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Abstract The focus of this article is on topology op-

timization of heat sinks with turbulent forced convec-

tion. The goal is to demonstrate the extendibility, and

the scalability of a previously developed fluid solver to

coupled multi-physics and large 3D problems. The gra-

dients of the objective and the constraints are obtained

with the help of automatic differentiation applied on

the discrete system without any simplifying assump-

tions. Thus, as demonstrated in earlier works of the au-

thors, the sensitivities are exact to machine precision.

The framework is applied to the optimization of 2D

and 3D problems. Comparison between the simplified

2D setup and the full 3D optimized results is provided.

A comparative study is also provided between designs

optimized for laminar and turbulent flows. The compar-

isons highlight the importance and the benefits of full
3D optimization and including turbulence modelling in

the optimization process, while also demonstrating ex-
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tension of the methodology to include coupling of heat

transfer with turbulent flows.

Keywords Topology Optimization · Automatic

Differentiation · Turbulent Flow · Thermal-fluid · Heat

Sink

1 Introduction

Forced convection is one of the most popular methods

for cooling electronic devices and temperature sensitive

equipment. The heat extraction process utilizes a heat

sink built from highly conductive material, such as alu-

minum or copper, and a moving fluid which transports

the heat away from the device. The performance de-

pends on the amount of conductive material and its
distribution, the contact area between the fluid and

the sink, the fluid velocity distribution, temperature

and thermal capacity. The fluid is accelerated using a

pump or a small fan. A sink usually consists of plate

or pin fins attached to a plate which is in contact with

the heat source. The performance can be improved by

parametric variations, e.g. changing the number and

the positions of predefined fins; optimizing their shape;

or changing completely in a non-uniform way the dis-

tribution of the conductive material to minimize the

temperature of the device. The latter can be achieved

by topology optimization and is the main subject of

this article.

Topology optimization [10] is a design process which

distributes material in a design domain by optimizing

an objective function. For heat sinks, the objective is

usually to minimize some performance measure, which

is a function of the temperature on the surface or inside

the heat source. In modern high-performance comput-

ing systems design, high density of the different compo-
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nents is necessary to increase the computational perfor-

mance, and to decrease the cost and the space require-

ments for the installation. In such restricted space con-

ditions the cooling is performed either in a closed loop

fluid-cooling system or carefully guided air streams. In

both cases, it is desirable to re-utilize the fluid for cool-

ing of more than one component which requires decreas-

ing the energy dissipation or the pressure drop.

The material distribution in density based topology

optimization is modeled with the help of an index func-

tion taking values of zero or one which, respectively,

represent solid and fluid distributions in the selected

design domain. Updates on the design are based on gra-

dients of the objective and the constraints. Thus, the

problem is relaxed, and the material distribution func-

tion is allowed to take intermediate values. Following

a nested optimization approach, objective, constraints

and gradient evaluations require the solution of a fluid

state problem, resulting in fluid velocity and pressure

distributions, and a subsequent temperature convective

problem, which represents the heat conducted through

the sink and transported through the fluid.

Topology optimization was originally introduced in

solid mechanics problems where the methodology is well

developed and utilized on a regular basis in industrial

settings. In contrast, its development for mixed fluid-

heat transfer problems is far from mature and requires

further development and research. The first fluid me-

chanics applications for Stokes flow were reported in

[11]. Large scale examples of Stokes flow problems have

been demonstrated in [3]. Later applications to laminar

flow can be found in [17,26,30]. For general shape op-

timization, the derivation and the application of the

topological sensitivities for Stokes and Navier-Stokes

equations have been demonstrated in [19,5]. The fluid

flow in forced convection is often turbulent which fur-

ther complicates the optimization process. Topology

optimization for such processes is applied in [27] by us-

ing the so-called frozen turbulence assumption, i.e., the

variation of the turbulence fields with respect to the de-

sign parametrization is neglected. In [39] a continuous

adjoint formulation is presented based on the Spalart-

Allmaras (SA) turbulence model [31]. Discrete adjoint

formulations based on finite volume method for both

the one-equation SA and k − ω turbulence models [36]

have been presented only recently in [15]. This work

provides the foundation of the current presentation,

which is extended further to include heat transport,

hence demonstrating the feasibility of the approach for

large scale mixed thermo-fluidic topology optimization

problems.

For topology optimization of coupled thermal-fluid

problems, [21] utilized Stokes flow and used a multi-

objective function that combines pressure drop mini-

mization and heat transfer maximization for the opti-

mization. Heat sink optimization with laminar flow has

been demonstrated in [23,38,14,37] where [23] carried

out optimization of 2D heat exchangers for various in-

put power formulations and [37] utilized the level set

method for the topology optimization.

