

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Downloaded from orbit.dtu.dk on: Oct 13, 2024

Design Optimization of IEEE Time-Sensitive Networks (TSN) for Safety-Critical and
Real-Time Applications

Gavrilut, Voica Maria

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gavrilut, V. M. (2018). Design Optimization of IEEE Time-Sensitive Networks (TSN) for Safety-Critical and Real-
Time Applications. DTU Compute. DTU Compute PHD-2018 Vol. 500

https://orbit.dtu.dk/en/publications/27014fe7-fbf6-416b-aeda-62d718b94b21

Design Optimization of IEEE
Time-Sensitive Networks (TSN)

for Safety-Critical and
Real-Time Applications

Voica Gavriluţ

Kongens Lyngby 2018
PhD-2018-500

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk
PhD-2018-500
ISSN: 0909-3192

Summary (English)

A safety-critical cyber-physical system (CPS) is a system that will not endan-
ger human life or the environment, or is intended to prevent such harm. Many
safety-critical systems are also real-time, where the correctness depends, in ad-
dition to the validity of results, on the time instance at which they are pro-
duced. This thesis addresses safety-related distributed CPSes, interconnected
using the communication protocol colloquially known as Time-Sensitive Net-
working (TSN).

Ethernet, although is low cost and has high speeds, is known to be unsuitable
for real-time and safety-critical applications. Therefore, standards such as TSN
have been proposed to extend switched Ethernet in order to guarantee reliable
and time-predictable communication. In a TSN-based network, the interacting
nodes, known also as End Systems (ESes), are interconnected by full-duplex
physical links and network switches. The data in TSN is exchanged via streams.

TSN is highly suitable for applications of different safety-criticality levels (highly
critical, mission critical, non-critical), as it offers several traffic types, such as
Time-Triggered (TT) and Audio-Video Bridging (AVB) traffic types. TT has
the highest priority and is sent based on schedule tables, called Gate Control
Lists (GCLs). By synthesizing carefully the GCLs, TT messages can have low
end-to-end latency and low jitter. AVB is an asynchronous traffic type that is
intended for applications that require bounded end-to-end latencies, but has a
lower priority than TT traffic.

Regarding dependability, we assume that the engineer will specify for each ap-
plication, depending on its criticality, the required redundancy level. This trans-

ii

lates, at network topology level, into requirements for redundant disjoint routes
between the devices involved in the communication. In this context, we focus on
synthesizing a low-cost fault-tolerant network architecture, which can guarantee
the safety and real-time requirements of the applications. We also solve the
problem of routing disjoint redundant streams on the synthesized architecture.

Similar to the debate in real-time systems between time-triggered and event-
triggered implementations there is no agreement on the appropriate traffic type
for the messages of mixed-criticality applications (e.g., TT or AVB). Hence, we
have also addressed the problem of traffic type assignment for mixed-criticality
messages in TSN. We decide, for each message, if it should use the TT or AVB
traffic type, such that the hard real-time messages meet their deadlines and soft
real-time messages maximize their quality-of-service.

Although researchers have started to propose approaches for the routing and
scheduling (i.e., GCL synthesis) of TT traffic, all previous research has ignored
lower priority real-time traffic such as AVB, resulting in TT configurations that
may increase the worst-case delays of AVB traffic, rendering it unschedulable.
Hence, we have also proposed a joint routing and scheduling approach for TT
traffic, which takes into account the AVB traffic, such that both TT and the
AVB traffic are schedulable.

The work in this thesis has been implemented as software tools, which have
been extensively evaluated on a large number of synthetic as well as realistic
test cases.

Summary (Danish)

Et sikkerhedskritisk cyber-fysisk system (CPS) er et system, der er designet
så det ikke kan bringe menneskeliv eller miljø i fare. Mange sikkerhedskritiske
systemer er også realtidssystemer, idet korrektheden afhænger af resultaternes
gyldighed på det tidspunkt, hvor de produceres. Denne afhandling omhandler
sikkerhedskritiske fysisk distribuerede cyber-fysiske systemer, hvor de computere
der benyttes er forbundet vha. en variant af Ethernet der tilbyder såkaldt time
sensitive networking (TSN).

Ethernet er kendetegnet ved lav pris og høj båndbredde, og det er derfor meget
udbredt. Desværre er det helt uegnet til brug i sikkerhedskritiske applikatio-
ner. Der er derfor foreslået forskellige overbygninger, der kan sikre og garantere
pålidelig og tidsforudsigelig kommunikation. TSN er et eksempel. Det er stan-
dardiseret af IEEE og får stigende udbredelse. I et TSN-baseret netværk er
de kommunikerende enheder, kaldet end systems, forbundet med hinanden ved
hjælp af fuld duplex links og netværk-switches. Data udveksles i TSN netværk
via streams.

TSN er velegnet til applikationer med flere forskellige sikkerhedsniveauer (yderst
kritisk, missionskritisk, ikke-kritisk) idet det understøtter forskellige trafikklas-
ser, bl.a. time-triggered (TT) trafik og Audio-Video Bridging (AVB) trafik. TT
trafik har højest prioritet og bliver sendt på faste tidspunkter efter en slags
køreplaner – såkaldte Gate Control Lists (GCLs). Disse kan optimeres så TT-
trafik oplever lav latenstid og lav jitter. AVB er en asynkron trafiktype, der er
beregnet til applikationer, der kræver begrænsede end-to-end latenstid, men har
lavere prioritet end TT-trafik.

iv

Mht. pålidelighed antager vi, at der for hver applikation forelægger en specifi-
kation af kritikalitet. Herfra kan der så afledes specifikationer for disjunkte og
redundante signalveje mellem de kommunikerende enheder i systemet. I denne
sammenhæng fokuserer afhandlingen på at syntetisere prisbillige og fejltolerante
netværksarkitekturer, som kan garantere opfyldelse af de sikkerheds- og realtids-
krav der stilles.

Inden for fagområdet realtidssystemer er der en stående og uafklaret diskussion
af to alternative paradigmer for systemernes grundlæggende virkemåde: time-
triggered eller event-triggered. En tilsvarende uafklarethed gør sig gældende
mht. hvordan data hørende til forskellige trafikklasser (f.eks. TT eller AVB)
skal håndteres. Afhandlingen tager også fat i dette emne, og undersøger hvordan
TSN-netværk kan håndtere data hørende til forskellige trafikklasser, her specifikt
TT og AVB, således at realtids trafik leveres inden for de krævede deadlines og
således at kvaliteten ad den øvrige trafik maksimeres.

Selv om forskere er begyndt at foreslå fremgangsmåder til routing og planlæg-
ning (dvs. GCL-syntese) af TT-trafik, har alle tidligere undersøgelser ignoreret
lavere prioriteret realtidstrafik som AVB, hvilket resulterer i TT-konfigurationer,
der kan øge de værste forsinkelser af AVB-trafik, og i nogle tilfælde gøre det
umuligt at finde (tilfredsstillende) løsninger. Som en løsning på dette forhold
foreslår afhandlingen en samlet løsning der tilgodeser og optimerer både TT og
AVB trafik.

Metoderne udviklet i denne afhandling er blevet implementeret som software-
værktøjer og disse er evalueret på at stort antal syntetiske og virkelige testek-
sempler.

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an Ph.D. degree in computer engineering.

In this thesis, we propose methods and tools to support automatic design space
exploration for the design of computer networks that have to accommodate
safety-critical real-time applications. The thesis consists of an introductory
chapter and three papers.

The work has been supervised by Professor Paul Pop and co-supervised by
Associate Professor Christian Damsgaard Jensen.

Lyngby, 31-October-2018

Voica Gavriluţ

vi

Acknowledgements

I would like to express my sincere respect and deepest gratitude to my main
supervisor, Prof. Paul Pop, for the following three most important things.
Firstly, I highly appreciate him for accepting me as his PhD student, despite my
disability, giving me thus the opportunity to develop my skills and knowledge. I
am also thankful for his constant and constructive feedback. And lastly, I cannot
thank him enough for restoring my hope by showing me how to be encouraging,
patient and kind with people, doing meanwhile his job with professionalism.

I would like to express also a big thank you to my co-authors, and specially to
Adj. Prof. Soheil Samii for his industry-oriented viewpoint. Special apprecia-
tion goes also towards Bahram Zarrin and Luxi Zhao, who were also my office
mates, for our thought provoking, fruitful and supportive discussions.

I would like to thank Prof. Hans Hansson and Assoc. Prof. Elisabeth Uhle-
mann, from Mälardalen University (MDH), Sweden, for their hospitality and all
their guidance during my external stay. I enjoyed so much the friendly atmo-
sphere and various and insightful conversations with the people from MDH. I
am also thankful for the ideas and different viewpoints and for the openings for
collaboration that they provided.

I highly appreciate the support provided by the administrative and technical
staff. Special acknowledgments are expressed to Prof. Jens Sparsø for the Dan-
ish translation and Karin Tunder and Ellen Juel Nielsen, the people behind the
scene who were always available to help me to navigate through the bureaucratic
system.

viii Contents

I would also like to thank all my friends and all the fellow students for their
support and help in different aspects through these three years. I would like
to express my warm thanks to Adriana Zsurzsan, Olivia Perederic and Paula
Muntianu for listening me patiently my complains when I was discouraged,
and for being always there to celebrate each achievement. Also very helpful
were the discussions with Domiţian Tămaş-Selicean, about the PhD life and life
in Denmark in general. Discreet but valuable presences were also my friends
Patricia and Erwin Karalyos who were constantly cultivating my passion for IQ
and board games.

Finally, I take this opportunity to address my heartfelt thanks to my family
for their endless support. Special gratitude I have for my parents, Valeriu and
Doina Gavriluţ, who supported me to take this way, and who, with unlimited
love, encouraged me when I felt hopeless.

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

Abbreviations xix

1 Introduction 1
1.1 Motivation and Background . 1

1.1.1 System and Application Models 3
1.1.1.1 System Model and Example 3
1.1.1.2 Application Model and Example 4
1.1.1.3 Fault Model and Example 6

1.1.2 Design Constraints . 7
1.1.2.1 Timeliness . 7
1.1.2.2 Dependability 8

1.1.3 Communication Protocols 9
1.1.3.1 Evolution of Communication Protocols 9
1.1.3.2 Time-Triggered vs. Event-Triggered Solutions . 10
1.1.3.3 IEEE 802.1 Time-Sensitive Networking (TSN) . 10
1.1.3.4 Overview of Traffic Types in Deterministic Eth-

ernet (DE) . 11
1.2 Communication-Related Design Tasks 14

1.2.1 Related Work . 15
1.3 Thesis Overview and Contributions 17

x CONTENTS

1.3.1 Paper A: Fault-tolerant topology and routing synthesis for
IEEE Time-Sensitive Networking 18

1.3.2 Paper B: Traffic type assignment for TSN-based
mixed-criticality cyber-physical systems 19

1.3.3 Paper C: AVB-aware routing and scheduling of time-triggered
traffic for TSN . 19

2 Paper A: Fault-Tolerant Topology and Routing Synthesis for
IEEE Time-Sensitive Networking 21
2.1 Introduction . 22

2.1.1 Related Work . 24
2.2 Architecture Model . 25
2.3 Application Model . 28

2.3.1 Fault Model . 29
2.4 TSN Protocol and UBS . 30
2.5 Problem Formulation . 32

2.5.1 Motivational Example . 33
2.6 Synthesis Strategies . 35

2.6.1 Cost Function . 35
2.6.2 Heuristic Strategy . 36
2.6.3 GRASP . 40
2.6.4 Constraint Programming-Based Strategy 41

2.6.4.1 CP Model . 42
2.6.4.2 Topology Constraints 43
2.6.4.3 Routing Constraints 43
2.6.4.4 Search Strategy 44

2.7 Experimental Results . 45
2.8 Conclusions . 46

3 Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality
Cyber-Physical Systems 47
3.1 Introduction . 48

3.1.1 Related Work . 51
3.2 Architecture Model . 53
3.3 Application Model . 54
3.4 TSN Protocol . 55

3.4.1 TT Traffic . 56
3.4.2 AVB Traffic . 58

3.5 Problem Formulation . 59
3.6 Optimization Strategy . 62

3.6.1 Initial Solution . 64
3.6.2 Quality Function . 65
3.6.3 WCD Analysis . 66
3.6.4 Tabu Search Moves and Example 67

xi

3.7 Experimental Evaluation . 70
3.8 Discussion and Conclusions . 72

4 Paper C: AVB-Aware Routing and Scheduling of
Time-Triggered Traffic for TSN 75
4.1 Introduction . 76

4.1.1 Related Work and Contribution 78
4.2 System Models . 79

4.2.1 Architecture Model . 79
4.2.2 Application Model . 80

4.3 TSN Protocol . 81
4.3.1 TT Traffic . 82
4.3.2 AVB Traffic . 83

4.4 Problem Formulation . 85
4.4.1 GCL Synthesis for TT . 85
4.4.2 Routing for TT . 86
4.4.3 AVB-Aware TT Routing and Scheduling 88

4.5 Optimization Strategy . 91
4.5.1 Objective Function . 92
4.5.2 Routing Strategy . 93
4.5.3 Scheduling Strategy . 94

4.5.3.1 Greedy Randomized Heuristic 95
4.5.3.2 Schedule Flow 97
4.5.3.3 Local Search . 98

4.6 Experimental Evaluation . 99
4.6.1 Evaluation of GRASP-based Scheduling Heuristic for TT

GCL synthesis . 99
4.6.2 Evaluation of TT routing heuristic 103
4.6.3 Evaluation of AVB-aware routing and scheduling 104

4.7 Conclusions . 105

Bibliography 107

xii

List of Algorithms

2.1 TRH(ES;L;S) . 37
2.2 SearchRoute(Gft ; Eused ; sj

i ; rl) . 40
3.1 TTA(G(V; E);M; T C0;S0;MAV B) 63
3.2 GenerateInitial(G(V; E);M; T C0;S0;MAV B) 64
4.1 JRS (G;F) . 91
4.2 RoutingHeuristic(G;F) . 94
4.3 SchedulingMetaheuristic(G;F ; R; ; �) 94
4.4 GreedyRandomized(G;FT T ; R;) 95

xiv LIST OF ALGORITHMS

List of Figures

1.1 Part of an intra-vehicle network that consists on sensors, actua-
tors and Electronic Control Units (ECUs) 4

2.1 Architecture model example . 26
2.2 Chaining bridges . 27
2.3 (a) Structure of a TSN-aware bridge and (b) UBS shaping for (a) 31
2.4 Motivational example . 34
2.5 TRH example . 38

3.1 Example system model . 53
3.2 Examples Utility Functions . 55
3.3 Example GCL configuration . 57
3.4 Example AVB transmission . 58
3.5 Motivational example . 60
3.6 Example TS neighborhood search 68

4.1 TSN network and device architecture 80
4.2 TSN network with internal queues, gates and GCLs [ZPZL18] . . 81
4.3 Example AVB transmission [ZPZL18] 84
4.4 Example GCL synthesis for TT 87
4.5 Example routing optimization for TT 89
4.6 Motivational examples for considering AVB during TT routing

and scheduling . 90
4.7 Heuristic variations for scheduling frames of a flow in an existing

schedule . 96
4.8 Comparison of GRASP and ILP 102

xvi List of tables

List of Tables

1.1 A selected set of messages from an automotive application 5
1.2 TSN standards and amendments 12

2.1 Example library L . 27
2.2 Application model example . 29
2.3 Library for the TRH example . 37
2.4 Experimental results . 46

3.1 Comparison of “AVB only” with an optimized assignment of TT
and AVB using TTA . 70

3.2 Comparison of our TTA approach with SMT-based solvers in the
presence of legacy messages . 72

4.1 Example application model . 80
4.2 Comparison of ILP, OMT, and GRASP 100
4.3 Combinations of periods in test cases 101
4.4 Average number of (flows, frames) of test cases 101
4.5 Comparison of shortest path and our heuristic routings 102
4.6 Experimental results for JRS . 104

xviii LIST OF TABLES

Abbreviations

Abbreviation Meaning
ADAS Advanced Driver Assistance System
AFDX Avionics Full-DupleX switched-Ethernet
ALAP As-Late-As-Possible
ARL Address Resolution Logic
ASAP As-Soon-As-Possible
ATS Asynchronous Traffic Shaping
AVB Audio-Video Bridging
BAG Bandwidth Allocation Gap
BE Best-Effort
BFS Breadth-First Search
Bs Bridges
CAD Computer-Aided Design
CBS Credit-Based Shaper
CEV Crew Exploration Vehicle
COTS Commercial Off-The-Shelf
CP Constraint Programming
CPS Cyber-Physical System
CRC Cyclic Redundancy Check
DE Deterministic Ethernet
DEI Drop Eligible Indicator
DL Dataflow Link
DP Dataflow Path
ECU Electronic Control Units
ES End System
ET Event-Triggered
ETG EtherCAT Technology Group

xx Abbreviations

Abbreviation Meaning
GCL Gate Control List
GRASP Greedy Randomized Adaptive Search Procedure
HRT Hard Real-Time
IEEE Institute of Electrical and Electronics Engineers
ILP Integer Linear Programming
ITS Intelligent Transport System
JRS Joint Routing and Scheduling
KSP K-Shortest Path
LAN Local Area Network
LIDAR LIght Detection And Ranging
LNS Large Neighborhood Search
MAC Medium Access Control
MBSE Model-Based Systems Engineering
MC Modify Class
MGCL Modify GCL
MII Media-Independent Interface
MIAT Minimum Inter-Arrival Time
MTU Maximum Transmission Unit
NC Non-Critical
NRE Non-Recurring Engineering cost
NS Network Switch
OMT Optimization Modulo Theory
PAR Project Authorization Request
PC Personal Computer
PCP Priority Code Point
PE Processing Element
PHY PHYsical connector
QoS Quality-of-Service
RC Rate-Constrained
RCL Restricted Candidate List
RL Redundancy Level
RSTP Rapid Spanning Tree Protocol
SMT Satisfiability Modulo Theory
SPB Shortest Path Bridging
SRP Stream Reservation Protocol
SRT Soft Real-Time
STT Switch Traffic Type
TAS Time-Aware Shaper
TCI Tag Control Information
TDM Time-Division Multiplexing
TPID Tag Protocol IDentifier
TRH Topology and Routing Heuristic
TRO Topology and Routing Optimization

xxi

Abbreviation Meaning
TS Tabu Search
TSA Transmission Selection algorithm
TSN Time-Sensitive Networking
TT Time-Triggered
TTA Traffic Type Assignment
TTP Time-Triggered Protocol
UBS Urgency-Based Scheduler
VLAN Virtual Local Area Network
VLID VLAN IDentifier
WCD Worst-Case Delay
WCPHD Worst-Case Per-Hop Delay

xxii Abbreviations

Chapter 1

Introduction

1.1 Motivation and Background

Computer systems are everywhere in our life. In addition to the general-purpose
computers, such as Personal Computers (PCs), laptops, and servers, there are
many “invisible computers” that are embedded into devices and systems that we
use. For example, today’s high-end cars may use more than 100 microcontrollers,
which control most aspects of a car’s functionality. These embedded computer
systems are interconnected with each other and to the internet. They are used
in different application areas: from intelligent entertainment systems to power
and nuclear plants, from smart toys to medical devices, from office suppliers to
automobiles and aircraft. This thesis is concerned with real-time applications
implemented on safety-critical cyber-physical systems.

Cyber-physical systems. Embedded computer systems typically take inputs
from the environment (via sensors) and act upon it (via actuators), as is the case
with a temperature or pressure controller in a steel furnace for example. To de-
note such systems, Helen Gill, at the National Science Foundation in the U.S.A.,
introduced the term Cyber-Physical System (CPS) [ALAS15]. Hermann Kopetz
describes in [Kop11] a CPS having three main components: (1) the controlled
cluster (the physical components that are controlled), (2) the control cluster
(the set of computers controlling the physical entities) and (3) the operator

2 Introduction

cluster (people controlling or supervising the system). CPSes are pervasive in
our society, used in most areas, from automotive and aerospace systems to med-
ical devices and industrial systems such as factories. CPSes are underpinning
our “smart society”, being used in Smart Cities, Intelligent Transport Systems
(ITSes), Smart Manufacturing, Smart Grid, etc. Many of the societal challenges
that we face, related to the environment and energy consumption, are currently
tackled using cyber-physical systems as a key enabler technology.

Safety-critical systems. When a system failure endangers human life or the
environment we say about such system that is safety-critical. For example in
a steel furnace, a faulty pressure controller could lead to the furnace explosion,
endangering the people operating the furnace. Knight observes that a safety-
critical system is “when we depend on it for our well being” [Kni02]. Each
application area may have its own specific definition; for example, the United
States Department of Transportation, Aircraft Certification Division, defines a
safety-critical system as a system that is losing less than 1 life in a billion (109)
hours of operation [Uni88].

Real-time systems. CPSes are typically also real-time. There are several def-
initions of a real-time system, including the common misconception that a “sys-
tem operates in real time if it is able to quickly react to external events” [But11].
Instead, a correct and broadly accepted definition formulated by Kopetz is that:
“A real-time computer system is a computer system where the correctness of
the system behavior depends not only on the logical results of the computations
but also on the physical time when these results are produced” [Kop11]. In
other words for a real-time system, the results must be produced within the
deadlines imposed by computing system characteristics or the controlled envi-
ronment [But11]. We can distinguish two types of deadlines: hard deadlines—
where a result produced after the deadline is equivalent with a failure—and soft
deadlines—where a result obtained after the deadline just degrades the qual-
ity [Kop11, BLAC05]. Furthermore, Kopetz defines as a hard real-time system
or a safety-critical system any real-time system that has to meet at least one
hard deadline. Throughout this thesis, we refer as hard or soft real-time mes-
sages to those messages having hard or soft deadlines.

Distributed architectures and TSN. CPSes are typically distributed, i.e.,
they consist of several computational nodes (each with its own computation
entities, such as a CPU and cores, and memory) which communicate with each
other in a network. The architecture of CPSes, implementing multiple (poten-
tially real-time and safety-critical) applications, has evolved over time. In the
beginning, federated architectures were used, where the applications were im-
plemented by physically separated computation nodes. Currently, the design
of CPSes use integrated architectures, where multicore computation units serve
multiple control applications. Such an evolution can be observed in the automo-

1.1 Motivation and Background 3

tive industry, where nowadays we have multi-purpose Electronic Control Units
(ECUs) interconnected via backbone networks [LSS+12]. As presented in sub-
section 1.1.3, in this thesis we consider that the nodes are interconnected using
IEEE 802.1 Time-Sensitive Networks (TSN) [TSN12], which is an emerging set
of IEEE standards that extend the well-known Ethernet standard, with features
for real-time and safety-critical applications.

1.1.1 System and Application Models

1.1.1.1 System Model and Example

Figure 1.1 shows a simplified representation of a distributed architecture of
an automotive electronics system, which implements control applications that
involve sensors, computation units and actuators [Kop11].

Throughout this thesis, the logical topology of a network is mathematically rep-
resented as an undirected graph with End Systems (ESes) and Network Switches
(NSes) as nodes and communication connections as links. In general, an ES em-
bodies a possible multi-core CPU, a memory and I/Os. It is broadly accepted
that only the computation units carry out intelligence, but nowadays there are
also smart sensors, such as cameras and radars, which can preprocess the sensed
signals. As already stated for this example the ESes are represented by sensors,
actuators and Electronic Control Units (ECUs). An NS, called in TSN bridge,
has a different number of physical ports. Each such physical port is further
composed of two logical ports; an ingress and an egress port, respectively. The
term network device generally denotes either an end system or a network switch.
In Figure 1.1 we show part of an intra-vehicle network with 13 ESes (5 sensors,
5 actuators and 3 ECUs) and 3 NSes (in this example, the NSes are built in the
ECUs, which is typical for the automotive area). The connections among nodes
are represented by physical full-duplex links.

Logically a physical link consists of two directed connections. Such a directed
connection is further called Dataflow Link (DL), as dl1 = (sensor1;ECU 1)
in Figure 1.1. A group of such successively connected DLs, where the sequence
starts and ends with an ES, represents a Dataflow Path (DP). In TSN the
communication can be also multicast, therefore a message can be forwarded
through a dataflow path (unicast case) or through a multicast tree — a set of
multiple dataflow paths having the same source ES. Such a forwarding struc-
ture is called route. For example in Figure 1.1, two possible routes are r1 =
[sensor1;NS 1; [ECU 1; [NS 2;ECU 2]]] (a multicast tree) and r2 = [ECU 1;NS 1,
actuator1].

4 Introduction

sensor1

actuator 1

sensor2

ECU 1

sensor3

sensor4

sensor5

ECU 3

ECU 2

actuator 2

actuator 3

actuator 4

actuator 5

1

Figure 1.1: Part of an intra-vehicle network that consists on sensors, actuators
and Electronic Control Units (ECUs)

1.1.1.2 Application Model and Example

Through this thesis, the application model captures the messages exchanged
among applications. Such a model for our example is depicted in Table 1.1.
Safety-critical messages denote the messages produced or consumed by at least
one safety-critical application. Real-time messages are defined similarly, involv-
ing real-time applications.

In our model, a message has the following properties: source ES, destination(s)
ESes, size, period and deadline. The meaning of source and destination end
systems was already presented in subsubsection 1.1.1.1. The size represents the
maximum number of bytes that a message can carry on. TSN is an Ethernet
extension, therefore messages are packed and transmitted in Ethernet frames.
Thus, if the size of a message exceeds the Ethernet-dictated Maximum Trans-
mission Unit (MTU) a message is split into multiple frames.

Often real-time messages are transmitted repeatedly. This repetition is either
periodic (or strictly periodic) — any successive message instances are separated

1.1 Motivation and Background 5

by a fixed amount of time (or period) — or sporadic — between any successive
message instances there is at least a minimum amount of time, called Minimum
Inter-Arrival Time (MIAT). In our example from Table 1.1, we consider that all
messages are periodic. The meaning of the deadline of a message has been pre-
viously presented in the context of real-time systems. Usually in the literature
are considered the default deadlines for messages, i.e., the deadline is the same
with the period, as in Table 1.1. But throughout this thesis, we consider the
generic case with specific-application deadlines that can be different from the
period.

Message Source Destination(s) Size (in Bytes) Period (in ms)

m1 sensor1
ECU 1
ECU 2

1200 2

m2 ECU 1 actuator1 100 1

m3 sensor2
ECU 1
ECU 2

1400 4

m4 ECU 1 ECU 2 900 1
m5 ECU 2 ECU 1 75 1

m6 ECU 2

actuator2
actuator3
actuator4
actuator5

150 1

Table 1.1: A selected set of messages from an automotive application

Let us assume that the architecture in Figure 1.1 implements a safety-critical
obstacle detection application, which uses the sensor1, actuator1 (components
of a camera) and ECU 1 (the associated computation unit). sensor1 is the
camera sensor that sends raw data m1 to ECU 1. The job of ECU 1 is to: (1)
filter and process the raw data, (2) send the graphical information, as m4, to
other ECUs and (3) based on quality of the received raw images m1 and vehicle
state m5 decide and send to actuator1 the updated values m2 to control the
sensor exposure, as shutter speed or lens aperture.

6 Introduction

1.1.1.3 Fault Model and Example

There are many types of faults that can affect the transmission of messages in
distributed systems. Such transmission faults, encountered in the literature also
as communication or network faults, can be accidental or intentionally produced
and they can be caused by faults of the physical components or the software
faults. This thesis focuses on the network design for safety-critical applications,
assuming that the network is secure, i.e., the network engineers are already using
the state-of-the-art security methods to prevent the intentional faults.

Accidental software faults, known also as bugs, are usually detected and cor-
rected during the software development phase. A proper software development
process involves, in addition to the actual implementation, intensive testing and
the so-called bug fixing.

The most common type of faults are physical faults. The principal causes of
this kind of faults are aging of the component or external factors as radiations,
power transients, etc. [ALRL04]. For example, the vibration and thermal fluc-
tuations cause the corrosion of the cable terminals. This corrosion leads to the
most common faults in intra-vehicle networks, namely permanent faults in the
physical links and their connectors [Sie04, Tib13].

Furthermore, the faults can be classified regarding their duration, therefore we
are talking about permanent and transient faults [ML09]. To tolerate these
types of faults there have been proposed several methods, such as redundancy
and error-correction codes, respectively [ML09]. Furthermore, the redundancy
can be either spatial—when a message is transmitted through redundant routes
(routes that do not share any physical component)—or temporal (used to tol-
erate transient faults of physical components)—represents the retransmission
of a message within its period. The reception of an erroneous message can
be detected with the very known polynomial division based Cyclic Redundancy
Check (CRC) schema. Before transmission to a message is attached a checksum,
computed based on polynomial division. Upon reception, the checking value is
computed again. If the newly computed checking value and the checksum are
not the same, the receiver can request the retransmission of the message.

The camera-based application presented in Figure 1.1 implements a spatial fault-
tolerant mechanism if the decision routine implemented in ECU 2 takes into
account both, the processed and raw graphical data. In the fault-tolerant sce-
nario, if the obstacle detection job implemented at ECU 1 is faulty the raw data
provided through m1 can be still used to gather some information about the
environment.

1.1 Motivation and Background 7

1.1.2 Design Constraints

In order to function correctly, a cyber-physical system not only has to be de-
signed such that it implements the required functionality, but also has to fulfill
a wide range of competing design constraints: size, weight and power consump-
tion, collectively referred to as SWaP; performance (latency, throughput); pre-
dictability; dependability, which integrates attributes such as reliability (conti-
nuity of correct service), availability (readiness for correct service), safety (ab-
sence of catastrophic consequences on the users and the environment), integrity
(absence of improper system state alterations), confidentiality (absence of unau-
thorized disclosure of information) and maintainability (ability to undergo re-
pairs and modifications); cost, which can be broken down into unit cost, the
cost to produce one copy of the product, and Non-Recurring Engineering cost
(NRE), the one-time engineering cost to design and develop the system; time-
to-market, i.e., the necessary time to design and produce the system to the point
it can be sold.

In this thesis, we are interested in the design metrics related to timeliness and
dependability. To explain metrics, we will use the system example composed of
the network depicted in Figure 1.1 and the set of messages from Table 1.1, that
represents, as mentioned, a part of an automotive architecture.

1.1.2.1 Timeliness

Real-time safety-critical applications have strict timing requirements referred
to as deadlines. In addition to deadlines, there are also other constraints that
should be met by a highly critical system such as: timeliness, dependability and
fault-tolerance.

Multiple timing metrics, such as delay and jitter [Kop11, But11], have to be
considered when designing a safety-critical system.

Worst-Case Delay. The delay, or response time in context of hardware de-
sign [But11], is the time elapsed between ending and starting of an action. In
the context of this thesis, we use the term delay to denote the message delay or
transmission time. For example, the delay of the message m3 is computed as the
time when m3 started its transmission from its source sensor2 subtracted from
the time whenm3 is received at its destination ECU 1. Factors such as switching
delay or number of messages that are competing on the same egress port of a
switch can increase the delay of a message. As highlighted by Buttazzo and
Kopetz, delays in safety-critical systems have to be highly predictable. Is not

8 Introduction

enough to consider only the average delay, but the highly critical messages must
meet their deadlines also in the worst-case scenarios [Kop11, But11]. Therefore,
a safety-critical system must be designed such that even the maximum delay of
a message, known also as Worst-Case Delay (WCD), should be smaller or equal
to the message deadline. Furthermore, we say that a message is schedulable
when it can meet its deadline even in the worst-case scenario; when the WCD
is smaller than the deadline.

