Geurts M, Mengelers MJB, Temme EHM, 2017) that attempted to disentangle and analyze the integrated complexity of safe, healthy and sustainable diets. It analyzes the population’s diet according to microbial and chemical safety, nutritious value, cost, consumer preference, future trends in production, and sustainability factors. Ocké et al. (2017) discovered that the trio of safety, health and sustainability is not
enough when it comes to the actual behavioral motives related to food. Consumer motives like convenience, enjoyment and cost, as well as prosperity motives like employment and export and ethical issues like animal welfare are also involved. These are all issues that carry weight individually and in society. The report is concentrated on safe, healthy and sustainable diets without disregarding these other motives. Three extreme scenarios were developed qualitatively, focusing on safety, health or sustainability. The scenarios were analyzed and scored by exerts with a systematic group decision-support method. An attempt was made to use an MCDA method to weigh different scenarios (Ocké MC, Toxopeus IB, Geurts M, Mengelers MJB, Temme EHM, 2017; Saaty, 1994). Although the method proved promising, due to the uncertainties in quantifying underlying sub-criteria of indicators for sustainability, food safety and health, it was not possible to make the (subjective) weighing of the different aspects transparent and the final outcome was not used. Nevertheless, using expert-judgement and semi-quantification, the report concludes that opportunities to combine safety, health and ecological sustainability in an integrated food policy exist.

4.3. Communication of RBA results

The area of risk communication has been growing and has made great progress in better understanding consumer behavior, and how risk is perceived (Frewer et al., 2016). Despite remaining challenges and limitations, stakeholders are now better equipped to communicate risks to consumers. Under the risk-analysis paradigm, risk assessors have also made progress in communicating with risk managers and other stakeholders before, during and after a risk assessment is conducted and results are published. In most areas there is a demand for decisions to be transparent, and engaging with stakeholders early-on is key.

Communicating RBA messages is more complex than communicating risks or benefits separately. On one hand, the way risk is perceived is very different of how benefit is perceived by consumers. On the other hand,
because the overall process incorporates (at least) those two components’ analyses, and their integration, the
data, the uncertainty around it and the assumptions are more difficult to be described, which could potentially
add confusion. It is important to understand the target population and establish trust by working in close
collaboration with stakeholders and social scientists specialized in risk communication. More research is
needed to understand consumer’s trade-offs and values when it comes to risk and benefits of foods. Rideout
and Kosatsky (2017) argue that also other factors than risks and benefits associated with physical health should
be assessed when developing advice for specific populations (Rideout & Kosatsky, 2017). They suggest other
factors to weigh in addition to health risks and benefits, such as socioeconomic and sociocultural factors, and
to apply e.g. health impact assessment to evaluate external impacts of a consumption advice or policy (such as
substitution of foods), and other qualitative tools for development of more comprehensive and effective
advice.
In addition, it is crucial that the results and methods of RBA studies are transparent and that uncertainty, when
possible, is taken into account and reported with the results. Likewise, it is important that the level of evidence
for all effects is considered, and that the limitations in available data and assumptions made are communicated
with the results. Especially when RBA studies are made for methodology development purposes, particular
care should be taken in how any preliminary results are communicated, if they do not reflect a definitive RBA.
Moving towards an optimal communication of RBA results to all stakeholders requires a closer collaboration
with social scientists. While these needs were considered and emphasized at the workshop, communication
tools were not the scope of the discussions.

5. Opportunities and way forward

As a last step, the participants of the workshop discussed the practical way forward to take RBA to the next
stage. Building on the challenges and opportunities identified, a number of needs and practical suggestions
were presented. In addition, activities that promote collaboration and integration of research efforts were put on the agenda for a RBA Network formally launched at the event.

It was generally agreed that the discussions on needs, methods and challenges should now be followed by the development of case studies, in which the identified challenges are addressed. Two options were identified: to develop new cases using the tools and frameworks that are now available; to re-open cases that have been performed previously, and apply new data and new methods to test the improvements that can be made and to evaluate their robustness. Examples include probabilistic approaches that allow for the assessment of variability and uncertainty and models that take substitution of foods into account. These case studies can also be applied to compare different health metrics (in parallel to the DALY). The latter should preferably be followed by research on the perception and communication of these different metrics to different stakeholders.

A categorization of RBA studies will be advantageous, for example by comparing the level of aggregation of the RBA (on food components, foods or diet), the risk-benefit question (which scenarios are to be compared, which consumer groups are included, what food components and contaminants associated with potential health effects are included), whether there is a need for a quantitative and/or stochastic approach, etc. (see section Aligning Risk-Benefit question and methodological approaches, section 4.1.). Ideally, these case studies would be performed by different research groups, and a platform to share and discuss their assessments should be created.

Another generally recognized challenge within RBA is the availability of data (section 4.1). To harmonize RBA internationally and to facilitate the application of RBA by national and international risk and benefit managers, it is important to establish and maintain shared databases with dietary intake data, concentration data on nutrients and contaminants, dose response data, data from observational studies and health data. These
databases should be transparent and easily accessible, and setting up and maintaining such a database(s) would be a community effort that requires broad international support.

In Europe, EFSA might expand its role as curator of such databases. RBA research groups should provide input to EFSA and other data providers on data needs. Furthermore, EFSA is already taking initiative to lead discussions on current challenges of the integration of evidence with very diverse and not readily comparable underlying evidence bases, and motivate stakeholders to address them (EFSA, 2018). Again, this should be a collaborative effort with broad international support.