The extension to natural convection is described

in [4]. Regarding turbulent flow optimization of heat

transfer systems, [29] utilizes the frozen turbulence as-

sumption in the calculated sensitivities, and [22] presents

continuous adjoint formulation. The present article demon-

strates turbulent-flow heat-transfer topology optimiza-

tion problems where the fluid flow is modeled by steady

state incompressible Reynolds-averaged Navier-Stokes

(RANS) equations. Turbulence closure is achieved uti-

lizing the two-equation k-ω model, and the solution of

the problem is obtained using an already developed 3D

finite volume framework [15] which employs automatic

differentiation [18] for calculating the adjoint equations

and exact gradients consistent with the considered tur-

bulence model. To the best of the authors’ knowledge,

such topology optimization of coupled thermal-fluid prob-

lems with turbulent flows has not been previously demon-

strated with exact sensitivities obtained within the dis-

crete adjoint approach, and without any simplifying as-

sumptions. Thus, demonstrating the ease of handling

additional physics by adding heat transfer to the tur-

bulent fluid solver is among the primary contributions

of the present work.

The paper is organized as follows: Section 2 de-

scribes the governing equations along with the inclu-

sion of the utilized penalization method to realize the

effect of solid regions in the design domain. Section 3

introduces topology optimization. The exact form of

the interpolation functions and the associated adjoint

sensitivity analysis are also included. Finally, the op-

timization of heat sink devices with turbulent forced

convection is demonstrated with several 2D and 3D op-

timization cases in Section 4.

2 Governing equations

The fluid flow is modeled with the help of the steady-

state incompressible Reynolds-averaged Navier-Stokes

(RANS) equations. In what follows, it is assumed that

the temperature differences in the flow will be small

enough that the variations of the fluid properties are

neglected. Hence, temperature acts as a passive scalar

and only one way coupling is considered in the system.

The RANS equations are written as
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∇ · u = 0 (1)

∇ · (u⊗ u) = ∇ · (2νS)− 1

ρ
∇p+∇ ·Tt − λχ(γ)u (2)

where u is the mean velocity vector, p is the pressure,

ν is the kinematic viscosity of the fluid, ρ is the fluid

density and the mean strain rate tensor is defined as

S = 1
2

(
∇u +∇uT

)
. The Reynolds stress tensor is given

as

Tt = −u′ ⊗ u′ = 2νtS−
2

3
kI (3)

where νt is the turbulent eddy viscosity and

k =
1

2
u′ · u′ (4)

is the turbulent kinetic energy per unit mass, with u′

indicating turbulent fluctuating velocities.

The effect on the fluid motion from the material dis-

tribution is modeled using the so-called Brinkman pe-

nalization [6] parameter denoted as λ, formally having

units of inverse time. It is multiplied by a dimensionless

function χ(γ) taking values ranging from zero to one.

These limits represent solid and fluid, respectively. The

exact form of the interpolation function is discussed in

Section 3. The Brinkman penalization term represents

spatially varying inverse permeability and is utilized for

realizing the solid/fluid distribution in the optimization

process. The penalization term for value χ(γ) = 1, and

large enough λ, approximates a no-slip boundary condi-

tion at the fluid-solid interface. γ is a spatially varying

function representing the materials distribution.

The k-ω model of [36] will be utilized to describe

effects of turbulence. This model calculates turbulent

eddy viscosity νt as

νt =
k

ω̃

ω̃ = max

[
ω,Clim

√
2 S : S

β∗

]

Clim =
7

8
(5)

where : denotes the scalar product between two ten-

sors (i.e. a:b = aijbij). The turbulent kinetic energy

(per unit mass) k and the specific dissipation rate ω

are obtained by solving two additional (steady state)

transport equations

∇ · (u k) = Tt : ∇u− β∗ωk +

∇ ·
[(
ν + σ∗

k

ω

)
∇k
]
− λχ(γ)k (6)

∇ · (u ω) =
αω

k
Tt : ∇u− βω2 +

σd
ω
∇k · ∇ω +

∇ ·
[(
ν + σ

k

ω

)
∇ω
]

+ λχ(γ) (ωb − ω) (7)

The closure coefficients and all other parameters are

defined as follows:

α = 0.52, β0 = 0.0708, β∗ = 0.09

β = β0fβ , fβ =
1 + 85χω
1 + 100χω

, χω =

∣∣∣∣∣ΩijΩjkSki(β∗ω)
3

∣∣∣∣∣
σ = 0.5, σ∗ = 0.6, σd0 = 0.125

σd =

{
σd0, ∇k·∇ω > 0

0, ∇k·∇ω ≤ 0

The mean vorticity tensor Ω utilized in the calculation

of the closure function χω in Equation 8 is defined as

Ω =
1

2

(
∇u−∇uT

)
(8)

It should be noted that χω is zero for two-dimensional

flows.