Jitter. The jitter of a message represents the difference between the WCD and
the minimum delay of a message [Kop11]. Buttazzo considers that a system
is predictable when the number of factors that impact the delay variations is
minimized, i.e., when the jitter is low [But11]. In other words, a system is
predictable when the WCDs can be computed and overall jitter is low. To
illustrate the impact of the jitter and delay let us consider the camera example
in Figure 1.1. As we can observe the m1, ECU 1 job and m2 creates a closed
loop. In this context is obvious that a delay greater than the sampling period,
the time between two shootings, leads to an under/overexposure of the sensor.

1.1.2.2 Dependability

In the Cambridge English dictionary, dependability is defined as “the quality
of being able to be trusted and being very likely to do what people expect”.
In [Kop11], Kopetz defines dependability as “the quality of service a system
delivers to its users during an extended period of time”. In the following are
defined four dependability attributes that are most relevant for the design of
safety-critical systems.

Reliability. denoted R(t) is the probability that the system is operational
during the time interval t [Kop11, ALRL04].

Availability denoted A(t) represents the fraction of the time interval t when
the system is ready to deliver the correct service [Kop11, ALRL04].

Safety is a property of a system that will not endanger human life or the en-
vironment [ALRL04]. Furthermore, Kopetz introduces the concepts of safety
modes: the malign and benign modes [Kop11]. If in our camera example,
from Figure 1.1, the reliability of camera acquisition is too low, i.e., too many
lost video frames and bad quality of images, the failure of the obstacle detection
algorithm implemented in ECU 2, for example, could lead to a crash with the
non-detected obstacle.

Fault Tolerance. Many safety-critical systems must be designed to be fault-

1.1 Motivation and Background 9

tolerant, i.e., such that they deliver the correct service even in the case of faults
[ALRL04].

1.1.3 Communication Protocols

1.1.3.1 Evolution of Communication Protocols

Several communication protocols were developed since 80s to meet the time-
liness and dependability requirements of real-time safety-critical applications.
In this section, most relevant protocols are compared in terms of network ar-
chitecture and supported type of traffic. During the past 60 years or so, the
machine-to-machine communication infrastructure has drastically evolved. Un-
til beginning of years 2000s, the predominant protocols were based on bus ar-
chitectures, as CAN [Rob86], Fieldbus [Int98], SAFEbus [Hon92], TTP [KG93],
TTCAN [FMHH01], FTT-Ethernet [PGAB05] or FlexRay [Con06]. However,
from years 2000s onwards, the “switched architecture” protocols have gained
ground, such as ProfiNet [Int01], EtherCAT [Eth03], AFDX [Aer09], AVB [AVB05],
Switched FlexRay [LCM11], TTEthernet [SAE11], TSN [TSN12] or AVB-ST
[APLB13].

A notable advancement is from the 80s, when the computer interaction moved
from point-to-point connections, where any two communicating machines should
be connected by a cable, to bus-based architectures, where all machines from
a network are attached to the same cable, known also as communication bus
[TW11]. Even if the cabling and installation costs were reduced, in a bus ar-
chitecture, comparing to the point-to-point architecture, this came at cost of
decreased bandwidth. The topologies used for bus architectures are the bus/line
topology, the ring topology and the star and snowflake/tree topologies, where
multiple computers can be connected to a hub [TW11]. In a bus-based archi-
tecture, all communicating devices are competing for the same communication
medium, saying that all devices are on the same collision domain. Therefore,
new Medium Access Control (MAC) protocols were needed.

The next notable achievement, as documented by Tanenbaum [TW11], is from
the mid 90s, when switched architectures were introduced, which can be seen
as a trade-off between point-to-point and bus-based architectures in terms of
cabling and bandwidth. Multiple computers are thus connected to a switch,
but compared to a hub, now there are separate collision domains between the
switch and each connected machine. The switched architectures are even more
flexible in regard to supported topologies, therefore we can have star, snowflake
and tree, bi- or n-torus, mesh or hybrid topologies.

10 Introduction

1.1.3.2 Time-Triggered vs. Event-Triggered Solutions

The debate from real-time systems community according to Event-Triggered
(ET) and Time-Triggered (TT) approaches [Kop11] is reflected also in the evolu-
tion of dependable communication protocols. The initial approach was to release
the communication based on internal or external events. Therefore, in the begin-
ning, regardless of the application area, from aerospace to industrial automation,
the communication protocols, such as CAN, Fieldbus or SAFEbus, could handle
only the ET traffic. Already at the beginning of 90s, namely in 1991, Hermann
Kopetz proposed a comparative analysis of ET and TT approaches in terms of
predictability, resource allocation and system scalability[Kop91]. This analysis
is followed in 1993 by [KG93], which introduced the Time-Triggered Protocol
(TTP).

As shown in [Kop91] and [Kop11] TT-based architectures are more predictable,
but ET-based architectures have more reduced installation costs and allocated
resources. As communication systems start to grow in size and complexity, after
the 2000s, “mixed” architectures started to appear, where both type of traffic,
ET and TT, are present. Besides TTP and EtherCAT which are purely TT, the
majority of protocols after the year 2000 (ProfiNet, TTCAN, FTT-Ethernet,
FlexRay, TTEthernet, TSN and AVB-ST) being mixed. After the emergence of
TT paradigm, only a few dependable protocols are exclusive ET, such as AFDX
and AVB.

1.1.3.3 IEEE 802.1 Time-Sensitive Networking (TSN)

Although in different areas, such as automotive, airspace or industrial automa-
tion, there are specialized safety-critical protocols, the trend is towards stan-
dardization. In the beginning, each area developed specific protocols, there-
fore for automotive, there were CAN and FlexRay, airspace industry developed
SAFEbus and AFDX, and for industrial automation area, there were proposed
field-buses, ProfiNet and EtherCAT.

Now, due to the increased requirements regarding bandwidth, the trend is to ex-
tend the Ethernet for real-time and safety-critical usage. Examples of Ethernet-
based dependable protocols are ProfiNet, EtherCAT, FTT-Ethernet, AFDX,
AVB, TTEthernet and TSN. The former two are being known as Deterministic
Ethernet (DE) [Ste16]. The aim regarding standardization is that protocols with
real-time and safety-critical features, such as TSN, are implemented in Commer-
cial Off-The-Shelf (COTS) network devices, and there is a market competition
from vendors that would drive the cots down. For example, TSN is proposed

1.1 Motivation and Background 11

to be used in intra-vehicle networks [Hap16], which will further increase cost-
pressures, since the automotive market is a cost-conscious mass market. In the
future, there will also be interoperability solutions with existing specialized com-
munication protocols, e.g., an EtherCAT to TSN gateway [Eth18] was already
launched by EtherCAT Technology Group (ETG) and CAN and FlexRey to
TSN gateways are proposed in [SS16].

TSN is not a communication protocol per se, but a collection of sub-standards
from IEEE. Initially, IEEE 802.1Q-2005 introduced the prioritized Best-Effort
(BE) traffic. In the same year, the IEEE Audio-Video Bridging (AVB) task
group is created and has proposed IEEE 802.1Qav [AVB09] to shape the traf-
fic ensuring thus bounded Worst-Case end-to-end Delay (WCD). After that, in
2012, the group was renamed to Time-Sensitive Networking (TSN) whose pur-
pose now is to extend the IEEE 802.1Q Virtual Local Area Network (VLAN)
protocol to meet the requirements of time-sensitive applications.

To address the timing constraints, Shapers and schedulers have been intro-
duced and standardized as: IEEE 802.1Qav AVB (a Shaper for prioritized asyn-
chronous traffic), IEEE 802.1Qbv [TSN15] (an enhancement for TT traffic) and
IEEE 802.1Qcr [TSN18b] (an improvement for the asynchronous traffic shap-
ing). The reliability requirements are addressed by Stream Reservation Proto-
cols (SRPs) standardized in IEEE 802.1Qat [IEE10] (a dynamic signaling proto-
col to reserve network resources for QoS guaranteed streams), 802.1Qcc [TSN18a]
(an enhancement for the reservation protocol) and 802.1CB [TSN17] (Frame
Replication and Elimination for Reliability).

Table 1.2 gives more details about standards and amendments in TSN. The
naming uses the following IEEE conventions: (1) standards are with capital
letters; (2) amendments of a standard are with small letters; (3) a Project
Authorization Request (PAR) has to be approved to start to develop a standard
or amendment; and (4) a standard or amendment that is not published yet is
an “ongoing project” and the identifier is prefixed with “p”. Furthermore, if a
standard is not merged into another standard or is not reviewed or reaffirmed
after five years since it has been published, the standard is not considered state
of the art anymore.

1.1.3.4 Overview of Traffic Types in Deterministic Ethernet (DE)

In the following paragraphs, we will introduce the traffic types of DE that are
of most importance for the work on this thesis, and for the coverage of related
work, see subsection 1.2.1. Furthermore, each traffic type (or class) will be pre-
sented in terms of forwarding mechanisms, configuration parameters and most

12 Introduction

Identifier
N
am

e
Status

802.1Q
-2005

V
irtualLocalA

rea
N
etw

orks
(V

LA
N
s)

P
ublished

M
ay

19
th

2006
802.1Q

-2011
V
irtualLocalA

rea
N
etw

orks
(V

LA
N
s)

P
ublished

A
ug.

31
st

2011
802.1Q

-2014
B
ridges

and
B
ridged

N
etw

orks
P
ublished

D
ec.

19
th

2014

p802.1Q
-2018

B
ridges

and
B
ridged

N
etw

orks
PA

R
approved

Sept.
22

n
d
2016

Standard
approved

M
ay

7
th

2018

802.1A
S-2011

T
im

ing
and

Synchronization
for

T
im

e-Sensitive
A
pplications

in
B
ridged

LocalA
rea

N
etw

orks
P
ublished

M
ar.

30
th

2011

p802.1A
S-R

ev
T
im

ing
and

Synchronization
for

T
im

e-Sensitive
A
pplications

in
B
ridged

LocalA
rea

N
etw

orks
PA

R
approved

Feb.
16

th
2015

D
raft

7.0
M
ar.

29
th

2018
802.1B

A
-2011

A
udio

V
ideo

B
ridging

(AV
B
)
System

s
P
ublished

Sept.
10

th
2011

802.1B
A
-

C
orrigendum

1
A
udio

V
ideo

B
ridging

(AV
B
)
System

s
P
ublished

Jul.
22

n
d
2016

802.1C
B
-2017

Fram
e
R
eplication

and
E
lim

ination
for

R
eliability

P
ublished

Sept.
28

th
2017

802.1Q
av-2009

V
irtualB

ridged
LocalA

rea
N
etw

orks
-

A
m
endm

ent:
Forw

arding
and

Q
ueuing

E
nhancem

ents
for

T
im

e-Sensitive
Stream

s

P
ublished

Jan.
5

th
2010

M
erged

into
802.1Q

-2014

802.1Q
at

V
irtualB

ridged
LocalA

rea
N
etw

orks
-

A
m
endm

ent:
Stream

R
eservation

P
rotocol(SR

P
)

P
ublished

Sept.
30

th
2010

M
erged

into
802.1Q

-2014

802.1Q
ca-2015

B
ridges

and
B
ridged

N
etw

orks
-

A
m
endm

ent:
P
ath

C
ontroland

R
eservation

P
ublished

M
ar.

11
th

2016
M
erged

into
p802.1Q

-2018

802.1Q
bv-2015

B
ridges

and
B
ridged

N
etw

orks
-

A
m
endm

ent:
E
nhancem

ents
for

Scheduled
Traffi

c
P
ublished

M
ar.

18
th

2016
M
erged

into
p802.1Q

-2018

p802.1Q
cc

Stream
R
eservation

P
rotocol(SR

P
)

E
nhancem

ents
and

P
erform

ance
Im

provem
ents

PA
R

approved
O
ct.

21
st

2013
Standard

approved
Jun.

14
th

2018

p802.1Q
cr

B
ridges

and
B
ridged

N
etw

orks
-

A
m
endm

ent:
A
synchronous

Traffi
c
Shaping

PA
R

approved
Jun.

30
th

2016
D
raft

0.5
Jun.

12
th

2018

T
able

1.2:
T
SN

standards
and

am
endm

ents

1.1 Motivation and Background 13

suitable timing requirements. In DE-based networks, the messages may have to
be fragmented into several frames, if a message size is larger than the Ethernet
Maximum Transmission Unit (MTU) of 1,500 bytes.

TheTime-Triggered (TT) class is specified in TTEthernet [SAE11]. TT
frames are sent and received at predefined points in time that are stored in
static schedule tables. Along a route, network devices are storing TT traffic
in buffers, forwarding a frame only when it is scheduled. In TTEthernet
the TT traffic has the highest priority and guarantees bounded delay and
jitter.

TT is also used in TSN. The main difference between TTEthernet and
TSN is that in TTEthernet the shaping and scheduling are done on a per-
message basis, when in TSN is on a per-queue basis. The TT queues are
shaped by Time-Aware Shaper (TAS) specified in IEEE 802.1Qbv. With
the introduction of TAS a gate is associated to each outgoing queue. So
far, in TSN, TT traffic has the highest priority. Therefore, the queued
up TT frames are eligible for transmission when: (1) there are no other
frames on transmission and (2) the gate is open. Gate Control List (GCL)
stores the times when the gates of associated queues are open and closed.
TSN enables TT traffic with low delay and jitter if (i) the clocks of all
network devices that are forwarding TT traffic are synchronized and (ii)
GCLs are carefully synthesized to schedule forwarding of TT messages
in a route from source to destinations. “Carefully synthesized” means
that GCLs must satisfy the frames non-interleaving constraint introduced
in [CSCS16] and [SCS18], this making GCLs equivalent with schedule
tables in TTEthernet.

Audio-Video Bridging (AVB) is one of the asynchronous traffic types
in TSN. For AVB class the Credit-Based Shaper (CBS) is specified in
IEEE 802.1Qav and IEEE 802.1BA [AVB11] which defines the configura-
tion parameters for AVB-aware network devices. In TSN, frames of AVB
messages are queued up in network devices outgoing ports and forwarded
when the queue is eligible for transmission. CBS purpose is to prevent the
starvation of lower priority queues. Therefore, a non-empty AVB queue is
eligible for transmission when: (1) there are no other frames on transmis-
sion, (2) there are no higher priority queues eligible for transmission and
(3) the credit is non-negative. When an AVB queue is transmitting the
credit decreases with sending slope and when a non-empty queue waits
for transmission the credit is increased with idle slope. Idle and Sending
slopes are configuration parameters defined in IEEE 802.1BA with the idle
slope representing a fraction of link speed and the sending slope being the
difference between link speed and idle slope. Furthermore, IEEE 802.1BA

14 Introduction

defines the latency math to compute the upper bound delay for an AVB
message.

TheRate-Constrained (RC) is the asynchronous traffic class of TTEth-
ernet defined in Avionics Full-DupleX switched-Ethernet (AFDX) [Aer09].
Each RC message is shaped along its route in order to impose an upper
limit for its bandwidth. A RC message has associated a (1) Bandwidth
Allocation Gap (BAG), that represents the minimum time interval allowed
between two consecutive frames of the message, and (2) a maximum frame
size. The BAG and maximum frame size are the configuration parame-
ters used to regulate the RC traffic. Therefore, RC traffic type provides
guaranteed bandwidth and has bounded delay.

1.2 Communication-Related Design Tasks

The engineering of large-scale complex systems is enabled by the use of Model-
Based Systems Engineering (MBSE) methodologies [Est07], which provide Com-
puter-Aided Design (CAD) support for several design tasks. [PGPE11] outlines
the most important tasks used to design a safety-critical system.

In this thesis, we focus on communication-related design tasks, such as ar-
chitecture selection and communication synthesis. Note that we will use the
term network planning and design instead of “architecture selection”. As Pop
et al. [PGPE11] show the communication synthesis for a TT-based architec-
ture is focused on scheduling. For a mixed-criticality system, as highlighted
in [PRCS16], the communication synthesis, in addition to scheduling, consists
also of routing and packing and fragmenting. Moreover, this thesis addresses
also design tasks such as priority and traffic class assignment [PRCS16] and
bandwidth allocation.

The CAD support is implemented as optimization tools that perform design
space exploration to search for good quality solutions—most of the time, find-
ing the optimal solution is computationally intractable. Hence, in this the-
sis, we use heuristic- and metaheuristic-based strategies for design-space ex-
ploration [BK14]. To evaluate the solutions visited during the search, we are
defining context-specific cost and quality functions, that employ timing analysis
methods, see each paper included.

The network planning and design means to design the logical topology of a net-
work, i.e., to decide the number of network switches and cables and how to in-
terconnect them. The priority and traffic class assignment deals with deciding,

1.2 Communication-Related Design Tasks 15

depending on message requirements and resources availability, the appropriate
traffic class and priority for each message. To ensure the timing and depend-
ability requirements, DE-based systems use different traffic priorities and traffic
classes.

Grouping multiple smaller messages into one frame and splitting a message
into multiple smaller frames is referred as packing and fragmenting. The task
of routing supposes to select for each message from the network the tree on
which it will be forwarded; the cycle-free connected structure that connects the
message source with the message destination(s).

The scheduling design task deals with deriving the schedule tables. The sched-
uled (or TT) traffic is sent and received at predefined points in time which
are stored in the so-called schedule tables. Bandwidth allocation means to im-
pose a bandwidth upper bound for a message, traffic priority or traffic class.
This mechanism prevents non-scheduled or lower priority traffic to wait at infin-
ity on network devices egress ports. Therefore, bandwidth allocation helps the
non-scheduled traffic by reducing its WCD. Thus, we can say that bandwidth
allocation is equivalent to the scheduling for the non-scheduled traffic.

1.2.1 Related Work

Network planning and design: The problem of network planning and design
is well-studied in the literature. For example, it has been addressed in [KRD02]
for Industrial Ethernet. For TTEthernet-based networks, the problem of net-
work planning and design is addressed in [TSPM15].

The fault-tolerant network design for DE-based systems is presented as a prob-
lem of joint topology and routing design only in [GTSP15] for TTEthernet and
in Paper A chapter 2, included in the thesis, for TSN.

Traffic class assignment: The problem of traffic class assignment for
TTEthernet-based networks, briefly presented in [GP16], is similar to the prob-
lem of priority assignment. For example, in [HSF14] researchers propose a solu-
tion for the priority assignment problem of RC messages in AFDX. The method
is based on the optimal priority assignment strategy (usually used in the context
of real-time tasks) and it assigns higher priorities to the messages with tighter
timing constraints.

In the context of TSN the problem of traffic class (or type) assignment ad-
dressed in Paper B chapter 3, included in the thesis, is similar to the one for
TTEthernet. For more details about differences between traffic classes and con-

16 Introduction

figuration parameters in TTEthernet and TSN the reader is redirected to the
Paper B chapter 3. Furthermore, also in the context of TSN, the problem of
priority assignment is tackled for Asynchronous Traffic Shaping (ATS) traffic
in [SS17]. The work in [SS17] searches for the minimum number of queues that
are required to guarantee the timing requirements of ATS traffic.

Packing and fragmenting: The problem of frame packing is widely addressed
in the literature in [ASBCH13, AMF12, PEP05, SN06], for example. For safety-
critical avionics systems based on AFDX networks, multiple messages are packed
into one frame, based on (1) their timing availability [AMF12] and (2) their
sources and destinations [ASBCH13]. Researchers in [MAR08] present the prob-
lem the other way round; in a preemptive TTEthernet context TT messages are
split into smaller frames in order to reduce the preemption time of lower pri-
ority traffic. An integrated approach though is addressed in [TSPS14], where
both packing and fragmenting are used together with routing and scheduling for
TTEthernet-based systems to ensure the timing requirements of critical traffic.

Routing: The problem of tweaking the routes in order to improve the schedu-
lability for TSN-based systems has also been addressed. There are solutions
based on meta-heuristics and Integer Linear Programming [Lau16] and [Nay17].

The joint problem of routing and scheduling is also well investigated for TSN
networks. For example, to solve the joint routing and scheduling problem
researchers in [SDT+17], [PTO18] and [ZP18], are proposing an ILP, a List
Scheduling-based heuristic and a GRASP (Greedy Randomized Adaptive Search
Procedure) meta-heuristic, respectively. All solutions listed previously are us-
ing the scheduling and routing to improve only for TT traffic. However, only
Paper C chapter 4 included in the thesis addresses the problem of routing and
scheduling for mixed-criticality applications, i.e., it searches for the network
configuration where the timing requirements of both TT and AVB messages are
satisfied.

Scheduling: Synthesis of schedule tables for DE networks is a well-studied
problem in literature. For example, for TTEthernet there are solutions to the
scheduling problem in [Ste10], for the mixed-criticality applications in [Ste11]
and for large systems in [PSRH15]. In TSN the researchers addressed the
scheduling problem in [CS16] for joint tasks and messages scheduling and in [CSCS16,
PRCS16, RP17, SCS18] for pure messages scheduling by using different search-
ing methods, such as list heuristics, GRASP-based meta-heuristics, satisfiability-
modulo theories or Integer Linear Programming (ILP) based methods. On the
other hand in [DN16] the scheduling is addressed in the context of AVB-ST
networks. The scheduling for mixed-criticality applications over TSN networks
is addressed in [GP18].

1.3 Thesis Overview and Contributions 17

Bandwidth allocation: Similar with packing for AFDX-based networks, the
strategy of messages aggregation is used, i.e., in addition to packing is performed
the selection of shaping parameters, such as Bandwidth Allocation Gap (BAG).
In [ASBCH13] before packing and routing researchers propose a method to
decide the optimal allocated bandwidth for an RC message. To reduce the
wasted bandwidth authors in [MLC15] propose a heuristic method to decide
the BAG of an aggregated message and the phase and on-source backlog time
of an individual aggregating message.

Due to the per-queue shaping of AVB traffic, that has a great impact on the
WCD of AVB messages, the problem of bandwidth allocation is even more in-
vestigated for TSN networks. For example, [MVNB] proposes for AVB custom-
classes a method to decide the minimum idle slope such that the timing require-
ments of all AVB messages are met and the end-to-end delay of BE traffic is
maximized. Researchers in [HZL17] present a method to determine, based on
the required bandwidth of messages, the per-port idle slope, such that the WCD
of messages having different AVB classes are minimized.

1.3 Thesis Overview and Contributions

During the course of my Ph.D. studies I have published and submitted the
following publications:

� Voica Gavrilut and Paul Pop, “Traffic Class Assignment for Mixed-
Criticality Frames in TTEthernet” , accepted and presented at the
Euromicro Conference on Real-Time Systems (ECRTS) workshop: Real-
Time Networks (RTN), 2016. [GP16]

� Voica Gavrilut, Bahram Zarrin, Paul Pop and Soheil Samii, “Fault-Tolerant
Topology and Routing Synthesis for IEEE Time-Sensitive Net-
working” , accepted and presented at the Real-Time Networks and Sys-
tems (RTNS), 2017. [GZPS17]

� Voica Gavrilut and Paul Pop, “Scheduling in time sensitive networks
(TSN) for mixed-criticality industrial applications” , accepted and
presented at the Workshop on Factory Communication Systems (WFCS),
2018. [GP18]

� Voica Gavrilut and Paul Pop, “Traffic Type Assignment for TSN-
based Mixed-Criticality Cyber-Physical Systems” , submitted to
the ACM Transactions on Cyber-Physical Systems (TCPS). [GPew]

18 Introduction

� Voica Gavrilut, Luxi Zhao, Michael L. Raagaard and Paul Pop, “AVB-
Aware Routing and Scheduling of Time-Triggered Traffic for
TSN” , accepted in the IEEE Access journal. [GZRPss]

The following articles have been included in this thesis: [GZPS17] as Paper A
(chapter 2), [GPew] as Paper B (chapter 3), and [GZRPss] as Paper C (chap-
ter 4). This thesis focuses on the following design tasks: (1) network planning
and design, presented in Paper A chapter 2, (2) traffic type assignment, pre-
sented in Paper B chapter 3, (3) traffic routing, presented in all papers, Paper A,
Paper B, and Paper C chapter 4, (4) traffic scheduling Papers B and C, and (5)
bandwidth allocation, Paper B.

In the following, we briefly describe each of the three papers and their contri-
butions.

1.3.1 Paper A: Fault-tolerant topology and routing syn-
thesis for IEEE Time-Sensitive Networking

Because this thesis targets safety-critical applications, Paper A considers that
the routing of messages is determined statically at design time. However, non-
critical messages can use dynamic route and bandwidth reservation mechanisms
provided by TSN.

Safety-related systems have to be developed according to certification standards,
such as ISO 26262 for the automotive area or IEC 61508 used for industrial
applications. Considering the current certification practice, we assume that
the engineer will specify for each application, depending on its criticality, the
required Redundancy Level (RL). This means that critical messages have to be
routed through RL redundant disjoint routes.

Therefore, in Paper A, we consider the set of ESes and of critical messages,
including their RL, as given, and the focus is on determining a minimum cost
fault-tolerant network architecture which can guarantee the timeliness and de-
pendability requirements of the critical messages. For this problem initially, we
derived the fault-tolerant topology with the maximum cost. After applying the
routing strategy the network switches are downgraded as much as possible and
the unused links and switches are removed.

For routing, we proposed three searching strategies: (i) A heuristic strategy,
called Topology and Routing Heuristic (TRH), which is based on the breadth-
first search algorithm. (ii) The second strategy is to model the routing problem

1.3 Thesis Overview and Contributions 19

using constraint programming. The method is denoted Topology and Rout-
ing Optimization (TRO) and is an exhaustive search where the variable do-
mains are reduced by the mean of constraints. (iii) Finally, we have proposed
a metaheuristic approach, based on the Greedy Randomized Adaptive Search
Procedure (GRASP).

Contribution. To the extent of our knowledge, Paper A was the first one
which addressed, in the context of TSN, the topology selection for fault-tolerant
applications and routing for multicast redundant messages.

1.3.2 Paper B: Traffic type assignment for TSN-based
mixed-criticality cyber-physical systems

Similar to the debate in real-time systems between time-triggered and event-
triggered implementations there is no agreement on the appropriate traffic type
for the messages of mixed-criticality applications. Paper B focuses on applica-
tions with different timing requirements such as Hard Real-Time (HRT), Soft
Real-Time (SRT) and applications that are Not time-Critical (NC). In this con-
text, HRT messages have hard deadlines, whereas for SRT messages we capture
the Quality-of-Service (QoS) using soft deadlines and “utility functions”. We
assume that the network engineer assigned for each SRT message such a utility
non-increasing function which shows how service degrades when the message is
received after its soft deadline. Therefore, the work in paper B addresses the
problem of “traffic type Assignment” for mixed-criticality messages in TSN.

As input to this problem, we have (1) the network topology and (2) the set of
HRT and SRT messages, including their routes. The aim is to map a traffic type
to each critical message and to synthesize the schedule tables for TT traffic such
that all HRT messages are schedulable and the overall utility of SRT messages
is maximized. To solve this problem, we implemented a Tabu Search meta-
heuristic strategy.

Contribution. Paper B is the first one, to our knowledge, which addressed the
problem of traffic type assignment for mixed-criticality applications on TSN.

1.3.3 Paper C: AVB-aware routing and scheduling of time-
triggered traffic for TSN

Paper C addresses real-time applications (implemented using both TT and AVB
traffic types) running on TSN-based distributed architectures. TT has the high-

20 Introduction

est priority and relies on mechanisms for forwarding queued frames from a spe-
cific queue of an egress port at precise points in time. This is implemented
by blocking the other queues and relies on static schedule tables, called Gate
Control Lists (GCLs), for deciding when to open and close each queue. By
synthesizing carefully the GCLs, TT messages can have low end-to-end latency
and low jitter. AVB traffic is intended for applications that require bounded
end-to-end latencies but has a lower priority than TT traffic. Thus, in this work,
the focus is on determining the routes and GCLs for TT traffic, such that both
TT and AVB messages are schedulable.

As input to the problem in Paper C, we have the network topology and the set of
TT and AVB messages, and the goal is to determine the routes and the schedule
tables of TT messages such that all messages are schedulable. In TSN the
synthesis of schedule tables means: (1) to map TT messages to TT queues and
(2) to compute the GCLs for TT queues. For solving this problem we used an
integrated heuristic-metaheuristic strategy: the K-Shortest Path (KSP) based
method generates multiple routing alternatives and for each routing alternative
the Greedy Randomized Adaptive Search Procedure (GRASP) computes the
schedule tables.

Contribution. To the best of our knowledge, Paper C was the first one to
address the joint problem of routing and scheduling for mixed-criticality traffic
on TSN-based networks.

Chapter 2

Paper A: Fault-Tolerant
Topology and Routing

Synthesis for IEEE
Time-Sensitive Networking

Time-Sensitive Networking (TSN) is a set of IEEE standards that extend Eth-
ernet for safety-critical and real-time applications. TSN is envisioned to be
widely used in several applications areas, from industrial automation to in-
vehicle networking. A TSN network is composed of end systems interconnected
by physical links and bridges (switches). The data in TSN is exchanged via
streams. We address safety-critical real-time systems, and we consider that
the streams use the Urgency-Based Scheduler (UBS) traffic-type, suitable for
hard real-time traffic. We are interested in determining a fault-tolerant network
topology, consisting of redundant physical links and bridges, the routing of each
stream in the applications, such that the architecture cost is minimized, the
applications are fault-tolerant (i.e., the critical streams have redundant disjoint
routes), and the timing constraints of the applications are satisfied. We propose
three approaches to solve this optimization problem: (1) a heuristic solution,
(2) a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic,
and (3) a Constraint Programming-based model. The approaches are evaluated

22
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

on several test cases, including a test case from General Motors Company.

2.1 Introduction

Many safety-critical real-time applications, following physical, modularity or
safety constraints, are implemented using distributed architectures, composed
of heterogeneous processing elements (PEs) embedded in “smart” devices which
are interconnected in a network. A large number of communication protocols
have been proposed for embedded systems. However, only a few protocols are
suitable for safety-critical real-time applications [Rus01]. In this paper, we
are interested in the protocol colloquially known as Time-Sensitive Network-
ing (TSN) [TSN12]. TSN is used in several application areas, from industrial
automation to automotive architectures. For example, in the automotive area,
fault-tolerant TSN networks are envisioned in future autonomous driving archi-
tectures, since they have the bandwidth requirements to integrate traffic from
multiple sensors and the dependability required for autonomous driving.

Ethernet [IEE12], although it has low cost and high speed, is known to be
unsuitable for real-time and safety-critical applications [Dec05]. For example,
in half-duplex implementations, frame collision is unavoidable, leading to un-
bounded transmission times. [Dec05] presents the requirements for a real-time
network and how Ethernet can be improved to comply with these requirements.
Several real-time communication solutions based on Ethernet have been pro-
posed. [SG12] and [CRE+12] describe and compare several of the proposed
Ethernet-based real-time communication protocols.

TSN [TSN12] is a set of sub-standards which extend the IEEE 802.1 standards
(for switched Ethernet networks) for safety-critical and real-time applications.
First, IEEE 802.1Q-20051 introduced support for prioritizing the Best-Effort
(BE) traffic in order to improve Quality of Services (QoSs). Following this, the
IEEE Audio-Video-Bridging (AVB) Task Group was formed to develop another
set of enhancements, namely IEEE 802.1BA known as AVB. This standard
introduces two new shaped AVB traffic-types, with boundedWorst-Case end-to-
end Delays (WCDs). In 2012, the AVB Task Group was renamed to IEEE 802.1
Time-Sensitive Networking Task Group to reflect the shifted focus onto further
extending the protocol towards safety-critical and time-sensitive transmissions,
and has introduced new traffic types such as Time-Triggered (TT) [TSN15] and
Urgency-Based Scheduler (UBS) [SS16].