As the challenges associated to RBA are complex, expertise required are numerous and the data needs are large, the workshop participants concluded that intensive international collaboration is a prerequisite for the development of this novel discipline. Formalizing an RBA international network will facilitate all future activities discussed and proposed in the workshop, and will help partners in consolidating and further developing current activities. Ideally, such a platform should be formed within a European or global international project, to ensure that harmonized approaches can be developed, and that these build on consensus in the international scientific community and can serve as a basis for global decision making. Due to the unique multidisciplinary character of RBA, it may be challenging to identify scientific associations and funding bodies that cover all its scientific and societal aspects. Still, networking initiatives can be established, for example via research applications and, at international level, with symposia organized at scientific conferences. With this in mind, participants have decided to launch the International Network for Risk-Benefit Assessment of Foods. The network is to be chaired by DTU Food and will be open to any group or individual with an active interest in the area. Among other overall goals, this network will serve as a forum for continuation of the discussions here described.

Overall, the workshop participants agreed that RBA is a promising and highly relevant research area that deserves increased attention worldwide. Because the broad range of public-health activities associated with
foods and diets brings a high degree of complexity to policy development and a need to involve various
stakeholders to ensure synergy, international bodies such as the FAO have stressed that ‘policy coherence’
across ministries is key (FAO, 2017). RBA approaches, particularly when expanded to include non-health related
impacts, can be a powerful tool to assist risk-managers defining policy that achieves the best societal
outcomes.

RBA ultimately may show how integration of a variety of scientific disciplines and approaches can be used to
address specific and general policy questions, and serve governmental regulatory bodies, food industry and
individual consumers alike.

Acknowledgments

We would like to acknowledge all participants of the workshop for their dedicated contributions to the
discussions (see Appendix).

Funding

The Risk-Benefit Assessment Expert Workshop was supported financially by the European Food Safety
Authority (EFSA).

References

Agovino, M., Cerciello, M., & Gatto, A. (2018). Policy efficiency in the field of food sustainability. The adjusted

Retrieved from https://global.oup.com/academic/product/experts-in-uncertainty-
9780195064650?cc=dk&lang=en&

Devleesschauwer, B., Havelaar, A. H., Maertens De Noordhout, C., Haagsma, J. A., Praet, N., Dorny, P., ...

http://doi.org/10.2903/j.efsa.2014.3944

http://doi.org/10.2903/sp.efsa.2018.EN-1396

FDA. (2014). A quantitative assessment of the net effects on fetal neurodevelopment from eating commercial fish (As Measured by IQ and also by Early Age Verbal Development in Children). Retrieved from https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/Metals/UCM396785.pdf

van der Voet, H., de Mul, A., & van Klaveren, J. D. (2007). A probabilistic model for simultaneous exposure to multiple compounds from food and its use for risk-benefit assessment. *Food and Chemical Toxicology,*

Appendix 1: List of participants and affiliations

<table>
<thead>
<tr>
<th>Participant name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alan R Boobis</td>
<td>Imperial College London, UK</td>
</tr>
<tr>
<td>Bernhard Watzl</td>
<td>Max Rubner-Institut, Germany</td>
</tr>
<tr>
<td>David Senaeve</td>
<td>University of Ghent, Belgium</td>
</tr>
<tr>
<td>Didier Verloo</td>
<td>EFSA</td>
</tr>
<tr>
<td>Florent Vieux</td>
<td>MS-Nutrition, France</td>
</tr>
<tr>
<td>Géraldine Boué</td>
<td>ONIRIS - INRA Secalim, France</td>
</tr>
<tr>
<td>Hanna Eneroth</td>
<td>National Food Agency, Sweden</td>
</tr>
<tr>
<td>Hans Verhagen</td>
<td>EFSA</td>
</tr>
<tr>
<td>Helga Gunnlaugsdottir</td>
<td>Matis ltd., Island</td>
</tr>
<tr>
<td>Inger Therese L. Lillegaard</td>
<td>VKM, Scientific Committee for Food Safety, Norway</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Location</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Jacob van Klaveren</td>
<td>RIVM, The Netherlands</td>
</tr>
<tr>
<td>Jean-Luc Volatier</td>
<td>Anses, France</td>
</tr>
<tr>
<td>Jeanne-Marie Membré</td>
<td>INRA Secalim, France</td>
</tr>
<tr>
<td>Jeljer Hoekstra</td>
<td>RIVM, The Netherlands</td>
</tr>
<tr>
<td>Johannes Kruisselbrink</td>
<td>Wageningen University, Biometris, The Netherlands</td>
</tr>
<tr>
<td>Juliana Ruzante</td>
<td>RTI International, US</td>
</tr>
<tr>
<td>Kim Petersen</td>
<td>WHO/FOS</td>
</tr>
<tr>
<td>Marco Zeilmaker</td>
<td>RIVM, The Netherlands</td>
</tr>
<tr>
<td>Matthias Greiner</td>
<td>Federal Institute for Risk Assessment BfR), Germany</td>
</tr>
<tr>
<td>Morten Poulsen</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Maarten Nauta</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Rikke Andersen</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Salomon Sand</td>
<td>National Food Agency, Sweden</td>
</tr>
<tr>
<td>Sara Monteiro Pires</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Majken Ege</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Lea Jakobsen</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Maria Perssson</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>Sofie Thomsen</td>
<td>Technical University of Denmark</td>
</tr>
</tbody>
</table>