The turbulent kinetic energy k has a well defined

boundary at walls given as

kb = 0 (9)

On the other hand, the specific dissipation rate ω has

a singular behavior near a wall. For smooth walls (as

uniformly considered herein), the approximate (non-
homogeneous Dirichlet type) boundary condition pro-

posed by [24] given as

ωb =
60ν

β1y21
, β1 = 0.075 (10)

is utilized in the computations. The value of y1 repre-

sents the distance from the wall to the cell center near-

est the wall. The physical meaning of the wall bound-

ary condition ωb (Eq. 10) is related to the length scale

l =
√
k/ω of turbulent eddies where ωb ensures that

turbulent eddies become infnitesimally small as a wall

is approached. During the optimization process, both k

and ω are penalized to their wall boundary conditions

in the solidified regions [15]. Since a regular mesh is

used in the design domain, y1 does not vary and is de-

fined by the half cell length for penalization of the wall

boundary condition ωb inside the design domain.

For detailed explanation of all equations and coef-

ficients presented above, interested readers are referred

to [35].
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2.1 Heat transfer

The temperature variations in the fluid and the solid

regions, are captured using the conjugate heat transfer

equation

χt(γ)∇ · (u T ) = ∇ · [α(γ)∇T ] +Q(γ) (11)

where T is the temperature (in Kelvin), Q(γ) is the vol-

umetric heat source, χt(γ) is a non-dimensional func-

tion to turn on and off the convection term in fluid

(χt(γ) = 1) and solid regions (χt(γ) = 0), and α(γ) in-

terpolates between thermal diffusivity of the fluid and

the solid according to

αf =

(
ν

Pr
+

νt
Prt

)
(12)

αs =
ks
csρs

(13)

Here Pr and Prt are the laminar and the turbulent

Prandtl numbers, ks is the thermal conductivity and

cs is the specific heat capacity. The considered inter-

polation functions for the conjugate heat transfer are

presented in Section 3.

2.2 Discretization

The above system of PDEs is discretized using the finite

volume method on a non-uniform computational grid

[33,16]. The discrete set of algebraic equations is solved

using a segregated approach for the pressure-velocity

coupling, with the help of the SIMPLE (semi-implicit

method for pressure-linked equations) algorithm [28].

The SIMPLE algorithm is one of the most attractive

schemes for solving problems in computational fluid dy-

namics due to its low memory requirements and the

ability to simulate both steady and unsteady flows. The

present implementation is based on the PETSc library

[8,7,9], which is utilized mainly for its efficient parallel

sparse solvers. A verification of the implemented fluid

dynamics solver with a detailed explanation of the solu-

tion procedure is presented in [15]. The additional heat

transfer Equation 11 is discretized similarly, and the

details will be omitted here for brevity. It should be

pointed out that the fluid and the heat transfer set of

equations are weakly coupled since the buoyancy effects

are ignored. Thus, the solutions for the fluid velocity

and the pressure distribution are first obtained from

the discrete RANS set of equations. As a second step,

the solution of the heat transfer equation is obtained

using the fluid velocity from the first solution step.

3 Topology optimization

The topology optimization problem is defined as

min
γ

C(γ,U(γ),T(γ)) (14)

s.t. RU(γ,U(γ)) = 0 (15)

RT(γ,T(γ),U(γ)) = 0 (16)

gi(γγγ) ≤ 0, ∀i = 1, . . . , N (17)

0 ≤ γγγ ≤ 1 (18)

where C (·) is the objective function, U and T are vec-

tors with discrete state variables representing flow (ve-

locity, pressure and turbulence quantities) and tem-

perature, respectively. RU and RT are residual vector

functions obtained from the discretization of the gov-

erning equations of velocity, pressure, turbulence quan-

tities and temperature fields. The set gi(γ), i = 1 . . . N

represents additional inequality constraints and the vec-

tor γ the material (fluid/solid) distribution in the de-

sign domain. The interpolation between solid and fluid

is realized with the help of the function χ(γ), which is

defined as

χ(γ) = q
1− γ (γ)

q + γ (γ)
(19)

where the parameter q controls the curvature of the

function. The physical design field γ̄ is obtained us-

ing regularized Heaviside projection [34], controlled by

a sharpness parameter β and a threshold η = 0.5. The

projection is applied on a filtered density field [12]. Gra-

dients of the objective and constraints with respect to

the original design field γ are subsequently obtained by

applying the chain rule.

To model the impermeable solid regions, the Brinkman

penalization parameter λ must be sufficiently high. The

choice of λ is based on the dimensionless Darcy number

defined as

Da =
νU/L

λLU
=

ν

λL2
(20)

which represents the ratio of viscous forces to Darcy

damping forces, where U and L are, respectively, char-

acteristic velocity and length scales defining a given

flow problem. To capture the temperature variations,

the coefficients of the heat equation are interpolated.

The convection, the diffusion and the source term coef-

ficients in Equation 11 are computed as

χt(γ) = γ̄(γ)n (21)

α(γ) = αs + (αf − αs) γ̄(γ)n (22)

Q(γ) = (1− γ̄(γ)n)
q̇

csρs
(23)
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0
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Fig. 1: Interpolation function Equation 22 for different

values of curvature parameter n in which for illustra-

tion, αs and αf are considered to be 1 and 0, respec-

tively. γ = 1 represents fluid, whereas γ = 0 represents

solid. Values between 0 and 1 are referred to as ”gray”

or intermediate regions.

where q̇ is the volumetric heat source which is only ac-

tive in the intermediate and the solid regions (γ < 1.0),

and n is the parameter which controls the curvature

of the interpolation function (see Figure 1). The up-

dating of the design variables γ is determined using

the method of moving assymptotes (MMA) [32], with

a parallel PETSc implementation presented in [2,1].