1We will not provide references for all standards, but these can be easily found based on
their names.

2.1 Introduction 23

In this paper, we are interested in safety-critical real-time applications. We
consider that the application messages use the Urgency-Based Scheduler (UBS)
traffic-type IEEE 802.1Qcr [TSN18b]. UBS is an asynchronous traffic scheduling
algorithm, which gives low delay guarantees while maintaining a low implemen-
tation complexity. It also provides a temporally-composable timing analysis, see
section 2.4 and [SS16] for more details. Compared to the TT traffic type, UBS
does not require schedule tables, which can be difficult to create, and compared
to AVB, UBS guarantees lower latencies and has a simpler and faster timing
analysis. However, although we consider UBS in this paper, our approach can
handle any combination of traffic types, as long as a timing analysis is available.
The choice of traffic type depends on the characteristics of the applications, and
the problem of determining the appropriate traffic types has been addressed
in [GP16] for mixed-criticality traffic in TTEthernet.

TSN is highly suitable for applications of different safety criticality levels, as it
offers spatial separation for mixed-criticality traffic through the concept of Vir-
tual Local Area Network (VLAN), as well as temporal separation through the
various traffic type mechanisms. A TSN network is composed of End Systems
(ESes) interconnected by physical links and Network Switches, also known in
TSN as Bridges (Bs). The links are full duplex, and the network can be multi-
hop, see section 2.2 for the architecture model. The data in TSN is exchanged
via streams, see section 2.3 for the application model. Because we target safety-
critical applications, we consider that the routing of streams is determined stat-
ically at design time. However, non-critical streams can use dynamic route and
bandwidth reservation mechanisms provided by TSN, see [IEE10] and [TSN18a].

We are targeting safety-related systems, which have to be developed according
to certification standards; for example, IEC 61508 is used in industrial applica-
tions, ISO 26262 is for the automotive area, whereas DO 178C refers to software
for airborne systems. Considering the current certification practice, we assume
that the engineer will specify for each application, depending on its criticality,
the required Redundancy Level (RL). At the level of the network topology, this
translates into requirements for redundant disjoint routes between the ESes in-
volved in the communication. Thus, if a physical link or a bridge will fail, the
other routes can still deliver the information by the deadlines. The current ap-
proach in such a situation is to use hardware redundancy at the network level
and replicate the complete network, as discussed by [ART14] for an avionics
network. Such a solution may not be scalable in terms of weight, space, and re-
source efficiency for application areas where functions have varying redundancy
requirements.

In this paper, our focus is on determining a low-cost fault-tolerant network
architecture, which can guarantee the safety and real-time requirements of the
applications. We assume that the applications and ESes are given and that the

24
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

designer has established the redundancy levels, depending on the criticality of
the applications. We are interested in determining a fault-tolerant network
topology, consisting of redundant physical links and bridges, the routing of
each stream in the applications, such that the architecture cost is minimized,
the applications are fault-tolerant (i.e., the critical streams have RL redundant
disjoint routes), and the timing constraints of the applications are satisfied.

Contributions: This is the first time, to our knowledge, that the problems
of (i) topology synthesis and (ii) routing of time-sensitive traffic have been ad-
dressed for TSN. We propose three strategies to solve these problems: (1) a
fast heuristic solution, (2) a Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic that finds good quality solutions in a reasonable time,
and (3) a Constraint Programming-based model that searches for the optimal
solution.

The paper is organized as follows. The next section presents the related work.
section 2.2 and section 2.3 present the topology architecture and traffic models
used in the paper. The concepts related to TSN relevant for our paper are
presented in section 2.4. The problem formulation is presented in section 2.5
and illustrated with a motivational example in subsection 2.5.1. The proposed
optimization strategies are presented in section 2.6, and section 2.7 presents our
experimental evaluation.

2.1.1 Related Work

Researchers have started to address the analysis and optimization of “Deter-
ministic Ethernet” (DE) protocols, such as TTEthernet, Industrial Ethernet
and TSN. The problem of determining the network topology, i.e., the num-
ber of bridges and their interconnection via physical links and to the end sys-
tems, is called network planning and design. This problem has been addressed
for DE in the context of Industrial Ethernet [KRD02] and TTEthernet in
aerospace [TSPS14].

In the telecommunications area, there is a lot of work on network reliability and
redundancy optimization. An annotated overview of system reliability optimiza-
tion, which covers also network reliability is presented in [KP00]. In [KS06], the
authors present the latest research results in network reliability optimization.
Several network reliability measures have been proposed in the literature, such as
connectivity, resilience and performability. Researchers have proposed several
approaches to the optimization problem, including heuristics, metaheuristics
and exact solutions based, for example, on mathematical programming [KS06].

2.2 Architecture Model 25

However, these results cannot be applied directly to DE. One of the basic as-
sumptions of earlier works on network reliability optimization is that once a
fault is detected, the network will reconfigure itself to avoid the fault. That is,
new routes will be found for messages. In the case of DE the routes for safety-
critical applications are typically static: they are loaded into the end systems
and network switches at design time, and it is not possible to change the routing
dynamically, at runtime. In this context, researchers have proposed a fault-
tolerant topology selection for TTEthernet [GTSP15]. However, for non-critical
applications, runtime reconfiguration, including routing, is a relevant problem.

Routing optimization is a well-studied subject where Wang et al. [WH00] and
Grammatikakis et al. [GHKS98] provide excellent overviews of the different cen-
tralized and distributed routing algorithms. Researchers have also addressed
routing in safety-critical systems [HKGF09], [PA04]. For ARINC 664p7,
Al Sheikh et al. [ASBCH13] proposed an approach to find the optimal routes
in ARINC 664p7 networks using Mixed Integer Linear Programming. Tămaş-
Selicean et al. [TSPS14] have used a Tabu Search-based metaheuristic to, among
other things, optimize the routing of the RC traffic type to minimize the WCDs
in TTEthernet systems.

Regarding routing in TSN, AVB flows are typically established at runtime us-
ing the Stream Reservation Protocol (SRP) [TSN18a] where either the Rapid
Spanning Tree Protocol (RSTP) or Shortest Path Bridging (SPB) are used to
determine the routing. The future enhancements around TSN will support more
sophisticated runtime routing algorithms, and the possibility to also determine
the routes offline. Researchers have proposed an offline routing optimization
approach for AVB in [Lau16]. However, routing for time-sensitive traffic types
such as TT and UBS has not been addressed previously.

2.2 Architecture Model

We model the architecture, which is a TSN network as an undirected graph
G(V; E), where the vertices (or nodes) V = ES [B denote the set of all End
Systems (ESes) and network switches, usually denoted in TSN as Bridges (Bs),
respectively. The edges E are the full-duplex physical links interconnecting the
ESes and Bs. An ES can be of several types. For example, in automotive
architecture, an ES is typically an Electronic Control Unit (ECU) composed
of a CPU, memory, and I/Os. However, an ES could also be an intelligent
sensor such as video camera, radar, or LiDAR. All ESes regardless of their
type have a Media-Independent Interface (MII) connector which is a full-duplex
digital interface to connect the ES to the network. Figure 2.1 shows an example

26
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

network with 4 ESes and 4 Bs.

In this paper, for the given set of ESes, we determine the set of bridges, B to
be used and the physical interconnections. We assume that the system engineer
provides a network component library L including a set of bridge types BT
and a set of physical link types LT . Such a library will be defined based on
the TSN bridges and physical links available on the market and suitable for
the application area considered. For example, TTTech Computertechnik AG
and Infineon Technologies AG provide TSN bridges, for the automotive area,
with different number of ports and different physical layer technologies, such as
the IEEE 802.3 standards for automotive 100 Mbit/s and 1 Gbit/s Ethernet.
Our approach is general and can be applied in several areas from automotive to
industrial automation.

The library is defined as L = (BT ;LT ;BC), where BT is a set of bridge types,
and LT is the set of physical link types. In general, an ES can be connected to
any bridges. However, in practice, there can be constraints that limit the type
of bridges and physical links that can be used by an ES. For example, a video
camera could impose a limit on the fit of the bridge (due to the fact that the
ES and bridge are packaged into the same electrical component), such that it
fits together with the camera in the desired location in the vehicle. Therefore,
there are packaging constraints for some ESes that limit the network topology
synthesis. We capture the bridge constraints with the function BC , which is a
mapping from an End System ES i to the limited set of the bridge and physical
link types that can be used by ES i. In Figure 2.1 all bridges have assigned the
bridge type bt2, which has 1 internal and 3 external ports.

We use two functions to specify the type of the bridges and the physical links
used within the architecture network. The first function BT : B 7! BT , specifies
the type of a bridge, e.g., BT (B1) = bt2 in Figure 2.2. The other function

ES 1

ES 4

B1bt2

B4bt2

B2bt2

B3bt2

ES 2

ES 3

s1 s2

s3

Figure 2.1: Architecture model example

2.2 Architecture Model 27

Id Cost No.int.
ports

No.ext.
ports

bt1 2 1 2
bt2 8 1 3
bt3 10 2 2

Id Cost Speed
Mbit/s Int./Ext.

lt1 7 100 Ext.
lt2 1 1000 Int.

Table 2.1: Example library L

ES 1 B1bt3 B2bt1

MII MII

MIIMII

l1lt2

Figure 2.2: Chaining bridges

LT : E 7! LT , specifies the type for each link in the network topology, e.g.,
LT (l1) = lt1. We represent the monetary cost of a bridge, ES, and physical link
as Cost , e.g., B1:Cost = 8. We denote the transmission rate of a physical link
as speed , e.g., l1:speed = 100 Mbit=s, the connectivity type of a physical link
as lct , e.g., l1:lct = Ext, and the number of int. and ext. ports of a bridge as
noIntPorts and noExtPorts, e.g., B1:noIntPorts = 1.

Similar to the network engineering practice, we will allow the “chaining” of
several bridges to construct a new type of bridge, that has more ports, hence
supporting more connections. Figure 2.2 shows an automotive ECU with a
microcontroller ES 1 connected to a bridge that is built from chaining two bridges
B1 and B2 of types bt3 and bt1, respectively.

We distinguish between two types of connections: internal links, which are be-
tween the MIIs of ESes and bridges, and external links, which connects two
bridges using a physical connector, colloquially known as PHY. A PHY consists
of a physical digital to analog converter, as well as filters to support the bit
rate with the required signal qualities within the operating environment, and
a connector to the wiring, for example. Both internal and external links are
physical links denoted as li, li 2 E , which are bidirectional. We call a link con-
nectivity ESes to bridges an internal link because there are application areas,
e.g., automotive, where the bridge is integrated with the ES on the same board,
so the internal link is a connection on the PCB between the pins of the micro-
controller/sensor and the pins of the TSN bridge. Such an internal link is more
reliable compared to an external link, which is susceptible to PHY connector
failures, see subsection 2.3.1 for the fault model.

28
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

A dataflow link (DL) dlj represents a directed connection on a physical link
li, (ES 1 � B1) from Figure 2.1 for example. A dataflow path (DP) dpk is a
sequence of interconnected DLs. Such a path in Figure 2.1 is [(ES 1�B1); (B1�
B4); (B4 � ES 4)]. The set of all DLs is denoted with DL and the set of all DPs
is DP.

2.3 Application Model

The safety-critical real-time applications are modeled as periodic tasks dis-
tributed on the ESes. Our application model captures the communication
among tasks via streams. A stream is denoted as si and the set of all streams
is denoted S. Streams may be multicast, so each stream si has a source si:src,
which is an ES, and has one or multiple destinations ESes si:dests. The mes-
sages transmitted in a stream may be split into several packets, and each packet
is wrapped in an Ethernet frame. The messages of a stream may have to be frag-
mented into several packets, if their length is larger than the Ethernet Maximum
Transmission Unit (MTU) of 1,500 bytes. The problem of message fragmenting
and frame packing is orthogonal to our problem, and has been addressed in the
context of Deterministic Ethernet [TSPS14].

We use the leaky bucket traffic model in this paper, see [SS16] for more details,
which means that each stream si is characterized by a burstiness si:B, which
represents the maximum amount of data that can be transmitted at once, and
a leak rate si:R. Our application model can accept any type of streams which
satisfy the leaky bucket constraint, i.e., for a stream si the total amount of data
wi accumulated on a duration d is bounded by wi(d) � si:B + d � si:R. Each
frame of a stream si 2 S has a deadline si:D by which the frame has to arrive
at its destinations, relative to the releasing of each frame. The advantage of
such a traffic model is its versatility: it can model strictly periodic streams with
fixed size frames, sporadic streams, as well as variable sized frames useful for
multimedia data and large data payloads that need to be transmitted in back-
to-back frames, see [SS16] for more details. For example, a strictly periodic
stream si, with a packet size si:size a period si:T and an absolute deadline
si:deadline by which the message need to be delivered, can be modeled with
the leaky bucket model as: si:R = si:size=si:T and si:B = si:size and si:D =
si:deadline. An aperiodic stream with a maximum allowed amount of data
si:size exceeding MTU and a minimum inter-arrival time, which is denoted si:T ,
can be similarly modeled with all frames on which the streams is fragmented
inheriting the stream’s relative deadline si:D.

We model the routing of a stream as a Multicast Tree mts(si), a directed struc-

2.3 Application Model 29

Id Src. Dests. B
in B

R
in ms

D
in ms

rl

s1 ES 1 ES 3;ES 4 150 15 7 1
s2 ES 2 ES 3;ES 4 100 10 4.5 1
s3 ES 4 ES 1;ES 2 100 10 4 2

Table 2.2: Application model example

ture with the source as root and destinations as leaves. MT s is the set of all
multicast trees. Figure 2.1 shows 4 trees. For example, mts(s1) for the stream
s1 from ES 1 to ES 3 and ES 4, has the route ES 1�B1� [[B3�ES 3]; [B4�ES 4]]
depicted with a thick green dashed arrow. For each original stream si 2 S we
denote with sj

i ; 1 � j � si:rl its jth redundant copy, s1
i being si itself, and

si:rl is the stream’s redundancy level, see subsection 2.3.1. The set S? denotes
the set of all streams and their redundant copies. Table 2.2 shows an example
application model, with s3 having a redundancy level of 2 and the other two
streams not being fault-tolerant. The routes for the streams listed in Table 2.2
are depicted in Figure 2.1.

Due to the delays implied by path recovery in case of a physical fault, in this
paper we proposed a network configuration where the routes are static: they are
determined and loaded into the end systems and bridges at design time. For the
non-critical streams the routes can be determined also dynamically, e.g., using
the TSN sub-standards as 802.1Qat or 802.1Qcc.

As discussed in the introduction, we assume that each stream uses the UBS
traffic-type. UBS allows the definition of a non-unique stream priority si:priority ,
which can change at each hop. The assignment of priority is an interesting op-
timization problem. However, in this paper we assume that the priorities are
given as input by the system engineer, and without loss of generality we assume
that the priority is fixed for a stream. For example, the priority for a stream
si 2 S could be defined by the ratio si:B=si:R=si:deadline, thus the stream with
higher burstiness, lower leak rate and lower deadline has a higher priority. In
our example from Table 2.2 we consider that all streams have the same priority.

2.3.1 Fault Model

Critical streams have to deliver their data even in the case of permanent failures.
As mentioned, we assume that the system engineer provides for each stream si
the required redundancy level (RL) si:rl , which means that the stream si has
to be routed on si:rl disjoint routes, such that the failure of any RL� 1 routes

30
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

does not result in communication failure of the stream.

Our model is complementary to common probabilistic models of diagnostic and
reliability requirements, such as MTTF targets established for various safety
integrity levels in the automotive functional safety standard ISO 26262. New
application areas, such as fail-operational autonomous driving systems [On-14],
have functional safety requirements that are not currently addressed by ISO
26262. For example, some systems may require that there is no single point
failure; absence of dual point failures are also seen in some highly critical appli-
cations. This is evident in the failure models considered in recent work in indus-
try standardization (redundant communication paths in Ethernet [TSN17]) and
research work on dependable real-time Ethernet [AGRN16] to synthesize robust
time-triggered schedules for a given number of maximum link failures. Similar
requirements can be seen in some avionics and industrial control applications.

The most common types of permanent hardware failures is the physical con-
nector (PHY) failures [Sie04, Tib13], i.e., the cable terminals are corroded due
to vibration and thermal fluctuations. End Systems (microcontrollers, smart
sensors) and Bridges (network switches) are less likely to fail [Sie04]. The in-
ternal links (MII) are on the PCB (microcontroller and switch are all on the
same board), hence an internal link failure would result in an ES failure, from
a system perspective.

2.4 TSN Protocol and UBS

In this paper, we consider that the streams are scheduled using the UBS traffic
type. UBS has been proposed in [SS16] and, due to its advantages, it is currently
being standardized by the TSN Task Group as IEEE P802.1Qcr [TSN18b]. UBS
is a Rate-Constrained (RC) class, which means it does not rely on the availability
of network clock synchronization (required for the TT traffic-type) or on offline
synthesis and coordination of schedule tables. Moreover, due to the leaky bucket
traffic model used in UBS (see section 2.3), it does not impose any constraints
on the burstiness or leak rate of streams.

The TSN sub-standards are amendments to IEEE 802.1Q, which is the standard
for Bridged Virtual Local Area Networks using full-duplex IEEE 802.3 Ethernet.
802.1Q introduced additional content in the Ethernet frame header, including a
3-bit Priority Code Point (PCP) identifying up to 8 priority levels.

In 2.3a, we show the general structure of a 4-port TSN-aware bridge with
the following main functionality: traffic policing, switching, traffic shaping and

2.4 TSN Protocol and UBS 31

Traffic
Policing

Switching
Fabric

Traffic Shaping

Tr
an

sm
is

si
on

 S
el

ec
tio

nQueue of
Traffic
Class 0

Queue of
Traffic
Class 1

Queue of
Traffic
Class 7

�Y

1

2

3

4

(a)

Tr
af

fic
 P

ol
ic

in
g

S
w

itc
hi

ng
 F

ab
ric

S
tr

ic
t P

rio
rit

y

�M�5
�Á

�M�6
�Á

�M�7
�Á

�M�5
�Å

�M�6
�Å

�M�7
�Å

�3�Á

�3�Å

Scheduler

4

(b)

1

2

3

Figure 2.3: (a) Structure of a TSN-aware bridge and (b) UBS shaping for (a)

transmission selection. For presentation purposes, without loss of generality, we
show only the ingress portion for the left 3 ports and only the egress portion of
the right hand port. On ingress, frames go through a policing engine, which can
be used to limit the allowed traffic and its bandwidth (TSN standard P802.1Qci).
The switching is aware of each stream’s route and forwards incoming frames to
one (unicast) or more (multicast) egress ports based on the Address Resolution
Logic (ARL) table, which is one of the decision variables of our routing synthesis
problem. Each egress port contains a number of queues, each of which is config-
ured to support a traffic type—for example, TT, Credit-Based Shaping (CBS)
as in AVB, UBS, or FIFO-like for best-effort traffic. Each queue is configured
at a fixed priority (with 8 priority levels available). The transmission selection
algorithm selects frames for transmission based on the priority levels and based
on whether or not a queue has a frame available for transmission. The traffic
shaping, queuing, and transmission selection mechanisms are also implemented
by each TSN-aware end system.

32
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

Incoming streams to the bridges shown in 2.3a and 2.3b are forwarded to the
appropriate egress queue based on the stream identifier (typically the destina-
tion MAC address and optionally also VLAN identifier) and the frame priority
value (i.e., the PCP). For UBS, each queue is shaped to satisfy the cumulative
leaky bucket constraint of the streams mapped to that queue. The transmis-
sion selection algorithm then prioritizes the traffic based on queue priorities
(discussed in section 2.3 and detailed in [SS16]).

2.3b shows a detailed view of UBS shaping at the egress port, for the same
bridge shown in 2.3a. Incoming UBS streams are statically mapped to the
UBS queues qH

1 , qH
2 , qH

3 , qL
1 , qL

2 , and qL
3 , which could be the first six queues

in 2.3a (the last two could, for example, be dedicated to noncritical, best-
effort traffic), with the rule that frames on different ingress ports are mapped
to different queues (for fault isolation purposes). Frames in each UBS queue are
shaped to satisfy the leaky-bucket constraint; the shaper is shown with a dashed
circle. The purpose of the shaper is to establish whether or not the frame at the
head of the queue is eligible for transmission, based on leaky-bucket constraints.
Each queue has a fixed priority and it is possible that two or more queues have
the same priority, for flow aggregation purposes. We assume that the order of
priority levels is preserved through each hop along the route; see section 2.3 for
a more detailed explanation and [SS16] for the structure of a general purpose
bridge. In our example, the bridge is aware of two priority levels, high (H)
and low (L). Queues qH

1 , qH
2 , and qH

3 have the same priority (H) and are, after
shaping, therefore merged into the logical FIFO queue QH (called pseudo queue
in [SS16]). Similarly, queues qL

1 , qL
2 , and qL

3 have priority L and are merged into
the logical FIFO queue QL. Note that QH , QL, and the strict priority scheduler
in 2.3b correspond to the Transmission Selection block of 2.3a. In case the
queue priorities are unique, there is no merging into logical queues after traffic
shaping.

In the worst-case, in the scheduler of the sending node, a frame of stream si is
delayed by all streams of higher priorities H, all streams of the same priority
C(i) and by the frame of maximum size of a lower priority stream sizeL. On the
receiver side, the frame is delayed, in the worst-case, by the slowest stream (i.e.,
the stream with highest burstiness). We use the analysis method from [SS16]
to check the schedulability of each frame of a stream si 2 S?.

2.5 Problem Formulation

The problem we are addressing in this paper can be formulated as follows. As
an input we have (1) the set of end systems ES, (2) the library of components

2.5 Problem Formulation 33

L, (3) the set of streams S for which we know the source, destination(s), and
timing properties as well as the desired redundancy level si:rl . We are interested
in determining an optimized solution Sol = (G;SR), where G is the network
architecture and SR : S? 7�! MT s is a function that specifies the routing
expressed as multicast trees for all the streams and their redundant copies,
such that the architecture cost is minimized, the applications are fault-tolerant,
considering the specified redundancy levels, and the timing constraints of all
streams are satisfied.

2.5.1 Motivational Example

Let us consider the example from Figure 2.4 where we have 4 ESs , ES 1 to ES 4
and the applications from Table 2.2. As library components we have 3 bridge
types, bt1 to bt3, with types properties presented in Table 2.1 and where all ESes
can be directly connected to all types of bridges. For these examples the physical
links have a speed of 100 KBps and a cost of one monetary unit. In Figure 2.4
the gray lines represent the internal links, the thicker black lines the external
ones and the colored directed arrows are used for showing the stream routes.
We present for each stream its WCD calculated by the analysis in section 2.4.
The streams in this example are schedulable if the WCDs are smaller or equal
to the relative deadline D from Table 2.2.

The topology that maximizes redundancy without concern for cost is shown in
2.4a. To obtain this topology, we have connected each ES to its own bridge,
and we have introduced full connectivity among the bridges: each bridge is
connected to all other bridges. The bridge type is selected from the library such
that it accommodates the required ports. The cost of such topology in 2.4a is
42 monetary units. As expected, we can find disjoint redundant routes for s3,
which is fault-tolerant, and all streams are schedulable.

We can reduce the cost to 29 monetary units if we use the topology from 2.4b,
which uses 3 bridges (although their individual cost is higher) and fewer physical
links. We are able to find disjoint redundant routes for s3. To determine the
routes, in 2.4b we use the shortest path approach. However with this routing,
s2 is not schedulable. Because we are routing both s1 and s2 through link
(B1 � B2), in the worst case s2 is delayed by frames of s1 such that the s2:D is
not satisfied.

Our approach optimizes both the physical topology and the routing of streams.
2.4c shows the same topology from 2.4b, but where the routes are optimized;
counterintuitively, they may now take longer route compared to 2.4b. Here we
can see that by routing s2 through a longer route, namely ES 2�B1�B3�B2�

34
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

ES 1

ES 4

B1bt2

B4bt2

B2bt2

B3bt2

ES 2

ES 3

WCD(s3) = 4
WCD(s1) = 5:5
WCD(s2) = 4:5

s1 s2

s3

(a) costA = 42; �t = �1:5

ES 1

ES 2

B1bt3 B2bt3

B3bt1

ES 3

ES 4

WCD(s3) = 4

WCD(s1) = 6:5
WCD(s2) = 6

s1

s2

s3

(b) costA = 29; �t = 1:5; s2 unschedulable

ES 1

ES 2

B1bt3 B2bt3

B3bt1

ES 3

ES 4

WCD(s3) = 4

WCD(s1) = 6
WCD(s2) = 3

s1

s2

s3

(c) costA = 29; �t = �2:5; all schedulable

Figure 2.4: Motivational example

2.6 Synthesis Strategies 35

[ES 3;ES 4] the routes for redundant copies are fully disjoint and all streams are
now schedulable.

As we can see from this example, by only optimizing the topology and routing
we are able to minimize the cost and guarantee the fault-tolerance and timing
constraints of streams.

2.6 Synthesis Strategies

The optimization problem described in the previous section is NP-hard. Ac-
cording to [WH00], any routing problem subject to at least two additive or
multiplicative tree constraints is an NP-hard problem. Following the classifi-
cation from [WH00], our problem can be expressed as a graph optimization
problem subject to: (1) link constraint: the capacity of the links should not be
exceeded, (2) the number of links adjacent to a vertex should not exceed the node
number of ports, (3) the routes of redundant streams are link-disjoint2 interre-
lated tree constraint and (4) all streams should be schedulable. Consequently,
based on constraints (3) and (4), our optimization problem is NP-hard. To
solve this problem, we propose three strategies, (1) a heuristic-based approach,
further called Topology and Routing Heuristic (TRH), see subsection 2.6.2, (2)
a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic, see
subsection 2.6.3, and (3) a Constraint Programming-based strategy, further re-
ferred as Topology and Routing Optimization (TRO), see subsection 2.6.4. In
order to evaluate the visited solutions, all strategies use the cost function defined
in subsection 2.6.1.

2.6.1 Cost Function

A solution is evaluated using the following cost function:

costT (Sol(G;SR)) = }sched � �t(SR) + }topo � costA(G) (2.1)

Where the first term is used to check if the solution is schedulable, the second
term captures the architecture cost, and }sched and }topo are constant weights.
In order to be able to aggregate the two terms, we normalize the two values. For
both, �t and costA, the minimum and maximum values are computed and the
actual values scaled in the range (0; 1]. To increase the probability of finding a

2The number of commonly used links should be 0. For example, if R1 = G(V1; E1) and
R2 = G(V2; E2) represent the multicast trees of two redundant copies of the same stream,
then E1 \ E2 = ;

36
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

solution we relaxed the schedulability constraint adding it as a soft constraint,
i.e., as a highly penalized part of the cost function. In order to distinguish
among the topologies of similar costs we are going for those solutions which:
(a) are schedulable and (b) once they are schedulable, they should reduce the
WCDs, see 2.4c. Therefore, the weighted penalty for the first term }sched is
significantly higher than the architecture penalty }topo .

The monetary cost of the network architecture is the sum over the cost of all
bridges and all physical links in the topology G:

costA(G(V; E)) =
X

v2V

v:Cost +
X

e2E

e:Cost (2.2)

The degree of schedulability �t represents the amount of tardiness with which
all streams are arriving after their relative deadline, having a negative tardiness
for a schedulable stream. We define �t(SR) as follows:

�t(SR) =

8
>>>>><

>>>>>:

if at least one stream is not schedulableX

si2S?;WCD(si)>si:D

WCD(si)� si:D

X

si2S?

WCD(si)� si:D otherwise
(2.3)

Where WCD(si) is the WCD of a frame transmitted by a stream si having the
UBS traffic class. We can then check if the frame is received by the deadline
si:D. Such an analysis has been proposed in [SS16].

2.6.2 Heuristic Strategy

The Topology and Routing Heuristic (TRH) is a strategy which takes as input
the set of end systems ES, the components library L = (BT ;LT ;BC) and the
set of streams S, and returns the network topology G and the routing SR, see
Algorithm 2.1.

TRH starts from a fully connected initial solution Ginit , line 1 in Algorithm 2.1
(similar to the solution discussed in 2.4a) onto which each stream in S? is
routed, fulfilling the fault-tolerance requirements (the for loop in lines 3 to 11).
Then, we remove from Ginit the physical links and the bridges which are not
used by the routing (line 12). TRH is a heuristic that does not guarantee finding
the optimal solution, and it may terminate without finding a solution, even if
one exists. The function SearchRoute returns a route for mts(si) for a stream

2.6 Synthesis Strategies 37

Algorithm 2.1 TRH(ES;L;S)

1: Ginit CreateInitialTopology()
2: Eused ;; MT s ;
3: for si 2 S do
4: Gft ConvertGraph(Ginit)
5: for j 2 1 : si:rl do
6: SR(sj

i) SearchRoute(Gft ; Eused ; sj
i ; si:rl � j)

7: Gft RemoveEdges(Gft ;Edges(SR(sj
i)))

8: Eused Eused [Edges(SR(sj
i))

9: Ginit AssignBridgeTypes(Ginit ;SR(sj
i))

10: end for
11: end for
12: G RemoveUnusedEdgesAndVertices(Ginit ; Eused)
13: CheckSchedulability(S;MT s)
14: return (G; costA(G);MT s)

Id Cost No. int. ports No. ext. ports
bt1 8 2 3
bt2 10 1 4
bt3 16 2 5

Table 2.3: Library for the TRH example

si. The idea of our heuristic is to keep track of the physical links used by the
routes in Eused , found for the already visited streams in Algorithm 2.1. Eused
encourage subsequent calls to SearchRoute to reuse already used physical links
as long as the fault-tolerance constraints are satisfied. TRH does not directly
attempt to reduce the architecture cost costA during this process, and it does
not check the schedulability. Schedulability is checked in line 13 and costA is
reported for the constructed solution at the end.

Ginit is obtained as explained in subsection 2.5.1 for 2.4a. Note that when
assuming the bridge type for each bridge such that it accommodates the required
ports, we also use bridge chaining if necessary, assigning the lowest-cost chain we
can construct (see section 2.3 and Figure 2.2). Let us consider an example input
with 6 ESes and the library L from Table 2.3, with the same link types presented
in Table 2.1. Let us assume that the ESes ES 1 and ES 4 can be connected only
to bridges of types bt1 and bt3, for ES 2, ES 3 and ES 6 are available bt2 and bt3
and ES 5 can be connected to bridge of type ES 1. Then, the Ginit for this step
is presented in 2.5a.

38
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

����

����

����

���� ����

����

����

���	

���
��

���
�

�����
��

�����
 ����������

���
��

���
�
��������

������

������

���� ������������

���� ������������

���� ������������

��������

��������

��������

������

���� ������������

���� ������������

��������

��������

���
��

�����

������

(a) Partial solution of TRH (Ginit depicted with gray)

����������������

����������������

�	�� �� ���	����

���
������������

�	�� �� ���	���� ����������������

���	����

������������������

���	����

������������������

���	����

�	�� ���	����

���	����

���	��

�	�� �	��

���	��

�	�� �	��

�	�� ��

�	�� ��

�	�� �����	���� ���	��

�	���	��

���	����

���	����

���	����

���	�

�	��

�	��

�	��

���	�

�	��

���	��

�	��

�	��

�	��

(b) Final solution of TRH

Figure 2.5: TRH example

2.6 Synthesis Strategies 39

TRH iterates through si 2 S and determines the routes, lines 3-11 in Algo-
rithm 2.1. We sort the streams in S based on the timing properties and RL
(the aim is to route the most critical streams first). Moreover, when searching
for a route for a redundant copy of a stream sj

i we want to make sure that this
route is disjoint to all the redundant routes established for si. Hence, we use
the Gft graph to keep track of already used links, removing from Gft the edges
involved in each mts(si) determined so far (line 7). Thus, these edges will not
be used in subsequent redundant routes for si. The route for si is searched on
Gft , which for each original route si 2 S considered is initialized to Ginit , where
each undirected physical link is converted to two directed data flow links.

