Optimization of Wastewater Treatment Plant Design Using an Early-Stage Techno-Economic Analysis Under Uncertainty

Al, R.; Behera, C. R.; Zubov, A.; Gernaey, K. V.; Sin, G.

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Selection of an optimal wastewater treatment plant (WWTP) layout is a formidable challenge that is growing in complexity due to increasingly stringent legal demands on effluent quality, the ever-growing
number of competing treatment technologies, and the limited financial resources. Several environmental
decision support tools (Bozkurt et al., 2015; Castillo et al., 2016) have been proposed to assist design
engineers in their early stage decision making for building or retrofitting a WWTP network. These tools
provide users with a number of candidate process flow diagrams for WWTP layout given a defined
objective by making use of expert knowledge-based and mathematical programming-based process
synthesis approaches. Further techno-economic evaluation of these candidate designs with a level of
detail available at the early stage of the project development is needed to foster the decision making
process. Although a variety of methodological approaches have been reported in the literature which
account for different types of costs of wastewater treatment (i.e. energy costs, environmental externalities
such as effluent tax, etc.) with a varying level of detail (Rodríguez-Garcia et al., 2011; Molinos-Senante et
al., 2013), the comparability and applicability of these works at the early stage of decision making is
limited. It is well-known that significant economic trade-offs exists between investment and operational
costs which are subject to a large uncertainty (U-tapao et al., 2015). Therefore, there is a significant need
for a comparative techno-economic analysis of the early-stage alternative candidate designs to further
assist decision making under various uncertainties like variations in influent wastewater pollutant load
and composition, cost of electricity used for aeration, and the price of biogas produced in sludge
digesters, etc.

The main objective of this work is to develop an early-stage techno-economic assessment methodology
for the selection of the optimal network among the alternative WWTP networks by taking into account
available plant-wide simulation data to better estimate operational costs (sludge disposal, effluent tax,
and energy consumption) along with major capital investment costs. To this end, as opposed to simplistic
input-output type process models used at the design stage, a Monte Carlo sampling-based optimization
under uncertainty framework, utilizing rigorous non-linear mechanistic models of individual
technological treatment units able to handle industrially relevant problems and scales, has been
developed to select candidate designs among alternative treatment technologies. In order also to
incorporate uncertainties at the design selection stage, a techno-economic analysis methodology
accounting for investment costs and operational costs with data generated from rigorous plant-wide
simulations is used. Effluent quality index (EQI) and net present value (NPV) metrics are respectively
used to evaluate technical and economic performances of the alternative designs. Uncertainty and
sensitivity analyses are complementarily carried out in order to judge the robustness of the assessments
against uncertainties in influent wastewater characteristics and technical performance metrics. The
proposed methodology effectively quantifies the effect of uncertain information on the optimum design
selection, further fostering decision-making in industrially relevant wastewater treatment design
problems.

References

https://doi.org/10.1016/j.envsoft.2014.11.023

and optimization tool for the sustainable selection of wastewater treatment process concepts.
*Environmental Modelling & Software, 84*, 177-192. https://doi.org/10.1016/j.envsoft.2016.06.019

study for intensive and extensive wastewater treatment considering greenhouse gases emissions. *Journal

Rodríguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M. T., &

Topics: Water (Sustainability & Environment)