3.1 Discrete adjoint

Obtaining the gradients and more precisely the discrete

adjoint equations for finite volume discretization of fluid

flow problems represents one of the main challenges in

the current work. The primary issue is that the Jaco-

bian of the residual system of equations is never formed

explicitly. The state solution is obtained using the SIM-

PLE algorithm in a matrix free fashion. The complex-

ity of forming the exact Jacobian for the distrece ad-

joint equation comes from the large number of fully

coupled physical fields (three velocity components, the

pressure, the turbulent kinetic energy and the specific

dissipation rate) in the governing system of equations.

Furthermore, due to the iterative nature of the forward

solution algorithm, an additional set of state variables

representing the fluxes for every finite volume element

is added to the original set of physical fields. The com-

plete details are described in [15].

The Jacobian of such a complex set of fully coupled

equations is obtained with the help of Automatic Dif-

ferentiation (AD) [18]. AD represents a set of software

techniques for evaluating derivatives of functions im-

plemented as a computer code. The general idea is to

apply the chain rule automatically for every complex

function by representing it as a set of simple function

evaluations with well-known derivatives. In modern ob-

ject oriented languages like C++, such functionality is

achieved using operator overloading techniques [20,13].

The obtained gradients are exact to the machine pre-

cision. General discussion with examples on the appli-

cability to topology optimization are presented in [25].

Here, AD [20] is applied for evaluating the Jacobian of

the residual form. The gradients of the objective and

the constraints are computed using standard adjoint

analysis presented below. As discussed in [15,25] such

an approach saves a significant amount of memory. The

slow down regarding computational time is negligible

compared to the speed-up of the actual implementa-

tion process.

The objective is augmented with two sets of La-

grange multipliers and the residuals for the fluid and

the heat transfer problems as

L = C (γ,U(γ),T(γ)) + λU
TRU(γ,U(γ))+ (24)

λT
TRT(γ,T(γ),U(γ))

For zero residuals the Lagrangian function coincides

with the objective/constraint function. The derivative

with respect to the design parametrization can be writ-

ten as

dL
dγ

=
∂C
∂γ

+
∂C
∂U

dU

dγ
+
∂C
∂T

dT

dγ
(25)

+ λU
T

(
∂RU

∂γ
+
∂RU

∂U

dU

dγ

)
+ λT

T

(
∂RT

∂γ
+
∂RT

∂T

dT

dγ
+
∂RT

∂U

dU

dγ

)
To avoid computation of derivatives of the state vari-

ables, which are expensive to evaluate, all terms con-

taining these derivatives are collected and required to

be equal to zero. This requirement provides the adjoint

equations for the optimization problem:(
∂C
∂T

+ λT
T ∂RT

∂T

)
dT

dγ
= 0 (26)(

∂C
∂U

+ λU
T ∂RU

∂U
+ λT

T ∂RT

∂U

)
dU

dγ
= 0

The temperature and flow adjoint problems are, respec-

tively, written as(
∂RT

∂T

)T
λT = − ∂C

∂T
(27)(

∂RU

∂U

)T
λU = − ∂C

∂U
−
(
∂RT

∂U

)T
λT (28)



6 Dilgen et al.

and the final vector of gradients is evaluated as

dC
dγ

=
∂C
∂γ

+

(
∂RU

∂γ

)T
λU +

(
∂RT

∂γ

)T
λT (29)

The gradient evaluation procedure described above is

applied to the already-discretized governing equations

and a selected objective function. As this approach op-

erates at the discrete level, where the boundary con-

ditions are already accounted for, it can handle any

cost function and governing equation in a robust man-

ner. Most importantly, calculated sensitivities are al-

ways exact for the considered discretization. The two

Jacobians
(
∂RT

∂T

)T
,
(
∂RU

∂U

)T
, and all partial derivative

terms involved in the adjoint analysis are computed and

assembled cell-wise using AD as described in [15].

3.2 Objective and constraint functions

In this work, the objective function is to minimize the

average temperature in solid domains. In 2D the con-

sidered objective function is defined as

C =

∫
V

(1− γ)TdV

(1− f)
∫
V

dV
(30)

where f denotes the volume fraction of fluid in the de-

sign domain. The main idea is that the 2D setup rep-

resents a horizontal cut through the actual 3D model

shown in Figure 7. Due to the high conductivity of the

sink material, the heat propagates through the solid

material and later is extracted and transported by the

fluid. In 3D, the domain in which the average temper-

ature is minimized is passive (not depended on design)

and hence the objective function is

C =

∫
V
TdV∫

V
dV

(31)

The fluid volume is bounded from above and the

constraint is given as

g1(γ) =
∆Viγi
fV

− 1 ≤ 0, i = 1, . . . , Ne (32)