The routes are found using the SearchRoute function, which is an adapted
Breadth-First Search (BFS) algorithm, presented in Algorithm 2.2. This func-
tion attempts to reuse as much as possible the edges used by previously deter-
mined routes, hence we keep track of the edges used so far in Eused . After we
determine a route, we update the bridge type for bridges in Ginit by selecting
from the library the bridge type of minimum cost which has the required num-
ber of ports. 2.5a shows a partial solution where we iterated over streams s1
and s2 and than determined the links and the stream’s routes. The final step of
TRH is to remove from Ginit the edges not used for routes and to remove any
vertices that became thus isolated in the topology (unused bridges), line 12 in
Algorithm 2.1.

We modified BFS in SearchRoute function such that we visit a dataflow link
during search only if IsVisitable returns true. IsVisitable returns true, if at
least one of the following conditions holds: (1) the link was already used for the
already determined routes or (2) the source and target bridges have enough free
ports to support the addition of this link and of the next possible redundant
copies. IsVisitable will return false if the dataflow link will exceed its capacity
by routing sj

i . In Algorithm 2.2 the function Target applied on a dataflow
link gives the vertex on which the link enters and the elements of queue q are
dataflow paths, therefore we used the function LastVertex to retrieve end of a
dataflow path. The number of ports for a bridge is determined by summing up
the number of physical links incident to that bridge that were used for already
determined routings (stored in Eused) and that are used for the current routing.
If the stream for which we are searching the route is not the last one from the set
of its redundant copies to the number determined before is added the number
of remaining redundant copies, rl 0 in Algorithm 2.2.

Let us consider that for the TRH example considered earlier we have three
streams, s1 to s3. Furthermore, let us assume that s1 is sent from ES 4 to ES 2
and ES 3, s2 from ES 1 to ES 3, ES 4 and ES 5 and s3 is sent from ES 5 to ES 2,
ES 4 and ES 6. For this example we consider that only first two streams are fault-
tolerant, with a redundancy level of 2 and 3 for s1 and s2, respectively. 2.5b

40
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

Algorithm 2.2 SearchRoute(Gft ; Eused ; sj
i ; rl)

1: q fsj
i :srcg

2: dests sj
i :dests

3: visited ;;Gcurrent ;
4: paths ;
5: while q 6= ; and dests 6= ; do
6: choose �rst element of q as current
7: successors Successors(Gft ;LastVertex (current))
8: for succ 2 successors do
9: if Target(succ) =2 visited and IsVisitable(succ; Eused ;Gcurrent ; rl ;Gft)

then
10: newPath current + succ
11: if Target(succ) =2 ES then
12: q q [fnewPathg
13: else if Target(succ) 2 dests then
14: dests destsnfTarget(succ)g
15: paths paths [fnewPathg
16: Gcurrent Gcurrent [Edges(newPath)
17: end if
18: end if
19: end for
20: visited visited [fTarget(succ)g
21: end while
22: return ConvertToTree(paths)

shows the final solution of TRH for our example, i.e., the routes and the network
from which the unused physical links and bridges are removed. The physical
links are depicted with solid black lines (the internal links use thicker lines) and
the routes are depicted with colored thin arrows. We used blue arrows for routes
of s1, red for s2 and green for the route of s3. The networks in Figure 2.5 have
been generated by our tool, and redundant streams sj

i are labeled as Sij.

2.6.3 GRASP

GRASP [FR89] is a meta-heuristic optimization, which searches for that solution
which minimizes the costT function. GRASP is an iterative algorithm, where
each iteration consists of two phases: Phase (i) constructs an initial solution (a
topology and a route for each stream si 2 S?) based on a randomized greedy
algorithm and Phase (ii) performs a local search on the constructed solution
to reach the local minimum. At the end of each iteration, if the cost of the

2.6 Synthesis Strategies 41

local minimum found is less than the cost of the best solution, found so far,
the solution is stored as the “best-so-far”. The termination condition for the
strategy is based on a given time limit. We implemented GRASP with Google
OR-Tools.

To construct the solutions in Phase (i), we have adapted our TRH strategy
as follows. First, we create initial solutions by creating a random ordering of
streams at the start of Algorithm 2.1 (with TRH, the streams are ordered based
on their “criticality” of timing and RL). We use the same SearchRoute function
(Algorithm 2.2). Then, we also create initial solutions which do not use the
routes returned by SearchRoute, but instead use random routes, in the hope of
providing a better coverage of the search space.

In Phase (ii), starting from each such initial solution, we search for a local
minimum using the Large Neighborhood Search (LNS) algorithm [Sha98], which
improves the initial solutions by iteratively “destroying” and “repairing” the
solution.

For the destroy part we use 6 operators which remove links from the topology
(removing all routes routed over that links) or remove routes. The operators are
as follows: (1) remove a link, (2) remove two routes, (3) remove a route with
the containing links and routes routed over these links, (4) select one stream
si 2 S? and remove the routes for its original stream and redundant copies, (5)
select two streams si; sj 2 S? and remove the routes for their original streams
and redundant copies and (6) select two original streams si; sj 2 S and for each
stream remove the route for a randomly chosen redundant copy. The degree of
destruction is such that we are able to explore the neighborhood in a reasonable
time, but we do not degrade into a full optimization.

Several options are possible for the “repair”. We have decided to use an “optimal
repair”, i.e., the best possible full solution is constructed from the partial solu-
tion. To find the solution for the repair we have used the CP-Strategy presented
in the next section.

2.6.4 Constraint Programming-Based Strategy

The Topology and Routing Optimization (TRO) strategy is a Constraint Pro-
gramming (CP) [Apt03] model. TRO takes as input the set ES, the compo-
nents library L and the set S, and attempts to determine the optimal network
architecture G and the routing SR according to the cost function introduced in
subsection 2.6.1. Moreover, it can take G as an additional input and attempts
to only determine the optimal routing SR for the given architecture. In the

42
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

following, we present a CP model for the problem described in section 2.5.

2.6.4.1 CP Model

We use two parameters: (1) n = jESj the number of End Systems. (2) nmax =
the maximum number of bridges, which can be given or computed as explained
in subsection 2.6.2 for 2.5a. Based on these parameters we define the following
sets:

� K End Systems index set, K = f1; ::; ng

� J bridges index set, J = fn+ 1; n+ 2; ::; n+ nmaxg

� I End Systems and bridges index set, I = K [J

To model the topology of the network let Ai1;i2 denote the adjacency matrix of
the Gmax(Vmax; Emax) which has n+nmax vertices. Each element of this matrix
is an integer variable that represents the type of the link between nodes of this
graph, 8i1; i2 2 I ai1;i2 2 f0; ::; jLT jg; ltai1;i2 2 LT [f0g (0 = no link). Since the
topology graph is undirected, we only initialize new variables for the right-upper
half of the matrix elements. The elements on the other half of the matrix point
to their symmetric elements, therefore 8i1; i2 2 I ai1;i2 = ai2;i1. Since the graph
should not contain self-loop links, we set the elements on the main diagonal of
the matrix to 0, 8i 2 I ai;i = 0. We also define BAj which is an integer vector
to specify the type of the bridges in the network. For each bridge j 2 J , variable
baj specifies the type of the bridge (baj 2 f1; ::; jBT jg[fnilg; btbaj 2 BT [fnilg).
If this value is nil for a bridge j, it means that the bridge is not active and it is
not included in the network topology.

In order to model the stream’s routes, we define two integer matricesMT s
s?;i and

MT w
s?;i. Both matrices have the same size and dimensions. The size of the first

dimension is the size of all the streams including their redundant copies (jS?j),
and the size of the second dimension is the size of all the vertices including End
Systems and bridges (jIj). For each stream (including the redundant copies s 2
S?),MT s

s is an integer vector that specifies (in backwards order) a multicast tree
for the stream. Each element of this vector (8s 2 S?; i 2 I MT s

s;i 2 I [fnilg),
holds the successor vertex on the path from the vertex i to the source of the
stream s. In the same manner, each element ofMT w

s;i holds the weight of the
path from the vertex i to the source of the stream s, 8s 2 S?; i 2 IMT w

s;i 2 R.
The value ofMT s

s for the source of the stream is set to the index of the source
End System, MT s

s;s:src = s:src and MT w
s;s:src = 0 . If a bridge is not part

2.6 Synthesis Strategies 43

of the multicast tree then MT s
s;i = nil and MT w

s;i = �1. Our mathematical
model and constraints for multicast tree are an extension of the models presented
in [PD12].

According to these variables, we define the following constraints.

2.6.4.2 Topology Constraints

1. Any End System, ES 2 ES, must be connected with one bridge: 8k 2
K
P

j2J(ak;j 6= 0) = 1

2. The specified bridge constraint BC should be satisfied: 8k 2 K; j 2
J ak;j 6= 0) (btbaj ; ltak;j) 2 BC (ES k)

3. The number of internal links connected to a bridge should not exceed the
number of internal ports supported by the bridge:
8j 2 J

P
i2I;ai;j 6=0(ltai;j :lct = Int) � btbaj :noIntPorts

4. The number of external links connected to a bridge should not exceed the
number of external ports supported by the bridge:
8j 2 J

P
i2I;ai;j 6=0(ltai;j :lct = Ext) � btbaj :noExtPorts

5. If a bridge is inactive, it cannot be connected to other bridges or end
systems: 8j 2 J

P
i2I ai;j = 0, baj = nil

6. All the active bridges should be connected at least via two links (no bridge
is an end point): 8j 2 J

P
i2I;i6=j(0 < ai;j) � 2� (baj 6= nil)

2.6.4.3 Routing Constraints

1. The successors of destinations of a stream cannot be nil :
8s 2 S;8d 2 s:dests MT s

s;d 6= nil

2. The successors of nodes which are not the source should not point to
themselves: 8i 2 I; s 2 S?; i 6= s:src MT s

s;i 6= i

3. The successors of End Systems which are neither source nor destinations
of a stream must be nil : 8s 2 S; k 2 Knfs:srcgns:dests MT s

s;k = nil

4. Inactive bridges cannot be used within a multicast tree:
8j 2 J

P
s2S?

�
MT s

s;j 6= nil
�
6= 0, baj 6= nil

5. The multicast trees must not contain cycles: 8s 2 S?; i 2 Infs:srcg
MT s

s;i 6= nil)MT w
s;i =MT w

s;MT s
s;i

+ 1

44
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

6. All the bridges should be transient, which means that if a stream enters
to a bridge through a link it should exit from another link connected to
the bridge: 8s 2 S?; i 2 I; 9j 2 J; i 6= j s:t:MT s

s;i 6= nil ,MT s
s;j = i

7. Any vertex and its successor should be connected:
8s 2 S?; i1; i2 2 IMT s

s;i1 = i2) ai1;i2 6= 0

8. All the multicast trees for the redundant copies of each stream should not
have common links: 8s 2 S; v 2 Infs:srcgns:dests; i; j = 1; : : : ; s:rl i 6=
j ^ i 6= nil ^ j 6= nil)MT s

si;v 6=MT
s
sj ;v

9. For all physical links, the capacity of the links should not be exceeded:
8i1; i2 2 I

P
s2S?

�
(MT s

s;i2 = i1)� s:R
�
� ltai1;i2 :speed

2.6.4.4 Search Strategy

We define MT s
s?;i and BAj as the main decision variables. Consequently, the

assignments of Ai;i and MT w
s?;i will be determined by propagating the con-

straints (8) and (6). In the case that the architecture is given as input, we
initialize the values of Ai;i and BAj according to the given architecture. Thus,
the solver will do the exhaustive search only forMT s

s?;i.

Two strategies should be specified for the CP solver to perform the search. The
first is the order of selecting the variables for assignment. The other strategy
is the order of selecting the values from the variable’s domain for assignment.
Based on the results obtained for small case studies, we decide to use First-
Unbound-Variable and Assign-Min-Value strategies for the decision variables.

To validate the schedulability constraint and guide the solver to find the optimal
solution, we implemented a Search-Monitor (the term used in OR-Tools) that
will be triggered whenever the CP solver finds a solution (which satisfies all
the constraints). The search-monitor computes the degree of schedulability
�t and the architecture cost costA of the obtained solution. If the degree of
schedulability is less or equal to zero, it will consider the solution as a feasible
solution, and if the total cost costT of the solution is less than the cost of the
earlier solutions, it will consider the solution as the best solution obtained so
far. At the end of the search process, we will return the best solution found by
converting the assignments of Ai1;i2 and BAj into the network architecture G,
andMT s

s?;i into the routing SR obtained for the given set of streams.

2.7 Experimental Results 45

2.7 Experimental Results

For the evaluation of our strategies, namely the Topology and Routing Heuristic
(TRH), which is a heuristic approach, GRASP (a metaheuristic strategy), and
the Topology and Routing Optimization (TRO), which is a CP-based strategy,
we used five synthetic test-cases, motiv, tc1 to tc4 and GM, which is a real-
life case study from General Motors. For all experiments, as the components
library for the link types we used those presented in Table 2.1, but for bridges,
we have extended the library to contain 6 bridge types. For these experiments
we considered that all streams have the same priority. In Table 2.4 the first
3 columns describe the test-case, i.e., name, number of end systems, and the
number of streams and their redundant copies. The strategies, TRH, GRASP
and TRO were implemented in Java and all experiments were run on Intel
Core i7-2600 machines at 3.4 GHz. For TRO and GRASP we have used OR-
Tools [vOPF16], which is a CP library introduced by Google.

The results of our experiments are shown in Table 2.4. Column 4 shows the cost
of the fully connected topology Ginit (see subsection 2.6.2), which is an upper
bound on the architecture cost. For all strategies, we present the architecture
cost and the execution time. These strategies were able to find schedulable
solutions, for all test-cases.

As it can be observed in Table 2.4, our strategies are able to significantly reduce
the architecture cost costA. Compared to Ginit TRH is able to decrease the
architecture cost, in average with 37%, with a maximum decrease in cost for GM,
where the cost is reduced by 80%. Although TRH is able to decrease architecture
cost compared to Ginit and scales well with the problem size, it obtains solutions
with a higher cost compared to GRASP and TRO. For example, TRO improves
on average by 27% on the TRH architecture cost, and GRASP improves on
average by 23% compared to TRH.

TRO is able to find the optimum solution, marked by * in the table. However,
TRO finds the optimum solution only for the smaller test-cases motiv, tc1 and
tc2, and it does not scale well with the problem size. For the other test-cases,
TRO did not find the optimum solution and we list in the table the architecture
cost found after a time limit (execution time) of 48 hours that we impose on the
search.

Finally, our proposed GRASP strategy is able to obtain good quality results
in a reasonable time. As we can see, GRASP obtains optimum solution for
motiv test-case, and for the other test-cases, it obtains results comparatively
close to the TRO with the relative gap of 5% on average. The main advantage
of GRASP is that it can explore the design space much faster. For example,

46
Paper A: Fault-Tolerant Topology and Routing Synthesis for IEEE

Time-Sensitive Networking

Name jESj jSj; jS?j Ginit TRH GRASP TRO
costA costA Exec.

time (s)
costA Exec.

time (s)
costA Exec.

time (s)
motiv 4 3, 4 78 63 0.15 *43 0.67 *43 1.32
tc1 4 4, 6 78 78 0.09 50 0.40 *41 11.84
tc2 4 8, 11 78 71 0.08 52 0.60 *41 32.6
tc3 6 6, 8 176 106 0.1 76 0.95 73 48 h
tc4 15 30, 34 1893 392 8.05 336 3.35

min
357 48 h

GM 20 27, 38 2230 432 130 402 9.3 min 410 48 h

Table 2.4: Experimental results

for the realistic test case GM, GRASP has obtained an architecture cost of 402
in 9.3 minutes, compared to TRO, which has actually obtained a larger cost of
410 in the 48 hours we let it run.

2.8 Conclusions

In this paper, we have considered safety-critical real-time applications imple-
mented using TSN-based distributed architectures. Our focus was on the syn-
thesis of the network topology and streams routing such that the real-time and
redundancy requirements of the applications are satisfied, and the cost of the
architecture is minimized. We have proposed three strategies, a heuristic ap-
proach, called Topology and Routing Heuristic, a GRASP metaheuristic and
an approach based on CP, namely Topology and Routing Optimization. The
experimental results show that by using our strategies we are able to signifi-
cantly reduce the cost of architecture, obtaining architectures which are at the
same time fault-tolerant and meet the timing requirements of the streams. In
particular, the proposed GRASP metaheuristic is able to obtain good quality
results in a reasonable time, and scales well with the problem size.

Chapter 3

Paper B: Traffic Type
Assignment for TSN-based

Mixed-Criticality
Cyber-Physical Systems

In this paper we are interested in mixed-criticality applications, which have
functions with different timing requirements, i.e., hard real-time (HRT), soft
real-time (SRT) and functions that are not time-critical (NC). The applica-
tions are implemented on distributed cyber-physical systems that use IEEE
Time-Sensitive Networking (TSN). TSN is an IEEE effort to bring determinis-
tic real-time capabilities to IEEE 802.3 Ethernet. TSN supports the convergence
of multiple traffic types, i.e., critical, real-time and regular “best-effort” traffic
within a single network: Time-Triggered (TT), where messages are transmitted
based on static schedule tables; Audio-Video Bridging (AVB), for dynamically
scheduled messages with a guaranteed bandwidth and bounded delays; and Best
Effort (BE), for which no timing guarantees are provided. HRT messages have
deadlines, whereas for SRT messages we capture the quality-of-service using
“utility functions”. Given the network topology, the set of application messages,
including their routing, and the set of available AVB classes we are interested
to determine the traffic type of each message, such that all HRT messages are

48
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

schedulable and the total utility for SRT messages is maximized. We propose
a Tabu Search-based metaheuristic to solve this optimization problem. The
proposed approach has been evaluated using several benchmarks, including two
realistic test cases.

3.1 Introduction

Mixed-criticality cyber-physical systems have functions with different safety-
criticality requirements, e.g., highly critical, mission critical, non-critical. For
example, a network backbone in a modern vehicle has to integrate Advanced
Driver Assistance Systems (ADASes) functions, which rely on high-bandwidth
data from sensors, e.g., video cameras and LIght Detection And Ranging (LI-
DAR), with powertrain functions that have tight timing constraints but use
small frame sizes, and diagnostic services, which are not time-critical. Due to
the increase in complexity, and the need to reduce costs, such mixed-criticality
applications are today implemented in integrated architectures, where functions
of different criticality share the same distributed platform.

There are several communication protocols on the market, depending on the ap-
plication area, e.g., FlexRay for automotive, ARINC 664 p7 for avionics [Aer09],
and EtherCAT for industrial automation [JB04]. However, emerging applica-
tions, e.g., ADAS, autonomous driving, or Industry 4.0, have increasing band-
width demands. For instance, autonomous driving requires data rates of at least
100 Mbps for graphical computing based on camera, radar, and LIDAR data,
whereas CAN and FlexRay only provide data rates of up to 1 Mbps and 10
Mbps, respectively. In addition, although there have been many safety-critical
protocols proposed, only few of them can support the separation required by
mixed-criticality messages [Rus01].

TSN: The well-known networking standard IEEE 802.3 Ethernet [IEE12] meets
the emerging bandwidth requirements for safety-critical networks, while remain-
ing scalable and cost-effective. However, Ethernet is known to be unsuitable for
real-time and safety-critical applications [Dec05]. In Ethernet networks, mes-
sages are transmitted between end systems as frames. Frames are forwarded on
links, through switches, on a route from a sender to one or multiple receivers.
They queue up in switches during transmission while waiting for the next link
in the route to become available. Each switch has multiple queues, and frames
are filtered into queues based on their priority. When a link becomes available
a new frame is chosen for transmission starting from the highest priority queue.
Hence, the queueing delay for each frame depends on its priority, on how many
other frames are queued in front of it, and on the availability of the next link.

3.1 Introduction 49

This leads to network congestion causing nondeterministic behavior.

Many extensions, such as EtherCAT [JB04], PROFINET [Fel04], ARINC 664p7
[Aer09], and TTEthernet [SAE11], have been suggested and are used in the in-
dustry. Although they satisfy the timing requirements, they are incompatible
with each other, and as a result, they cannot operate on the same physical
links in a network without losing real-time guarantees [DN16]. Consequently,
the IEEE 802.1 Time Sensitive Networking task group [TSN12] has been work-
ing since 2012 on standardizing real-time and safety-critical enhancements for
Ethernet. TSN consists to a large extent of amendments (we will call them
“sub-standards”) to IEEE 802.1Q1. TSN supports multiple traffic types and
is thus suitable for mixed-criticality applications: Time-Triggered (TT) traffic
for applications with tight timing constraints, Audio-Video Bridging (AVB) for
applications that need bounded latency but may have less stringent timing re-
quirements, and Best-Effort (BE) traffic for non-critical applications that do
not need timing guarantees. Therefore, in this paper we are interested in cyber-
physical systems which use IEEE 802.1 Time-Sensitive Networking (TSN) for
communication.

AVB: First, the IEEE 802.1Q-2005 sub-standard introduced support for pri-
oritizing the BE traffic in order to improve its Quality of Service (QoS). Fol-
lowing this, the IEEE Audio-Video Bridging (AVB) Task Group was formed
to develop another set of enhancements, namely IEEE 802.1BA Audio Video
Bridging Systems, known as AVB. AVB frames are compliant with the sub-
standard 802.1BA. AVB messages may be delayed by other AVB messages or
by TT traffic, which has the highest priority. However, analysis methods exist
that bound their Worst-Case end-to-end Delays (WCDs) [ZPZL18], providing
thus timing guarantees. AVB uses the Credit-Based Shaper (CBS) from IEEE
802.1BA to prevent the starvation of lower priority flows such as BE. In 2012, the
AVB Task Group was renamed to IEEE 802.1 Time-Sensitive Networking Task
Group to reflect the shifted focus onto further extending the protocol towards
safety-critical and time-sensitive applications.

TT: The sub-standard IEEE 801.Qbv Enhancements for Scheduled Traffic in-
troduces time-aware gates within network devices enabling fully deterministic
temporal behavior of real-time communication. For each egress port of a switch,
a schedule table called Gate Control List (GCL) specifies which queue may
transmit at which points in time. Using this functionality, enables frames to be
forwarded in the network in a time-triggered manner. A prerequisite for time-
triggered communication is the presence of a network-wide reference time, such
as, the IEEE 802.1AS synchronization protocol that allows local clocks in the end

1We will not provide references for all sub-standards, but these can be easily found based
on their names via IEEE Xplore.

50
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

stations and switches to synchronize to each other. Thus, TT frames have the
highest priority and are transmitted based on synchronized distributed schedule
tables. By synthesizing carefully the GCLs, we can guarantee the schedulability
of TT frames, ensuring also low end-to-end latency and low jitter [CSCS16].

BE: BE messages are compliant with IEEE 802.3 Ethernet and have the lowest
priority, without any timing guarantees.

Problem formulation: In this paper we are interested in mixed-criticality
applications, which have functions with different timing requirements, i.e., hard
real-time (HRT), soft real-time (SRT) and functions that are not time-critical
(NC). In our model, HRT messages have hard deadlines, whereas for SRT mes-
sages we capture the QoS using soft deadlines and “utility functions”, which
model the relative importance of SRT messages and how the performance of
the system degrades if the SRT soft deadlines are missed. Similar to the debate
in real-time systems between time-triggered and event-triggered implementa-
tions [PPEP08][PSS15], there is no agreement on the appropriate traffic type
for the mixed-criticality messages, which depends on the particularities of the
applications. Therefore, in this paper, we are interested in the problem of Traffic
Type Assignment for mixed-criticality messages in TSN.

Given the network topology, the set of application messages, including their
routing, and the set of available AVB classes we are interested to determine the
traffic type for each message, such that all HRT messages are schedulable and
the total utility for SRT messages is maximized. For the TT frames we decide
their TT queue assignment and schedule tables, and for the AVB traffic we
decide its AVB class assignment and the corresponding parameters influencing
its latency, i.e., idle slopes for CBS. We consider that the NC messages are
implemented using the BE traffic type, and we do not consider the BE traffic
type for HRT or SRT messages. However, the HRT and SRT messages can be
implemented with the TT or the AVB traffic types, as both types provide real-
time guarantees. In case the NC messages require QoS guarantees, they can be
treated as SRT messages. We propose a Tabu Search-based metaheuristic to
solve this optimization problem.

Contribution: We have discussed briefly the problem of Traffic Type Assign-
ment for TTEthernet, which uses TT and Rate-Constrained (RC) traffic classes.
The solution for TTEthernet is not applicable for TSN, which handles TT traffic
differently, and which uses AVB that differs significantly from RC, see the “TSN
vs TTEthernet” discussion in the next section. Note that in context of TSN we
use the term “traffic type” to clearly differentiate it from the concept of AVB
“classes”. To the best of our knowledge, this is the first time such a problem has
been addressed in the context of TSN.

3.1 Introduction 51

The paper is structured as follows. The next two sections present the archi-
tecture and application models, respectively. The TSN protocol is presented in
section 3.4, where we introduce the details of the TT and AVB traffic types.
The formulation of our problem and a motivational example are detailed in sec-
tion 3.5. section 3.6 presents our Tabu Search-based metaheuristic solution,
which is evaluated in section 3.7. The last section presents our conclusions and
a discussion.

3.1.1 Related Work

In the context of real-time cyber-physical systems, there have been several com-
parisons between time-triggered (TT) and event-triggered (ET) approaches,
both at the task-level [PPEP08], and at message-level [PSS15][Kop91]. In
[PPEP08], the authors decide which tasks should be TT and which ET, show-
ing that the right choice depends on the particularities of the applications. The
ET and TT approaches are compared, in [Kop91], in terms of predictability,
resource utilization and scalability. The advantages are that the TT-based com-
munication is more predictable, while using an ET-based approach less resources
and configuration is required. But, as the researchers show, the system scala-
bility is reduced for both approaches; after addition of tasks, traffic or network
components ET-based systems have to be retested for temporal constraints, but
in contrast, for a TT-based architecture new schedule tables should be created
and integrated. Researchers [PSS15] have also compared two networking ap-
proaches, i.e., Time-Division Multiplexing (TDM) with an ET approach in the
context of Networks-on-Chip. Their conclusion, inferred experimentally, is sim-
ilar with the theoretical presentation from [Kop91], namely that ET improves
the bandwidth usage, whereas TDM is suited when the latencies have to be
reduced.

In the context of ARINC 664 p7 [Aer09], which is a standard from the avionics
area that defines the “Rate Constrained” (RC) ET traffic type, researchers have
shown how to optimize the priorities of the RC traffic [HSF14]. They propose an
extension to the Optimal Priority Assignment algorithm used for real-time tasks
by assigning higher priorities to traffic with more stringent timing requirements.
Another strategy of priority assignment, for CAN-based solutions, is presented
in [NSS00], where messages’ priorities are selected based on reliability analysis.

In this paper we are interested in “Deterministic Ethernet” protocols that can
support multiple traffic types. Recent developments in TSN have also intro-
duced a new traffic type called Urgency-Based Scheduler (UBS), see the IEEE
802.1Qcr sub-standard [TSN18b]. UBS is intended as a replacement for both
TT and AVB traffic. Although a comparison between UBS and TT is inter-

52
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

esting to investigate in future work, addressing UBS is beyond the scope of
this paper. Researchers have shown how to decide the frame priorities at the
switch level for UBS [SS16]. Besides TSN, introduced in the previous section
(and presented in more detail in section 3.4), another Deterministic Ethernet
protocol that supports multiple traffic types is TTEthernet. TTEthernet is a
deterministic, synchronized and congestion-free communication protocol based
on Ethernet, compliant with ARINC 664 p7 [Aer09] protocols and using the
clocks synchronization strategy defined in SAE AS6802 [SAE11].

For both TSN and TTEthernet, researchers have proposed methods to synthe-
size the communication schedule tables, see [PSRH15][CS16] for TTEthernet
and [PRCS16][CSCS16][SCS18] for TSN. The most scalable of these methods are
able to handle up to 100,000 TT messages, but they ignore non-scheduled traffic
such as RC in TTEthernet (TSN has not been considered). The problem of rout-
ing has been addressed for TSN for both the TT traffic type [Nay17][SDT+17]
[PTO18] (and thus integrated with scheduling) and for AVB [Lau16]. The find-
ings show that the routing has an influence on the WCDs of both TT and AVB
traffic. In this paper, to facilitate a fair comparison of TT and AVB in terms of
traffic type, we consider that the routing is given and fixed, determined using
methods such as [Nay17] for TT and [Lau16] for AVB.

TSN vs. TTEthernet: Although the TT traffic types in TSN and TTEthernet
have similarities, they differ significantly on how they schedule the TT frames.
TTEthernet schedule tables are specified for individual frames, whereas TSN
specifies schedules for the queues (the GCLs), not frames. Consequently, all
frames sharing the same queue are affected by the associated schedule table.
Because TSN schedules queues, TT frames can interfere with each other. When
a frame is scheduled for transmission on a link in a given time interval, the
corresponding GCL is set to open the associated gate in that interval. Non-
determinism can be introduced, for example, if frames incoming on different
ingress ports arrive at roughly the same time or if a frame is lost due to faults.
The non-determinism will compromise the timeliness of TT frames.

For this reason, researchers have proposed GCL synthesis solutions [CSCS16]
[SCS18] that enforce determinism, such that only frames of one of the flows are
present in the queue when the associated gate is open. This restricts the solu-
tion space for the GCLs. Recent work [ZPZL18] has relaxed these restrictions,
and has presented a method to determine the WCDs of TT frames considering
arbitrary GCLs, which are given as an input. However, in this work we consider
that the TT frames are scheduled in a fully deterministic fashion, which allows
better control of their latency and jitter via the GCL synthesis, without the
need of a schedulability analysis for TT.

Both RC in TTEthernet and AVB in TSN are ET traffic classes. However,

3.2 Architecture Model 53

!" # !" $

%#! "

! #

! $

! %

&" # &" '

&" (&" $

&'(

&'(

)'(

)'(

(a) Example architecture model

Msg. Size
(in B)

Period
(in ms) Deadline / (Utility)

m1 2MHRT 50 2 1 ms
m2 2MHRT 62.5 3 2 ms
m3 2MSRT 200 4 1.5 ms / (max. 6; 0 at 2.6 ms)
m4 2MSRT 270 4 2.5 ms / (max. 6; 0 at 4.1 ms)

(b) Example application model

Figure 3.1: Example system model

RC uses the concept of “Virtual Links” from ARINC 664 p7 [Aer09], which
are parameterized via a Bandwidth Allocation Gap (BAG), the minimum time
interval between two consecutive instances of an RC frame, to ensure bounded
delays. AVB in TSN uses the Credit-Based Shaper (CBS) from IEEE 802.1BA,
configured via “slopes”, i.e., an idle slope and a sending slope.

