Optomagnetic sensing and biosensing

Hansen, Mikkel Foug; Fock, Jeppe; Minero, Gabriel Khose Antonio; Garbarino, Francesca; Rizzi, Giovanni

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Optomagnetic sensing and biosensing

Mikkel Fougt Hansen*, Jeppe Fock, Gabriel Khose Antonio Minero, Francesca Garbarino, Giovanni Rizzi

Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345B, DK-2800 Kgs. Lyngby, Denmark

E-mail: mikkel.hansen@nanotech.dtu.dk

Optomagnetic (OM) sensing relies on measurements of the intensity modulation of light of wavelength \(\lambda \) transmitted through a magnetic nanoparticle (MNP) dispersion in response to an oscillating magnetic field, \(B(t) = B_0 \sin(2\pi ft) \).\(^1\) Upon application of a magnetic field single-core or multi-core MNPs with linked optical and magnetic anisotropies will change their orientation resulting in a change of the intensity of transmitted light (Fig. 1a). The degree of field-induced alignment is determined by the magnitude but not the sign of the applied field and therefore the effect of the particles is observed in the even harmonics of the applied magnetic field. OM measurements can be performed as function of \(f \) and/or \(B_0 \) and can be realized in a fairly simple setup, which is suited to be used as readout in a low-cost disposable lab-on-a-chip system as the technique requires only a transparent sample container. Although OM measurements may seem restricted to particular nanoparticle systems, we have found that surprisingly many commercially available particle systems show a significant OM signal and hence can be studied and used by this technique.

Measurements typically measure the synchronous 2nd harmonic OM response vs. the frequency \(f \) of the magnetic field applied at low amplitude (Fig. 1b). Such measurements can be used to infer the distribution of hydrodynamic diameters, \(D_h \), of the MNPs and are thus sensitive to changes of \(D_h \) resulting from binding or growth of biomolecules to individual MNPs or to clustering of MNPs.\(^2\) MNP clusters with dimensions comparable to \(\lambda \) interact differently with the light and often show an OM response of opposite sign to that of individual MNPs.\(^1\) This makes OM measurements very sensitive to the formation of MNP clusters. Moreover, measurements vs. \(f \) and \(B_0 \) can be used to estimate the distributions of \(D_h \) and remanent magnetic moments as well as their correlation.\(^3\) Thus, OM measurements are suited for determination of MNP properties and for verification of the colloidal stability of MNP dispersions.

In our group we have moreover developed the OM technique to a powerful tool for real-time studies of nucleic acid detection and amplification. These studies have mainly used BNF 100 nm multicore particles from Micromod and relied on setups with integrated temperature control capable of measuring a single frequency spectrum in 40 s or less. As examples, we have studied in real-time: (1) the target-induced clustering of MNPs,\(^4\) (2) the growth of amplification products,\(^5\) and (3) DNA hybridization and denaturing under changing conditions.\(^6\) In this presentation, we will introduce the technique and give an overview on how we have applied it for sensing and various types of DNA-based biosensing.

![Figure 1](image_url)

Figure 1 (a) Principle of OM measurements. (b) Example of OM spectrum. The in-phase \(\sin(4\pi ft) \) component, \(V'_f \), shows a peak at \(f_0/\sqrt{3} \), where \(f_0 = k_B T / (\pi^2 \eta D_h^2) \) is Brownian relaxation frequency (\(\eta \) is the viscosity).