The above constraint ensures that the heat input to the

system is bounded from below. In addition to the above

objective and constraint, the power dissipation of the

system is controlled using a reference power dissipation

value of the initial design. This constraint avoids the

formation of designs with extremely high-pressure loss

and hence regulates power consumption. An expression

Fig. 2: Schematic illustration of the 2D heat sink prob-

lem. Here Ωd specifies the design domain. Blue color

represents the fixed fluid region as inlet and outlet chan-

nels. The geometry is scaled with half the inlet channel

height H. Solid regions are heated with q̇.

for the power dissipation stems from the energy equa-

tion and can be derived as a scalar product of the mo-

mentum equations and the velocity vector. Power dis-

sipation between inlet and outlet boundaries is given

as

J = −
∫
Γ

[
u · n

(
1

2
u · u + p

)
− 2νeff (S n) · u

]
dΓ

(33)

Here, n is the normal vector, S is the mean strain rate

tensor which is defined in Section 2 and νeff is the

effective viscosity given as νeff = νt + ν. With the

above definitions, the power dissipation is constrained

as follows

g2(U) =
J

w Jref
− 1 ≤ 0 (34)

where Jref is the reference value.

In the considered optimization cases Jref is calcu-

lated starting with the design domain comprised only

of the fluid region (γ = 1). The parameter w is consid-

ered to be larger than one in the presented examples,

i.e. w > 1. It should be noted that the above power

dissipation constraint is a function of the state fields

of the RANS equations, i.e., velocities, pressure, fluxes

and turbulence quantities. Hence, for each optimization

step, an additional adjoint equation has to be solved in

order to calculate the gradient of the constraint with

respect to the design parameters.

4 Optimization of cooling systems

The procedure will now be demonstrated on several

topology optimization examples dealing with coupled

thermal-fluid problems. The first study deals with 2D
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(a) w = 2, C = 301.4. (b) w = 6, C = 300.94. (c) w = 10, C = 300.6.

Fig. 3: Topology optimization of 2D heat sink device for Re = 5000 with k-ω model. Figures show the optimized

designs with increasing value of the the power dissipation constraint and the objective value C of the end designs.

(a) w = 2 (b) w = 6 (c) w = 10

Fig. 4: Temperature distribution T [K] of the optimized designs from Figure 3.

heat sink design, where the effect of the power dissi-

pation constraint on the optimized designs is studied

in detail. Following this, 3D heat sink examples will

demonstrate the advantages of optimizing design with-

out reducing the number of dimensions and including

turbulence modelling in the optimization process.

Ub [m/s] H [m] ν [m2/s] Pr Prt

0.75 0.1 1.5× 10−5 0.7 0.9

Table 1: Flow (air) properties considered for the cooling

system optimization.

Throughout the present work, air and aluminum are

chosen as materials for fluid and solid, respectively. The

flow properties considered for the optimization cases

are given in Table 1. The geometry is scaled with half

the inlet channel height H. The Reynolds number in

the considered optimization problems is computed as

Re = UbH/ν = 5 × 103 where Ub is the bulk inlet

velocity. The solid material properties used throughout

are listed in Table 2. Considering the listed material

properties, the thermal diffusivity ratio of the solid and

the fluid is approximately αs/αf ≈ 4.5.

ks [W/mK] cs [J/kgK] ρs [kg/m3]

237 900 2700

Table 2: Thermo-physical properties of the solid (alu-

minum) considered for the cooling system optimization.

The Brinkman penalization parameter is set to λ =

400 s−1 which is sufficient to yield nearly impermeable

solidified regions (Da ∼ 10−6, taking Ub and H as the

characteristic velocity and length scales, respectively)

without adversely affecting the convergence of the op-

timization process. The sharpness parameter of the reg-

ularized Heaviside projection is taken as β = 6.
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(a) w = 2 (b) w = 6 (c) w = 10

Fig. 5: Velocity magnitude u [m/s] of the optimized designs.

It has been found that the formulated optimization

approach is somewhat sensitive to the choice of param-

eter q which controls the interpolation function that is

utilized in the penalization of fluid flow. To this end,

a continuation strategy is performed for the curvature

parameters q and n of the interpolation functions Equa-

tion 19 and Equation 21-Equation 23 to avoid conver-

gence to poorly performing locally optimal solutions.

The parameter q is initially set to 0.01 for which the

flow ignores a large section of the gray scale and dif-

fuses into solidified regions, enhancing the sensitivities,

which in turn provides a ”smart” initial guess for the

optimization problem [11]. Hereafter, it is increased in

a step-wise manner to 0.1, 1.0 and 10. Similarly, the pa-

rameter n which controls the interpolation in the heat

transfer equation takes values of 3 and 4 leading up to

its final value of n = 5.