Although a lot of work is being done for the analysis and optimization of De-
terministic Ethernet-based cyber-physical systems [PRCS16], all of the related
work has assumed that the traffic types are manually decided by the system
engineer. The problem of Traffic Type Assignment has been addressed briefly
only for TTEthernet in [GP16].

3.2 Architecture Model

We model a TSN network as an undirected graph G(V; E), where the vertices
(or nodes) V = ES [NS denote the set of all End Systems (ESes) and Net-
work Switches (NSes, also called bridges), respectively, and the edges E are the
physical links interconnecting the ESes and NSes. Without loss of generality,
we assume that all physical links have the same transmission rate C. An ES is
composed of a CPU, memory, I/Os, and a network interface card. TSN provides
the clock synchronization needed for the schedule tables of the TT type. 3.1a
shows an example TSN-based CPS with 4 ESes and 2 NSes.

54
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

A dataflow link (DL) dli represents a directed connection between two nodes in
V. A sender task in a source ES is connected to a receiver task in a destination
ES through a dataflow path (DP) dpi, which is a sequence of interconnected
DLs. The set of all DLs is denoted with DL an the set of all DPs is DP. A
frame in TSN has one source, but it may have multiple receivers. The route for
each message is given and fixed for all frames. We model a route ri as a set of
DPs, one for each receiver, and all DPs sharing the same sender. R is the set
of all routes. 3.1a shows 4 routes. For example, the frame of message m1 from
ES 1 to ES 3, has the routing r1 consisting of ES1, NS1, NS2, ES3 as depicted
with a thick black arrow.

3.3 Application Model

In this paper, we consider mixed-criticality applications. Our application model
captures the messages in the applications, and their timing requirements. We
consider three types of timing criticality: Hard-Real Time (HRT) messages,
which have strict deadlines, Soft Real-Time (SRT) messages, for which we are
interested to maximize their “utility” and Non-Critical (NC) messages, which
have no timing requirements. We denote the set of all messages in a cluster
withM =MHRT [MSRT [MNC , where the three sets correspond to the set
of all HRT, SRT and NC messages.

Each message mi 2M has a source ESsrc
i and one or more destinations ESdest

i ,
and a given size mi:size. HRT and SRT messages are periodic, with a period
mi:period . Both HRT and SRT messages have a deadline, mi:deadline. The
HRT deadline is hard, i.e., if the deadline is missed, it may result in catastrophic
consequences. The SRT deadline is soft, i.e., the performance of the system
degrades if the deadline is missed. A single Ethernet frame transmits a payload
of at most 1,500 bytes (B), the so-called Maximum Transmission Unit (MTU).
If the data size is larger than MTU, the message is fragmented into multiple
frames. Thus, a messagemi will be split into k =

�mi:size
MTU

�
frames fi;1; fi;2:::fi;k.

For SRT messages we use a positive non-increasing utility function, denoted
with mi:utility(t), where t is a time instant relative to start of the message
transmission from its source ESsrc

i . The utility starts from a positive value and
sometimes after the soft deadline reaches a zero value. We consider that the
system engineer specifies the utility functions of SRT messages to capture their
relative importance and how the performance of the system degrades if their soft
deadlines are missed, see [BLAC05] for a discussion on utility functions. If a SRT
message mi arrives within its soft deadline mi:deadline, then its utility value is
maximal. However, if the deadline is missed, the utility value will decrease with

3.4 TSN Protocol 55

6

t (in ms)

utility

1.40

soft deadline

(a) Example Linear Utility Function

8

t (in ms)

utility

1.40

soft deadline

(b) Example Hyperbolic Utility Function

Figure 3.2: Examples Utility Functions

time, as specified by the definition of the utility function mi:utility(t).

Let us explain now, using the example from Figure 3.2, how nonincreasing posi-
tive utility functions capture how the service degrades by time when the message
is received after its soft deadline and the SRT messages relative importance.
The function starts as a constant function from a positive value, 6 in 3.2a and
8 in 3.2b. The utility value starts to decrease linearly 3.2a and hyperboli-
cally 3.2b after the soft deadline, 1.4 ms in both examples reaching a value of
zero. The maximal utility value of 8 indicates that the soft real-time message
from 3.2b is more important than the message from 3.2a, which has a smaller
maximum value.

3.1b shows an example2 application model, with two HRT messages m1 and
m2 and two SRT, m3 and m4. Their routing is presented in 3.1a. In this
example, we use a simple linear utility function for both SRT messages m3
and m4, starting at a maximum utility of 6, linearly decreasing after the soft
deadline, reaching a utility of zero at 2.6 ms and 4.1 ms, respectively. Our model
does not explicitly capture NC messages, which we assume that will always be
assigned to the BE traffic type.

3.4 TSN Protocol

We present in this section how the traffic types in TSN are being transmitted.
The presentation is not intended to be exhaustive; instead, it focuses on the
concepts needed in this paper. For details, the reader is directed to the standards
mentioned in the text.

Each egress port in a bridge has eight queues associated with it, and each

2Ethernet frames sizes are constrained between 64 B and 1518 B (including overhead), but
in this illustrative example we use smaller values for simplicity.

56
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

queue has a priority, from seven (highest) to zero (lowest), see Figure 3.3 for
an illustration. Every frame contains a priority field determining which queue
to be placed in. TT traffic can use one or more queues, and these queues have
the highest priority. The number of TT queues NTT and the assignment of
TT frames to TT queues QTT (mi) is determined by our optimization approach.
The remaining queues are used by AVB or BE traffic. The AVB queues make
use of a Transmission Selection Algorithm (TSA) in the form of the Credit-Based
Shaper (CBS), explained in subsection 3.4.2. The transmission of TT frames is
explained in the next section, but BE frames will not be further covered.

The Transmission Selection (see Figure 3.3) initiates transmission from the high-
est priority queue that is available and has frames to transmit. The availability
of each queue is controlled by (i) its transmission Gate, which can either be in
an open or closed state and (ii) a CBS if present. Although TT frames have the
highest priority, if an AVB or a BE frame is already in transmission at the be-
ginning of time window for TT, TT traffic may be delayed depending on which
integration mode is being used. (1) Non-preemption integration mode is defined
in IEEE 802.1Qbv and uses a “guard band” to protect scheduled TT traffic, such
that the gates associated with AVB and BE traffic are closed in advance during
the “guard band” to make sure that the link is idle (no AVB or BE traffic is still
transmitting) when a TT queue is open for transmission. (2) The preemption
mode is defined by IEEE 802.1Qbu and will allow TT frames to interrupt AVB
frames, which are resumed once the transmission of the TT frame completes.

The impact of integration modes on the AVB traffic has been investigated
in [ZPZL18]. As the experimental results in that paper show, the non-preemption
integration mode will lead to wasted bandwidth due to the guard band, but it
ensures no delays for TT traffic. When preemption is used, the remaining AVB
frame will include an overhead used to separate and reassemble at the desti-
nation ES. However, compared to the guard band, the overhead of 24 bytes is
much smaller. Therefore, the use of preemption will decrease the latency of
AVB traffic and improve bandwidth usage; this is at the expense of a slightly
increased jitter for TT traffic. In this paper we consider the non-preemption
integration mode (which favors TT traffic, see the discussion in section 3.7) and
will not further investigate this aspect, which has been discussed in [ZPZL18].

3.4.1 TT Traffic

The Gates are opened and closed by a Time-Aware Shaper (TAS), according to a
port-specific Gate-Control List (GCL) dictating the state of the gates at defined
times relative to the start of the GCL. For example, in the GCL in Figure 3.3,
T001:cOccccccmeans that at time “T001” the TT queue 6, identified by using its

3.4 TSN Protocol 57

Gate Gate Gate Gate Gate

Transmission Selection

Gate Control List:

T000:Occccccc
T001:cOcccccc
T002:ccOccccc

É
T125:Occccccc

7 TT 6 TT 5 AVB 4 AVB BE 0

CBS CBS

É

É

Figure 3.3: Example GCL configuration

queue priority as index, is open (O) and all the rest are closed (c). The start of
these GCLs are synchronized across the bridges using the time synchronization
defined in IEEE 802.1AS able to ensure a common view of time across the
system. Each GCL is repeated with a period typically set to be a multiple of
the Least Common Multiple of all the periods used in the system, denoted with
Tcycle .

As suggested in IEEE 802.1Qbv, to completely avoid interference from other
traffic-types, we assume the GCLs are constructed such that the TT queue is
the sole available queue when open and all the remaining queues have been closed
in advance. Thus, every time the TT transmission gate opens, the TT frames
can be transmitted immediately and by the synchronization of the GCLs on the
entire path from sender to receiver, a TT frame can be transmitted without
having to be subjected to any queueing delays. This makes the TT traffic type
suitable for jitter- and latency-sensitive applications.

Because we enforce determinism in the GCLs [CSCS16][SCS18], i.e., only frames
of one of the messages are present in the queue at a time, we can model communi-
cation schedules at the frame-level. Thus, our TT model captures the scheduling
of the frames in terms of an offset, period and duration; we use the notation
Smi to capture the schedule table of the frames of a message mi. For example,
the scheduling for m1 2MTT with a route [ES 1; BR1]; [BR1; BR2]; [BR2;ES 2]
in 3.1a is modeled as hoffset, period, durationi = h0�s; 62:5�s; 10:4�si, where
the duration denotes the amount of time the TT queue has exclusive access to
transmit the TT frame.

58
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

3.4.2 AVB Traffic

AVB has currently two traffic classes in TSN, AVB Class A and Class B, where
Class A has higher priority and tighter timing requirements. However, the
TSN task group is working towards supporting fully customizable AVB classes,
allowing the definition of multiple AVB traffic classes. Hence, our model is
general and considers an arbitrary number of AVB traffic classes, denoting an
AVB class withMi, and the set of available AVB classes withMAV B . The AVB
Class Mi has higher priority than the AVB Class Mi+1. The messages assigned
the same priority belong to the same AVB traffic class Mi, and frames within
each traffic class are forwarded in FIFO order. The number of AVB classes
NAVB (corresponding to the number of AVB queues) and the assignment of
AVB messages to AVB queues QAVB (mi) (that decides their AVB class), is
determined by our optimization approach.

An AVB frame is transmitted when (i) the gate of its queue is open, (ii) there
is no other higher priority frame being transmitted and (iii) if its CBS allows it.
The CBS standardized in IEEE 802.1Qav in conjunction with the amendments
in IEEE 802.1Qbv makes the queue available for transmission whenever the
amount of credit is positive or zero. The purpose of the CBS is to shape the
transmission of AVB frames in order to prevent bursts and starvation of the
lower priority queues. Credits are initially zero, they are decreased with a send
slope while transmitting and frozen while the gate is closed. Transmission is
only initiated when credit is non-negative. The credit is increased with an idle
slope when frames are waiting, but they are not being transmitted. If the queue
is emptied while the credit is positive, the credit is set to zero. The idle slopes
and send slopes are configuration parameters for the AVB classes; there is one
queue for each AVB class, and the slopes will affect all messages in the respective
queue. The sub-standard IEEE 802.1Qbv constrains the send slope such that
send slope = idle slope � C where C is the physical link transmission rate.

Figure 3.4: Example AVB transmission

3.5 Problem Formulation 59

An example of how the CBS works is illustrated in Figure 3.4 where we have
a TT frame, one AVB queue that has to transmit frames, 1 to 4, as well as a
BE queue. The figure shows a timeline for the transmission on the bus, where a
rectangle is a part of a frame, with the width representing the transmission time.
The AVB and BE queues show on the y-axis the number of queued frames, and
on the x-axis the waiting time in the queue. The value of the credit over time
is presented on the top of the figure. Let us explain the transmission of the the
AVB frame in Figure 3.4 using the events (e0) to (e7) depicted on the bottom
timeline:

(e0) AVB Frame 1 starts to transmit and the credits are decreased according to
the send slope. (e1) Let us assume that a TT frame is scheduled as depicted in
the bottom timeline of Figure 3.4. The AVB queue is closed to make room for
the TT transmission. AVB Frame 2 arrives and is enqueued while the credits
are frozen. (e2) The TT transmission finishes and the AVB-Queue opens and
resumes the transmission of AVB Frame 1. During this transmission, the cred-
its are decreased again. (e3) Transmission of AVB Frame 1 finishes, but as the
credit at this point is negative, AVB Frame 2 is not transmitted. Meanwhile
AVB Frame 3 is enqueued and the credits are accumulating according to the
idle slope. (e4) Credits have increased to zero, hence AVB Frame 2 is trans-
mitting. During this transmission, the credits are decreasing according to the
send slope. During this time, a BE frame is enqueued. (e5) The transmission
of AVB Frame 2 finishes, and since the credit is negative, the lower prioritized
BE frame is selected for transmission. AVB Frame 4 is enqueued and credits
are accumulating. (e6) The transmission of the BE Frame finishes and AVB
Frame 3 is selected for transmission. (e7) The transmission of AVB Frame 3
finishes and the excess credits accumulated transmitting the BE frame are used
to immediately initiate transmission of AVB Frame 4.

3.5 Problem Formulation

As an input to our problem we have the topology of the TSN-based network
G(V; E), the set of messagesM =MHRT [MSRT [MNC ; for each message we
know its parameters, as described in section 3.3, including the routing, and the
set of available AVB classes MAV B . We are interested to determine a network
configuration 	 such that all HRT messages are schedulable and the total utility
for SRT messages is maximized. Deciding on a network configuration 	 means
determining, for each message mi 2 M the traffic type T C(mi). For each TT
message mi, we also decide the schedule tables Smi . We also decide the number
of TT queues NTT and the assignment QTT of TT messages to TT queues. For
each AVB message mj we decide (3) their AVB Class Mk;Mk 2MAV B . There

60
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

(a) All messages are AVB; m1 is not schedulable; total utility is
only 6.2 out of 12.

(b) HRT messages are TT and SRT are AVB. m1 and m2 are
schedulable, but the total utility is 7.7 out of 12.

(c) HRT m2 is AVB, but still schedulable; the total utility is 8.2,
and m3’s utility is increased to 2.2

������ �� �� �� �� ��
� ���	��������������

�� �� �� ������ ������ � ���	��������������

�� �� �� ���� ���� �� ����

������ �� ���� ����
�� ����

������ �� ��

� � ��	�������
���������������
� � ��	���������
������������

(d) HRT m2 is AVB, SRT m3 is TT. HRT are schedulable, and
the total utility is increased to maximum of 12.

Figure 3.5: Motivational example

is one AVB queue for each AVB Class and thus the assignment QAVB (mj) of an
AVB message mj to its queue is decided based on its AVB Class. For each AVB
Class Mk we also (4) decide the Mk:idle slope and implicitly its send slope.

Let us consider the architecture and application from Figure 3.1, where TSN is
used as communication protocol. As mentioned, the maximum utility of both
SRT m3 and m4 is 6, so the total maximum utility achievable is 12. We are
interested to determine the traffic type for each message; in this example, we
consider for AVB a single AVB Class M1, having the idle slope of 75% out of
the link speed C (this is the default maximum slope value of AVB Class A
in the current standard). In the following examples for different traffic type
assignment T C, we determine for this small example, the optimal schedule table
S, i.e., such that the utility of SRTmessages is maximized and the HRTmessages
are schedulable. For the AVB frames, we use the Worst-Case end-to-end Delay

3.5 Problem Formulation 61

(WCD) analysis from subsection 3.6.3 to determine their WCD Ri. For the TT
frames, the WCD is derived directly from the schedule tables, as the time when
the frame is received at its destination, relative to its sending time. A HRT
frame is schedulable if its WCD is lower or equal to the deadline, and the utility
of a SRT frame mi is given by mi:utility(WCD), as specified in 3.1b.

Multiple traffic types are necessary to support mixed-criticality applications.
For example, if we do not have the TT traffic type, and make all messages AVB,
we obtain the solution depicted in 3.5a. In all the examples in Figure 3.5 we
indicate next to the message source the traffic type used; we depict the respective
route with green for AVB and red for TT. We write next to the destination of
each HRT message its WCD and compare it to its deadline; next to each SRT
message destination we have its WCD, followed by its utility. As we can see
from 3.5a, if all frames are AVB, then m1 misses its deadline, i.e., 1:7 > 1, and
the total utility for SRT messages is only 6.2 out of the maximum of 12.

A possible solution would be to use TT for HRT messages and AVB for SRT,
as depicted in 3.5b. Such an approach is used implicitly, for example, in the
context of TTEthernet in [TSPS15], which does not attempt to optimize the
traffic types. As expected, by using the TT traffic type for HRT messages
m1 and m2, we can make them schedulable, since we can synthesize the TT
schedules such that the HRT messages have a very low latency. However, as
discussed in section 3.4, TT frames have the highest priority, and when doing
the traffic integration (non-preemption mode is considered in this example), the
AVB frames may be delayed by the TT frames. Due to these delays, the utility
of SRT message m3 is only 1.7 even if m4 has a maximum utility. Recall that
schedules are optimal with respect to HRT schedulability and SRT utility; in
this case, delaying the TT frames will not help the AVB frames because of the
non-preemption integration policy, which does not allow any AVB frame to start
its transmission if it may delay a TT frame.

By using the AVB traffic type for the HRT message m2 instead of TT, we will
get in 3.5c a larger WCD for m2, of 1.6 ms instead of 0.15 ms in 3.5b. However,
since m2:deadline = 2, m2 is still schedulable. The utility of m3 becomes a bit
higher, namely 2.2. If we further optimize the traffic type assignment, and we
modify the solution in 3.5c to change the traffic type of SRT m3 from AVB to
TT (as depicted in 3.5d), we are able, by carefully deciding on the schedule
table for the TT frames, to reduce its WCD and thus increase m3’s utility also
to the maximum of 6.

As this motivational example shows, only by optimizing the assignment of traffic
types for the mixed-criticality frames, we are able to obtain good quality solu-
tions, which guarantee the schedulability of HRT messages while maximizing the
utility for the SRT messages. Note that making all the frames TT regardless

62
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

of their timing criticality could also be a solution. However, in practice, legacy
non-scheduled traffic has to be integrated in the system, and the system engi-
neer may prefer that some frames are AVB for flexibility. Updating schedules
to accommodate new messages may trigger re-validation activities, which are
costly. In addition, as the number of frames increases (systems may have tens
of thousands of frames, even millions of frames [PSRH15]), the ESes and NSes
will run out of memory for the required schedule tables. Although methods
such as [PSRH15] can handle a large number of TT frames, they are not able
to integrate the schedulability analysis of non-scheduled frames, see section 3.8
for a discussion.

3.6 Optimization Strategy

The problem presented in the previous section is NP-complete [Ull75]. Our
problem includes also the scheduling problem (for TT messages), the later one
being equivalent to the NP-hard flowshop scheduling problem [GJS76]. We
propose a Tabu Search (TS)-based metaheuristic solution, called Traffic Type
Assignment (TTA) to solve this optimization problem. TS-based approaches
have been shown to produce good quality results for the problem of optimizing
the configuration of TTEthernet systems [TSPS15]. Our TTA, presented in Al-
gorithm 3.1, takes as input the network topology G(V; E), the set of messages
in the applicationM =MHRT [MSRT , including the properties of each mes-
sage, the legacy traffic type assignment T C0, i.e., some messages may already
be assigned a fixed traffic type, and the set of available AVB classes MAV B .
TTA produces as output an implementation 	, which contains the traffic type
assignment T C, the schedule tables S for TT messages, the AVB Class Mi for
the AVB messages and the corresponding Mi:idle slope for each AVB Class.

TS metaheuristics [BK14] search for that solution which maximizes a quality
function. The quality function used to evaluate a generated solution is presented
in subsection 3.6.2. TS is based on a neighborhood search technique, where the
current solution is modified using design transformations (also called moves) to
generate neighboring solutions. The moves we propose, including an example of
how TS works for our problem, are presented in subsection 3.6.4.

In each iteration (lines 3—18) TS generates and evaluates multiple solutions.
At the beginning of each iteration TTA creates a neighborhood of the current
solution containing maximum N neighboring solutions (line 4). The function
SelectCurrent (in line 5) returns either the neighboring solution which is not
“tabu” and which maximizes the quality function or the empty solution ;. To
avoid revisiting recently explored solutions, TS keeps a tabu list T , which is

3.6 Optimization Strategy 63

Algorithm 3.1 TTA(G(V; E);M; T C0;S0;MAV B)

1: current best GenerateInitial(G(V; E);M; T C0;S0;MAV B)
2: T ;
3: repeat
4: neighbors GenerateLimitedNeighborhood(current ; N)
5: if ; 6= current SelectNeighbor(neighbors; T) then
6: UpdateTabu(T; current ;K)
7: end if
8: if Cost(current) > Cost(best) then
9: best current ; stagnation 0

10: else
11: stagnation++
12: end if
13: if stagnation =
 then
14: current DiversifyCurrent(current ; T)
15: else
16: MarkIteration(T)
17: end if
18: until time limit reached
19: return best

a selective history of solutions that have already been visited (line 6). Each
solution is considered “tabu” at most K iterations.

If the currently explored solution is better than the best known solution (line
8), it is saved as the “best-so-far” solution (see line 9). If the current solution
does not represent an improvement (line 10), the stagnation counter is increased
(line 11).

To avoid getting trapped in a local optima, TS uses “diversification” (line 14),
i.e., forcing the algorithm to look in unexplored areas. The diversification
method we use is applied when no improvements are observed after a given
number of
 iterations (line 13) and consists in switching the traffic type to a
randomly selected set of non-legacy messages. If no diversification is required
the current iteration is marked in the tabu list T (line 16). The MarkIteration
modifies T such that: (1) the number of iterations that has to remain “tabu” is
decreased for each solution and (2) those solutions for which the number of iter-
ations becomes 0 are removed from T . Our TTA stops when a given time-limit
has been reached.

64
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

3.6.1 Initial Solution

TS can start from any initial solution, including a random solution. Our initial
solution was constructed such that it helps TS to converge faster to a good
quality solution. The initial solution of our TTA implementation is listed in
Algorithm 3.2. We consider shortest path routing for all routes. For the traffic
type assignment T C we consider that HRT messages are TT and SRT messages
are AVB, under the constraints imposed by the given T C0. We use the method
in [RP17] to generate the schedule tables S for the TT messages, considering
the schedules S0 for the legacy TT messages. All AVB messages are assigned to
the “nearest” AVB class. The nearest AVB class for a message is the class that
minimizes the absolute difference between message maximum bandwidth and
the AVB class idle slope. We would like to recall that for any message mi 2M
the maximum bandwidth is given by the ratio mi:size=mi:period . The initial
Mi :idle slope for each AVB class Mi is assigned such that it avoids creating
an infinite backlog of AVB frames, i.e., the idle slope should be at least equal
to the maximum accumulated rate of AVB class Mi flows, see [ZPZL18] for a
discussion. The Mi :send slope is Mi :idle slope � C.

Algorithm 3.2 GenerateInitial(G(V; E);M; T C0;S0;MAV B)

1: for all mi 2MnT C0 do
2: if mi 2MSRT then
3: T C(mi) AV B
4: mi:AV B NearestClass(MAV B ;mi)
5: end if
6: if mi 2MHRT then
7: T C(mi) TT
8: end if
9: end for

10: S ScheduleAndPostprocess(G(V; E);M;S0; T C0)
11: return T C(M);S;MAV BMAV B

The function ScheduleAndPostprocess creates the schedule tables for TT mes-
sages using the approach from [RP17], which employs a Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic. GRASP-based scheduling
method is able to handle large problem sizes and produce good quality solu-
tions within a short runtime. However, GRASP attempts to optimize the TT
schedules by packing them as much as possible. This will lead to scheduling TT
frames back-to-back in large blocks, which would introduce very large delays for
AVB messages.

Hence, after synthesizing the schedule tables we are interested to process these

3.6 Optimization Strategy 65

initial schedules (line 10 in Algorithm 3.2) such that we introduce space in the
schedules for AVB messages. Note that during the search procedure of Tabu
Search, this space will be automatically introduced by the “Modify GCL” move,
see subsection 3.6.4 for details.

Thus, for each link, (1) a TT blocks structure (tbs) is determined and (2) the
messages in the created schedules are redistributed based on tbs, i.e., we schedule
earlier or later time windows of the schedule tables S without affecting the
legacy schedules S0, conserving the order of the messages sent on a link. The
tbs structure is built for each link based on the maximum transmission times of
AVB messages, considering their size, on that link.

3.6.2 Quality Function

We evaluate each solution 	 visited by the Tabu Search using the following
quality function:

Cost() = wpHRT � �HRT +
X

mi2MSRT

mi:utility(WCD(mi)) (3.1)

where the first term represents a constraint which checks for the schedulability
of HRT messages, and the second term is the total utility of SRT messages.
�HRT captures the “degree of schedulability” of a solution and is defined as

�HRT =
X

mi2MHRT

min(0;mi:deadline �WCD(mi)) (3.2)

where WCD(mi) is the worst-case end-to-end delay of the HRT message, cal-
culated as presented in subsection 3.6.3. Note that �HRT will be zero in case all
HRT messages are schedulable, i.e., WCD is smaller than the deadline, otherwise
it is a negative value. We multiply �HRT with a penalty value wpHRT , which is
two times greater than the value of the maximum total utility. If HRT messages
are schedulable and thus �HRT is zero, the first term in Equation 3.1 will not
contribute to the quality function, and the search will attempt to maximize the
total utility (the second term). However, if HRT messages are not schedulable,
the penalty value will push TTA to search for schedulable HRT solutions.

66
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

3.6.3 WCD Analysis

The Worst-Case end-to-end Delay WCD(mi) of a message mi is calculated
differently depending on its traffic type, as we discuss next. For all messages,
we take into account for the possible fragmenting of an AVB message into several
frames. Let Rmi be the WCD determined for the last frame fi;k of mi. Then,
the WCD of mi isWCD(mi) = mi:period �(k�1)+Rmi , where mi:period is the
period of the frames of message mi. Note that the analysis of Rmi accounts for
the multiple destinations of mi, taking the largest WCD over the destinations.

TT: Recall that TT frames are sent based on schedule tables. For a TT message
mi packed into a set of frames Fi(with fi;x denoting the xth frame instance)
that are sent from a source ESsrc

i to multiple destinations ESdest
i , the WCD

being the maximum time in the receiving schedules of the destination ESes.
The WCD is described in Equation 3.3 and captures the time the last frame is
received at its destination, relative to the sending of the first frame at the source
ES.

WCD(mi) = max
fi;n;ES l2ESdest

i

SR;ES l;n � SS;ESsrc ;1 (3.3)

AVB: There have been several WCD analysis methods proposed for AVB frames,
see [ZPZL18] for the related work in this area. Although latency analysis
methods have been successfully applied to AVB traffic in AVB networks, e.g.,
[DAB14], they do not consider the effect that TT traffic has on the AVB traffic
in TSN. A Network Calculus-based analysis to compute the WCDs of Rate-
Constrained (RC) traffic with the consideration of the scheduled TT frames in
TTEthernet has been proposed [ZPL+17], but the technique is not applicable
to TSN, see subsection 3.1.1 for a discussion.

Recently, the AVB Latency Math equation from the sub-standard 802.1BA has
been extended to consider the TT traffic in TSN [Lau16]. However, it can
only be used for AVB Class A traffic and, as demonstrated in [ZPZL18], the
analysis is both unsafe and overly pessimistic. An interval-based analysis is
proposed in [MS17], where the end-to-end delay is computed by summing up
the independently obtained worst-case per-hop delay. However, the analysis
in [MS17] is pessimistic due to the fact that the per-hop delays are computed
neglecting the whole path.

Hence, in this paper, we have integrated the timing analysis for AVB traffic in
a TSN network from [ZPZL18], which is currently the only approach for TSN
that considers TT traffic. The authors use a Network Calculus-based method to
determine the WCDs of AVB flows in a TSN network, considering the effects of
TT traffic controlled by GCLs, guard bands for the non-preemption mode and

3.6 Optimization Strategy 67

preemption overheads for the preemption mode.

3.6.4 Tabu Search Moves and Example

Next we are going to present the moves used to generate the neighborhood of a
solution. A neighboring solution is obtained by applying randomly one of the
following three moves: (1) Switch Traffic Type (STT), (2) Modify GCL (MGCL)
or (3) Modify Class (MC).

When switching the traffic types of TSN, namely TT and AVB, the following
rules are considered: (i) the STT move can be applied to all messages, except
the legacy messages from T C0, (ii) when switching an AVB message to TT, we
compute the schedule table using the same method as mentioned for the initial
solution and (iii) when switching from TT to AVB the message assignment to
AVB classes is similarly as in the initial solution.

The MGCL move will postpone or advance the offsets of the TT frames, see
subsection 3.4.1. First, we randomly select a frame of a TT message and identify
its route r over which the message is routed. Next, the offset of the selected
frame is modified on each of the dataflow links of its route r. Modifying an
offset of a frame means: postponing it, or scheduling it later, or advancing it, or
scheduling it earlier. Since modifying the offset of a TT frame may impact the
schedule of other TT frames, after applying the MGCL move we should recheck
the validity of schedule tables for all frames affected by this move.

In TSN for AVB traffic the parameters that affect indirectly the messages wait-
ing time in the queue are the idle and send slope. Therefore, although in TSN we
cannot modify the shaping parameters for individual AVB messages, we can con-
trol indirectly the latency of AVB messages by assigning them to different AVB
classes. As we saw previously, an intuitive assignment is to assign a message to
the nearest AVB class, but still, if too many messages that are sharing a link are
assigned to the same AVB class then the waiting time per message is increased.
Therefore, by using the MC move we allow an AVB message with classMi to be
assigned to another AVB class (randomly choosing between Mi�1 and Mi+1).
With a given probability (determined experimentally), the MC move also in-
creases or decreases the Mi:idleslope of an AVB class Mi under the constraints
defined in [ZPZL18] such that it avoids an infinite backlog of AVB frames. Note
that a higher value for the idle slopes would allow the AVB flows to pass faster
through the switches, reducing their WCDs.