The 2D and 3D optimization cases utilize a mesh

resolution which roughly keeps a distance in wall co-

ordinates y+ = yUf/ν ≈ 10 when calculated from the

inlet channels, where Uf is the friction velocity. Since

the location of the wall along with the flow solution

can not be known a priori, y+ values are not necessar-

ily ensured to stay within an acceptable range during

the optimization, though the inlet conditions provide

simple and generally useful scales. Presently, it is not

computationally feasible to use mesh size comparable

to y+ ≈ 1.

4.1 2D heat sink

The first example demonstrates the optimization of a

2D heat sink, subject to a constraint on the power dis-

sipation. The objective is the minimization of the inte-

gral of the temperature in the solid parts of the design

domain Ωd as defined in the Equation 30. The fluid

volume is limited to 55% of the whole computational

domain. The problem setup can be seen in Figure 2.

The temperature is set to 300 K at the inlet and zero

gradient boundary condition is utilized at the outlet.

All other boundary conditions are realized as adiabatic

walls. Fully developed turbulent channel flow profiles

are mapped to the flow and the turbulence model vari-

ables at the inlet. These values are obtained using pre-

liminary simulations of the inlet channel. Due to the

symmetry, only half of the domain is considered in the

optimization process. Following the assumption of in-

finitely long channels, heat generation is only consid-

ered in the solid regions with q̇ = 175 kW/m3 and the

heat source is evaluated using Equation 23.

Figure 3 shows optimized designs for increasing value

of the power dissipation constraint. The complexity of

the design increases with the allowed power dissipation,

which results in a better cooling performance. The in-

creased cooling performance is evident from the objec-

tive values of the end designs, shown in Figure 3, as well

as from the temperature fields, shown in Figure 4. The

best performing heat sink (lowest temperature rise) is

obtained for 10 times increased power dissipation com-

pared to the initial reference state. The velocity mag-

nitude contours for each optimized design are shown in

Figure 5. For larger power dissipation the size of the

main channel is decreased allowing higher velocity in

the secondary channels, thus providing better cooling

performance.

In order to further investigate the validity of the

followed optimization approach, the 2D heat sink de-

sign that is obtained for w = 10 (Figure 3c) is simu-

lated with a body-fitted mesh. The body-fitted profile

is obtained using a sharp threshold of η = 0.5 on the
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(a) Velocity magnitude u [m/s]. (b) Turbulent kinetic energy k [m2/s2].

(c) Temperature distribution T [K].

Fig. 6: Optimized design from Figure 3c on a body fitted mesh. The calculated objective value is C = 300.58.

optimized porosity field. The boundary layer is fully re-

solved in the fluid channels by keeping the distance (in

dimensionless wall units) from the first cell center to the

wall well below unity. Figure 6 shows the results from

the body-fitted mesh analysis on the optimized design

in which the calculated objective function C = 300.58

agrees well with the objective value obtained from the

penalized model (Figure 3c). From the investigation

of the velocity magnitude contour predicted with the

body-fitted mesh (Figure 6a), it can be deduced that

the fixed-grid optimization model over-estimates the

velocity in the lowest secondary channel (Figure 5c).

This can be seen as a shortcoming of the Brinkman

penalization where the solid regions still contain pres-

sure gradients which affect the velocity distribution in

thin channels. The remedy can be found in increasing

the mesh resolution along the transition region of the

thin channels or increasing the Brinkman penalization

parameter λ. On the other hand, the predicted temper-

ature field in the penalized model (Figure 4c) compares

well with the temperature distribution obtained from

the body-fitted mesh (Figure 6c). Furthermore, Figure

6b shows the resulting turbulent kinetic energy in the

fluid channels of the optimized heat sink. Overall, a rea-

sonable agreement is found between the penalized and

the body-fitted models.
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Fig. 7: Computational domain for the 3D heat sink problem. Due to the symmetry, only a quarter of the domain

is utilized for the optimization. Blue color represents the fixed fluid regions for inlet and outlet, green color shows

the design domain Ωd and the red color specifies the fixed solid region Ωp (heated thin plate).

4.2 3D heat sink with two heat sources

The 2D setup is a simplification of a real 3D problem.

Thus, to compare the performance of the 2D designs a

full-scale 3D model is considered as a second example.

The 3D problem setup is shown in Figure 7. Due to

symmetry in both y and z directions only a quarter of

the domain is considered for the optimization process.

Blue color marks fixed fluid inlet and outlet channels.

Similar to the 2D case, fully developed turbulent chan-

nel flow profiles are mapped to the flow and turbulence

model variables at the inlet, now also accounting for

the presence of the side wall. The design domain Ωd is

colored green in the provided sketch. Heat to the sys-

tem is provided from the bottom and the top boundary

of a fixed solid region (a thin heated plate) which is

fixed as solid throughout the optimization. The heat

source is colored with red. The heat enters the system

through the boundary. The heat source term utilized in

the previous section is changed in this case to a non-

homogeneous Neumann boundary condition

∂T

∂n
=

q̇

ks
(35)

where the heat influx is set to q̇ = 175 kW/m2.

The objective in this case is the minimization of

the integral of the temperature in the heated plate Ωp
(Equation 31). A power dissipation constraint with pa-

rameter w = 10 (Equation 34) is utilized in the opti-

mization process. The allowed volume fraction for the

fluid is the same as in the 2D case. The temperature is

set to 300 K at the inlet and a zero gradient boundary

condition is utilized at the outlet. All other boundaries

(excluding the heated boundaries) are realized as adia-

batic walls.

Figure 8 shows the optimized flow channels where

the shaded red areas illustrate the location of the heated

plates. The design consists of rather flat and thin chan-

nels parallel to the heated plates. The half cut of the op-

timized design shown in Figure 8b demonstrates parts

of the channel that provide the required speed up of the

flow for more efficient cooling. The resulted streamlines

of the flow are shown in Figure 9 and are colored with

the temperature and the velocity magnitude. The fluid

is heated almost uniformly towards the outlet region.

The design domain consists of 216,000 hex cells which

result in 2.5M DOFs for the fluid problem and 216K

DOFs for the heat transfer problem. The number of

optimization iterations is 300 which takes around 10

h of computational time on 100 Intel Xeon e5-2680v2

CPU cores.

4.3 Comparison between the 2D and 3D designs

To compare the 3D optimized heat sink to the 2D de-

sign shown in Figure 3c, the 2D topology is extruded.

The heat source is set in the same manner as for the 3D

optimization case. Figure 10 compares the streamlines

of the flows from the extruded 2D design and the 3D

design, colored with the temperature field. It is appar-

ent from Figure 10a that the flow in the extruded 2D

design is heated unevenly and the heated lower part of

the fluid cannot transfer the heat to the mid parts of

the domain. Hence, the large bulk of the fluid cannot

extract heat from the plate, in contrast to the 3D opti-

mized heat sink where the flow gets heated almost uni-
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(a) Optimized design, with blue indicating the flow chan-
nels.

(b) Optimized design, with blue indicating the flow chan-
nels which are cut in half for better visualization.

Fig. 8: Topology optimization of 3D heat sink device for Re = 5000 with k-ω model. Red color specifies the heated

plates at the top and the bottom of the design and blue color shows the optimized flow channels. The objective

values of the end design is C = 315.

Fig. 9: Lower half of the optimized flow channels, showing the streamlines of the flow. Streamlines on the right

hand side are colored with the velocity magnitude u [m/s] while the left hand side is colored by the temperature

T [K].

formly (Figure 10b). The actual performance depends

on the fluid-solid contact surface, the velocity and the

temperature of the fluid close to the heated plate and

on the temperature difference between the solid and the

fluid.

Figure 11 compares the temperature distributions in

the solid regions of the extruded and the 3D optimized

design. The superior cooling performance of the 3D op-

timized design can be observed. For the 2D extruded

design the fluid heats up in thin channels close to the

plate, and cannot extract more heat from the source to-

wards the outlet. This effect is strongly pronounced in

the thinner outer channels. The mid channel performs

reasonably well, however, due to the limited contact

area the fluid cannot extract more heat. On the other

hand, the 3D optimized design provides larger contact

surface area. Hence, a more uniform temperature distri-

bution is realized both in the solid and the fluid regions,

and the temperature gradient between the heated solid

and the fluid remains large even close to the outlet of

the sink. This effect allows the fluid to extract more

heat which explains the better performance of the 3D

optimized design and demonstrates the benefits of full

3D optimization.

Another possibility for a simplified 2D model is to

take a vertical cut through the middle of the 3D de-
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(a) Extruded 2D design. (b) 3D optimized design.

Fig. 10: Streamlines of the flow colored by temperature T [K]. Quarter of the flow channels are shown.

(a) Extruded 2D design, C = 329. (b) 3D optimized design, C = 315.

Fig. 11: Temperature T [K] distribution of the solid regions of the optimized heat sinks. Figures show the half of

the domain (cut in z axis).

sign domain. The constraint of the fluid volume is not

enforced as the heat input is supplied from the bot-

tom and the top plates. In this case, the optimizer dis-

tributes a thin layer of solid on top of the heated plate.

This distribution accelerates the flow and increases the

heat transport. However, due to the strict constraint on

the pressure drop, the amount of distributed material

is limited. The temperature in the plates increases sig-

nificantly in this case and the 3D objective is C = 348.

This 2D design is not shown for the sake of brevity.

4.4 3D heat sink with one heat source

Performance improvement due to increased design free-

dom is further demonstrated in this section. To asses

the effect of including turbulence modelling in the op-

timization framework, the section also provides a com-

parative study with a heat sink design that is optimized

for laminar flow.

The full length of the 3D model is utilized for opti-

mization. The setup considers a heat influx (∂T∂n = q̇
ks

with q̇ = 175 kW/m2) from the bottom boundary of

the heated plate and the top boundary is considered as
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(a) Optimized 3D heat sink design for Re = 5000 with
k-ω model, Red color specifies the heated plate at the
bottom of the design and blue color indicates the opti-
mized flow channels. The end objective value is C = 313.