Let us illustrate how TTA works. Let us consider the example from Figure 3.1,
and let us assume that the current solution is the solution depicted in 3.6a,

68
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

�$�9�%

�$�9�%

�$�9�%

(#)*+,#$

(&*-./0/.1)*+

($)*#,23

('* -./0/.1)*+,42

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#$

(&*-./0/.1)*+

($)*$,'

('* -./0/.1)*#,&#

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'

%"$

'(

'(

'(

'(

(#)*#,5$

(&*-./0/.1)*+,&2

($)*#,2&

('* -./0/.1)*#,45
%"'

(a) The current solution is the example from 3.5c; Quality=0.98

Message T C link S=idle slope iterations
m1 TT NS 1 �NS 2 [0.09] 14
m2 AVB — M2 5
m3 TT ES 1 �NS 1 [1] 0
m3 TT NS 1 �NS 2 [1.3] 7

(b) Tabu list

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#$

(&*-./0/.1)*+

($)*#,23

('* -./0/.1)*+,42

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

�$�9�%

�$�9�%

�$�9�%

(#)*+,#$
($)*��,' ��

(&*-./0/.1)��+��������
('* -./0/.1)*#,��#

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'

%"$

'(

'(

'(

'(

(#)*#,5$

(&*-./0/.1)*+,&2

($)*#,2&

('* -./0/.1)*#,45
%"'

(c) Modify Class: M2:idle slope = 50% assigning m2 to an AVB
class which halves idle slope; Cost = 1:17; tabu

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#$

(&*-./0/.1)*+

($)*#,23

('* -./0/.1)*+,42

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#$

(&*-./0/.1)*+

($)*$,'

('* -./0/.1)*#,&#

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'

%"$

�$�9�%

�$�9�%

�$�9�%

�$�9�%

(#)*#,5$

(&*-./0/.1)*+,&2

($)*#,2&

('* -./0/.1)*#,45
%"'

(d) Switch Traffic Type of m1 from TT to AVB; Cost = �2:62;
non-tabu

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

�$�9�%

&&

�$�9�%

(#)*+,#-

(&*./010/2)*3

($)*#,4$

('* ./010/2)*&,'5
%"'

!" # !" $

! "

! #

! $
%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#$

(&*./010/2)*+

($)*#,56

('* ./010/2)*+,45! %

(e) Switch Traffic Type of m3 from AVB to TT; Cost = 9:48;
non-tabu

!" # !" $

! "

! #

! $

! %

%"# %"&

%"'%"$

&&

'(

'(

'(

(#)*+,#-

(&*./010/2)*3

($)*#,4$

('* ./010/2)*+,5#
%"'

!" # !" $

! "

! #

! $
%"# %"&

%"'%"$

&&

�$�9�%

�$�9�%

�$�9�%

(#)*+,#$

(&*./010/2)*+

($)*#,65

('* ./010/2)*+,46! %

(f) Modify GCL of m1 on ES1�NS1 by postponing it with 0.04
ms; Cost = 0:98; non-tabu

Figure 3.6: Example TS neighborhood search

3.6 Optimization Strategy 69

which is also the best-so-far solution. Similar to the examples in Figure 3.5, we
denote the traffic type next to the message source, and the WCD and utility
values next to the destination of the message. In addition, we also show, for
the TT messages, the schedules S for each of the dataflow links where these are
transmitted. For example, in 3.6a m1 is sent on the last link, from NS2 to ES3
at time 0.08 ms. For simplicity, in this example, we use a single AVB class M1
and its idle slope is set to 100%.

Recall that TTA uses a tabu list to avoid revisiting recently visited solutions.
The tabu list for 3.6a is presented in 3.6b, and stores on each row information
about a particular solution visited in the past. Instead of storing the complete
solution, we only store information related to the move that has generated the
solution, i.e., the transformations performed. Thus, we store the message in-
volved, the dataflow link (for TT frames) and the schedules S for the TT frames
and idle slope for the AVB frames. In the last column, we store the number of
iterations this solution has been considered tabu. This value starts at the “tabu
tenure” K, which we set to 25 (line 6 in Algorithm 3.1), and is decremented
every iteration if there is no diversification required (line 16 in Algorithm 3.1).
Let us remind that MarkIteration also removes from the tabu list the entries
whose “iterations” became 0, see the corresponding row of m3 in the table in
3.6b.

As a first step, we generate from the current solution the neighborhood solutions
using the moves presented earlier. Since the neighborhood can be quite large,
we restrict the neighborhood neighbors to a maximum number of N solutions.
We use N = 7 in our experiments, but for the sake of simplicity in this example
let us assume that N = 4. Thus, the neighbors are obtained by randomly ap-
plying the moves on the current solution, obtaining the neighboring solutions in
Figure 3.6c–f. For each candidate solution we write the following in its caption:
the move that has generated it, the value of the Quality function, for which we
considered in this example a penalty wpHRT = 8, and if the move is tabu or
not.

TTA will select that neighbor which improves the quality function and it is
not tabu. For the neighbors in Figure 3.6c–f, the neighbor in Figure 3.6c is
not replacing current because it is contained in the tabu list. The other can-
didates Figure 3.6d–f are not in the tabu list (note that we have removed the
third row in the tabu list in 3.6b—see line 16 in Algorithm 3.1). TTA will select
that solution, which maximizes the quality (in our case, Figure 3.6e), to replace
current and the best-so-far (since that one is improved as well). The search is
continued from the new current solution in a similar way.

70
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

3.7 Experimental Evaluation

For the evaluation of our Traffic Type Assignment (TTA) optimization strategy
we used five synthetic test cases, TC1 to TC5 and two real-life case stud-
ies, SAE and CEV. CEV is the “Orion Crew Exploration Vehicle (CEV)” case
study from [TSPS15], and SAE is the “SAE automotive communication bench-
mark” [Veh93], both adapted to use TSN. TTA was implemented in Java (JDK1.8)
and all experiments were run on Intel Xeon E5-2665 machines at 2.4 GHz. We
consider the non-preemption integration mode (see section 3.4) and we have
ignored the BE traffic, hence we have set the idle slopes for AVB to 100%.

In the first set of experiments we were interested to determine the quality of our
TTA algorithm compared to the setup when all messages are AVB. We have
not considered legacy messages in this first set of experiments. Thus, we have
compared the results obtained with TTA to AVB , which simply uses AVB for all
messages. The algorithm “AVB ” is also implemented as a Tabu Search, where
we have removed all TT-related moves, and instead only use moves that change
the AVB parameters.

The results are presented in Table 3.1. The number of ESes and NSes in the
architecture, as well as number of HRT and SRT messages in the applications,
are presented in columns 2–5, respectively, in Table 3.1. We have run both
solutions, TTA and AVB on the test cases in Table 3.1, and we show for both
two values, for each test case: the percentage of HRTmessages found schedulable
(HRT sched.), and the percentage of total utility of SRT messages, compared to
the maximum utility achievable (SRT util.). The time limit used for TTA and
AVB for each test case is given in column 8 in hours and minutes.

As we can see from the table, AVB is unable to obtain schedulable solutions
(for 4 out of 5 test cases only about half of the HRT messages are schedulable),
and the utility of the SRT messages is lower compared to TTA. By optimizing
the assignment of traffic classes to mixed-criticality messages, we were able to
obtain with our TTA schedulable solutions in most cases (100% schedulable

ID Arch. Applications Runtime
h:min

AVB TTA
ES NS HRT SRT HRT sched. SRT util. HRT sched. SRT util.

TC1 8 3 9 11 0:50 44.44% 90.27% 100% 100%
TC2 8 3 11 23 2:30 54.54% 85.07% 100% 99.63%
TC3 8 3 17 28 3:45 47.06% 64.10% 100% 95.77%
SAE 15 7 40 39 5:00 70.00% 81.72% 100% 94.61%
Orion 31 15 99 87 12:30 45.45% 78.80% 94.94% 98.68%

Table 3.1: Comparison of “AVB only” with an optimized assignment of TT
and AVB using TTA

3.7 Experimental Evaluation 71

HRT messages), or very close to full 100% schedulability. TTA is also able
to significantly improve the utility compared to AVB , from 64.10% to 95.77%
utility in the case of tc3. As it can be observed TTA scales well with the size of
the system (network and applications), being able to obtain good quality results
also for the larger case studies.

We were also interested to compare TTA with the optimal solution. Due to the
complexity of the problem, we were able to run an exhaustive search to get the
optimal solution only for the smaller test case tc1. TTA has also been able to
find the optimal result for this case, after a runtime of 50 minutes.

In the second set of experiments, we were interested to compare our proposed
TTA solution to the situation when we use only the TT traffic class for messages.
We assume that the GCLs are synthesized using the approach from [PSRH15]
[CS16] that uses Satisfiability Modulo Theories (SMT), which we have mod-
ified to consider the TSN determinism constraints, see subsection 3.4.1. The
proposed SMT approaches use a decomposition strategy, where the problem
is decomposed into multiple sub-problems allowing the scheduling of tens of
thousands of TT frames (with the caveat that the systems should not have a
high utilization). The SMT synthesis approach for TT was implemented in C
(GCC5.4) and was run on an Intel Core i7-5600U machine at 2.6 GHz.

The results are presented in Table 3.2. For this comparison we used two syn-
thetic test cases, TC4 and TC5 and one realistic case study. Since the existing
SMT formulations can only handle star topologies, we have modified the topolo-
gies of these test cases to use a star topology, and the number of ESes and NSes in
the architecture are presented in columns 2–3, respectively. Thus, the SAE test
case mentioned in the first set of experiments becomes here SAE2. In this set
of experiments, we do not ignore the legacy messages. Thus, the “Applications”
columns show both “Non-legacy” messages for which we need to determine the
traffic class, and “Legacy” messages for which the traffic class is already decided
and cannot be changed. We can see for each category the Total (tot.) number of
messages, broken down into Hard Real-Time (HRT) and Soft Real-Time (SRT)
messages. We have used the “Initial solution” from Algorithm 3.2 to configure
the legacy TT and AVB messages.

Our TTA approach optimizes the traffic class for all non-legacy messages, de-
ciding between TT and AVB. However, the SMT approach uses the TT traffic
class for all non-legacy messages. The SMT cannot integrate an impact analysis
of TT schedules on AVB (it is no longer scalable), hence in the SMT solution,
the legacy AVB messages are added afterwards on top of the created schedules.

Table 3.2 shows the obtained results under the “SMT” and “TTA” headings. For
both legacy and non-legacy messages we show, as in Table 3.1 the percentage

72
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

Arch. Applications SMT TTA
ID Non-legacy Legacy Non-legacy Legacy Non-legacy Legacy

ES NS tot. HRT SRT tot. HRT SRT HRT
sched.

SRT
util.

HRT
sched.

SRT
util.

HRT
sched.

SRT
util.

HRT
sched.

SRT
util.

TC4 7 1 21 7 14 9 4 5 100% 100% 0% 60% 100% 100% 100% 100%
TC5 15 1 50 19 31 16 5 11 100% 100% 10% 0% 100% 100% 100% 82%
SAE2 15 5 60 21 39 20 5 15 100% 100% 40% 79% 100% 95% 100% 93%

Table 3.2: Comparison of our TTA approach with SMT-based solvers in the
presence of legacy messages

of HRT messages found schedulable (HRT sched.), and the percentage of total
utility of SRT messages, compared to the maximum utility achievable (SRT
util.). Having all messages (both HRT and SRT) as TT allows the designer
greater control over their WCDs and jitters by carefully creating the schedules.
Hence, as expected, the SMT approach can obtain a 100% schedulability for
HRT and 100% utility for SRT. However, when making all messages TT, the
challenge is to integrate the legacy messages. As we can see in Table 3.2 under
the “Legacy” heading for the SMT approach, the HRT schedulability and SRT
utility of legacy messages is very low. However, by using our TTA approach, we
are able to reassign some of the messages from the TT traffic class to AVB in
order to accommodate the requirements of the legacy messages. As we can see
from the columns labeled “Legacy” for TTA, we are able to dramatically increase
the HRT schedulability and SRT utility without reducing the performance for
the non-legacy messages: only the utility of non-legacy SRT messages for the
SAE test case is slightly reduced from 100% to 95%, an acceptable penalty to
pay in order to find a good solution that does not impair the legacy messages.

3.8 Discussion and Conclusions

In this paper we have considered mixed-criticality applications, using hard real-
time and soft real-time messages, implemented on TSN-based distributed cyber-
physical systems. We have used a hard deadline for the HRT messages and
a utility function for SRT messages. We have proposed a Tabu Search-based
metaheuristic, which we called Traffic Class Assignment (TTA), to determine the
assignment of traffic classes (Audio Video Bridging, AVB, and Time-Triggered,
TT) to the mixed-criticality HRT and SRT messages. TTA also optimizes the
schedules for the TT frames and the AVB parameters (AVB Classes and slopes).

Researchers have debated, in the cyber-physical real-time systems area, the
time-triggered (TT) and event-triggered (ET) approaches. The advantage of a
TT approach is that, by determining the schedule tables at design time, we have
a fine-grained control of timing properties, e.g., we can reduce WCD and jitter.

3.8 Discussion and Conclusions 73

Since the schedule synthesis is a non-polynomial hard problem, the challenge
is the availability of a scalable scheduling algorithm. Realistic applications can
have tens of thousands of messages. In TSN, the size of the GCLs is also limited
by the switch implementation, which means that it is unrealistic to assume that
all TT messages can be accommodated via GCLs.

ET is known to be more flexible and scalable, and TT may require a full redesign
even for small changes or upgrades. In addition, as our experiments show, even
the introduction of a small fraction of AVB legacy messages can significantly
reduce the quality of TT-only solutions. Another drawback of TT is that it
cannot easily accommodate aperiodic traffic or traffic that has varying payloads.
In these cases, the option is to use a minimum inter-arrival time and consider the
largest possible payload, which results in an overdesign that wastes the available
bandwidth.

As mentioned, we have considered the non-preemptive integration policy, which
favors TT messages by preventing the transmission of AVB messages that could
delay TT transmission. As reported in [ZPZL18], using a preemptive integration
policy, which allows AVB messages to be retransmitted once interrupted by TT
messages, improves the WCDs of AVB messages and the overall bandwidth
utilization at the expense of TT jitter. In such a context, we expect that using
the AVB traffic class for some messages would bring additional benefits, since
we could further trade-off the WCDs and jitter of TT to improve the timeliness
of AVB.

Therefore, for real-time applications that do not require very tight WCDs and
can tolerate non-zero jitter, it is worthwhile considering using the AVB traffic
class. In this case, the challenge, as we have discussed in this paper, is to decide
the appropriate traffic class. As the experimental results show, our proposed
TTA approach is able to determine, in a reasonable time, schedulable solutions
(HRT messages meet their deadlines) which also improve the overall utility of
the SRT messages.

74
Paper B: Traffic Type Assignment for TSN-based Mixed-Criticality

Cyber-Physical Systems

Chapter 4
Paper C: AVB-Aware

Routing and Scheduling of
Time-Triggered Traffic for

TSN

IEEE 802.1 Time-Sensitive Networking (TSN) is a set of amendments to the
IEEE 802.1 standard that enable safety-critical and real-time behaviour over
Ethernet for the industrial automation and automotive domains. Selected TSN
mechanisms offer the possibility to emulate the well-known traffic classes found
in mixed-criticality distributed systems: Time-Triggered (TT) communication
with low jitter and bounded end-to-end latency, Audio-Video-Bridging (AVB)
streams with bounded end-to-end latency, as well as general Best-Effort mes-
sages, which have no timing guarantees. Critical traffic is guaranteed via the
global network schedule which is stored in so-called Gate Control Lists (GCLs)
and controls the timely behavior of frames for each queue of an egress port.
Although researchers have started to propose approaches for the routing and
scheduling (i.e., GCL synthesis) of TT traffic, all previous research has ignored
lower priority real-time traffic such as AVB, resulting in TT configurations that
may increase the worst-case delays of AVB traffic, rendering it unschedulable.
In this paper, we propose a joint routing and scheduling approach for TT traf-
fic, which takes into account the AVB traffic, such that both TT and the AVB

76
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

traffic are schedulable. We extensively evaluate our approach on a number of
synthetic as well as realistic test cases.

4.1 Introduction

In this paper, we are interested in safety-critical and real-time applications im-
plemented using distributed cyber-physical systems. Several real-time capable
communication protocols have been proposed and are in use in different appli-
cation areas, e.g., FlexRay for automotive [Con06], ARINC 664 p7 for avion-
ics [Aer09], and EtherCAT for industrial automation [JB04]. However, emerging
applications, e.g., Advanced Driver Assistance Systems (ADASes), autonomous
driving, or industrial automation, have increasing bandwidth and real-time de-
mands. For instance, autonomous driving requires data rates of at least 100
Mbps for graphical computing based on camera, radar, and Light Detection
And Ranging (LIDAR) data, whereas CAN and FlexRay only provide data
rates of up to 1 Mbps and 10 Mbps, respectively.

The well-known networking standard IEEE 802.3 Ethernet [IEE12] meets the
emerging bandwidth requirements for a wide range of application areas, while re-
maining scalable and cost-effective. It does, however, lack real-time and depend-
ability capabilities [Dec05]. Many extensions, such as EtherCAT, PROFINET,
ARINC 664p7 [Aer09], and TTEthernet [SAE11], have been suggested and are
used in the industry. Although they satisfy the timing requirements, they are
incompatible, hence, the interoperability within the same network is not pos-
sible without losing real-time guarantees [DN16]. To mitigate this drawback,
the IEEE 802.1 Time-Sensitive Networking (TSN) Task Group [TSN12] has
been working on defining standard amendments for real-time and safety-critical
enhancements over Ethernet.

In standard switched Ethernet networks, in which end-systems are intercon-
nected through a series of physical links and bridges (switches), communication
from one sender to one or multiple receivers (flows/streams) is done via frames
that are forwarded via a route through the network. Standard switching fabric
contains queues on the egress ports of the switches (and end-systems) which
implement a standard priority scheme and which store frames until the port
is free for transmission. Hence, a frame might experience queueing delay while
waiting for the transmission of higher priority frames and earlier arriving frames
with same priority. This leads to network congestion causing nondeterministic
behavior and variance in frame arrival times.

4.1 Introduction 77

TSN: First, IEEE 802.1Q-20051 introduced support for prioritizing the Best-
Effort (BE) traffic providing some higher Quality-of-Service (QoS) properties.
The IEEE Audio-Video Bridging (AVB) Task Group [AVB11] has developed
another enhancement generally known as AVB which introduce two new shaped
AVB traffic classes enabling bounded latency. In 2012, TSN Task Group has
started extending the protocol towards safety-critical and time-sensitive appli-
cations which require even more stringent real-time guarantees. Via selected
amendments defined in TSN, i.e., IEEE 802.1Qbv Enhancements for Scheduled
Traffic and IEEE 802.11ASrev Clock synchronization, the well-known Time-
Triggered (TT) traffic class, which has strict jitter and end-to-end latency guar-
antees, can be emulated in standardized TSN networks.

TT traffic requires schedule tables, called Gate Control Lists (GCLs), that
defines the exact queue transmission times of frames on every egress port along
the route of the respective flows. The schedules define at which points in time
a so-called timed-gate that is associated with every queue is opened and when
it is closed, enabling and disabling frame transmission, respectively. Since the
schedules in different devices need to be aligned, a clock synchronisation mech-
anism is required in order to provide a global time reference. This synchroniza-
tion protocol is defined in the IEEE 802.1ASrev standard and, together with
IEEE 802.1Qbv, provide the basic building blocks for achieving determinism
and bounded end-to-end latency for critical traffic. AVB traffic is intended for
applications that require bounded end-to-end latencies, but that do not have the
same stringent real-time requirements as TT traffic. In order to prevent the star-
vation of lower priority messages AVB introduces two new shaped traffic classes
(AVB Class A and B) and uses the Credit-Based Shaper (CBS) defined in IEEE
802.1BA. The worst-case end-to-end delays (WCDs) of AVB flows can be an-
alyzed via timing analysis methods, e.g., based on Network Calculus. Finally,
BE traffic has the lowest priority and does not provide any timing guarantees.

Note that for implementing real-time applications, both TT and AVB traffic
types provide bounded latencies, and the choice of traffic type for a message
depends on the particularities of the application. The problem of determining
the appropriate traffic type per message has been addressed in [GP16] for mixed-
criticality traffic in TTEthernet. The WCDs of TT flows are determined by the
GCLs. However, the WCD of an AVB message depends on the GCLs of TT
traffic and the other AVB messages that share the same queue or have a higher
priority. Recent timing analysis work for AVB [ZPZL18] has shown how to
determine the WCDs of AVB messages taking into account the impact of TT
traffic via the GCLs.

1We will not provide references for all sub-standards, but these can be easily found based
on their names via IEEE Xplore.

78
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

Problem formulation: In this paper we consider real-time applications im-
plemented using both the TT and AVB traffic types running on TSN-based
distributed architectures. We assume that the network topology is given. The
applications messages are modelled as TT and AVB messages. Furthermore,
we assume that the traffic type of each message is given. We are interested to
synthesize the routing and the GCLs for TT traffic, such that both TT and
AVB traffic is schedulable.

4.1.1 Related Work and Contribution

There is a lot of research work on deriving schedule tables for tasks and mes-
sages [CS16]. For TTEthernet, researchers have proposed strategies for the
scheduling of TT frames on network links [TSPS14], which take into account
the lower priority Rate-Constrained (RC) traffic type of TTEthernet. How-
ever, although there are similarities between TSN and TTEthernet, they differ
in some significant aspects: Messages in TTEthernet consist of a single frame,
whereas TSN messages may consist of multiple frames. Furthermore, TTEther-
net schedule tables are specified for individual TT frames, whereas TSN specifies
schedules for the output port queues, not frames. Consequently, all frames shar-
ing the same queue are affected by the associated GCL. As a result, the work
on TTEthernet scheduling is not directly applicable to TSN. In addition, the
transmission of RC frames and the corresponding timing analysis for WCDs
differ significantly compared to AVB.

For the GCL synthesis problem in TSN, researchers have started to propose
several approaches, based on, e.g., Satisfiability/Optimization Modulo Theories
(SMT/OMT) [CSCS16] and metaheuristics [DN16]. Deciding the routing of
traffic flows is also an important problem. The TSN standards proposes dy-
namic routing and reservation mechanisms, such as IEEE 802.1Qca and IEEE
802.1Qcc. Such dynamic routing is appropriate for non-critical traffic. How-
ever, real-time and safety-critical traffic uses static routes, decided at design
time. Hence, researchers have also addressed the problem of determining the
static routes for TT [Nay17] and AVB flows [Lau16]. Researchers have ad-
dressed also the joint routing and scheduling problem, proposing solutions based
on Integer Linear Programming (ILP) [SDT+17] and a List Scheduling-based
heuristic [PTO18].

However, all of the approaches for routing or GCL synthesis presented previ-
ously have looked at TT traffic in isolation, completely ignoring the impact on
AVB traffic. The work in [GP18] so far is the only one which addresses the
GCL synthesis for mixed-criticality applications in TSN. As we will show in the
experimental results section, ignoring AVB traffic results in routes and GCLs

4.2 System Models 79

that are optimized for TT at the expense of AVB traffic, which leads to very
large WCDs for AVB.

Contribution: In this paper, we propose a joint routing and scheduling of TT
traffic in TSN taking into account the AVB traffic. To the best of our knowl-
edge this is the first work dealing with the interdependence between AVB traffic
and the TT routing and scheduling. Considering the effect of TT routing and
scheduling on AVB traffic results optimized solutions guarantee the schedulabil-
ity of TT traffic while at the same time reduces the WCDs of AVB traffic, such
that its end-to-end latency requirements are fulfilled. To solve this problem we
have developed a solution that integrates a K-Shortest Paths (KSP) heuristic for
routing with a Greedy Randomized Adaptive Search Procedure (GRASP)-based
metaheuristic for scheduling.

The paper is structured as follows: section 4.2 presents the architecture and
applications models. We introduce briefly TSN and present how TT and AVB
works in section 4.3. section 4.4 outlines our problem formulation and section 4.5
presents our proposed solution. The experimental results are in section 4.6 and
the last section presents our conclusions.

4.2 System Models

4.2.1 Architecture Model

The architecture model is an abstract representation of the physical TSN net-
work, including end systems, switches, and physical links. The topology is
modeled as an undirected graph G, where the vertices represent devices in the
network, i.e., end systems ES, and network switches SW, known in TSN also
as bridges. The edges represent physical full-duplex links. A data link dli;j
is a directed communication link from a vertex vi to another vertex vj . 4.1a
shows the topology of a network with three end systems, ES 1, ES 2, ES 3, and
two switches, BR1 and BR2. A route ri is a cycle-free ordered sequence of
data links connecting one sending end system with one or more receiving end
systems, via switches. Without loss of generality, we consider in this paper that
the routes are unicast. 4.1a shows two routes: r1 = fES 1; BR1;ES 3g, and
r2 = fES 2; BR1;ES 3g. The set of all routes in a network is denoted R.

80
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

ES1

ES2

SW1

SW2

ES3

r1

r2

1

(a) Example architecture

frames from critical ßows arrive at input ports, they are Þltered
into queues based on their stream identiÞcation using the per-
stream Þltering and policing functionality deÞned in IEEE
802.1Qci [13]. Every queue has a gate with two states, open
and closed. Frames waiting in the queue are eligible to be
forwarded only if the associated gate is open.

TAS controls the gates for each queue according to a Gate-
Control List (GCL), which is designed ofßine and contains
the times when the associated gates are open and closed. The
GCL is deÞned for each output port of an ES or SW, see the
example in Fig. 3. In the Þgure, GCLs are given by tables
below the respective queues. The open and closed states are
respectively represented by 1 and 0. For example, the gate for
TT queue (light green) inES1 is open from timet0 to t2, and
closed fromt2 to t5. Using the GCLs to schedule forwarding
of frames in a route from source ES to destination ES, enables
TT trafÞc with extremely low latencies and jitter. The length
of GCL is limited and it is repeated after a hyperperiodph

GCL,
which is the Least Common Multiple (LCM) of periods of the
intersecting TT ßows sharing the output porth.

Fig. 4 shows using a Gantt chart how TT frames are
transmitted using the GCLs from Fig. 3. The x-axis represents
time dimension, while y-axis is related to output ports of
nodes. Moreover, the rectangles represent TT frames trans-
mission. The left side of rectangle is the start time of the
frame transmitted, and its width represents the transmission
duration which is related to the frame size and the physical
link rate. Let us assume that there are two TT ßows! TT1

and ! TT2, respectively, sent fromES1 and ES2 with period
100µs and 150µs. The two TT ßows will be multiplexed
and share the queue of output port inSW1. There is an
equivalence relationship between the set of GCLs in Fig. 3 and
the schedules of TT frames on dataßow links for the associated
output ports shown in Fig. 4. For example, at timet0, the gate
for TT trafÞc inES1 is open, therefore the TT frame of! TT1

is initiated to be transmitted from[ES1,SW1].
Researchers have proposed methods to synthesize the G-

CLs [14], [24], and have outlined the constraints that have
to be satisÞed for schedule feasibility. For example, when
associated gate for TT trafÞc is open, the remaining gates
for other trafÞc are closed, and vice versa. In Fig. 3, the red
and blue queues are respectively dedicated for Class A and

Fig. 2. A TAS for an output port in an ES/SW

Fig. 3. An example of GCLs for output ports in ES/SW

Fig. 4. Schedules of TT frames on dataßow links

B of AVB trafÞc. At time t2 and t3 in SW1, the gate for the
TT queue is open, while the gates for both AVB Class A and
Class B queues are closed. During this period of time, frames
from AVB trafÞc are forbidden to transmit until the TT gate
is closed and associated AVB gates are open from timet4.
Therefore, AVB and BE trafÞc are prevented from initiating
transmission in the time windows reserved for TT frames.

A. TSN integration modes
However, if an AVB or a BE frame is already in transmis-

sion at the beginning of time window for TT (see Fig. 5),
TT trafÞc may be delayed. Hence, TSN uses two integration

Fig. 5. Two integration modes: non-preemption and preemption

3

(b) A TAS for an output port

Figure 4.1: TSN network and device architecture

4.2.2 Application Model

The real-time applications are modeled as a set of messages which can be trans-
mitted as TT or AVB flows. The set of flows in the system is denoted as
F = FT T [FAVB . Associated with each flow fi is the tuple of attributes
(vs; vt; T;D; P), where vs denotes the sending end system and vt denotes the re-
ceiving end system. The flows are periodic, with a period T and have a relative
deadline D. P is the payload, or data size, of fi. A single Ethernet frame trans-
mits a payload of at most 1500 bytes (B), the so-called Maximum Transmission
Unit (MTU). If the data size is larger than MTU, the message is fragmented
into multiple frames, fk

i denoting the kth frame of the flow fi. Table 4.1 shows
eight sample flows, four TT flows f1 to f4 and four AVB flows f5 to f8.

A routing R : F 7! R [f;g is a function which maps a flow to the route on
which that message is forwarded. To show that a flow fi has no assigned route
we use the notation R(fi) = ;. In this work the routing R has to be decided.
U(R; dli;j) denotes the utilization on link dli;j for the routing R. It represents
the sum of the bandwidth of the flows routed through the link dli;j and is defined

Table 4.1: Example application model

flow type vs vt T (�s) D
(�s) P (B)

f1 � � � f4 TT ES 1 ES 3 150 150 750
f5 � � � f8 AVB ES 2 ES 3 150 100 1500

4.3 TSN Protocol 81

Figure 4.2: TSN network with internal queues, gates and GCLs [ZPZL18]

as:
U(R; dli;j) =

X

fk2Fjdli;j2R(fk)

fk:P
fk:T

:

For a route r 2 R the utilization U represents the maximum utilization of links
composing the route, i.e., U(R; r) = maxdli2r U(R; dli).

4.3 TSN Protocol

TSN is based on the switched multi-hop network architecture from IEEE 802.3
Ethernet. Switches interconnect end systems via full-duplex links, meaning that
the physical links enable transmission in both directions simultaneously.

Ethernet frames contain IEEE 802.1Q headers, with two fields of importance to
TT traffic:

� VLAN IDentifier (VID) is a 12-bit field specifying the Virtual LAN of a
frame. This is used to distinguish frames from different messages.

� Priority Code Point (PCP) is a 3-bit field specifying the priority level, i.e.,
the traffic class such as TT, AVB, or BE. Furthermore, it defines which
queue the frame is assigned to within a switch.

82
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

An Ethernet switch has ingress (incoming) and egress (outgoing) ports con-
necting it via links to surrounding switches and end systems. Each egress port
typically has eight queues for storing frames that wait to be forwarded on the
corresponding link, one or more TT queues, two for AVB (Class A and B re-
spectively) and the remaining queues are used for BE. Figure 4.2 shows part of
a TSN network.

4.3.1 TT Traffic

IEEE 802.1ASrev provides a clock synchronization protocol to obtain a global
time base for TT transmission. Taking advantage of the global synchronized
clock, IEEE 802.1Qbv defines a Time-Aware Shaper (TAS) to achieve low la-
tency for TT traffic by establishing completely independent time windows by
opening and closing the gates. Interference from lower priority traffic is pre-
vented by closing the gates of the remaining queues, see 4.1b. When the
egress port is idle, the next frame is selected for transmission from the queue
with highest priority among the queues with open gates. Opening queues in a
mutually-exclusive fashion, allows for full control of forwarded frame.

A Gate Control List (GCL) defines for each egress port, when the queue gates are
open and closed. In Figure 4.2 they are depicted as tables. 1 and 0 in the GCL
represent an open and closed gate, respectively. Using the GCLs to schedule
forwarding of frames in a route from sender to receiver, enables very low latency
and jitter for TT traffic, making it suitable for hard real-time communication.

The GCLs can be constructed in such a way that AVB and BE traffic are
prevented from initiating transmission in time slots reserved for TT frames.
However, nondeterminism could still occur due to interference with other TT
flows. When a frame is scheduled for transmission on a link in a given time in-
terval, the corresponding GCL is set to open the associated gate in that interval.
Suppose something goes wrong, so the frame is not fully received, or is not the
first frame in the queue as expected. Then the link transmits the wrong frame
or remains idle when it should be transmitting. Consequently, nondeterminism
is introduced, which means timeliness is compromised, see [CSCS16] for an in-
depth discussion. Similar to the related work on GCL synthesis [CSCS16], we
will determine the GCLs such that the non-determinism is avoided, see subsec-
tion 4.4.1 for a discussion.

Integration modes: When there are mixed-criticality frames within the same
network, TT traffic might be delayed by AVB or BE traffic that is already
being transmitted at the time of the schedule trigger for TT (i.e., gate open
for the respective queue). In order to reduce this delay, TSN introduces two

4.3 TSN Protocol 83

mechanisms. The first is referred to as non-preemption mode. The gate of
lower-priority traffic can be closed in advance of the TT schedule event such
that the port is available for the TT traffic. This mechanism is similar to the
“guard band” approach found in TTEthernet [CS16]. The second mechanism is
preemption, defined by IEEE 802.1Qbu, where the transmission of an AVB (or
BE) frame will be interrupted by the transmission of a TT frame and resumed
once the TT frame has been fully transmitted. As specified in IEEE 802.1Qbu
even in the case of preemption mode the fragments of the preempted lower pri-
ority frames should be transmitted by well formatted Ethernet frames, i.e., the
so-called smallest non-preemptable fragment consists of an Ethernet preamble,
a minimum of 64 B of data and the trail which further consists on a CRC code
and an inter frame gap [TE16]. Please note that for the first integration mode
the delay of TT frames is 0 while for the second mode it is upper bounded by
the transmission duration of the smallest non-preemptible fragment.