(b) Optimized 3D heat sink design for Re = 50, Red color
specifies the heated plate at the bottom of the design and
blue color indicates the optimized flow channels. The end
objective value is C = 356.

(c) Iso-view of the optimized design shown in Figure 12a. (d) Iso-view of the optimized design shown in Figure 12b.

(e) Optimized flow channels for Re = 5000, showing the
streamlines of the flow. Streamlines on the right hand side
are colored with the velocity magnitude u [m/s] while the left
hand side is colored by the temperature T [K].

(f) Optimized flow channels for Re = 50, showing the stream-
lines of the flow. Streamlines on the right hand side are colored
with the velocity magnitude u [m/s] while the left hand side
is colored by the temperature T [K].

Fig. 12: Topology optimized design of 3D heat sink device for Re = 5000 with k-ω model (left column) and Re = 50

with a laminar model (right column).



14 Dilgen et al.

an adiabatic wall. The case utilizes the symmetry only

in the z direction and rest of the computational domain

is the same as presented in Figure 7. The computational

mesh consists of 400,000 hex cells which results in 4.8M

DOFs for the fluid problem and 400K DOFs for the

heat transfer problem. The number of optimization iter-

ations is 300 which takes around 16 h of computational

time on 120 Intel Xeon e5-2680v2 CPU cores. The ini-

tial design consists of a porous material, with a value of

0.5, distributed everywhere in the design domain. The

allowed volume fraction for the fluid and power dissi-

pation constraint parameter w (Equation 34) are the

same as in the previous 3D case (Section 4.2).

The optimized heat sink design with turbulent flow

of Re = 5000 is shown in Figures 12a and 12c with

different iso-views. As can be seen from Figure 12e,

the additional freedom allows the optimizer to acceler-

ate the fluid close to the heat source resulting in lower

maximal temperature. The design is much more sophis-

ticated than the one presented in Figure 8. The addi-

tional channels mix heated and colder fluid streams,

thus, keeping high-temperature gradient between the

plate and the cooler towards the sink outlet.

The same flow and solid properties are utilized for

the laminar flow optimization (as shown in Tables 1 and

2) where the only difference is the lowered bulk velocity

of the inlet flow which is taken to be Ub = 0.0075 [m/s],

and the Reynolds number of the flow is tailored to be

Re = 50. A laminar channel flow profile is used as the

inlet flow. The resulting optimized channels for the lam-

inar flow can be seen with different iso-views in Figures

12b and 12d. The optimization converges to a much

simpler design compared to the heat sink obtained with
turbulent flow (Figures 12a and 12c). Although the

heat sink is optimized for the given Reynolds number

of Re = 50, an immense rise in temperature can be

observed from the temperature distribution of the flow

field given in Figure 12f. This is mainly due to the lam-

inar nature of the fluid with lowered diffusivity where

an effective cooling to the plate can not be realized con-

sidering the chosen material properties. To further in-

vestigate the effect of introducing turbulence modelling

to the optimization process and to compare the designs

obtained with turbulent and laminar flow, the resulting

designs are run for various Reynolds numbers ranging

from Re = 50 to Re = 5000. For simulations, the RANS

k− ω model is utilized for Re ≥ 1000. Figure 13 shows

the calculated objective values of both designs in the

given range of Reynolds numbers. As expected, both

designs outperform the other at the Reynolds number

which they are optimized for. This also confirms that

the turbulence model is correctly embedded in the op-

timization process. Both the laminar and turbulent de-
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Fig. 13: Objective values of the optimized 3D heat sink

designs computed for different values of Reynolds num-

bers where turbulent design is shown in Figure 12a and

the laminar design is given in Figure 12b.

signs achieve quite similar performance trends. How-

ever, after a Reynolds number of Re ≈ 200 the design

obtained with turbulent flow optimization exhibits bet-

ter cooling performance than the laminar design as ex-

pected. Further investigations regarding the behavior

and comparison of the two designs for higher Reynolds

numbers must be based on body-fitted meshes that re-

solve the boundary layer accurately.

5 Conclusions

The article demonstrates the advantages of optimizing

realistic 3D designs compared to 2D simplified mod-

els. The additional dimension provides extra freedom to

the optimizer for better material distribution. A com-

parative study is provided between the designs opti-

mized for laminar and turbulent flows confirming that

improved designs can be obtained by including turbu-

lence modelling in the optimization process. For forced

convection and similar pressure drop, the larger design

space leads to lower device temperature. The inclusion

of turbulence models introduces additional complexity

in the state and the adjoint solvers, however, allows

for higher fluid velocities. The complexity is managed

with the help of automatic differentiation. The addi-

tional temperature field is introduced in the simula-

tion using the same techniques applied to the turbulent

fluid solver presented earlier in [15]. Additional trans-

port processes are handled without significant changes

to the code, thus demonstrating the extendability and

the feasibility of the approach for large-scale optimiza-

tion problems, and opening the possibility of obtaining
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optimized topologies of even more complicated multi-

physics problems.
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