4.3.2 AVB Traffic

The availability of an AVB queue is also determined by a Credit-Based Shaper
(CBS) and the purpose of CBS is to prevent the starvation of lower priority
flows. Hence, an enqueued AVB frame is allowed to be transmitted if (i) the
queue gate is open, (ii) the CBS allows it and (iii) there are no other higher
priority AVB frames being transmitted.

The CBS standardized in IEEE 802.1Qat in conjunction with the amendments
in IEEE 802.1Qbv makes the queue available for transmission whenever the
amount of credit is positive or zero. The credit is initially zero, it is decreased
with a sending slope (sdSl) while transmitting and frozen while the gate is
closed. Transmission is only initiated when credit is non-negative. The credit
is increased with an idle slope (idSl) when frames are waiting, but they are
not being transmitted. If the queue is emptied while the credit is positive, the
credit is reset to zero. The idle and sending slopes are configuration parameters
described in IEEE 802.1Qbv; the idle slope is defined as fraction of link speed
and the sending slope as difference between idle slope and link speed.

Using the example in Figure 4.3 we show how CBS works, considering also
TT and BE traffic. Rectangles on the first timeline represent the transmission
of frames and down arrows on top give the frames arrival times, for example
ai

AV B_A indicates the arrival time of the frame fi. The lines on the timeline
show the variation of credit for respective AVB class, where AVB Class A and
B are respectively shown with red and blue. Figure 4.3a considers the non-
preemption integration mode. An AVB Class A frame f1

AV B_A arrives at t0;
meanwhile, a BE frame is transmitting. Due to the non-preemption of BE

84
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

Figure 4.3: Example AVB transmission [ZPZL18]

frames, f1
AV B_A has to wait until fBE finishes its transmission, and credit A

is increased with the idle slope idSlA. At time t1, the transmission of fBE is
completed. However, the AVB gates are closed due to the reservation for TT
traffic and insufficient idle interval (caused by the guard band) for the whole
frame f1

AV B_A transmission. Therefore, credit A is frozen during [t1; t4] when
AVB gates are closed. When an AVB Class B frame f1

AV B_B arrives at t2, its
credit is also frozen. From time t4, since the gate for TT queue is closed and
due to the higher priority of Class A, f1

AV B_A is allowed to be transmitted. The
credits for A and B are, respectively, decreased and increased with the sending
slope sdSlA and idle slope idSlB . During the transmission of f1

AV B_A, another
frame f2

AV B_A is enqueued in the Class A queue at time t5. Then, at t6 when
frame f1

AV B_A finishes, there are two frames f2
AV B_A and f1

AV B_B waiting to
be transmitted. But credit A at this time is negative, therefore f2

AV B_A is not
allowed to be transmitted and f1

AV B_B has the permission to be transmitted.
At the end of f1

AV B_B transmission, f2
AV B_A starts its transmission as credit

A has been increased to a non-negative value.

In Figure 4.3b, we present the preemption mode. The arrival times are the same
as in Figure 4.3a. However, due to the preemption integration mode, the TT
frame fT T is delayed from t3 to t4, and when f1

AV B_A resumes its transmission
after being preempted, we have to consider an additional overhead (depicted).

4.4 Problem Formulation 85

4.4 Problem Formulation

The problem addressed in this paper is: Given a TSN network topology G, and
a set of TT and AVB flows F = FT T [FAVB determine an implementation �
such that: (i) all the flows are schedulable, i.e., the WCD(fi) � fi:D for all TT
and AVB flows. Determining � means: (1) deciding the route R(fi) for each
TT flow fi 2 FT T , (2) deciding the number of TT queues, (3) mapping the TT
flows to egress port TT queues and (4) deriving the GCLs GCL.

Note that mapping of AVB flows to AVB queues is decided by their class, i.e.,
AVB Class A flows are assigned to AVB Class A queue and B flows to Class B
queue. Our proposed solution can also determine the AVB routes at the same
time with the TT routes. However, the focus of this paper is on determining
the routing and scheduling of TT flows, so we consider the AVB routing given
and fixed. The routing of AVB flows aiming at reducing their WCDs has been
addressed by us in [Lau16].

4.4.1 GCL Synthesis for TT

Let us consider the example from Figure 4.4 where we have the two flows
from 4.4a routed as indicated in 4.4b.

Figure 4.4 shows GCLs using a Gantt chart, depicting how TT frames are trans-
mitted. The x-axis represents time dimension, while y-axis is related to output
ports of nodes. Moreover, the rectangles represent TT frames’ transmission.
The left side of rectangle is the start time of the transmitted frame, and its
width represents the transmission duration which is related to the frame size
and the physical link rate. To illustrate the queue usage, we use thin rows la-
beled qi below the link schedules showing when frames are in the queues of the
respective egress port.

The GCLs must satisfy the following constraints:

� Link congestion. A data link is limited by its hardware to only transmit
a single frame at a time, i.e., frames on the same link cannot overlap in
the time domain. This corresponds to the property that boxes on the
same row of Figure 4.4 do not overlap. The link can be seen as a shared
resource, that can only be occupied by a single frame at a time.

� Flow transmission. A switch cannot forward a frame until the entire frame
has been buffered in the switch. This introduces a forwarding delay for

86
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

each hop from source to destination. Due to the small synchronization
error of the clocks between devices, the exact time when the entire frame
has been received in a particular switch is unknown. Consequently, the
time for forwarding the frame on the next link should take into account
the worst-case synchronization error, �.

� Bounded end-to-end latency. All TT flows must arrive within their relative
deadline, i.e., the end-to-end latency cannot exceed the deadline. End-to-
end latency is defined as the time from the sender initiates transmission
of the first frame and until the last frame arrives at the receiver.

� Deterministic queues. Analogously to the link congestion property, a
queue can be considered a shared resource, which can only be occupied by
frames from a single flow at a time. In Figure 4.4 this corresponds to the
property that queue utilization boxes do not overlap in the time domain,
if they belong to the same queue. In addition, there should be a �-sized
spacing between queue utilization boxes of frames arriving at different
ingress ports, to account for the worst-case synchronization error.

Under these assumptions, the GCLs are conceptually equivalent to the schedule
tables presented in Figure 4.4. 4.4c and 4.4d shows two feasible schedules.
GCLs can be optimized according to several criteria, e.g., TT queue usage and
TT end-to-end latency. In order to improve queue usage, the frames of f1 and
f2 should be rearranged in such a way that they both share the same queue in
[SW1; ES3] without occupying the queue at the same time. 4.4c shows such a
schedule, where they both use q1. Notice that the queue utilization boxes do
not overlap.

On the other hand, minimizing queue usage has a negative effect on end-to-
end latency. In 4.4c the frames of f2 have been spaced further apart, thereby
increasing the end-to-end latency. Instead, the schedule could be optimized with
respect to end-to-end latency as shown in 4.4d. In this schedule, two queues
are used but the frames of f2 are grouped closer together compared to 4.4c
resulting in a smaller end-to-end latency. This example shows that a desirable
schedule is a tradeoff between queue usage and end-to-end latency.

4.4.2 Routing for TT

Let us illustrate the importance of optimizing the routing for TT flows. Let us
consider the TT flows in 4.5a to be routed and scheduled in the architecture
depicted in Figure 4.5, consisting of four end systems interconnected with five
switches. If we use the shortest path routing, which would intuitively reduce

4.4 Problem Formulation 87

flow vs vt r T (�s) D(�s) P (B)
f1 ES1 ES3 r1 100 100 1500
f2 ES2 ES3 r2 150 150 4500

(a) Set of TT flows with attributes

ES3SW1

ES1

ES2

r1

r2

(b) Network topology and routing of TT flows

(c) Minimum queue usage

(d) Minimum end-to-end latency

Figure 4.4: Example GCL synthesis for TT

88
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

the latency of TT flows, we obtain the two routes r1 and r2 as depicted in 4.5b.
Flows f1; f2 and f3 have the route r1 and flows f4; f5 have the route r2. In this
situation, flow f5 is not schedulable (does not meet its deadline), due to the
congestion on the link [SW1; SW2].

We can make the TT flows schedulable by rerouting one of the flows reducing
thus the congestion on the link [SW1; SW2]. For example, flow f1 can be routed
on a longer route instead of the shortest path, e.g., {ES1, SW1, SW5, SW4,
ES4}. The optimal routing, which minimizes the TT end-to-end latencies, is
depicted in 4.5c (we label the routes with the flow numbers), which makes use
of longer routes for several flows. This example shows that the routing of TT
flows impacts their scheduling, and has to be considered at the same time with
the GCL synthesis.

4.4.3 AVB-Aware TT Routing and Scheduling

So far, we have ignored the AVB flows. Let us illustrate the importance of
taking into account the AVB flows during the TT routing and scheduling. For
this example we are using the network topology from 4.1a, which has three end
systems, ES 1 to ES 3, and two switches, BR1 and BR2, implementing the set of
flows presented in Table 4.1 with four TT and four AVB flows, respectively. All
AVB flows are Class A, with the default idle slope of 75%. Each flow is packed
in one frame and all links have a speed of 1 Gbps, resulting in a transmission
time C of 6:33 �s for TT frames and 13:24 �s for AVB frames. In this example
we consider the non-preemption integration mode.

A flow is schedulable if the frames arrive before their deadlines at the destination,
even in the worst-case scenario captured by WCD(fi). For TT, the WCDs are
determined directly by the GCLs. However, the WCD of an AVB flow f is
determined by its worst-case scenario, i.e., the situation that delays f the most.
An AVB frame will be delayed by other AVB and TT frames (including the
guard band of those TT frames) sharing the same output port.

In the following examples we are going to show the schedule tables for TT flows
and we will illustrate the worst-case scenario for one AVB flow, namely f5.

See section 4.3 for how to read the schedule. In addition, the number on top
of rectangle box represents the transmission time of the frame, and the number
on top of a blank interval is the waiting time due to the negative credit of CBS
or for timely block reasons. The � in the figure means that the frame arrives
just at the instant when the remaining time is slightly less than its transmission
time. Similar to Figure 4.3, we use downward pointing arrows to show the

4.4 Problem Formulation 89

Flows Endpoints (vs; vt) P (B) T (�s)
f1; f2; f3 ES1) ES4 1500 100
f4; f5 ES3) ES2 1500 100

(a) Flows example for routing

(b) Shortest path routing

(c) Optimized routing

Figure 4.5: Example routing optimization for TT

arrival times for AVB frames that create the worst-case scenario for f5. Note
that the GCLs are cyclic and in the worst case f5 may arrive in the previous
hyperperiod and it cannot start transmitting due to the timely block. The AVB
credit for the queue of f5 is depicted below the timelines using a red line.

4.6a shows the optimal schedule for TT flows, which minimizes their WCDs
by scheduling them as soon as possible. Only one queue is used for TT and
all AVB flows are in the AVB Class A queue. As expected, the TT flows are
schedulable, but all AVB flows have a WCD of 151:76 �s > D so they are not
schedulable. The worst-case scenario resulting in the WCD of 151:76 �s for f5
is depicted in 4.6a.

90
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

(a) Optimal TT schedule: AVB flows are unschedulable; WCD for f5 is 151:76 �s

(b) AVB-aware TT schedule: WCDs of AVB flows are decreased to 138:59 �s

(c) Rerouting of some TT flows: all AVB flows are schedulable; WCDs for AVB flows are
99 �s

Figure 4.6: Motivational examples for considering AVB during TT routing
and scheduling

However, if we construct an optimized GCL, as depicted in 4.6b, we can decrease
the WCDs of all AVB flows to 138:59 �s. In this example, we have rescheduled
the TT flows f1 and f2 by delaying them into the second half of the hyperperiod.

4.5 Optimization Strategy 91

This keeps the TT flows schedulable (still preserving their WCDs), but has the
benefit of creating space for the AVB flows, decreasing their delay even in their
worst-case. We illustrate the reduction of the WCD of AVB frame f5 in 4.6b
compared to 4.6a.

Another choice is to reroute the TT flows f3 and f4 through switch BR2 as
depicted in 4.6c. As we can see, this preserves the schedulability of TT flows,
as in the previous examples, but now also all AVB flows are schedulable. By
rerouting the TT traffic, the WCD of AVB flow f5 becomes 99 �s � D.

The examples have shown the importance of carefully deciding the routes and
GCLs for the TT traffic such that both TT and AVB are schedulable. Ignoring
the AVB traffic when deciding on the routing and scheduling of TT, as is the case
with all the related work, results in large AVB WCDs that miss the deadlines.

Algorithm 4.1 JRS (G;F)

1: � ;
2: repeat
3: R RoutingHeuristic(G;F)
4: �0 SchedulingMetaheuristic(G;FT T ; R)
5: if Obj(�0;FAVB) < Obj(�;FAVB) then
6: � �0
7: end if
8: until stopping criterion not met
9: return �

4.5 Optimization Strategy

The problem presented in section 4.4 is NP-hard. Exhaustively just enumerat-
ing every path between two vertices has been proven NP-hard [Val79]. Also,
the corresponding decision problem of the TT scheduling problem, namely
the flow-shop scheduling, is NP-complete [GJS76]. Thus for a joint schedul-
ing and routing problem to exhaustively evaluate every schedule and rout-
ing combination leads to an intractable amount of combinations that have
to be evaluated. To solve our network design problem we use an integrated
heuristic-metaheuristic strategy, i.e., a routing heuristic based on K-Shortest
Path (KSP) method [Yen71] and a Greedy Randomized Adaptive Search Proce-
dure (GRASP) metaheuristic [RR14] for the scheduling. The integrated strategy

92
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

is further called Joint Routing and Scheduling JRS and is presented in Algo-
rithm 4.1.

Heuristics are not guaranteed to find the optimal solution; successful heuristics
are able to find good quality solutions to large problem sizes in a reasonable
time. Heuristics are algorithms specialized for a particular problem (in our case,
routing), whereas metaheuristics are more general optimization algorithms that
can be applied to a wide range of problems (we use the GRASP metaheuristic
for scheduling).

JRS takes as an input the architecture G and the set of flows F and produces
at the output a routing and scheduling solution �. JRS generates multiple
routing and scheduling alternatives, further called solutions (lines 3, 4) and
evaluates each solution (line 5) attempting to find that solution which minimizes
the objective function. The objective function is presented in subsection 4.5.1.
Our proposed routing and scheduling algorithms are presented in sections 4.5.2
and 4.5.3, respectively. JRS terminates after a given time limit is reached or
if there is no improvement in the objective function after a given number of
iterations.

4.5.1 Objective Function

We are interested to find solutions that meet the deadlines for both TT and AVB
flows. We consider a solution to be invalid if the TT deadlines are not satisfied.
On each iteration of JRS and during the local search, the quality of a valid
solution x is evaluated using an objective function Obj(x;FAVB) that checks
if the AVB flows are schedulable, driving thus the search towards schedulable
solutions:

Obj(x;FAVB) =
X

fi2Favb

max(0;WCD(fi)� fi:D): (4.1)

The objective function captures the sum of tardiness for each AVB flow, i.e.,
the time it takes to arrive at its destination after its deadline has passed.

To validate and evaluate a solution we need to compute the WCDs for both TT
and AVB flows. Due to the deterministic behavior of TT traffic the WCD for a
TT flow is easily computed from the schedule table as the difference between the
time when the last frame arrives at the receiver and the time when the sender
initiates transmission of the first frame. However, to determine the WCDs of

4.5 Optimization Strategy 93

AVB flows in presence of TT traffic, we have to use a schedulability analysis
for AVB. Although such analyses have been proposed in the past, they have
considered AVB in isolation, ignoring TT traffic. Only recently researchers have
proposed AVB analysis to consider the influence of GCLs. Thus, [Lau16] has
extended the AVB Latency Math from IEEE 802.1BA, but this approach is very
pessimistic. In this paper, we use the AVB schedulability analysis from [ZPZL18]
that: (i) is based on Network Calculus, (ii) takes into account the GCLs, (iii)
supports both AVB Class A and B and (iv) considers all integration modes,
considerably reducing the pessimism compared to [Lau16].

4.5.2 Routing Strategy

Our routing heuristic, presented in Algorithm 4.2, takes as input the architecture
G and the set of TT flows FT T , including for each flow fi 2 FT T the sending
fi:vs and receiving fi:vt end systems. The strategy outputs the routing R which
maps a route to each flow.

Initially the routing R is empty, which means that routes have to be found
for all TT flows. As researchers demonstrate [SDT+17][Lau16], when we tar-
get time-sensitive applications, the shortest path routing may not lead to the
smallest WCDs. However, enumerating all possible cycle-free paths (the full
search space) to find the optimal routes is intractable. Hence, our strategy is to
reduce the search space by using the K-Shortest Path (KSP) algorithm [Yen71],
which generates K unique routes of increasing length (the set RKSP), starting
from the shortest route. Our idea is that good quality routing solutions can be
found by combining routes which, although are not the shortest routes, they
are not excessively long. K is a parameter that controls how many routes are
generated. The K parameter is randomly picked from the interval [1;K] (line
3), where K represents the upper bound of K, see [ZP18] for details on how this
upper bound can be determined experimentally for each flow based on the size
of the topology.

The routing heuristic iteratively selects a route for each TT flow attempting to
evenly distribute the link utilization. The idea is that a high link utilization
increases the WCDs. Thus, to determine a route R(fi) for a flow fi 2 FT T

the routing heuristic: (1) generates the reduced set of routes RKSP line 4 and
(2) selects the least utilized route from the generated set and adds it to the
partial routing R (line 5). The utilization U(R;R(fi)) of a route R(fi) from a
partial routing solution R represents the maximum link utilization of the links
composing the route, see subsection 4.2.2 for how we calculate the utilization.

If there are multiple routes with the minimum utilization, the heuristic selects

94
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

a route randomly. By choosing randomly K and the least utilized route we are
able to diversify the routing solutions output by our RoutingHeuristic, which
helps JRS in Algorithm 4.1 to explore the solution space.

Algorithm 4.2 RoutingHeuristic(G;F)

1: R ;
2: for fi 2 FT T do
3: K PickK (fi)
4: RKSP GenerateRoutes(G; fi:vs; fi:vt;K)
5: R R [fSelectRoute(R; fi; RKSP)g
6: end for
7: return R

4.5.3 Scheduling Strategy

Algorithm 4.3 SchedulingMetaheuristic(G;F ; R; ; �)

1: x ;
2: repeat
3: x0 GreedyRandomized(G;FT T ; R;)
4: x0 LocalSearch(x0;G;FT T ; R; �)
5: if Obj(x0;FAVB) < Obj(x;FAVB) then
6: x x0
7: end if
8: until termination criteria not met
9: return x

GRASP is well-suited for combinatorial optimization problems, where an initial
solution can be efficiently constructed in a greedy manner. Each iteration of
GRASP consists of two phases: (1) A construction phase, where an initial fea-
sible solution is built, and (2) a search phase, where a neighborhood around the
initial solution is examined for improving solutions. The construction phase con-
tributes with diversification, and the local search with intensification, enabling
convergence towards a global optimum.

Algorithm 4.3 presents our GRASP-based scheduling metaheuristic. As input,
it takes (1) the architecture G, (2) the set of flows F = FT T [FAVB , (3) the
routing R and (4) two parameters, and �, related to the construction and
local search phases, respectively. Algorithm 4.3 outputs a feasible schedule x,
which is the best scheduling solution found throughout the search in terms of the
objective function from subsection 4.5.1. Initially, x is empty (line 1), indicating

4.5 Optimization Strategy 95

that a feasible solution is yet to been found, i.e., the set of scheduled flows TT
is empty.

In each iteration, a new scheduling solution x0 is generated in a greedy random-
ized fashion (line 3) using a constructive scheduling heuristic (GreedyRandomized,
subsubsection 4.5.3.1). GreedyRandomized contains a random element to ensure
that different parts of the solutions space are explored in each iteration. The
parameter defines the level of randomness. Too much randomness affects the
quality of the initial schedules, whereas too little randomness affects diversifica-
tion.

The initial solution is subsequently optimized via a local neighborhood search
until reaching a local optimum (line 4). The local search destroys and repairs
the current schedule to obtain new schedules. The parameter � specifies how
much to destroy/repair in each iteration of the local search. If a new solution
results in a better solution than the current best known, then the best solution
is updated (lines 5 and 6). This repeats until a given execution time limit
has been reached (termination criteria). The local search phase is described
in subsubsection 4.5.3.3.

4.5.3.1 Greedy Randomized Heuristic

Algorithm 4.4 GreedyRandomized(G;FT T ; R;)

1: x ;
2: F 0 SortByPeriod(FT T ; R)
3: for fi 2 F 0 do
4: RCL RestrictedCandidateList(; fi)
5: while ScheduleFlow(x; fi; RCL) = true do
6: x0 x [ffig
7: RCL:AddCandidate(x0)
8: end while
9: if RCL:Length() > 0 then

10: x RCL:GetRandomCandidate()
11: end if
12: end for
13: return x

The construction phase of the GRASP-based SchedulingMetaheuristic is pre-
sented in Algorithm 4.4. GreedyRandomized is a polynomial-time greedy ran-
domized heuristic designed to find feasible schedules which serve as good starting
points for the subsequent local search. Hence, it should be computed efficiently,

96
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

(a) ASAP (b) ASAP-L (c) ASAP-LF

(d) ASAPQ (e) ASAPQ-L (f) ASAPQ-LF

(g) ALAP (h) ALAP-F (i) ALAP-FL

(j) ALAPQ (k) ALAPQ-F (l) ALAPQ-FL

Figure 4.7: Heuristic variations for scheduling frames of a flow in an existing
schedule

should not produce the same schedule in each iteration, and should not make
obvious suboptimal decisions which the local search has to spend much time
rectifying.

Flows are ordered by their period (line 2). To break ties, the route length is used
as an indicator of how difficult flows are to schedule. Flows are scheduled one
at a time in this order (lines 3-12). Given the current scheduling solution x, we
attempt to schedule each unscheduled TT flow using several heuristic variations
based on List Scheduling, see subsubsection 4.5.3.2. The Restricted Candidate
List (RCL) (line 4) is a data structure that keeps track of the best schedules
produced by the heuristics with respect to the objective function Obj. When all
heuristics have been considered, a random schedule is chosen from among those
in RCL (line 10).

It may be the case that the heuristics are unable to schedule a particular flow.
In that case, no candidate is added to RCL (lines 5-8). If all heuristics fail, RCL
is empty (lines 9-11), i.e., that particular flow is not included in the schedule,
making it invalid.

TT flows are scheduled individually using ScheduleFlow, presented in the next
section.

4.5 Optimization Strategy 97

4.5.3.2 Schedule Flow

Given an existing partial scheduling solution x, several feasible schedules exist
for a flow f . In this section we present a List Scheduling-based heuristic ap-
proach called ScheduleFlow for scheduling the individual frames of a single flow,
while minimizing queue usage. The achieved schedule can then, in turn, be post-
processed to minimize end-to-end latency. The heuristic strategy is generalized
into multiple variations denoted H.

ScheduleFlow schedules the frames of f sequentially, scheduling each frame on
all links before moving on to the next frame. It continues in this way until either
all frames in f are successfully scheduled, or until failing to schedule a particular
frame, i.e., failing to determine offsets for the frame such that all constraints
of subsection 4.4.1 are satisfied.

4.7a illustrates an “As Soon As Possible” (ASAP) approach to scheduling frames
in a schedule. A frame is scheduled on its route, in-order, at the earliest possible
offset where the link is idle and the queue is empty. If the frame is not assigned
to the same empty-queue block as it was on the previous link, the algorithm
backtracks and reschedules the previous frame to the next empty-queue block.
ScheduleFlow succeeds if the last frame is scheduled within the deadline and fails
otherwise. Analogous to ASAP, an “As Late As Possible” (ALAP) approach can
be formulated by traversing the frames in reverse order, as well as scheduling on
links in reverse order. The reader is referred to [RP17], for more details about
determining feasible frame offsets using the ASAP and ALAP approaches.

Reducing queue usage: To minimize queue usage, the heuristic initially as-
signs all flow instances to the first queue. If the heuristic at some point fails
to schedule a particular frame on one of its links, it may be because the queue
assignment imposes too many restrictions on the feasible frame offsets. In this
case, the queue assignment is incremented for some link on the route, before
restarting the algorithm from the first frame. The idle-link and empty-queue
blocks are used to determine which link to increment. ASAP heuristic incre-
ments the first queue assignment which allows a frame to start earlier than with
the current queue assignment. When the algorithm terminates one of two things
has happened: Either all frames have been scheduled, or some switch has no
more queues available, i.e., the heuristic failed to schedule the flow.

Reducing end-to-end latency: Once a feasible solution has been found it
can be post-processed to minimize end-to-end latency. Recall, that the end-to-
end latency is the time from the offset of the first frame on the first link and
until the finish time of the last frame on the last link. Hence, shifting the first
frame to the right, or the last frame to the left reduces end-to-end latency. The

98
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

intervals in which frames can safely be shifted without violating feasibility are
computed from the empty-queue and idle-link intervals. A frame can be post-
processed immediately when it has been scheduled on all links, or all frames can
be post-processed together when the entire flow has been scheduled.

Figure 4.7 shows heuristic variations including the original ASAP heuristic (4.7a).
White boxes represent the intervals where frames can be shifted. The main vari-
ation, ASAPQ, is illustrated in 4.7d. It reduces the time frames spend in queues
by shifting each frame instance as close as possible to the frame instance on the
next link. Frame instances on the last link are not moved, which is illustrated
with a thick border in 4.7d. As an important side effect, the method reduces the
overall time the queue is occupied, which could lead to better queue utilization
and a lower total number of queues.

The remaining ASAP variations are different ways of post-processing the offsets
once all frames have been scheduled by either ASAP or ASAPQ. In ASAP-
L (4.7b) all frame instances are shifted toward the last frame instance to
reduce end-to-end latency. The schedule produced by ASAP-LF (4.7c) has
been through an additional post-processing step, where all frames instances are
shifted toward the first frame instance. ASAPQ-L and ASAPQ-LF are varia-
tions of ASAPQ that have been post-processed in the same two ways.

The same variations can be formulated for the ALAP heuristic, but every shift is
reversed compared to ASAP. Consequently, the post-processing steps first move
toward the first frame instance, then the last. 4.7g– 4.7l depict the variations
for ALAP. In total, twelve heuristic variants are used, targeting both the latency
and the queue usage. We refer the reader to [RP17] for more details.

4.5.3.3 Local Search

The purpose of the local search phase is to intensify the search by investigating a
well-defined neighborhood of solutions similar to the current solution. This cor-
responds to schedules where the majority of TT flows are scheduled exactly as in
the current solution. It is likely that a better solution arises from rescheduling
only a couple of TT flows. The local search attempts to identify such rear-
rangements by removing a small subset of TT flows, and rescheduling them in
a different way.

The destroy and repair mechanisms of the local search rearranges flows compared
to the original static order given by SortByPeriod. Thus, the local search can
recover from a suboptimal ordering of flows in the construction phase.

4.6 Experimental Evaluation 99

The neighborhood is defined as follows: All the schedules which can be con-
structed by removing up to � flows from x, and subsequently rescheduling them
using one of the scheduling heuristics. If a new, improving solution is discov-
ered, the neighborhood search is repeated for the new solution. The local search
continues in this way until reaching a local minimum, from which no solution
from the neighborhood improves the current solution, or until exceeding the
time limit.

4.6 Experimental Evaluation

We have performed three sets of experiments. In the first two sets of experiments
we focus on the ability of our approach to determine good quality solutions for
the TT routing and scheduling in a reasonable time. We are interested if our
Joint Routing and Scheduling (JRS) approach scales well with large problem
sizes. For these experiments we ignore AVB. Hence, in the first set of experi-
ments (subsection 4.6.1) we evaluate the quality of our GRASP-based Scheduling
Heuristic for TT, and in the second set of experiments we evaluate the impor-
tance of considering the TT routing during the GCL synthesis (subsection 4.6.2).
In the last set of experiments we take AVB into account and evaluate JRS in
terms of its ability to determine schedulable solutions for both TT and AVB.

4.6.1 Evaluation of GRASP-based Scheduling Heuristic
for TT GCL synthesis

In the first set of experiments we were interested to evaluate the quality of our
GRASP-based GCL synthesis approach. We have used the GRASP implemen-
tation from subsection 4.5.3 and we use two objective functions for GRASP, the
normalized queue usage, denoted kN , and the normalized end-to-end latency,
denoted �N . kN (x) is a mapping of queue usage for TT traffic to the interval
[0; 1] as shown in Equation 4.2.

kN (x) =
k(x)� k(x)
k(x)� k(x)

(4.2)

where k(x) denotes the total number of queues used for TT traffic across all
egress ports. k(x) and k(x) are lower and upper bounds, respectively. The
lower bound is assuming a single TT queue in all egress ports forwarding TT
traffic, and the upper bound assumes the minimum of the available queues in
the egress port and the number of TT flows forwarded through that egress port.

100
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

The total end-to-end latency is normalized in �N in a similar way. The lower
bound assumes that all flows are scheduled independently, i.e., without inter-
ference from other TT flows. The upper bound assumes the worst-case scenario
where all flows have end-to-end latencies equal to their deadline.

To evaluate GRASP, we have implemented the OMT approach from [CSCS16]
and the ILP approach from [PRCS16], which both minimize the number of
queues (k). The values of k are presented in the table, including the lower
and upper bounds, and the normalized value. We have compared the three
approaches on the test cases from [PRCS16], and our GRASP has been able
to obtain the same optimal solutions in less than 1 second for all test cases as
shown in Table 4.2.

Further, we considered six topologies of varying size. The topologies are indus-
trial sized, and are derived from the work presented in [SCS14]. The topologies
are grouped into three categories based on their size. There are three small
topologies (G1, G2 and G3, with up to 4 ESes and 3 NSes), two medium (G4
and G5, with up to 48 ESes and 28 NSes), and one large (G6, with 256 ESes
and 146 NSes), see Table 4.4 for the number of flows on each topology size. The
network precision is assumed to be � = 5:008 �s. The transmission rate for
all links is fixed at 1 Gbps, and the propagation delay of each link is assumed
negligible, i.e., it is set to zero. Every egress port has eight queues.

The hyperperiod of all flows defines the width of the schedule, and has a major
impact on the complexity of the problem. Thus, the hyperperiod is an important
aspect to consider, when evaluating performance. We define three hyperperiods
of 1 ms, 6 ms, and 30 ms. For each choice of hyperperiod we define a set of
short periods and a set of long periods as presented in Table 4.3. Short-period
flows have a data size of either one, two, or three times the MTU of 1500 bytes.
Long-period flows have data sizes 10, 20, 40, 60, or 100 times MTU. The choice
of periods and data sizes are inspired by [CSCS16].

Table 4.2: Comparison of ILP, OMT, and GRASP

running time (s) queue usage
ID ILP OMT GRASP k k k kN

T01 0.66 0.81 0.32 2 2 5 0
T04 2.49 2.46 0.21 2 2 5 0
T05 3.73 3.43 0.34 2 2 3 0
T10 4.70 5.12 0.72 4 4 8 0
T11 16.54 12.94 0.84 3 3 7 0
T12 210.03 34.33 0.69 5 5 9 0
T14 39.06 22.87 0.84 2 2 3 0
T18 10.98 7.17 0.56 2 2 5 0

4.6 Experimental Evaluation 101

In order to generate flows, that yield difficult scheduling problems in terms of
queue usage and end-to-end latencies, the link utilization should be relatively
high. Hence, synthetic applications are generated by repeatedly adding short-
period and long-period flows to the set of flows. The sending and receiving
end systems are randomly chosen among the end systems in the topology. This
procedure is repeated until multi-queue scenarios arise.

For each choice of topology and hyperperiod, we generate 30 test cases with high
link utilization. In total we use 540 test cases, 90 for each of the six topologies.

Table 4.4 shows the average number of flows and frames for every pair of topol-
ogy class and hyperperiod. Overall, the test instances range from a few hundred
frames to tens of thousands of frames.

We have extended the ILP formulation presented in [PRCS16], which minimizes
queue usage, to also feature end-to-end latency minimization. For the ILP
formulation, the Gurobi [Gur] solver was given a time limit of 4 hours, after
which it returns the best feasible solution. The ILP approach is intractable for
many of the test instances, especially for larger hyperperiods. The results are
compared with GRASP in 4.8a and 4.8b for the subset of test cases solved
by ILP (the x-axis shows the topologies G1 to G6, each with flows of varying
hyper-periods, 1 to 30 ms). Some data points are missing, because the ILP
approach was unable to find feasible solutions within the time limit.

4.8a shows on the y-axis the normalized queue usage kN , and 4.8b shows in
�s the normalized end-to-end latency �N . The ILP approach was able to solve
48% of the instances when minimizing queue usage and 42% when minimizing
latency. On average, the ILP approach produced schedules with 17% lower
queue usage in 4.8a and 51% lower end-to-end latency in 4.8b, but had a
15–20 times longer execution time.

Table 4.3: Combinations of periods in test cases

hyperperiod short periods (�s) long periods (ms)
1 ms 100, 200, 500 1
6 ms 100, 150, 200, 500 1, 2, 6
30 ms 100, 150, 200, 300, 500 5, 10, 30

Table 4.4: Average number of (flows, frames) of test cases

topology size
hyperperiod small medium large
1 ms (17; 174) (61; 548) (358; 2078)
6 ms (15; 436) (55; 1193) (254; 3682)
30 ms (18; 737) (63; 2944) (327; 15167)

102
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

(a) Average queue usage for GRASP and ILP

(b) Average end-to-end latency for GRASP and ILP

Figure 4.8: Comparison of GRASP and ILP

GRASP is able to significantly improve execution time compared to the ILP
approach which is intractable for large instances, and is able to produce better
schedules than a pure heuristic approach (e.g., variants of ASAP and ALAP).
Its ability to minimize the objectives could be improved by increasing the time
limit. Conversely, the time limit can be decreased in order to compute feasible
schedules quickly. This flexibility makes GRASP well-suited to be used for GCL
synthesis, where the schedules must take into account AVB flows.

Table 4.5: Comparison of shortest path routing with our proposed TT
RoutingHeuristic

TC1 TC2 TC3 TC4 Orion SAE
L M H L M H L M H L M H L M H L M H

Shortest path 100 64 62 100 77 67 100 100 40 100 100 60 100 84 73 100 62 45
RoutingHeuristic 100 100 87 100 100 99 100 100 60 100 100 65 100 98 87 100 89 81

4.6 Experimental Evaluation 103

4.6.2 Evaluation of TT routing heuristic

In this section we are interested to evaluate the ability of our RoutingHeuristic
from Algorithm 4.2 to find TT routes that improve the schedulability of TT
frames. We have ignored AVB flows in these experiments and focused only on
TT.

We have used four synthetic test cases, TC1–TC4 and two real-life test cases,
“Orion” and “SAE”. We have varied the size and type of network topology, i.e.,
topologies such as “mesh” that have more alternative routes connecting ESes
and topologies with less alternative routes. Thus, TC1 is a mesh topology with
6 end systems and 8 network switches and TC2 is a mesh topology with 12 ESes
and 14 NSes. TC3 and TC4 use a “ring” topology that has fewer alternative
routes. In TC3, we have added more dataflow links such that TC3 is in-between
a mesh and a ring topology. Both TC3 and TC4 have 12 ESes and 12 NSes.
Finally, “Orion” and “SAE” are real-life topologies adapted from [TSPS14].

The results are presented in Table 4.5, where we have used the results obtained
considering “Shortest path” routes as a baseline. In the table we show three
setups for each test case: low utilization (L), medium utilization (M) and high
utilization (H). The increasingly higher utilization has been obtained by in-
creasing the number of TT flows; the TT flows were generated as presented
in subsection 4.6.1. For each algorithm and test case, we show the percentage
of TT flows that are schedulable (out of 100%).

As we can see from Table 4.5, as the size of the topology and the utilization in-
crease, the shortest path routing has difficulties in finding schedulable solutions
for the TT flows. Note that, for low utilizations it is easy to find schedulable
solutions even without optimizing the routing. However, our RoutingHeuristic
is able to significantly improve on the shortest path routing as the topologies
get larger and more utilized.

As we can see from the results, for topologies that have alternative routes,
optimizing routing is very important if we want to obtain solutions where TT
flows can be scheduled, and our RoutingHeuristic is able to find such results
in the short time limits imposed. We have used time limits of 1, 5, 15 and
30 minutes, corresponding to the topology size and utilization (the larger the
topology and utilization, the longer the time limit). As expected, for topologies
that do not have multiple alternative routes between end systems (e.g., TC3
and TC4), optimizing routing is less important.

104
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

Table 4.6: Experimental results for JRS

Test case TT AVB End Switches TT latency TT Queues TT+AVB JRS
flows flows systems Exec. Sched. Exec. Sched. Exec. Sched. Exec. Sched.

Motiv. 4 4 3 1 1.1 No 0.8 No 32 Yes 21.9 Yes
TC5 12 4 5 2 2.2 No 2.6 No 403.9 Yes 148.3 Yes
TC6 35 26 32 18 8.7 No 9.6 No 612.8 Yes 527.7 Yes
TC7 427 464 256 146 708.6 No 628.8 No 728.5 No 534.6 Yes
Auto. 14 34 20 20 2.8 No 2.7 No 422.8 No 300.03 Yes

4.6.3 Evaluation of AVB-aware routing and scheduling

Our proposed TT routing and scheduling algorithms are the only approaches
proposed so far in the literature that can take into account the AVB flows. Our
AVB-aware Joint Routing and Scheduling (JRS) for TT flows is evaluated in
this section. We have considered the non-preemption integration mode in these
experiments, but our approach is able to handle all integration modes.

To evaluate JRS, we used five test cases, “Motiv.” (the motivational example
in Figure 4.6), three synthetic test cases, TC5–7 and an automotive test case
“Auto.”. For TC5–7 we used star and snowflake topologies, gradually increasing
the size of the network. For “Auto”, we used traffic flows obtained from an
automotive manufacturer, implementing ADAS functions, and we have used
the approach from [GZPS17] to generate the network topology. The details of
the test cases, i.e., the number of TT and AVB flows and the number of ESes
and NSes are in Table 4.6 columns 2–5.

We have run our proposed JRS optimization strategy on these test cases, and
the results are presented in Table 4.6 under the heading JRS. We have com-
pared our approach with three other approachs. (1) Thus, “TT+AVB” does
not attempt to optimize routing (considers shortest paths) and instead uses the
SchedulingMetaheuristic from Algorithm 4.3 to determine GCLs such that both
TT and AVB flows are schedulable (i.e., it takes into account the AVB flows).

The two other approaches ignore AVB flows and also use shortest path rout-
ing. Thus, (2) in the “TT latency” aproach, where we minimized the latency of
TT flows and (3) in the “TT queues” aproach we minimized the number of TT
queues (in the hope of helping indirectly the AVB flows by reducing the number
of higher-priority TT queues). These two approaches were also implemented
using SchedulingMetaheuristic, but the objective function has been changed to
minimize the TT latency and the number of TT queues, respectively, see subsec-
tion 4.6.1. The “Exec.” columns show the algorithms’ runtime in seconds. The
TT flows were schedulable for all experiments. In the columns labeled “Sched.”
we show if the AVB flows were also schedulable.

4.7 Conclusions 105

As we can see from the table, if AVB is ignored during scheduling as is the case
with the “TT latency” and “TT queues” approaches, we are not able to find
schedulable solutions for the AVB flows. However, if we take into account the
AVB flows during the scheduling (the “TT+AVB” heading in Table 4.6), we are
able to find solutions where both TT and AVB flows are schedulable. However,
this is possible only for the smaller test cases, “Motiv.”, TC5 and TC6. For the
larger test case TC7 and the realistic test case “Auto.”, we also have to optimize
the routing of the TT flows in order to obtain schedulable solutions.

The conclusion is that only by using our JRS approach that takes the AVB into
account during the routing and scheduling optimization, we are able to obtain
schedulable solutions where all AVB flows are also schedulable. In addition, our
approach is able to handle large problem sizes, such as TC7, with a network of
402 devices and 891 flows.

4.7 Conclusions

In this paper we have considered TSN-based cyber-physical systems and run-
ning mixed-criticality real-time applications that use both TT and AVB traf-
fic. We were interested to decide the routing, the number of TT queues, the
allocation of TT flows to TT queues and the GCLs of TT queues such that
all flows are schedulable. Our approach was to use an integrated heuristic-
metaheuristic, called Joint Routing and Scheduling (JRS), to search for TT
routing and scheduling solutions where both TT and AVB flows are schedula-
ble. Each solution visited during the search was evaluated in terms of AVB
schedulability using a Network Calculus approach that takes into account the
impact of TT GCLs on the WCDs of AVB flows. Our results show that only
by taking into account the AVB flows during the routing and GCL synthesis we
can obtain schedulable solutions for both TT and AVB.

106
Paper C: AVB-Aware Routing and Scheduling of

Time-Triggered Traffic for TSN

Bibliography

[Aer09] Aeronautical Radio, Inc. ARINC 664P7: Aircraft Data Network,
Part 7, Avionics Full-DupleX Switched Ethernet Network (AFDX),
2009.

[AGRN16] Guy Avni, Shibashis Guha, and Guillermo Rodriguez-Navas. Synthe-
sizing Time-Triggered Schedules for Switched Networks with Faulty
Links. In Proceedings of the International Conference on Embedded
Software (EMSOFT), pages 1–10, 2016.

[ALAS15] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to
Embedded Systems - A Cyber-Physical Systems Approach. MIT Press,
2015.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11–33, 2004.

[AMF12] Hamdi Ayed, Ahlem Mifdaoui, and Christian Fraboul. Frame pack-
ing strategy within gateways for multi-cluster avionics embedded net-
works. In Proceedings of IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, 2012.

[APLB13] Giuliana Alderisi, Gaetano Patti, and Lucia Lo Bello. Introducing
support for scheduled traffic over IEEE audio video bridging net-
works. In Proceedings of IEEE Conference on Emerging Technologies
Factory Automation (ETFA), pages 1–9, 2013.

108 BIBLIOGRAPHY

[Apt03] Krzysztof Apt. Principles of constraint programming. Cambridge U.
Press, 2003.

[ART14] Bjoern Annighoefer, Caroline Reif, and Frank Thieleck. Network
topology optimization for distributed integrated modular avionics.
In Proceedings of IEEE/AIAA Digital Avionics Systems Conference
(DASC), pages 4A1–1–4A1–12, 2014.

[ASBCH13] Ahmad Al Sheikh, Olivier Brun, Maxime Cheramy, and Pierre-
Emmanuel Hladik. Optimal design of virtual links in AFDX networks.
Real-time Systems, 49(3):308–336, 2013.

[AVB05] AVB Task Group. Audio-Video Bridging (AVB), 2005.

[AVB09] AVB Task Group. IEEE 802.1Qav/D7.0: Forwarding and Queuing
Enhancements for Time-Sensitive Streams, 2009.

[AVB11] AVB Task Group. IEEE 802.1ba/D2.5: Audio Video Bridging (AVB)
Systems, 2011.

[BK14] Edmund K Burke and Graham (Eds.) Kendall. Search methodologies.
Springer, 2014.

[BLAC05] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Cac-
camo. Soft Real-Time Systems. Springer, 2005.

[But11] Giorgio Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Publishing Com-
pany, Incorporated, 3rd edition, 2011.

[Con06] FlexRay Consortium. Flexray, 2006.

[CRE+12] Rodney Cummings, Kai Richter, Rolf Ernst, Jonas Diemer, and
Arkadeb Ghosal. Exploring use of ethernet for in-vehicle control ap-
plications: AFDX, TTEthernet, EtherCAT, and AVB. SAE Technical
Papers, 5(1):72–88, 2012.

[CS16] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and
network-level scheduling for distributed time-triggered systems. Real-
time Systems, 52(2):161–200, 2016.

[CSCS16] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wil-
fried Steiner. Scheduling real-time communication in IEEE 802.1Qbv
time sensitive networks. In proceedings of International Conference
on Real-Time Networks and Systems (RTNS), pages 183–192, 2016.

[DAB14] Joan Adrià Ruiz De Azua and Marc Boyer. Complete Modelling of
AVB in Network Calculus Framework. In Proceedings of International
Conference on Real-Time Networks and Systems (RTNS), pages 55–
64, 2014.

BIBLIOGRAPHY 109

[Dec05] Jean-Dominique Decotignie. Ethernet-based real-time and industrial
communications. Proceedings of the IEEE, 93(6):1102–1117, 2005.

[DN16] Frank Duerr and Naresh Ganesh Nayak. No-wait Packet Scheduling
for IEEE Time-sensitive Networks (TSN). In Proceedings of the In-
ternational Conference on Real-Time Networks and Systems (RTNS),
pages 203–212, 2016.

[Est07] Jeff A. Estefan. Survey of model-based systems engineering (MBSE)
methodologies. INCOSE MBSE Focus Group, 25(8):1–12, 2007.

[Eth03] EtherCAT Technology Group. EtherCAT (Ethernet for Control Au-
tomation Technology), 2003.

[Eth18] EtherCAT Technology Group (ETG). EtherCAT Approach Sup-
ported by Key TSN Switch Vendors, 2018.

[Fel04] Joachim Feld. PROFINET—scalable factory communication for all
applications. In Proceedings of the IEEE International Workshop on
Factory Communication Systems (WFCS), pages 33–38, 2004.

[FMHH01] Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert
Hugel. Time Triggered CAN (TTCAN). In SAE World Congress,
page 7s. SAE International, 2001.

[FR89] Thomas A Feo and Mauricio G. C. Resende. A Probabilistic Heuristic
for a Computationally Difficult Set Covering Problem. Operations
Research Letters, 8(2):67–71, 1989.

[GHKS98] Miltos D. Grammatikakis, D. Frank Hsu, Miro Kraetzl, and Jop F.
Sibeyn. Packet Routing in Fixed-Connection Networks: A Survey.
Journal of Parallel and Distributed Computing, 54(2):77–132, 1998.

[GJS76] Michael R. Garey, David S. Johnson, and Ravi Sethi. The complex-
ity of flowshop and jobshop scheduling. Mathematics of Operations
Research, 1(2):117–129, 1976.

[GP16] Voica Gavrilut and Paul Pop. Traffic class assignment for mixed-
criticality frames in TTEthernet. ACM Sigbed Rev., 13(4):31–36,
2016.

[GP18] Voica Gavrilut and Paul Pop. Scheduling in time sensitive net-
works (TSN) for mixed-criticality industrial applications. In Proceed-
ings of International Workshop on Factory Communication Systems
(WFCS), pages 1–4, 2018.

[GPew] Voica Gavrilut and Paul Pop. Traffic Type Assignment for TSN-
based Mixed-Criticality Cyber-Physical Systems. ACM Transactions
on Cyber-Physical Systems (TCPS), page 20s, 2018 (in review).

110 BIBLIOGRAPHY

[GTSP15] Voica Gavrilut, Domitian Tamas-Selicean, and Paul Pop. Fault-
Tolerant Topology Selection for TTEthernet Networks. In Proceed-
ings of the Safety and Reliability of Complex Engineered Systems
Conference, pages 4001–4009, 2015.

[Gur] Gurobi Optimizer. Mathematical Programming Solver.

[GZPS17] Voica Gavrilut, Bahram Zarrin, Paul Pop, and Soheil Samii. Fault-
Tolerant Topology and Routing Synthesis for IEEE Time-Sensitive
Networking. In Proceedings of International Conference on Real-Time
Networks and Systems (RTNS), pages 267–276, 2017.

[GZRPss] Voica Gavrilut, Luxi Zhao, Michael L. Raagaard, and Paul Pop. AVB-
Aware Routing and Scheduling of Time-Triggered Traffic for TSN.
IEEE Access, page 14s, 2018 (in press).

[Hap16] Julien Happich. Time sensitive networks approaches the car, 2016.

[HKGF09] Thomas Herpel, Bernhard Kloiber, Reinhard German, and Steffen
Fey. Routing of Safety-Relevant Messages in Automotive ECU Net-
works. In Proceedings of the Vehicular Technology Conference (VTC),
pages 1–5, 2009.

[Hon92] Honeywell. SAFEbus, 1992.

[HSF14] Tasnim Hamza, Jean-Luc Scharbarg, and Christian Fraboul. Priority
assignment on an avionics switched Ethernet Network (QoS AFDX).
In Proceedings of International Workshop on Factory Communication
Systems (WFCS), pages 1–8, 2014.

[HZL17] Feng He, Lin Zhao, and Ershuai Li. Impact Analysis of Flow Shap-
ing in Ethernet-AVB/TSN and AFDX from Network Calculus and
Simulation Perspective. Sensors, 17(5), 2017.

[IEE10] IEEE. IEEE 802.1Qat - IEEE Standard for Local and Metropolitan
Area Networks - Virtual Bridged Local Area Networks Amendment
14: Stream Reservation Protocol, 2010.

[IEE12] IEEE. IEEE 802.3 - IEEE Standard for Ethernet, 2012.

[Int98] International Electrotechnical Commission (IEC). Fieldbus, 1998.

[Int01] Profibus & Profinet International. Profinet, 2001.

[JB04] Dirk Jansen and Holger Buttner. Real-time Ethernet: the EtherCAT
solution. Computing and Control Engineering, 15(1):16–21, 2004.

BIBLIOGRAPHY 111

[KG93] Hermann Kopetz and Guenther Gruensteidl. TTP - A time-triggered
protocol for fault-tolerant real-time systems. In Proceedings of In-
ternational Symposium on Fault-Tolerant Computing (FTCS), pages
524–533, 1993.

[Kni02] Jonathan Knight. Safety critical systems: challenges and directions.
In Proceedings of the International Conference on Software Engineer-
ing (ICSE), pages 547–550, 2002.

[Kop91] Hermann Kopetz. Event-triggered versus time-triggered real-time
systems. Lecture Notes in Computer Science, 563:87–101, 1991.

[Kop11] Hermann Kopetz. Real-time systems : Design principles for dis-
tributed embedded applications. Springer, 2011.

[KP00] Way Kuo and V Rajendra Prasad. An annotated overview of system-
reliability optimization. IEEE Transactions on Reliability, 49(2):176–
187, 2000.

[KRD02] Nicolas Krommenacker, Eric Rondeau, and Thierry Divoux. Genetic
algorithms for industrial ethernet network design. In Proceedings of
IEEE International Workshop on Factory Communication Systems
(WFCS), pages 149–156, 2002.

[KS06] Abdullah Konak and Alice E Smith. Network reliability optimization.
In Handbook of Optimization in Telecommunications, pages 735–760.
Springer, 2006.

[Lau16] Laursen, Sune Molgaard and Pop, Paul and Steiner, Wilfried. Rout-
ing Optimization of AVB Streams in TSN Networks. ACM Sigbed
Review, 13:43–48, 2016.

[LCM11] Martin Lukasiewycz, Samarjit Chakraborty, and Paul Milbredt.
FlexRay Switch Scheduling - A Networking Concept for Electric Ve-
hicles. In Proceedings of Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 1–6, 2011.

[LSS+12] Martin Lukasiewycz, Sebastian Steinhorst, Florian Sagstetter, Wanli
Chang, Peter Waszecki, Matthias Kauer, and Samarjit Chakraborty.
Cyber-physical systems design for electric vehicles. In Proceedings of
Euromicro Conference on Digital System Design (DSD), pages 477–
484, 2012.

[MAR08] Vaclav Mikolasek, Astrit Ademaj, and Stanislav Racek. Segmentation
of standard ethernet messages in the time-triggered ethernet. In Pro-
ceedings of IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 392–399, 2008.

112 BIBLIOGRAPHY

[ML09] Muriel Medard and Steven S. Lumetta. Network reliability and fault
tolerance. Technical report, Massachusetts Institute of Technology,
2009.

[MLC15] Renato Mancuso, Andrew V. Louis, and Marco Caccamo. Using traf-
fic phase shifting to improve AFDX link utilization. In Proceedings of
International Conference on Embedded Software (EMSOFT), pages
256–265, 2015.

[MS17] Dorin Maxim and Ye-Qiong Song. Delay Analysis of AVB traffic
in Time-Sensitive Networks (TSN). In Proceedings of International
Conference on Real-Time Networks and Systems (RTNS), pages 18–
27, 2017.

[MVNB] Jorn Migge, Josetxo Villanueva, Nicolas Navet, and Marc Boyer. In-
sights on the Performance and Configuration of AVB and TSN in
Automotive Ethernet Networks.

[Nay17] Nayak, Naresh Ganesh and Duerr, Frank and Rothermel, Kurt. Rout-
ing Algorithms for IEEE802.1Qbv Networks. ACM Sigbed Review,
x:6, 2017.

[NSS00] Nicolas Navet, Y-Q Song, and François Simonot. Worst-Case Dead-
line Failure Probability in Real-Time Applications Distributed over
Controller Area Network. Journal of Systems Architecture, 46(7):607–
617, 2000.

[On-14] On-road Automated Vehicle Standards Committee. SAE J3016: Tax-
onomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems. Technical report, SAE International,
2014.

[PA04] Paulo Pedreiras and Luis Almeida. Message routing in multi-segment
FTT networks: the isochronous approach. In Proceedings of Parallel
and Distributed Processing Symposium (PDPS), pages 122–129, 2004.

[PD12] Quang Dung Pham and Yves Deville. Solving the quorumcast rout-
ing problem by constraint programming. Constraints, 17(4):409–431,
2012.

[PEP05] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-driven frame
packing for multicluster distributed embedded systems. ACM Trans-
actions on Embedded Computing Systems (TECS), 4(1):112–140,
2005.

[PGAB05] Paulo Pedreiras, Paolo Gai, Luis Almeida, and Giorgio Buttazzo.
FTT-Ethernet: a flexible real-time communication protocol that sup-
ports dynamic QoS management on Ethernet-based systems. IEEE
Transactions on Industrial Informatics, 1(3):162–172, 2005.

BIBLIOGRAPHY 113

[PGPE11] Paul Pop, Alois Goller, Traian Pop, and Petru Eles. Development
tools. In Roman Obermaisser, editor, Time-Triggered communica-
tion, chapter 7, pages 363–522. CRC Press, 2011.

[PPEP08] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Analysis and op-
timisation of hierarchically scheduled multiprocessor embedded sys-
tems. International Journal of Parallel Programming, 36(1):37–67,
2008.

[PRCS16] Paul Pop, Michael L. Raagaard, Silviu S. Craciunas, and Wilfried
Steiner. Design Optimization of Cyber-Physical Distributed Systems
using IEEE time-sensitive Networks (TSN). IET Cyber-Physical Sys-
tems: Theory & Applications, 1(1):86–94, 2016.

[PSRH15] Francisco Pozo, Wilfried Steiner, Guillermo Rodríguez-Navas, and
Hans Hansson. A decomposition approach for SMT-based schedule
synthesis for time-triggered networks. In Proceedings of IEEE Con-
ference on Emerging Technologies & Factory Automation (ETFA),
pages 1–8, 2015.

[PSS15] Wolfgang Puffitsch, Rasmus Bo Sorensen, and Martin Schoeberl.
Time-division multiplexing vs network calculus. In proceedings of In-
ternational Conference on Real-Time Networks and Systems (RTNS),
pages 289–296, 2015.

[PTO18] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser.
Heuristic list scheduler for time triggered traffic in time sensitive net-
works. ACM Sigbed Review, x:1–6, 2018.

[Rob86] Robert Bosch GmbH. Controller area network (can), 1986.

[RP17] Michael Lander Raagaard and Paul Pop. Optimization algorithms
for the scheduling of IEEE 802.1 Time-Sensitive Networking (TSN).
Technical report, Technical University of Denmark, January 2017.

[RR14] Mauricio GC Resende and Celso C Ribeiro. GRASP: greedy ran-
domized adaptive search procedures. In Search methodologies, pages
287–312. Springer, 2014.

[Rus01] John Rushby. A comparison of bus architectures for safety-critical
embedded systems. Technical report, Computer Science Laboratory,
SRI International, 2001.

[SAE11] SAE. AS6802: Time-Triggered Ethernet, 2011.

[SCS14] Ramon Serna Oliver, Silviu S Craciunas, and Georg Stöger. Anal-
ysis of deterministic ethernet scheduling for the industrial internet
of things. In Proceedings of the IEEE International Workshop on

114 BIBLIOGRAPHY

Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), pages 320–324, 2014.

[SCS18] Ramon Serna Oliver, Silviu S. Craciunas, and Wilfried Steiner. IEEE
802.1Qbv Gate Control List Synthesis using Array Theory Encoding.
In Proceedings of the Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), 2018.

[SDT+17] Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzy-
jegla, and Gero Mühl. ILP-based joint routing and scheduling for
time-triggered networks. In Proceedings of the International Confer-
ence on Real-Time Networks and Systems (RTNS), pages 8–17, 2017.

[SG12] Stefan Schneele and Fabien Geyer. Comparison of IEEE AVB and
AFDX. In Proceedings of the IEEE/AIAA Digital Avionics Systems
Conference (DASC), pages 7A7–1–7A7–9, 2012.

[Sha98] Paul Shaw. Using constraint programming and local search methods
to solve vehicle routing problems. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming
(CP), pages 417–431, 1998.

[Sie04] Siemens AG. SN 29500-5: Failure rates of components expected val-
ues. Section 5. Expected values for electrical connections, connectors
and sockets. Technical Report SN 29500-5, Siemens AG, 2004.

[SN06] Rishi Saket and Nicolas Navet. Frame packing algorithms for auto-
motive applications. Journal of Embedded Computing, 2(1):93–102,
2006.

[SS16] Johannes Specht and Soheil Samii. Urgency-Based Scheduler for
Time-Sensitive Switched Ethernet Networks. In Proceedings of Eu-
romicro Conference on Real-Time Systems (ECRTS), pages 75–85,
2016.

[SS17] Johannes Specht and Soheil Samii. Synthesis of Queue and Priority
Assignment for Asynchronous Traffic Shaping in Switched Ethernet.
In Proceedings of IEEE Real-Time Systems Symposium (rtss), pages
178–187, 2017.

[Ste10] Wilfried Steiner. An Evaluation of SMT-Based Schedule Synthesis
for Time-Triggered Multi-hop Networks. In Proceedings of Real-Time
Systems Symposium (RTSS), pages 375–384, 2010.

[Ste11] Wilfried Steiner. Synthesis of static communication schedules for
mixed-criticality systems. In Proceedings of IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops (ISORCW), pages 11–18, 2011.

BIBLIOGRAPHY 115

[Ste16] Wilfried Steiner. Deterministic ethernet for real-time
and critical applications. "http://www.av.it.pt/
wfcs2016/admin/files/Keynotes/Wilfried%20Steiner/
2016-05-04-Deterministic-Ethernet.pdf" , 2016. Keynotes
of International Workshop on Factory Communication Systems
(WFCS).

[TE16] Daniel Thiele and Rolf Ernst. Formal worst-case performance analysis
of time-sensitive ethernet with frame preemption. In Proceedings of
the IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1–9, 2016.

[Tib13] Gissila Tibebu. Connectors and vibrations – damages in different
electrical environments. Master’s thesis, Blekinge Institute of Tech-
nology, 2013.

[TSN12] TSN Task Group. Time-Sensitive Networking (TSN), 2012.

[TSN15] TSN Task Group. IEEE 802.1Qbv/D3.1: Enhancements for Sched-
uled Traffic, 2015.

[TSN17] TSN Task Group. IEEE 802.1CB/D2.8: Frame Replication and Elim-
ination for Reliability, 2017.

[TSN18a] TSN Task Group. IEEE p802.1Qcc/D2.3: Stream Reservation Pro-
tocol (SRP) Enhancements and Performance Improvements, 2018.

[TSN18b] TSN Task Group. IEEE p802.1Qcr/D0.4: Asynchronous Traffic
Shaping, 2018.

[TSPM15] Domitian Tamas-Selicean, Paul Pop, and Jan Madsen. Design
of Mixed-Criticality Applications on Distributed Real-Time Systems.
PhD thesis, 2015.

[TSPS14] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Design op-
timization of TTEthernet-based distributed real-time systems. Real-
Time Systems, 51(1):1–35, 2014.

[TSPS15] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Design op-
timization of TTEthernet-based distributed real-time systems. Real-
Time Systems, 51(1):1–35, 2015.

[TW11] Andrew S. Tanenbaum and David J. Wetherall. Computer networks.
Prentice-Hall„ 2011.

[Ull75] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of
Computer and System sciences, 10(3):384–393, 1975.

"http://www.av.it.pt/wfcs2016/admin/files/Keynotes/Wilfried%20Steiner/2016-05-04-Deterministic-Ethernet.pdf"
"http://www.av.it.pt/wfcs2016/admin/files/Keynotes/Wilfried%20Steiner/2016-05-04-Deterministic-Ethernet.pdf"
"http://www.av.it.pt/wfcs2016/admin/files/Keynotes/Wilfried%20Steiner/2016-05-04-Deterministic-Ethernet.pdf"

116 BIBLIOGRAPHY

[Uni88] United States Department of Transportation (DOT). Advisory Cir-
cular (AC) 25.1309-1A - System Design and Analysis, 1988.

[Val79] Leslie G. Valiant. The Complexity of Enumeration and Reliability
Problems. SIAM Journal on Computing, 8(3):410–421, 1979.

[Veh93] Vehicle Architecture For Data Communications Standards Commit-
tee. SAE J2056/1: Class C Application Requirement Considerations.
Technical report, SAE International, 1993.

[vOPF16] Nikolaj van Omme, Laurent Perron, and Vincent Furnon. OR-Tools
User’s Manual. Technical report, Google, 2016.

[WH00] Bin Wang and Jennifer C. Hou. Multicast Routing and its QoS
Extension: Problems, Algorithms, and Protocols. IEEE Network,
14(1):22–36, 2000.

[Yen71] Jin Y. Yen. Finding the k shortest loopless paths in a network. Man-
agement Science, 17(11):712–716, 1971.

[ZP18] Cristian Zara and Paul Pop. Algorithms for the optimization of
safety-critical networks. Master’s thesis, Technical University of Den-
mark, 2018.

[ZPL+17] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong.
Timing analysis of rate-constrained traffic in ttethernet using network
calculus. Real-time Systems, 53(2):254–287, 2017.

[ZPZL18] Luxi Zhao, Paul Pop, Zhong Zheng, and Qiao Li. Timing analysis of
AVB traffic in TSN networks using network calculus. In Proceedings
of the Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 25–36, 2018.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements

