Electrochemically deposited surfaces based on copper and silver with biocidal effect against methicillin resistant S. aureus (MRSA)

Xu, Yijuan; Thomsen, Trine Rolighed; Gram, Lone; Ciacotich, Nicole

Published in:
Biofilms 8 Programme and Abstracts

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Perfectus Biomed are delighted to offer UKAS accredited biofilm test methods from highthroughput screens to complex flow models.

- **SOP 536**: Standard test method for testing disinfectant efficacy against *Pseudomonas aeruginosa* and *Staphylococcus aureus* biofilms using the Minimum Biofilm Eradication Concentration (MBEC) assay.
- **SOP 537**: Standard test method for the quantification of biofilm growth with low shear using the CDC biofilm reactor.
- **SOP 538**: Standard test method for the quantification of biofilm grown using the Drip Flow biofilm reactor with low shear and continuous flow.

Test methods can be used for the assessment of disinfectants, biocides, gels, ointments and wound dressings. Data can be used for regulatory, marketing support and to inform internal research and development.

INDEX

- **WELCOME**
- **GENERAL INFORMATION**
- **ORGANISATION**
- **POSTER SESSIONS**
- **PRIZES AND AWARDS**
- **PROGRAMME**
- **EXHIBITORS AT BIOFILMS8**
- **ORAL ABSTRACTS**
- **POSTER ABSTRACTS**
- **AUTHOR INDEX**

BIOFILMS 8

Nordre Fasanvej 113, 2nd floor
2000 Frederiksberg C
Denmark

info@cap-partner.eu
www.conferences.au.dk/biofilms8
Dear participant,

It is a great pleasure to welcome you to the Biofilms 8 conference in Aarhus, Denmark.

During the 2.5 conference days, you will experience a diverse programme that includes high level scientific presentations and networking activities - an excellent opportunity to exchange knowledge and experiences within biofilms.

Biofilms 8 is the 8th conference in a series that cover the topic of bacterial biofilms in the broadest sense. The conference focus is on the basic scientific question of how biofilms form, grow and interact with their surroundings. You will meet researchers from the natural sciences, engineering, and health science to exchange their research on how biofilms develop, how they interact with their surroundings, and how they can be controlled in a natural, industrial, or clinical setting.

The main subjects of the conference are:

- Molecular mechanisms in biofilm formation
- The biofilm matrix
- Bacterial attachment
- Modelling biofilms
- Biofilm ecology
- Evolution in biofilms
- Biofilm control
- Novel methods for biofilm characterization

We hope you will enjoy the conference and your stay in Aarhus!

Kind regards from the Local Organising Committee,

Rikke Louise Meyer
Associate professor, Interdisciplinary Nanoscience Center and Department of Bioscience, Aarhus University (Conference Chair)
GENERAL INFORMATION

CONFERENCE VENUE
Aarhus University
Bygning 1412 (Building 1412)
Nordre Ringgade 4
8000 Århus, Denmark

CONFERENCE LANGUAGE
The conference will be held in English.

NAME BADGES
All participants and exhibitors must wear the name badge in the conference area at all times. The badge must be visible.

LUNCH AND COFFEE BREAKS
Lunch is available in the poster area. Coffee is available in the exhibition area. See programme for exact time of breaks.

Exhibition area: Vandrehallen
Poster area: Stakladen & Richard Mortensen room

SPEAKER INFORMATION
Please bring your presentation to the session room before your session starts. We recommend you upload your presentation at least 30 min before your session. A technician will be present to assist in the upload if necessary. Please bring your presentation on a USB.

Unless otherwise agreed all presentations will be deleted after the conference in order to secure that no copyright issues will arise at the end of the conference.

WIFI
Free WiFi is provided throughout the venue by logging on the network “AU Guest”. Open an internet browser and log on through one of the accounts.

MOBILE PHONES
All mobile phones must be on silent mode during the sessions.

CLOAK ROOM
A manned cloak room located in the basement under the auditorium “Aula” will be available throughout the conference.

LOST AND FOUND
Found items should be returned to the registration desk. If you lose something, please report to this desk for assistance.

CONFERENCE SECRETARIAT
CAP Partner
Nordre Fasanvej 113
2000 Frederiksberg C, Denmark
Tel: +45 70 20 03 05

www.cap-partner.eu
info@cap-partner.eu

SOCIAL MEDIA
Find Biofilms 8 on Facebook (Search for “Biofilms Conference Series”) and Twitter (@Biofilms8)
Use #Biofilms8

CONFERENCE WEBSITE
www.conferences.au.dk/biofilms8

SOCIAL EVENTS
Welcome Reception (included in the registration fee)
Date: 27 May 2018
Time: 18.30 - 20.30
Place: Poster area, Stakladen, Aarhus University

The welcome reception will take place in the poster area in Stakladen at Aarhus University from 18.30 - 20.30.

Conference Dinner (included in the registration fee)
Date: 28 May 2018
Time: 19.00 - 00.00
Place: Turbinehallen, Kalkværksvej 12, 8000 Aarhus C

The conference dinner will take place from 19.00 - 00.00 in Turbinehallen. The Turbinehallen is a rustic and vibrant venue full of atmosphere and character, centrally located in Aarhus in the urban harbour area in the heart of the Aarhus Film Town.

Join us at the dinner and catch up with colleagues and friends, and make new acquaintances! Please note that the dinner is included in the registration fee, but registration is required.

HOW TO GET TO THE CONFERENCE DINNER VENUE:
To reach the dinner venue from the University, you can take bus 100, 200, 16 or 18 from the busstop “Aarhus Universitet. Randersvej/ Nordre Ringgade” at the intersection of Randersvej and Nordre Ringgade and get off at the Aarhus Central station. The dinner venue is located a 5-10 minutes walk from the central station.
ORGANISATION

Rikke Louise Meyer
Interdisciplinary Nanoscience Center and Department of Bioscience, Aarhus University (Chair)

Thomas Emil Andersen
University of Southern Denmark, Denmark

Mette Burmølle
Copenhagen University, Denmark

Matthew Fields
Center for Biofilm Engineering, Montana State University, USA

Ákos Kovács
Professor, Technical University of Denmark, Denmark

Per Halkjær Nielsen
Aalborg University, Denmark

Daniel Otzen
Aarhus University, Denmark

Trine Rolighed Thomsen
Aalborg University, Denmark

POSTER SESSIONS

The poster sessions are held during lunch breaks. Please be present at your poster during these times. See the exact time of your poster session here below:

<table>
<thead>
<tr>
<th>Categories</th>
<th>Presentation time</th>
<th>Poster number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday 27 May</td>
<td>The biofilm matrix</td>
<td>12.00 - 13.00</td>
</tr>
<tr>
<td></td>
<td>Molecular mechanisms in biofilm formation</td>
<td>13.00 - 14.00</td>
</tr>
<tr>
<td></td>
<td>Bacterial attachment</td>
<td></td>
</tr>
<tr>
<td>Monday 28 May</td>
<td>Biofilm ecology</td>
<td>11.30 - 12.30</td>
</tr>
<tr>
<td></td>
<td>Modelling biofilms</td>
<td>12.30 - 13.30</td>
</tr>
<tr>
<td></td>
<td>Evolution in biofilms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Tuesday 29 May</td>
<td>Biofilm control</td>
<td>10.50 - 11.40</td>
</tr>
<tr>
<td></td>
<td>Novel methods for biofilm characterization</td>
<td>11.40 - 12.30</td>
</tr>
</tbody>
</table>

PRIZES AND AWARDS

Thanks to our 3 sponsors below, a number of prizes will be awarded during the closing ceremony on Tuesday 29 May 2018. The prizes will consist of 8 poster prizes and 1 Young Investigator Award. We deeply thank our sponsors for the support:

JOURNAL OF MEDICAL MICROBIOLOGY
Journal of Medical Microbiology provides comprehensive coverage of medical, dental and veterinary microbiology and infectious diseases, including bacteriology, virology, mycology and parasitology.

Articles are published in the following areas: Pathogenesis, Virulence & Host Response; Clinical Microbiology; Microbial and Molecular Epidemiology; Microbiome and Microbial Ecology in Health; One Health - Emerging, Zoonotic & Environmental Diseases; Prevention, Therapy and Therapeutics; Antimicrobial Resistance; and Disease, Diagnosis and Diagnostics.

NPJ BIOFILMS AND MICROBIOMES
The journal hosts cross-disciplinary discussions and allows for our understanding of mechanisms governing the social behaviour of microbial biofilm populations and communities, and their impact on life, human health, and the environment, both natural and engineered.

MICROORGANISMS JOURNAL
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses, and prions. Articles published in Microorganisms are indexed in PubMed (NLM).
Programme Sunday 27 May

<table>
<thead>
<tr>
<th>Time</th>
<th>Abs.</th>
<th>Title</th>
<th>Speaker</th>
<th>Area</th>
<th>Sponsored by</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.30</td>
<td></td>
<td>Registration desk opens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.00 - 09.15</td>
<td></td>
<td>Welcome & Opening Ceremony</td>
<td>By Biofilms 8 Chair, Rikke Louise Meyer</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>09.15 - 10.00</td>
<td>O1</td>
<td>Bird’s Eye Lecture: The biofilm matrix: strategies for protection and exploitation</td>
<td>Nicola Stanley-Wall, UK</td>
<td>Auditorium Aula</td>
<td>Microbiology</td>
</tr>
<tr>
<td>10.00 - 10.40</td>
<td></td>
<td>Coffee/Tea Break</td>
<td></td>
<td>Exhibition area</td>
<td></td>
</tr>
<tr>
<td>10.40 - 12.00</td>
<td></td>
<td>Session 1: The biofilm matrix</td>
<td>Matthew Fields, USA</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>10.40 - 11.00</td>
<td>O2</td>
<td>Glycosylated amyloid-like proteins in the structural extracellular polymers of aerobic granular sludge enriched with ammonium oxidizing bacteria</td>
<td>Yuemei Lin, The Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.00 - 11.20</td>
<td>O3</td>
<td>Formation of functional non-amyloidogenic fibres by recombinant Bacillus subtilis TasA</td>
<td>Elliot Erskine, UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.20 - 11.40</td>
<td>O4</td>
<td>Insight into the RapA lectin and its use in the study of biofilm matrix formation by rhizobia</td>
<td>Patricia Abdian, Argentina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.40 - 12.00</td>
<td>O5</td>
<td>Secreted, Large-Scale, Extracellular Membrane Systems in Microbial Biofilms</td>
<td>Matthew Fields, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00 - 14.00</td>
<td></td>
<td>Lunch & Poster session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00 - 14.30</td>
<td>O6</td>
<td>Invited Lecture: Molecular interactions of staphylococcal biofilm forming proteins</td>
<td>Joan Geoghegan, Ireland</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>14.30 - 15.50</td>
<td></td>
<td>Session 2: Molecular mechanisms in biofilm formation</td>
<td>Maria Hadjifrangiskou, USA</td>
<td></td>
<td>Leica</td>
</tr>
<tr>
<td>14.30 - 14.50</td>
<td>O7</td>
<td>Cytochrome Bd-I is used for energy production in uropathogenic E. coli biofilms</td>
<td>Maria Hadjifrangiskou, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.50 - 15.10</td>
<td>O8</td>
<td>Heat activates cyclic diguanylate production in bacteria</td>
<td>Joe Harrison, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.10 - 15.30</td>
<td>O9</td>
<td>Sortase-assembled pili of Enterococcus faecalis contribute to iron-mediated extracellular electron transfer and iron-augmented biofilm</td>
<td>Kimberly Kline, Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.30 - 15.50</td>
<td>O10</td>
<td>Physical determinants of amyloid assembly in biofilm formation</td>
<td>Maria Andreasen, Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.50 - 16.20</td>
<td></td>
<td>Coffee/Tea Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.20 - 16.50</td>
<td>O11</td>
<td>Invited Lecture: How do bacteria respond to their adhering state?</td>
<td>Henney van der Mei, The Netherlands</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>16.50 - 18.10</td>
<td></td>
<td>Session 3: Bacterial attachment</td>
<td>Hans-Curt Flemming, Germany</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>16.50 - 17.10</td>
<td>O12</td>
<td>Cell lysis prompts an early mechanical coupling and biofilm formation in dilute bacterial suspensions</td>
<td>Iztok Dogsa, Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.10 - 17.30</td>
<td>O13</td>
<td>Bone environment and its relationships with bacterial biofilm</td>
<td>Fany Reffuveille, France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.30 - 17.50</td>
<td>O14</td>
<td>The role of dynamic Tad pili in bacterial surface sensing</td>
<td>Yves Brun, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.50 - 18.10</td>
<td>O15</td>
<td>A role for two-component systems in bacterial attachment and antibiotic tolerance in Listeria monocytogenes</td>
<td>Hüsnü Aslan, Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.10 - 18.30</td>
<td>O16</td>
<td>Invited Lecture: Are biofilms really the dominant way of life for prokaryotes on Earth?</td>
<td>Hans-Curt Flemming, Germany</td>
<td>Auditorium Aula</td>
<td></td>
</tr>
<tr>
<td>18.30 - 20.30</td>
<td></td>
<td>Welcome Reception in the poster area (included in registration fee)</td>
<td></td>
<td>Stakladen</td>
<td></td>
</tr>
</tbody>
</table>

INVITATION

INFORMATION

MONDAY

TUESDAY

ORAL ABSTRACTS

POSTER ABSTRACTS

AUTHOR INDEX

INFORMATION

MONDAY

TUESDAY

ORAL ABSTRACTS

POSTER ABSTRACTS

AUTHOR INDEX
Programme Monday 28 May

<table>
<thead>
<tr>
<th>Time</th>
<th>Abs.</th>
<th>Title</th>
<th>Area</th>
<th>Sponsored by</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td></td>
<td>Registration desk opens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.00 - 09.40</td>
<td>017</td>
<td>Bird’s Eye Lecture: Cooperation and competition in biofilms</td>
<td>Auditorium Aula</td>
<td>MICROBIOLOGY SOCIETY</td>
</tr>
<tr>
<td>09.40 - 10.10</td>
<td></td>
<td>Coffee/Tea Break</td>
<td>Exhibition area</td>
<td></td>
</tr>
<tr>
<td>10.10 - 10.30</td>
<td>018</td>
<td>Biofilm architecture confers individual and collective protection against phage infection</td>
<td>Auditorium Aula</td>
<td>UNISENS</td>
</tr>
<tr>
<td>10.30 - 10.50</td>
<td>019</td>
<td>Effect of fluctuating environmental conditions on the spatial self-organization and emergent properties of a synthetic microbial biofilm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.50 - 11.10</td>
<td>020</td>
<td>AHL quorum sensing mediates species interactions in multispecies biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.10 - 11.30</td>
<td>021</td>
<td>Biofilm thickness controls the contribution of stochastic and deterministic processes in microbial community assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.30 - 13.30</td>
<td></td>
<td>Lunch & Poster session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.30 - 14.00</td>
<td>022</td>
<td>Invited Lecture: Multiscale analysis of microbial cross-feeding in biofilms: from Yellowstone hot springs to chronic wounds</td>
<td>Auditorium Aula</td>
<td>MICROBIOLOGY SOCIETY</td>
</tr>
<tr>
<td>14.00 - 14.20</td>
<td></td>
<td>Session 5: Modelling biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.20 - 14.40</td>
<td>023</td>
<td>Developing a novel understanding of E. coli K-12 pellicle formation, morphology, and physiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.40 - 15.00</td>
<td>024</td>
<td>Increasing the Space-Time Yield in Lactic Acid Production by the Use of Biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00 - 15.20</td>
<td>025</td>
<td>Estimation of mechanical and hydraulic biofilm properties from optical coherence tomography measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.20 - 15.50</td>
<td></td>
<td>Coffee/Tea Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.50 - 16.20</td>
<td>027</td>
<td>Invited Lecture: Why evolution in biofilms is different, and a few remarkable consequences</td>
<td>Exhibition area</td>
<td></td>
</tr>
<tr>
<td>16.20 - 17.40</td>
<td></td>
<td>Session 6: Evolution of biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.20 - 16.40</td>
<td>028</td>
<td>Long-term co-adaptation of Pseudomonas aeruginosa biofilms with amoeba affects virulence traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.40 - 17.00</td>
<td>029</td>
<td>Evolution in changing environments: Specialist and generalist strategies during non-stable selection of the biofilm phenotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.00 - 17.20</td>
<td>030</td>
<td>Cheating promotes evolution of hyper-cooperators by shifting phenotypic heterogeneity in biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.20 - 17.40</td>
<td>031</td>
<td>Increased rate of mutation to antimicrobial resistance in polymicrobial biofilms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.00 - 00.00</td>
<td></td>
<td>Congress Dinner at Turbinehallen, Aarhus (included in the registration fee, registration required)</td>
<td>Turbinehallen</td>
<td>Kalkværskvej 12, 8000 Aarhus</td>
</tr>
<tr>
<td>Time</td>
<td>Abs.</td>
<td>Title</td>
<td>Speaker</td>
<td>Area</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>--</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>08.30 - 09.00</td>
<td>032</td>
<td>Invited Lecture: Tuning biofilms architecture to control their functions</td>
<td>Romain Briandet, France</td>
<td>Auditorium Aula</td>
</tr>
<tr>
<td>09.00 - 09.30</td>
<td></td>
<td>Coffee/Tea Break</td>
<td></td>
<td>Exhibition area</td>
</tr>
<tr>
<td>09.30 - 10.50</td>
<td></td>
<td>Session 7: Biofilm control</td>
<td>Thomas Andersen & co-chair: Trine Thomsen</td>
<td>Auditorium Aula</td>
</tr>
<tr>
<td>09.30 - 09.50</td>
<td>033</td>
<td>Characterization of anti-curli antibody based approaches to eradicate Salmonella Typhimurium biofilms</td>
<td>Sarah Tursi, USA</td>
<td></td>
</tr>
<tr>
<td>09.50 - 10.10</td>
<td>034</td>
<td>A New Strategy for Biofilm Control Using Bioinspired Dynamic Surface Topography</td>
<td>Dacheng Ren, USA</td>
<td></td>
</tr>
<tr>
<td>10.10 - 10.30</td>
<td></td>
<td>Biofilm control in cooling towers: the effect of biodispersants on freshwater biofilms developed in flow lanes</td>
<td>Luciana Di Gregorio, Italy</td>
<td></td>
</tr>
<tr>
<td>10.30 - 10.50</td>
<td>035</td>
<td>Substrate Mediated Enzyme Prodrug Therapy (SMEPT) to combat implant-associated biofilms</td>
<td>Signe Maria Nielsen, Denmark</td>
<td></td>
</tr>
<tr>
<td>10.50 - 12.30</td>
<td></td>
<td>Lunch & Poster session</td>
<td></td>
<td>Poster & Exhibition area</td>
</tr>
<tr>
<td>12.30 - 13.00</td>
<td>037</td>
<td>Invited Lecture: Interrogating the interplay of metabolism and structure in bacterial communities</td>
<td>Lars Dietrich, USA</td>
<td></td>
</tr>
<tr>
<td>13.00 - 14.00</td>
<td></td>
<td>Session 8: Novel methods for biofilm characterization</td>
<td>Trine Thomsen & co-chair: Per Halkjær Nielsen</td>
<td>Auditorium Aula</td>
</tr>
<tr>
<td>13.00 - 13.20</td>
<td>038</td>
<td>Novel uses for Synchrotron Radiation in the study of Biofilms</td>
<td>Ben Libberton, Sweden</td>
<td></td>
</tr>
<tr>
<td>13.20 - 13.40</td>
<td>039</td>
<td>Introducing a novel, fully-automated cultivation and screening tool for the structural and mechanical investigation of biofilms by means of optical coherence tomography</td>
<td>Luisa Gierl, Germany</td>
<td></td>
</tr>
<tr>
<td>13.40 - 14.00</td>
<td>040</td>
<td>Nanoparticle-based chemical imaging in biofilms and tissues</td>
<td>Michael Kühl, Denmark</td>
<td></td>
</tr>
<tr>
<td>14.00 - 14.30</td>
<td></td>
<td>Awards Ceremony, Introducing Biofilms 9 & Closing Session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXHIBITORS AT BIOFILMS 8

Exhibition will be in "Vandrehallen" located near the entrance to the venue and next to the auditorium "Aula".

AH Diagnostics
BioNordika
Fluxion
JPK Instruments
Leica
Perfectus Biomed
Thorlabs
Unisense
ZEISS
[O1] Bird’s Eye Lecture:
THE BIOFILM MATRIX: STRATEGIES FOR PROTECTION AND EXPLOITATION

Nicola Stanley Wall1
University of Dundee, Scotland, United Kingdom

Biofilms are defined as self-organised multicellular aggregations in which the resident cells are embedded in a self-produced extracellular polymeric matrix. Production of the biofilm matrix fulfils a variety of functions from scaffolding and nutrient acquisition to protection and signalling, thereby allowing microorganisms to survive in diverse, and often hostile habitats. Composition of the biofilm matrix varies with species but typically comprises extracellular proteins, polysaccharides, lipids and extracellular DNA (eDNA). Much attention has been paid to how production of the molecules in the matrix is controlled, with more recent work expanding our understanding of the biochemical and biophysical properties of matrix components. Using the Gram-positive bacterium Bacillus subtilis we will take a closer look at the biofilm matrix, examining how the molecules function and how, in the future, we might be able to capitalise on the intricate systems that have evolved to structure biofilms.

[O2] GLYCOSYLATED AMYLOID-LIKE PROTEINS IN THE STRUCTURAL EXTRACELLULAR POLYMERS OF AEROBIC GRANULAR SLUDGE ENRICHED WITH AMMONIUM OXIDIZING BACTERIA

Yuemei Lin1, Clara Reino2, Julián Carrera2, Julio Perez2, Mark van Loosdrecht1
1 Department of Biotechnology, Delft University of Technology, Netherlands
2 Universitat Autònoma de Barcelona, Spain

A new type of structural extracellular polymers (EPS) was extracted from aerobic granular sludge dominated by ammonium oxidizing bacteria. It was analyzed by Raman and FTIR spectroscopy to characterize specific amino acids and protein secondary structure, and by SDS-PAGE with different stains to identify different glycoconjugates. Its intrinsic fluorescence was captured to visualize the location of the extracted EPS in the nitrifying granules, and its hydrogel-forming property was studied by rheometry. The extracted EPS is abundant with cross β-sheet secondary structure, which is one of the typical properties of amyloids; the proteins/polypeptides are glycosylated. In addition, the EPS forms hydrogel with high mechanical strength. The extraction and discovery of glycosylated amyloid-like proteins further shows that conventionally used extraction and characterisation techniques are not adequate for the study of structural extracellular polymers in biofilms and/or granular sludge. Confirming amyloids secondary structure in such a complex sample is challengeable due to the possibility of amyloids glycosylation and self-assembly. A new definition of extracellular polymers components which includes glycosylated proteins and better approaches to studying glycosylated amyloids are required to stimulate biofilm research.
[O3] FORMATION OF FUNCTIONAL NON-AMYLOIDOGENIC FIBRES BY RECOMBINANT BACILLUS SUBTILIS TASA

Elliot Erskine¹

¹University of Dundee, Dundee, United Kingdom

Amyloid fibres are most infamous for their involvement in the neurodegenerative illnesses’ Alzheimer’s disease and the infectious Creutzfeldt-Jakob but the ultra-stable cross-β form has recently found association with biological function. These ‘functional amyloids’ have now been identified across the Kingdoms. In bacterial biofilms these proteinaceous fibres are exploited to provide structure to the community and protection to the resident cells. Bacillus subtilis is a ubiquitous soil-dwelling organism whose biofilm is important for agricultural purposes. The predominant protein in the matrix is the fibre-forming TasA, previously classified as a functional amyloid. We wished to further characterise the structure and function of this protein and therefore developed a recombinant system to allow an interdisciplinary analysis. We show that the biologically active recombinant fibres are predominantly α-helical and do not have the canon cross-β structure suggestive of amyloid fibres. We demonstrate that the N-terminus is key for fibre polymerisation, generating a monomeric form that lacks activity and is correspondingly susceptible to proteolysis. Investigation of the biological activity of fibrous TasA ex vivo revealed that in concurrence with self-assembly in vitro, the biological activity was independent of the TapA accessory protein in the biofilm. Instead the extracellular polysaccharide (EPS) proved an essential partner for rugosity of the biofilm. The specificity of the molecular mechanism by which TasA fibres interact with the other matrix molecules was probed by examining the biological activity of orthologous TasA. Looking beyond the significance of the B. subtilis biofilm matrix, TasA has been used as the basis of amyloid-inhibitory drug-screening therefore it is imperative that this fibre-forming protein (amongst others) is not mischaracterised.

[O4] INSIGHT INTO THE RAPA LECTIN AND ITS USE IN THE STUDY OF BIOFILM MATRIX FORMATION BY RHIZOBIA

Maria Soledad Malori¹, Daniela Russo¹, Julio Caramelo¹, Laura Navas², Marcelo Berretta², Graciela Benintende², Patricia Abdian²

¹Fundación Instituto Leloir, Conicet, Buenos Aires, Argentina
²Instituto Nacional de Tecnología Agropecuaria (Inta). Instituto de Microbiología Y Zoología Agrícola, Conicet, Hurlingham, Buenos Aires, Argentina

Despite the importance of the matrix in the biofilm mode of life, little is known about the mechanisms leading to matrix assembly and the extracellular proteins involved in this process. We have previously characterized the RapA lectin secreted by Rhizobium leguminosarum and other rhizobia, and showed it has a profound impact in the organization of the biofilm matrix. The RapA lectin interacts specifically with the acidic polysaccharides (exo- and capsular polysaccharides) produced by R. leguminosarum in a calcium-dependent manner. The protein is solely composed of two homologous CHDL (cadherin-like) domains that adopt β-sheet conformation, a common fold in carbohydrate binding proteins. Given the large amount of available sequences, in this work we performed a phylogenetic analysis of CHDL domains in Raps (Rhizobium adhering proteins) secreted by rhizobia as a base to predict their functional properties. Then we dissected the RapA protein in its two halves, and studied the properties of the individual CHDL domains. The domains were PCR-amplified, cloned as 6xHistag fusions and purified from the soluble fraction of Escherichia coli cell cultures. The individual CHDL domains of RapA were structurally analyzed by circular dichroism (CD) spectroscopy. A functional test by means of a binding inhibition assay (BIA) was carried out with the acidic exopolysaccharide, and also with the lipopolysaccharide (LPS) to determine if RapA could act as an anchor for the capsular polysaccharide to the cell surface. No LPS binding by RapA or by the individual CHDL domains were detected under the assay conditions. However, our results show that the lectin activity is confined to the carboxy terminal CHDL domain (Cter-CHDL), which folds in response to calcium addition and is able to bind to the exopolysaccharide, although with less affinity than the entire RapA lectin. Moreover, the green fluorescent protein (GFP) was fused to RapA and to its Cter-CHDL, and the performance of the purified fusion proteins to target the exopolysaccharide was assessed, showing they could be useful as novel fluorescent probes for acidic exopolysaccharides produced by several rhizobia of agronomical interest.
ORAL ABSTRACTS

[O5] SECRETED, LARGE-SCALE, EXTRACELLULAR MEMBRANE SYSTEMS IN MICROBIAL BIOFILMS

Lauren Franco1, Armaity Siva Wu2, Michael Joo3, Nassim J Mancuso2, Amita Gorur2, Ambrose Leung2, Danielle M Jorgens3, Jonathan Remis2, Joaquin Corres2, Julijana Ivanisevic1, Gary E Siuzdak1, Manfred Auer2, Matthew Fields1

1Montana State University, Center for Biofilm Engineering, 366 Barnard Hall, Bozeman, United States
2Lawrence Berkeley National Laboratory, United States
3Scripps Research Institute, United States

The biofilm matrix is increasingly being realized to contain a variety of intra- and inter-matrix interactions that contribute and control biofilm behavior; however, extracellular membranes have not been previously reported despite the occurrence of membrane vesicles in many types of microorganisms. Desulfovibrio vulgaris biofilms exhibited extracellular, elongated structures that in cross section appeared membranous, or as complex geometrical enclosed shapes devoid of cells. Non-osmicated, UAc only stained biofilm sample revealed an unstained thin core structure that upon osmication became black, indicating the thin structure was lipid-based. Serial section lipophilic dye FM1-43 in cryostat-sections revealed that the membrane structures persist for tens of micrometers, and metal precipitation occurred predominantly on the extracellular structures. 3D renderings after Serial Block Face Scanning Electron Microscopy (SBF/SEM) demonstrated long lamellar structures associated with metal deposits that extended up to 100 µm, essentially the entire length of imaged biofilm. Due to involvement with metal precipitates, biofilms were grown under electron-acceptor limitation (EAL), and the distribution of extensive membrane structures increased. Quantification of total fatty acids as FAMEs indicated that the EAL-biofilm had 3-fold increased FAME content, and untargeted metabolomics experiments indicate the increased occurrence of twelve long-chain fatty acids that included methyl-hexanoic and methyl-heptanoic acid. EAL-biofilms exposed to Cr(VI) showed increased viability compared to biofilms grown under a balanced condition, and these results suggested a protective role for the membrane structures during metal exposure. To our knowledge, this is the first report of secreted, large-scale, extracellular membrane systems in microbial biofilms (SLEMS), and the described structures have implications for microbial biofilms and the evolution of biological systems.

[O6] Invited Lecture:
MOLECULAR INTERACTIONS OF STAPHYLOCOCCAL BIOFILM FORMING PROTEINS

Joan Geoghegan

Trinity College Dublin, Ireland

Our understanding of the molecular interactions underlying biofilm development in staphylococci has advanced remarkably over the past decade. Staphylococcus aureus forms biofilms on indwelling medical device surfaces and in host tissues, often leading to persistent and destructive infections. Cell to cell interactions during staphylococcal biofilm accumulation rely either on the production of a matrix of poly-N-acetyl-β-(1–6)-glucosamine or on cell surface proteins. In S. aureus, the cell wall-anchored (CWA) surface proteins FnBPA, FnBPB, SasG and SdrC extend from the bacterial surface and mediate cell to cell interactions during biofilm accumulation. Each protein is capable of forming homophilic interactions with an identical partner protein on a different cell linking the bacteria to each other. Alternatively CWA proteins promote biofilm formation through their interactions with host-derived molecules. Fibrinogen and fibronectin-binding proteins tether bacteria to tissues or to indwelling medical devices that have been conditioned with host plasma proteins. Fibrin-binding CWA proteins promote bacterial clumping in fibrin-rich fluids leading to the formation of biofilm-like aggregates of bacteria. Recent insights into the molecular basis of the protein-protein interactions underlying biofilm development in staphylococci have revealed potential new targets for biofilm-targeting agents.
[O8] HEAT ACTIVATES CYCLIC DIGUANYLATE PRODUCTION IN BACTERIA

Joe Harrison1, Henrik Almblad1, Trevor Randall1, Jacquelyn Rich1, Fanny Liu1, Katherine Leblanc1, Ryan Groves1, Tara Winstone1, Nicolas Fournier1, Yuefei Lou1, Ian Lewis1, Justin MacCallum1, Bryan Yipp1

1 University of Calgary, Calgary, Canada

The second messenger cyclic diguanylate (c-di-GMP) in the opportunistic bacterial pathogen *Pseudomonas aeruginosa* regulates biofilm formation, which may be key for survival in a host. C-di-GMP is produced by a variety of intracellular diguanylate cyclases (DGCs), and can be degraded by c-di-GMP specific phosphodiesterases. However, the stimuli and mechanisms of DGC activation are in many cases unknown. Here we identify a thermosensing diguanylate cyclase (*tdcA*) that enables *P. aeruginosa* to increase biofilm formation as temperature rises from 25 to 37 °C. Recombinant TdcA displays thermostatted activity: it is inactive at 25 °C, but displays linearly increasing reaction rates between 28 and 42 °C, allowing for a large change in intracellular c-di-GMP over a narrow range of temperatures. Heat-sensing is enabled via a Per-Arnt-SIM type III (PAS_3) domain, which is a previously undescribed function for this widespread family of protein domains. Drawing on principles from statistical mechanics, the Boltzmann equation can be used to model TdcA activity, which cannot be accurately approximated by existing textbook models of temperature-dependent enzyme kinetics alone. Using molecular genetic methods, mouse infection models and intravital microscopy, we observed that a functional copy of *tdcA* in *P. aeruginosa* mediated the expression of c-di-GMP-regulated extracellular polysaccharides that were critical for innate immune suppression. Finally, bioinformatics analyses indicated that *tdcA* orthologues are widespread in both environmental and pathogenic bacteria. We propose that *tdcA* exemplifies a new class of heat-sensing enzymes that behave like molecular thermostats, allowing for the rapid change of cellular c-di-GMP over a narrow but physiologically relevant range of temperatures.

[O7] CYTOCHROME BD-I IS USED FOR ENERGY PRODUCTION IN UROPATHOGENIC E. COLI BIOFILMS

Maria Hadjifrangiskou1

1Vanderbilt University Medical Center; Department of Pmi, Nashville, United States

Significance: *Escherichia coli* is a very diverse species, encompassing 5 well-characterized phylogroups, A, B1, B2, D and E. Of these phylogroups, *E. coli* in clades B2 and D are considered to be the most adapted to the human host and are known to persist for years. These same B2 and D strains have also evolved to colonize extra-intestinal niches, such as the urinary tract, where they can cause infection. Uropathogenic *E. coli* (UPEC), which cause the majority of urinary tract infections (UTIs), form biofilms on catheters, as well as on the bladder and kidney surface. The molecular mechanisms driving biofilm formation by UPEC strains are not well defined. We lead studies to bridge this gap in knowledge.

Rationale and Hypothesis: Although UPEC are facultative anaerobes, our studies have demonstrated that UPEC rely on components of aerobic respiration for energy production in the bladder and for biofilm formation. Cytochrome bd acts as the primary oxidase in low oxygen concentrations, which are encountered by UPEC in the bladder and deep within biofilms. We hypothesized that cytochrome bd expression and function regulates UPEC biofilm architecture and generation of heterogeneity that in turn leads to a robust biofilm community.

Results: We demonstrate that mutants deleted for Cytochrome Bd lose biofilm rugosity and architecture, suggesting a role for cytochrome Bd-I in energy production within biofilms. Biofilms formed by cytochrome Bd-I mutants appeared flat and compact and displayed higher sensitivity to antibiotics. These results could be the result of increased penetrance (due to reduced extra-cellular matrix production) and unperturbed energy-dependent transport across the inner membrane, suggesting that in the absence of cytochrome Bd-I, bacteria are somehow maintaining proton motive force. Subsequent analyses probed at: a) the abundance and composition of the extracellular matrix; b) the levels of cytochromes Bo and Bd-II and c) the role of oxygen sensors upstream of cytochrome Bd-I in the wild-type parent and the cytochrome Bd-I mutant.
ORAL ABSTRACTS

[O9] SORTASE-ASSEMBLED PILI OF ENTEROCOCCUS FAECALIS CONTRIBUTE TO IRON-MEDIATED EXTRACELLULAR ELECTRON TRANSFER AND IRON-AUGMENTED BIOFILM

Kimberly Kline¹

¹ Ntu; Scelse, Singapore

Enterococcus faecalis are ubiquitous members of the human gut microbiota as well as significant opportunistic pathogens in biofilm-associated infections. We have discovered that the E. faecalis biofilm matrix can immobilize iron, which promotes extracellular electron transfer (EET) and increased ATP production leading to augmented biofilm growth. In addition, excess dietary iron is associated with increased E. faecalis colonization in the lower GI tract of mice. Because microbial nanowires contribute to electron transfer in other bacteria species, we hypothesized that E. faecalis sortase-assembled pili might contribute to iron-associated EET and iron-augmented biofilm. Here we present data showing that pilus gene expression is induced in increasing iron concentrations and that these induced pili are essential for iron-mediated biofilm augmentation. E. faecalis pilus null mutants are unable to sustain current production showing that pil are necessary for EET. Finally, using a combination of imaging and inductively coupled plasma mass spectrometry (ICP-MS), we show that pili co-localize and co-purify with iron. Together these findings support a previously unappreciated role for E. faecalis sortase-assembled pili, in addition to their role in adhesion, in which they bind iron within the biofilm matrix to promote EET, augment biofilm formation, and GI colonization.

[O10] PHYSICAL DETERMINANTS OF AMYLOID ASSEMBLY IN BIOFILM FORMATION

Maria Andreasen¹, Georg Meisl², Jonathan D. Taylor³, Thomas C.T. Michales³, Daniel Otzen⁴, Matthew R. Chapman⁵, Christopher M. Dobson⁵, Steve J. Matthews³, Tuomas P.J. Knowles²

¹ Department of Biomedicine, Aarhus University, Aarhus, Denmark
² Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
³ Department of Lifesciences, Imperial College London, London, United Kingdom
⁴ Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
⁵ Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States

Bacterial biofilms are of central importance in the context of a number of human diseases and amyloid fibrils represent one of the major components of the extracellular matrix of bacterial biofilms. However, the mechanisms and role of the fibril assembly kinetics in biofilm formation are not yet understood. Through detailed kinetic analysis of the aggregation of two proteins, FapC from Pseudomonas fluorescens and CsgA from Escherichia coli, we find that, despite the low sequence identity, the two proteins share a common aggregation mechanism, involving nucleated growth of linear fibrils that are unable to self-replicate. The measured rates of elongation for the two systems are very similar and comparable to the rates of formation of biofilms in vivo, indicating amyloid assembly as a possible control factor in biofilm formation. The observed convergent evolution suggests that only a narrow window of mechanisms and rates of assembly allows for successful biofilm formation.
Bacteria adhere to surfaces in most industrial and natural environments, regardless of whether the surfaces are of synthetic or biological origin, including the surfaces of prokaryotic and eukaryotic cells. Bacterial adhesion is the start of biofilm formation, but it still remains a challenge to define the end of biofilm formation. Biofilms are defined as surface-adhering and surface-adapted communities of microorganisms, that grow embedded in their self-produced matrix of extracellular polymeric substances. Interesting enough biofilm phenotypes do not emerge homogeneously across a biofilm. Heterogeneous micro-environments with different microbial composition, pH, live-dead ratios of bacteria, extracellular polymeric substances production, including eDNA rich or -poor domains, differential penetrability, density, water content and channelization have been observed in biofilms using fluorescent probes or optical coherence tomography. The development of heterogeneous phenotypes at the level of biofilm communities, as well as at the level of single-bacteria, has been amply studied and reviewed with respect to gene expression and genotypic changes in planktonic bacterial aggregates and biofilms grown in well plates or on agar. However, the question of what actually triggers the emergence of heterogeneous micro-environments in biofilms remains unanswered. This leads to the hypothesis that phenotypically heterogeneous, emergent micro-environments in biofilms develop as a response of bacteria to their adhering state and are governed by the local properties of the substratum surface. No surface is entirely homogeneous, while adhering bacteria can substantially contribute to stochastically occurring surface heterogeneity. Accordingly, bacterial adhesion forces sensed by initial colonizers differ across a substratum surface, leading to differential mechanical deformation of the cell wall and membrane, where many environmental sensors are located. Bacteria directly adhering to heterogeneous substratum domains therewith formulate their own local responses to their adhering state and command non-conformist behavior, leading to phenotypically-heterogeneous micro-environments in biofilms.

References:
Carniello V, Harapanahalli AK, Busscher HJ, Van der Mei HC. J Colloid Interface Sci 2018;512:14-20.
[O13] BONE ENVIRONMENT AND ITS RELATIONSHIPS WITH BACTERIAL BIOFILM.

Fany Reffuveille¹, Jérôme Josse², Frédéric Velard³, Marie Dubus¹, Evan Haney⁴, Halima Kerdjoudj¹, Robert EW Hancock⁵, Céline Mongaret¹, Sophie C. Gangloff¹

¹Ea 4691 « Biomatiériaux et Inflammation En Site Osseux », Sfr Cap-Santé (Fed 4231), Université de Reims Champagne Ardenne, Reims, France
²Ciri; Inserm U1111 - Cnrs Umr5308 - ENS Lyon –, Université de Lyon 1, Lyon, France
³Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada

The impact of bacteria on immune system or host cells described some of the interactions between bacteria and host. In this study, we studied the impact of bone cells and their microenvironment on Staphylococcus aureus capacity to form biofilm. Indeed, we hypothesized that the identification of signals that could induce irreversible bacterial adhesion in bone context, would help to target and to develop a strategy preventing biofilm-associated infections. Biofilms represent a major threat in public health due to their high capacity of antimicrobial resistance. We showed that various bone environment factors such as the presence of Ca²⁺ or Mg²⁺, lack of oxygen and starvation, increased bacterial adhesion. In addition, we tested the impact of human osteoblast-like cell culture supernatants on biofilm formation and observed an increase in bacterial adhesion capacity by 2-fold (p=0.015) compared to control. Moreover, we stimulated osteoblast-like cells with TNF-α, mimicking inflammatory conditions. An increase of bacterial adhesion by almost 5-fold (p=0.003) was observed. However, the activity of synthetic antibiofilm peptides counteracted the induction signal(s) for bacterial adhesion present in the supernatants. Thus, antibiofilm peptides represent good candidates for developing a prevention strategy. In conclusion, the bone environment and bone cells derived-products could influence S. aureus biofilm formation, which demonstrates a direct impact of our body on bacterial behavior.

[O14] THE ROLE OF DYNAMIC TAD PILI IN BACTERIAL SURFACE SENSING

Yves Brun¹

¹ Indiana University, Bloomington, United States

The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. How cells sense their contact with a surface and transduce this information to mediate the transition to permanent adhesion and to initiate biofilm formation is a matter of great interest. We have used single cell approaches to dissect the mechanisms of adhesion in Caulobacter crescentus. Surface contact by motile swarmer cells bearing a flagellum and pili at the same pole rapidly stimulates the biosynthesis of the holdfast adhesive polysaccharide. In contrast to a prevalent model, the flagellum is not required for surface contact stimulation of holdfast synthesis, but pili are critical for this process. Caulobacter swarmer cells harbor Tad pili, which are widespread across the bacteria and are often involved in adhesion. In contrast to Type IVa pili (T4P), Tad pili lack a retraction ATPase, and whether they retract like T4P has remained elusive. We have developed a broadly applicable pilus labeling method that enables real-time observation of pilus dynamics and targeted physical obstruction. We find that Tad pili undergo dynamic cycles of extension and retraction that cease within seconds of surface contact, and this arrest of pilus activity coincides with surface-stimulated holdfast synthesis. Physically blocking pilus retraction is sufficient to stimulate holdfast synthesis in the absence of surface contact, in a process that involves cyclic-di-GMP signaling. Thus, resistance to type IV pilus retraction upon surface attachment is used for surface sensing.
[O15] A ROLE FOR TWO-COMPONENT SYSTEMS IN BACTERIAL ATTACHMENT AND ANTIBIOTIC TOLERANCE IN LISTERIA MONOCYTGENES

Hüsnü Aslan1, Jacob Grønbæk2, Abdullahi Adan1, Maja Brunhede1, Albert De Berardinis3, Birgitte H. Kallipolitis4, Rikke Louise Meyer1

1Interdisciplinary Nanoscience Centre (iNano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
2Aarhus University, Denmark
3University of Teramo, Italy
4University of Southern Denmark, Dept. of Bioche and Molecular Biol, Odense M, Denmark

Listeria monocytogenes is a foodborne pathogen that survives as biofilm on food-processing equipment. Stress affecting the cell membrane activates several two-component systems (TCS) that trigger a genetic response, which involves modulation of the cell envelope. We therefore hypothesized that this response also affects cell attachment, leading to promotion of biofilm formation under stressful conditions.

We tested this hypothesis by investigating the role of the TCS LisRK in attachment of L. monocytogenes. LisRK is activated in all cells in stationary-phase cultures, hence we compared attachment under flow of stationary-phase cells from a wildtype and a ΔlisK mutant strain. Significantly more wildtype cells attached, suggesting that activation of LisRK made cells more adhesive. Adhesion forces can be quantified with high sensitivity and spatial resolution using atomic force microscopy. We conducted nanomechanical mapping and force spectroscopy on the wildtype and ΔlisK mutant strains. Surface topography, and mechanical- and physicochemical properties of the two strains were probed simultaneously in physiological buffer. Force-distance curves and adhesion maps indicate that the wildtype cells were significantly more adhesive than the ΔlisK mutant.

Activation of LisRK allows cells to grow at slightly elevated antibiotic levels. In biofilms however, the extreme antibiotic tolerance ascribed to non-growing persister cells. We therefore investigated a possible link between LisRK activation and persister cell formation in planktonic and attached populations. In planktonic cultures, persister cells were significantly more abundant in the wildtype strain, suggesting that LisRK activation promotes formation of persister cells. After attachment to polystyrene for 5 minutes, we determined the antibiotic tolerance was >1000 fold higher in the attached population, and indicated the antibiotic tolerance of persister cells. In conclusion, our study shows that cell envelope stress in L. monocytogenes can trigger attachment and persister cell formation via the two-component system LisRK. These findings imply that two-component systems are important for triggering the survival mechanisms that are at the core of biofilms.

[O16] Invited Lecture:
ARE BIOFILMS REALLY THE DOMINANT WAY OF LIFE FOR PROKARYOTES ON EARTH?

Hans-Curt Flemming1,2, Stefan Wuertz1,3

1 Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
2 Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
3 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore

In many publications on biofilms, it is presumed that the majority of prokaryotes on Earth exist in the form of biofilms, providing ecosystem services on this planet. Biofilms are considered as a form of collective life and in biofilms the cells develop emergent properties, different from single organisms, and represent a much more complex, higher level of organization. Belief in dominance of the biofilm mode of life comes from the observation that the cell density in biofilms is several orders of magnitude higher than in the surrounding water phase, and that the cells enjoy crucial advantages in the ubiquitously existing biofilms. However, to date no global data analysis supporting this view exists. We offer a critical discussion of the definition of biofilms, comprising many different manifestations of microbial aggregates of various size. We compile the current state of estimates of global cell numbers in major microbial habitats. Most microorganisms on Earth (3.4 - 16 x 10^30) live in the “Big Five”: oceans (1.2 x 10^30), the upper (2.4 x 10^30) and the deep sediment (0.25-5 x 10^30), soil (2.6-2.9 x 10^30) and deep terrestrial subsurface 0.5-2.5 x 10^30). All other habitats, e.g. neuston, atmosphere, animals, phylosphere etc. inhabit only up to 10^30 cells or less each. While the majority of cells in the oceans arguably seem to live a solitary life (flocs, marine snow, and colonized particles are not accounted for), upper sediments and soil are clearly dominated by biofilms. Deep seafloor sediments and terrestrial subsurface are implicitly considered to be colonized by solitary cells without taking biofilms into account. However, biofilms will prevail when cells divide (even after extremely long generation times) and form microcolonies. Thus, at least three quarters of all prokaryotes on Earth live in biofilms, and this census contours the global relevance of this form of life.
[O17] Bird’s Eye Lecture:
COOPERATION AND COMPETITION IN BIOFILMS

Kevin Foster¹

¹ University of Oxford, United Kingdom

Since Darwin, evolutionary biologists have been fascinated by cooperative behaviour. Honeybee workers labour their whole life without reproducing, birds make alarm calls, and humans often help each other. In recent years, it has also become clear that microbes are also capable of cooperation. They commonly live in densely-interacting biofilms that can have major effects on animals and plants. But what determines if microbes are cooperative towards each other and their hosts? We study this question by combining theory with experimental systems, including pathogenic bacteria, budding yeast and the mammalian microbiome. We find that single-genotype patches naturally emerge in biofilms, which favours strong cooperation by kin selection. By contrast, interactions between genotypes can be strongly competitive. Bacteria strains are often at war and we find that they can rapidly detect incoming attacks and respond in kind. Interactions within microbial biofilms then follow the same evolutionary principles that were first understood through the study of animal behavior. However, one unusual and fascinating property of microbes is that an entire ecosystem can lie within another evolving organism: a host. This raises the possibility that hosts will act as ecosystem engineers that change the rules of microbial interaction for their own benefit.

[O18] BIOFILM ARCHITECTURE CONFERS INDIVIDUAL AND COLLECTIVE PROTECTION AGAINST PHAGE INFECTION

Lucia Vidakovic¹, Praveen K. Singh¹, Raimo Hartmann¹, Carey D. Nadell², Knut Drescher³

¹ Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
² Department of Biological Sciences, Dartmouth College, Max Planck Institute for Terrestrial Microbiology
³ Max Planck Institute for Terrestrial Microbiology, Department of Physics, Phillips University Marburg

In their natural environments biofilms regularly encounter the presence of bacteriophages (or simply: phages) which use bacteria as their host for self-replication. In order to understand the interaction of phages and biofilms, as well as their coexistence, we developed a method to visualize phage spread inside living bacterial communities. By insertion of sfgfp into the T7 phage genome, the conversion of susceptible to infected cells can be monitored in space and time. We discovered that biofilm susceptibility to phage infection is dependent on the stage of biofilm development and the production of biofilm matrix. E. coli biofilms that were grown for 48 h or less were rapidly eradicated due to phage infection. By contrast, biofilms grown for 60 h and more experienced no biomass reduction in the presence of phages. The removal of curli fibers, a major component of the E. coli matrix, generated biofilms that were susceptible to phage infection, regardless of the age of the biofilms. Visualization of curli fibers within growing biofilms further demonstrated a dynamic change in matrix composition. The development of phage tolerance in biofilms was synchronous with the production of curli fibers. We further discovered that curli fibers protect bacterial communities via two mechanisms: (1) Curli prevent phages from diffusion inside biofilms, and (2) curli fibers protect individual cells from phage infection. Our results demonstrate that a single component of the biofilm matrix can provide individual as well as collective protection against phage infection.
[O19] EFFECT OF FLUCTUATING ENVIRONMENTAL CONDITIONS ON THE SPATIAL SELF-ORGANIZATION AND EMERGENT PROPERTIES OF A SYNTHETIC MICROBIAL BIOFILM

Davide Ciccarese1, Gabriele Micali1, David Johnson2

1ETH, Zurich, Switzerland
2Eawag, Dübendorf, Switzerland

Background: Every natural microbial community is exposed to temporal fluctuations in their local environment. The mechanisms that provide stability to a microbial community during environmental fluctuations, however, are unclear. Environmental fluctuations can change how microorganisms interact, which in turn can change how they arrange themselves in space. Spatial self-organization, as well, can be an important determinant of the stability of the whole microbial community. This then raises two interrelated questions: 1) How do temporal fluctuations in environmental conditions affect spatial self-organization? 2) Do these fluctuations affect the long-term stability and the survival of the microbial community?

Objectives: We addressed these questions using a two-strain synthetic microbial cross-feeding community. We can experimentally fluctuate the environment between conditions that promote mutualism or competition between the microbial strains. We hypothesized that such fluctuations should destabilize the community; the patterns of spatial self-organization that emerge under competition conditions (strain segregation) should be detrimental under mutualism conditions (strain intermixing). How then could the microbial community persist under such fluctuations?

Methods: We investigated this question using a synthetic cross-feeding community composed of two strains of the bacterium Pseudomonas stutzeri. Under anaerobic conditions, one strain consumes nitrate to nitrite while the other consumes nitrite. Under aerobic conditions, in contrast, both strains compete for oxygen. Thus, we can fluctuate the environment between aerobic (competition) and anaerobic (mutualism) conditions and measure the consequences on spatial self-organization and community stability.

Results: We found that fluctuations between mutualism and competition conditions do indeed reduce the stability of the microbial community as a whole. Interestingly, the effect depends on the strength of the mutualistic interaction. When the mutualistic interaction is strong, the two strains maintain more intermixing, thus mitigating the segregating effects of competition. In contrast, when the mutualistic interaction is weak, the two strains intermix less, thus amplifying the segregating effects of competition.

Conclusion: We found that complex spatial self-organization is important to provide community stability during temporal fluctuations in environmental conditions. Spatial self-organization is thus impacted by temporal fluctuations, but also affects stability to temporal fluctuations, highlighting its role as an emergent property of the microbial community.

[O20] AHL QUORUM SENSING MEDIATES SPECIES INTERACTIONS IN MULTISPECIES BIOFILMS

Sujatha Subramoni1, Muhammad Zulfadhly Bin Mohammad Muzaki1, Sean Cameron Morrison Booth1, Yi Li1, Scott Rice2

1Singapore Centre For Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
2Singapore

A major concern is to understand processes that govern functional synergy and dynamics of multispecies bacterial biofilms that are important medically, environmentally and industrially. Here, we have used a model mixed species biofilm community comprising Pseudomonas aeruginosa PAO1, Pseudomonas protegens PF5 and Klebsiella pneumoniae KPI with higher biomass, lower levels of genotypic variants and higher levels of resilience to antimicrobial stress conditions such as SDS and tobramycin, compared to monospecies biofilm populations. In order to understand these properties further, in this study we evaluated the function of N-acyl homoserine lactone (AHL)-dependent quorum sensing (QS) system of P. aeruginosa PAO1, which is known to regulate group behavior including biofilm formation and production of effectors, molecules in determining the structure and function of this mixed species biofilm community. Mixed species biofilms containing either wild type PAO1, lasIrhlI (QS signal negative) or lasRrhlR (QS signal receptor negative) mutants were grown under continuous flow conditions and their composition was analyzed by confocal laser scanning microscopy. We observed that mixed species biofilms containing P. aeruginosa QS mutants had significantly altered proportions of K. pneumoniae and P. protegens populations compared to mixed species biofilms with the wild type P. aeruginosa. Surprisingly, the proportions of P. aeruginosa were the same for both the wild type and the QS mutants. Moreover, dual-species biofilms of P. aeruginosa wild type, lasIrhlI or lasRrhlR mutant with either K. pneumoniae or P. protegens revealed that the absence of P. aeruginosa QS affects both species interactions in different ways. Initial experiments suggest that the P. aeruginosa-P. protegens interaction is competitive and likely to be mediated by contact dependent mechanisms. We also show that the P. aeruginosa QS system, through the regulation of downstream target genes, alters the stress resistance of the whole community. These observations suggest that QS plays an important role in modulating community biofilm structure and physiology, affecting both interspecific interactions and community level protection provided by species specific functions.
[O21] BIOFILM THICKNESS CONTROLS THE CONTRIBUTION OF STOCHASTIC AND DETERMINISTIC PROCESSES IN MICROBIAL COMMUNITY ASSEMBLY

Jane Fowler1, Elena Torresi2, Arnaud Dechesne1, Vaibhav Diwan1, Magnus Christensson3, Barth Smets1

1Technical University of Denmark, Dtu Environment, Department of Environmental Engineering, Kgs. Lyngby, Denmark
2Veolia Water Technologies Ab—anoxkaldnes, Lund, Sweden

Niche and neutral theories provide diverging viewpoints on the importance of selection and neutral processes in community assembly. In practice, both deterministic and stochastic factors play a role in microbial community assembly, though little is known about whether the relative importance of these processes can be managed. In this study, we examined the relative contribution of stochastic and deterministic processes in the assembly of biofilms of different thicknesses. This was achieved using Z-carriers, biofilm carriers with a grid with controlled wall height that determines maximum biofilm thickness. Duplicate Z-carriers of each thickness (50, 200, 300, 400, 500 um) were sampled 107 days apart from nitrifying reactors during steady state operation. Influent and effluent were also sampled at intervals. DNA was extracted and subjected to 16S rRNA gene amplicon sequencing and qPCR for total Bacteria. Beta-diversity analysis shows that communities on biofilm carriers were distinct from those in the influent and effluent and exhibited less temporal variation in composition than both influent and effluent communities. Variation in microbial community composition over time was greatest in thin biofilms and decreased with thickness. Overall, the biofilm communities were strongly influenced by deterministic processes as only a small number of sequence variants (SVs) were shared between the carriers and influent. The number of shared SVs between the influent and carriers increased with biofilm thickness. Neutral community modelling showed that a greater percentage of these shared SVs were neutrally assembled with increasing thickness, corresponding to a linear relationship between biofilm thickness and migration rate. Together, these observations suggest that biofilm thickness influences the relative importance of neutral and deterministic processes on community assembly. Although selection was important in all biofilm communities, stochastic factors play a greater role in the assembly of thicker biofilms. In addition, the biofilm community composition was stable once established, with increasing stability with biofilm thickness. We propose that in the thin biofilms, the small, active volume is subject to greater competition for space and resources, while in the thicker biofilms, the greater volume and presence of less active lower layers increase the contribution of neutral processes in community assembly.

[O22] Invited Lecture: MULTISCALE ANALYSIS OF MICROBIAL CROSS-FEEDING IN BIOFILMS: FROM YELLOWSTONE HOT SPRINGS TO CHRONIC WOUNDS

Ross P. Carlson1

Department of Chemical and Biological Engineering & Center for Biofilm Engineering, Montana State University, Bozeman, United States

Interactions among microbial community members can lead to emergent properties, such as enhanced productivity, stability, and robustness. Iron-oxide mats in acidic, high-temperature hot springs of Yellowstone National Park contain relatively simple microbial communities and are well-characterized geochemically. Consequently, these communities are excellent model systems for studying the metabolic activity of individual populations and key microbial interactions. The current study integrates data collected in situ with in silico calculations across process-scales encompassing enzymatic activity, cellular metabolism, community interactions, and ecosystem biogeochemistry. For instance, metagenomic and transcriptomic data are used to reconstruct carbon and energy metabolisms of an important autotroph (Metallosphaera yellowstonensis) and heterotroph (Geoarchaeum sp. OSPB). In situ geochemical analyses, including oxygen depth-profiles, Fe(III)-oxide deposition rates, stable carbon isotopes and mat biomass concentrations, are combined with the cellular models to explore autotroph-heterotroph interactions important to community structure-function. The integration of metabolic modeling with in situ measurements demonstrates that the mat communities operate at their maximum total community growth rate as opposed to net community growth rate, as predicted from the maximum power principle. In a complimentary biofilm study, chronic wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa are analyzed using genome-scale metabolic reconstructions integrated within a reaction-diffusion framework to identify resource usage strategies as a function of time, space, species and phenotypic strategy. Together, these studies integrate multiscale data with practical ecological theory to provide a basis for predicting and interpreting microbial interactions and community-level cellular organization.
During work to generate and optimize a robust, recombinant *Escherichia coli* K-12 biofilm capable of biocatalysis, formation of biofilms floating on the air-liquid interface, commonly referred to as pellicles, were observed. Unlike other well-characterized, pellicle-forming bacteria, such as *Bacillus subtilis*, there are few reports of *E. coli* K-12 pellicles in the literature. In order to study pellicle formation and physiology, a growth model was developed and pellicle matrix, maturation, and morphology were monitored over time and compared to development of solid surface-attached (SSA) biofilms. Pellicles and SSA biofilms were analyzed by confocal microscopy using lectins to visualize extracellular polymeric substances and DNA stains. This work revealed substantial differences in their development, architecture, and composition. Furthermore, pellicle structure was shown to differ between the air-facing and liquid-facing surfaces. By use of reporter plasmids, csdB (a component of the protein adhesin curli critical in SSA *E. coli* K-12 biofilm formation) expression was compared between pellicles, SSA biofilms, planktonic cells, and sedimeted biomass. Although curli production is induced in both pellicles and SSA biofilms, there were temporal differences in expression in the two systems. While literature reviews have not revealed any published data recording these observations in *E. coli* K-12, research into other strains have noted that upregulation of curli in pellicles results in a more stable floating biofilm that has an enhanced resistance to strain. The sturdiness of the floating pellicle in addition to its proximity to both liquid and air phases make *E. coli* K-12 pellicles an exciting and innovative prospect in the biotechnology industry. In addition to potential industrial applications, the matrix composition, structure, and morphology of pellicles versus SSA biofilms will be discussed in *E. coli* K-12 laboratory strains for the first time.

The application of biofilm technology for the production of both low-cost and valuable compounds allows the white biotechnology to benefit from the advantages of biofilms compared to suspended cultures. In this study, we focus on the production of optically pure lactic acid. Recently, the interest in lactic acid has greatly increased, especially due to the synthesis of polylactic acid, a biodegradable and biocompatible polymer. However, the high costs of lactic acid are responsible for its low competitiveness to petroleum-derived plastics.

For the production of lactic acid, we cultivate a monoseptic biofilm consisting of *Lactobacillus* bacteria with a strong preference for planktonic growth (provided by BASF SE). Biofilm growth is achieved in a glass tube reactor. The biofilm system can be cultivated in a continuous mode and kept monoseptically for at least 3 weeks. It was shown that higher cell densities lead to a significantly increased space-time product yield compared to the planktonic culture. The productivity reached a constant value after only 3 days of cultivation and no decline was observed during the rest of the cultivation period, confirming thus the suitability of the system for long term production. Thus, the use of biofilms proves to be a promising method to increase the productivity and thereby reduce production costs of lactic acid.

The analysis of biofilm performance at different flow conditions revealed that productivity increases with the flow velocity. This is explained by the decreased retention time of the liquid phase in the tube reactor and, thus, a minor pH drop caused by the released lactic acid. At low flow velocities, the pH drops to a value where growth and production are significantly inhibited.

During the cultivation, the biofilm (thickness and structure) was analyzed by Optical Coherence Tomography (OCT), a non-invasive imaging tool that can be applied in-situ during reactor operation without disturbing system or process. At the end of the experiment, the biofilm was additionally visualized by Nuclear Magnetic Resonance (NMR) to investigate the biofilm coverage over the cross-sectional area of the tube reactor.
ORAL ABSTRACTS

[O25] ESTIMATION OF MECHANICAL AND HYDRAULIC BIOFILM PROPERTIES FROM OPTICAL COHERENCE TOMOGRAPHY MEASUREMENTS

Morez Jafari1, Blauter Florian2, Peter Desmond3, Michael Wagner4, Nicolas Derlon5, Eberhard Morgenroth6, Harald Horn4, Cristian Picioreanu7

1Delft University of Technology, Delft, Netherlands
2Engler-Bunte-Institut, Karlsruhe, Germany
3Eawag, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Zurich, Switzerland
4Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe, Germany
5TU Delft, Delft, Netherlands

Biofilm presence induces additional resistance to water permeation and causes increased cross-flow pressure drop in membrane processes affected by biofouling. There is a reciprocal biofilm/flow interaction. The flow deforms the biofilm by shear forces when there is flow over the biofilm or by flow-driven compression due to pressure forces in filtration cases. Biofilm deformation, in turn, causes a decrease in porosity and elevated hydraulic resistance, with less water flow through the biofilm. Moreover, biofilm deformation leads to material stiffening and mechanical consolidation, probably with negative effects on biofilm removal. It has become therefore evident that in-situ studies are needed on how biofilm hydraulic resistance is affected by biofilm mechanical response to the applied forces. For this aim, optical coherence tomography (OCT) proves to be an excellent in-situ and real-time non-invasive measurement/visualization technique.

A computational model was applied to several experimental datasets obtained in two conditions: (i) flow-through with step-wise changes of permeate flux and pressure in dead-end ultrafiltration; (ii) flow-over with changes of flow velocity in a rectangular mini-fluidic channel. Two-dimensional biofilm geometries were extracted from cross-sectional OCT scans to access the un-deformed and deformed structures as a result of hydrodynamic loading. The OCT images of biofilm structure were implemented in fluid-structure interaction computer simulations using a poroelasticity model coupling fluid dynamics with solid mechanics. The simulation results were compared with the real deformed geometries. Mechanical (e.g., elastic modulus, Poisson ratio, viscoelastic relaxation time, critical plastic stress) and hydraulic (e.g., permeability coefficient, porosity exponent) biofilm properties were assessed by parameter estimation routines.

Biofilm elastic moduli of 70–500 Pa were found (in agreement with other measurement techniques), with clear biofilm stiffening and consolidation at increased flow rates and applied forces. The small irreversible deformation of biofilms grown on membranes could be explained by both elastoplastic and viscoelastic models with short relaxation times (~20 s). Biofilm porosity variation due to compression was also evaluated and decreased permeability by pore closure upon compression was quantified. The importance of this newly developed method lies in providing more accurate biofilm parameters to be used in numerical models targeting both filtration and biofilm removal strategies.

[O26] OPTICALLY PATTERNED BIOFILMS FOR SYNTHETIC MICROBIAL CONSORTIA

Xiaofan Jin1, Ingmar Riedel-Kruse1

1 Stanford University, Stanford, United States

Naturally existing terrestrial bacteria primarily live in surface-attached biofilm communities. Within these biofilms, cooperative behaviours such as metabolic division of labour exist due to coupling between ecological interactions and spatial community structure. However, this coupling remains poorly understood, making it challenging for synthetic biologists to engineer microbial consortia that take advantage of community division of labour. Using optogenetic tools, we have developed a biofilm culture platform with spatial-temporal control over cell-surface attachment, which patterns bacterial biofilm communities in a light-regulated manner. With this platform, we are able to seed biofilms with ecologically interacting strains in arbitrary, non-naturally occurring patterns at a spatial resolution on the order of 25 microns. In doing so, we decouple spatial structuring in biofilms from native ecological interactions. This platform can be used (1) to investigate how patterning and cooperation develop in bacterial communities, and (2) to engineer synthetic microbial consortia incorporating biological division of labour. An accompanying Monte-Carlo model provides insight on the biophysical formation mechanism for the engineered light-regulated biofilms.
ORAL ABSTRACTS

[O28] LONG-TERM CO-ADAPTATION OF PSEUDOMONAS AERUGINOSA BIOFILMS WITH AMOEBA AFFECTS VIRULENCE TRAITS
Wai Leong1, Carla Lutz1, Yanhong Poh1, Michael Givskov1, Diane McDougald1
1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore

Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of death in sufferers of cystic fibrosis (CF). Compared to environmental and clinical P. aeruginosa isolates, CF lung-adapted P. aeruginosa demonstrate altered phenotypes in traits associated with virulence. The reduction of virulence trait expression is proposed to reduce clearance of the bacterium by host immune cells, thus supporting intra-lung persistence. To further understand how intra-host survival affects P. aeruginosa, we investigated the phenotypic traits possessed by P. aeruginosa after long-term co-adaptation with the amoeba, Acanthamoeba castellanii, a common soil and water protist.

Co-cultures were established in low nutrient media within culture flasks (3× independent populations), where naive A. castellanii were re-infected with amoeba-adapted P. aeruginosa every 3 days for 24 days. P. aeruginosa were liberated from A. castellanii and isolates collected for further analysis. Populations of P. aeruginosa not exposed to amoeba were simultaneously established and passaged as above.

Results show that P. aeruginosa isolates co-adapted with A. castellanii demonstrate decreased planktonic growth rates, reduced pyoverdine production, a reduction in twitching, swarming and swimming motilities, production of pyoverdine and pyocyanin and a reduction in virulence when tested in a Caenorhabditis elegans assay. These differences were supported by single nucleotide polymorphism analysis that revealed mutations in genes associated with those traits.

The phenotypic traits demonstrated by amoeba-adapted P. aeruginosa have similarities to P. aeruginosa isolated from CF lungs. This suggests that intracellular survival in amoeba results in parallel evolution whereby the adapted P. aeruginosa cells resemble those from long term colonisation of lungs. Furthermore, data from this study suggests that the alteration of virulence may be a ubiquitous response of P. aeruginosa to survive the intra-host environment.

[O27] Invited Lecture:
WHY EVOLUTION IN BIOFILMS IS DIFFERENT, AND A FEW REMARKABLE CONSEQUENCES
Vaughn Cooper1
1University of Pittsburgh, USA

Opportunists such as Burkholderia and Pseudomonas have extremely low genome-wide mutation rates and among the largest effective population sizes of any organism measured. These two properties provide clear evidence that the power of natural selection to refine any trait important for fitness in Bcc is almost unimaginably strong. Consequently, the inherent capacity of these bacteria to grow on a variety of biotic surfaces in aggregates or larger biofilms is likely governed by well-coordinated regulatory circuits. A powerful approach to discovering these circuits is the genomewide surveillance of evolution in action under conditions that select strongly for biofilm production, and hence alterations in these pathways. Theory predicts that the structured environment of biofilms facilitates the simultaneous rise of multiple adaptive lineages, which could reveal different adaptations or parallelism in the same pathways. Here, we report results from many laboratory evolution experiments and longitudinal surveys of isolates from patients with cystic fibrosis (CF) that reveal repeated adaptive mutations in two interrelated systems: rpfF/rpfR in Burkholderia and wsp in both Burkholderia and Pseudomonas, which increase attachment and aggregation by regulating polymer and lectin production. Evolved nonsynonymous mutations in different protein domains of these clusters generate different biofilm phenotypes and thus inform the function of these pathways. Remarkably, mutations affecting the same protein residues evolve repeatedly in independent experiments, yet these sites are not hypermutable, which demonstrates extraordinarily strong selection for the adaptive traits generated by these mutations. This parallelism is remarkable because genomewide knockout screens have identified many more genes that affect biofilm traits. The key insight is that evolutionary dynamics in biofilms are superpowered to select for the very best new mutations that produce superior attachment or stress avoidance, often by disrupting negative regulators of pleiotropic circuits in optimal ways. Ultimately, such mutations should be very rare in nature, where the conserved “wild-type” allele represents the regulator that maintains an optimal range of function.
[O30] CHEATING PROMOTES EVOLUTION OF HYPER-COOPERATORS BY SHIFTING PHENOTYPIC HETEROGENEITY IN BIOFILMS

Marivic Martin1,2, Anna Dragoš1,2, Gergely Maróti3, Balázs Bálint4, Ákos T. Kovács1,2
1 Bacterial Interactions and Evolution Group, Technical University of Denmark, Denmark
2 Terrestrial Biofilms Group, Friedrich Schiller University Jena, Germany
3 Institute of Plant Biology, Biological Research Centre, Hungary
4 Seqomics Biotechnology, Hungary

In Bacillus subtilis, the biofilm matrix is primarily composed of exopolysaccharide (EPS) and amyloid fiber (TasA) synthesized by enzymes or composed of proteins coded in the epsA-O or tapA-sipW-tasA operons, respectively. In response to various signals, these operons are heterogeneously expressed, yielding only a subpopulation of cells expressing the eps and tasA genes. Our previous study shows that the cells lacking both eps and tasA are excluded from the pellicle formed by the wild-type cells (Martin, et.al., 2017 Nature Commun). Contrary, single mutant strains are able to mix with wild-type B. subtilis and act as cheaters by increasing their relative frequencies in the pellicles. However, it is uncertain how the existence of cheaters alters the bi-stability of matrix gene expression in producer strains. Several examples have been shown to describe microbial cooperation and the remarkable population dynamics between producers and non-producers (Nadell et.al., 2008 J Biol, West et.al., 2006 Nat Rev Microbiol). In the case of B. subtilis biofilm, it is unknown yet how such heterogeneous matrix expression will be influenced by the presence of cheaters and how such mixed population behaves in an evolutionary time scale.

In this study, pellicles formed by the co-culture of producer (wild-type) and cheaters (eps mutant) were repetitively re-inoculated every two days to follow alterations in biofilm gene expression heterogeneity and population ratio dynamics. Interestingly, selected populations of the co-cultures showed the evolution of hyper-cooperators exhibiting increased number of cells expressing the matrix gene, so-called hyper-cooperators. In addition, the evolved co-cultures containing hyper-cooperators allowed cheaters to increase in number, eventually resulting to population collapse. In contrast, when producers were evolved alone, most isolates produced biofilms with reduced matrix gene expression. This study points towards the alteration of phenotypic heterogeneity when cheaters invade the biofilms of B. subtilis.
ORAL ABSTRACTS

[O31] INCREASED RATE OF MUTATION TO ANTIMICROBIAL RESISTANCE IN POLYMICROBIAL BIOFILMS

Jeremy Webb¹, Connor Frapwell², Anthony Coates³, Yanmin Hu⁴

¹Institute for Life Sciences, University of Southampton, National Biofilms Innovation Centre, University of Southampton, Southampton NHRI Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
²University of Southampton, United Kingdom
³Helpery Therapeutics Group, London, United Kingdom
⁴St George’s University of London, St George’s University of London, London, UK, Infection and Immunity, London, United Kingdom

Using a dual species co-culture of Pseudomonas aeruginosa and Staphylococcus aureus, we have investigated how biofilm growth, either within single species or dual species co-culture, can affect the rate of bacterial mutation, and how biofilm growth can contribute to bacterial variability and the emergence of AMR mechanisms.

Mutation rates of P. aeruginosa PA21 and S. aureus UAMS-1 were measured using Luria-Delbrück fluctuation analysis following growth as both planktonic and biofilm cultures, either alone or in co-culture. Mutants were determined based on their ability to grow on agar plates containing an inhibitory concentration of rifampicin. Mutation rates were calculated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator and 94% confidence intervals compared for significance. Colony variants of both P. aeruginosa and S. aureus were isolated following biofilm co-culture and isolates were subjected to whole genome sequencing.

Mutation rates of P. aeruginosa and S. aureus increased 10-fold when grown as monospecies biofilms compared to monospecies planktonic cultures (P < 0.01). A similar increase was seen for both species when grown as a planktonic co-culture, and for P. aeruginosa when grown as a co-culture biofilm. However, when in a co-culture biofilm, the mutation rate for S. aureus increased over 100-fold compared to the rate observed following monospecies planktonic culture. Phenotypic and genetic analysis (whole genome sequencing) of colony variants from biofilm co-culture are revealing how mutation events relate to survival and adaptation under co-culture.

This work shows that biofilms promote mutation rates and genomic variation in bacteria which can accelerate the evolution of AMR. We also demonstrate that inter-species interactions during growth can have an important influence on bacterial mutation rates.

[O32] Invited Lecture:
TUNING BIOFILMS ARCHITECTURE TO CONTROL THEIR FUNCTIONS?

A. Bridier¹, J. Deschamps¹, C. Pandin¹, J.C. Piard¹, MP. Fontaine Aupart¹, F. Dubois-Brissonnet¹, R. Briandet¹

¹ Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, France.

Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. Manipulating biofilm spatial organization represents an attractive approach to control their functional properties, whether beneficial or deleterious.
Amylroids are naturally occurring fibrillar proteins defined by their conserved cross-beta sheet secondary structure. Difficult to eradicate, bacterial biofilms are the often associated with infections and medical complications. Amylroids are often produced as an essential component of the bacterial biofilm matrix. One of the most studied bacterial amyloids is curli, specifically produced by members of Enterobacteriaceae. Here, we propose a novel method to inhibit biofilm formation by targeting the amyloid component, curli, of the biofilm matrix produced by Salmonella enterica serovar Typhimurium (STM). Four human monoclonal antibodies (mAb), ALZ4C1, ALZ3H3, ALZ2C10, ALZ4A6, that have high affinity against human amyloid beta that also exhibit activity against curli formation thereby inhibiting STM biofilm formation. Anti-amyloid mAbs have the ability to inhibit biofilm formation by preventing curli fibrillization as monitored by Thioflavin T binding to synthetic CsgA peptides. Additionally, treatment with anti-amyloid mAbs reduce biofilm mass and reduce curli content within the biofilm matrix as examined by crystal violet assays and confocal microscopy. Monoclonal antibody treatment also altered biofilm architecture. By creating 3D reconstructions of biofilms grown with mAb, we observed that mAb treated biofilms exhibited a more diffuse biofilm. By tracking the movement of fluorescently labeled beads through biofilms treated with mAb, an increase in bead movement throughout the biofilm matrix indicated a loss of biofilm rigidity in comparison to untreated biofilms. The associated loss of biofilm integrity resulted in an increased recovery of bacteria within biofilm supernatant and an enhanced ability of macrophages to phagocytose biofilm-associated bacteria. As biofilms are a significant complication associated with implanted medical devices, we explored the ability of the mAbs to be utilized as an anti-biofilm therapeutic in vivo. Catheters colonized with STM were implanted into the back flanks of mice in the presence or absence of mAbs. After 72 hours of STM growth, catheters were removed and resulting biofilm growth and curli content was assessed. As amyloids are produced by bacteria across four phyla including Bacteroidetes, Proteobacteria, Firmicutes and Thermodesulfobacteria, these studies will provide a potential therapy strategy to prevent biofilm formation by targeting the amyloid component of biofilms using amyloid specific monoclonal antibodies.

Biofilms are surface-attached communities of microorganisms that are highly resistant to antimicrobials and disinfectants, causing persistent problems such as chronic infections in humans and biofouling in industrial settings. The adverse effects of biofilms on both the economy and public health have stimulated extensive biofilm research. However, long-term biofilm control especially the removal of established biofilms remains difficult. To address this challenge, we created micron scale topography using biocompatible shape memory polymers (SMPs). Our results demonstrated that mature biofilms can be effectively removed (up to 99.9% in minutes) by on-demand triggering of changes in surface topography. This method was found effective against biofilms of both Gram-negative and Gram-positive bacteria, demonstrating the potential of dynamic topography in biofilm control. However, the shape change of most biocompatible SMPs can only occur once, limiting the long-term application of this technology. To further engineer materials with repeating dynamic changes in surface topography, we were inspired to mimic beating cilia that protect higher organisms from infection by bacterial pathogens. We developed a platform technology that can create micron scale pillars on essentially any polymer of choice with synchronized movement at a desired frequency. Specifically, systematically designed poly(dimethylsiloxane) (PDMS) surface topographies filled with biocompatible superparamagnetic Fe3O4 nanoparticles were actuated with a programmed external magnetic field (5 mT) to mimic the beating of human motile cilia. These dynamic surfaces were embossed onto PDMS surfaces to engineer a “living” surface with long-term antifouling effects. The antifouling properties of these surfaces were first validated against 48 h Pseudomonas aeruginosa PAO1 biofilms preformed before actuation. By actuating the pillars with a height of 10 µm, side width of 2 µm, and distance of 5 µm between adjacent pillars for 3 min, more than 99.9% biofilm cells were detached and removed by gentle rinsing. Release of nanoparticles from the pillars was negligible and no cytotoxicity to mammalian cells was observed. The dynamic topography of these surfaces can be induced remotely through wireless coupling. This unique feature along with the biocompatibility and potent antifouling effects make these surfaces promising candidates for future biomedical applications.
ORAL ABSTRACTS

[O35] BIOFILM CONTROL IN COOLING TOWERS: THE EFFECT OF BIODISPERSANTS ON FRESHWATER BIOFILMS DEVELOPED IN FLOW LANES

Luciana Di Gregorio1, Ute Kuhlicke2, Roberta Congestri3, Valter Tandoi4, Simona Rossetti4, Francesca Di Pippo5, Thomas Neu1

1Cnr-Irsia, National Research Council, Water Research Institute, University of Rome Tor Vergata, Department of Biology, Rome, Italy
2Department of River Ecology, Helmholtz Centre for Environmental Research – Ufz, Magdeburg, Germany
3University of Rome Tor Vergata, Department of Biology, Rome, Italy
4Cnr-Irsia, National Research Council, Water Research Institute, Rome, Italy
5Cnr-Irsia, National Research Council, Water Research Institute, Cnr-Irsia, National Research Council, Institute for Coastal Marine Environment, Rome, Italy

Cooling towers of industrial systems can be affected by the development of substantial amounts of microbial biomass, including phototrophic biofilms. This requires cost intensive regular cleaning to avoid performance loss and equipment damages. The conventional control practice is hypochlorite treatment of circulating water, but biofilms are often recalcitrant owing to protection provided by their extracellular matrices. In this study, the effect of dispersants on biofilm cultures obtained from a natural inoculum (Elbe river) was investigated using a flow-lane incubator. The setup was fully controlled for irradiance, temperature and flow velocity. Ten incubator lanes, each accommodating 90 polycarbonate microscope slides positioned vertically, were inoculated and followed over 30 days. Two surface-active dispersants, one anionic and one non-ionic, were added separately at on-site concentrations to the circulating water at the beginning, after one, two and three weeks. Mineral particles (reflection), biofilm phototrophs (autofluorescence differentiating cyanos and algae), bacteria (SybrGreen) and glycoconjugates (AAL-lectin) were detected by multi-channel Confocal Laser Scanning Microscopy. Digital image data sets were assessed after thresholding for semi-quantitative analysis. Both dispersants affected biofilm growth, with a minor effect at day 8 but major differences evidenced after 15 day treatment. This was especially observed for the non-ionic dispersant, which appeared to primarily reduce the biofilm glycoconjugates. The results suggest that the non-ionic biodispersant has to be used in a different application strategy or in combination with a second chemical in order to push the biofouling below the “pain” threshold.

[O36] SUBSTRATE MEDIATED ENZYME PRODRUG THERAPY (SMEPT) TO COMBAT IMPLANT-ASSOCIATED BIOFILMS

Signe Maria Nielsen1, Raoul Walter2, Rikke Christiansen1, Rikke Louise Meyer1, Alexander Zelikin3

1Department of Chemistry, Aarhus University, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
2Department of Chemistry, Aarhus University, Aarhus University, Aarhus C, Denmark
3Interdiciplinary Nanoscience Centre (Inano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark

Staphylococcus aureus is a major causative agent of orthopedic implant infections. Conventional treatment often fail, resulting in implant replacement or lifelong treatment and resistance development.

Substrate mediated enzyme prodrug therapy (SMEPT) is a novel approach that allows for controlled, localized drug synthesis. In SMEPT, an externally administered, non-therapeutic prodrug converts to its corresponding active drug when encountering an immobilized enzyme imbedded within a thin polymer coating.

Our development of a novel synthesis method for generating antimicrobial glucuronide-prodrugs of moxifloxacin and ciprofloxacin have opened the door for using SMEPT in the field of medical microbiology. Upon administration of the antimicrobial prodrug, β-glucuronidase embedded in a multi-layered polyelectrolyte coating converts the prodrug to the active antimicrobial agent, enabling controlled local administration of the antimicrobial agent; change of treatment dose and type of antimicrobial. This project aims to provide proof-of-concept for the effect of our novel antimicrobial prodrugs on Staphylococcus aureus biofilms.

We proved enzymatic conversion of moxifloxacin-prodrug to active moxifloxacin by showing a reduction in in viable colony forming units from S. aureus biofilm following prodrug treatment, comparable to conventional moxifloxacin. We also showed the inhibitory effect of prodrug conversion on S. aureus grown on moxifloxacin-prodrug infused agar. Placing a surface-coated metal disk on the agar enabled conversion of prodrug into active moxifloxacin, resulting in complete clearance of bacterial growth. To investigate if surface-release of moxifloxacin prevents biofilm formation, we grew S. aureus in the presence of moxifloxacin-prodrug in a microfluidics device mounted on a coated glass surface. Imaging by confocal laser scanning microscopy showed that the conversion of moxifloxacin-prodrug under continuous flow prevented formation of S. aureus biofilm by greatly reducing the amount of surface attached bacteria.

In conclusion, we have shown proof-of-concept for the effect of our novel antimicrobial glucuronide-prodrugs on treatment of S. aureus. Our work paves the way for advances in the use of locally induced antimicrobial treatment and further research into novel ways of utilizing local conversion of antimicrobial glucuronide-prodrugs.
ORAL ABSTRACTS

[O37] Invited Lecture:
INTERROGATING THE INTERPLAY OF METABOLISM AND STRUCTURE IN BACTERIAL BIOFILMS

Lars Dietrich
1 Columbia University, United States

Though studies of signaling cascades can reveal important mechanisms driving multicellular development, the models that emerge often lack critical links to environmental cues and metabolites. We study colony biofilm formation in the bacterium *Pseudomonas aeruginosa*, with a focus on the effects of extra- and intracellular chemistry. *P. aeruginosa* produces oxidizing pigments called phenazines that affect biofilm morphogenesis. While wild-type colonies are relatively smooth, phenazine-null mutant colonies are wrinkled. Initiation of wrinkling coincides with a maximally reduced intracellular redox state, suggesting that wrinkling is a mechanism for coping with electron acceptor limitation. Mutational analyses and in situ expression profiling have revealed roles for redox-sensing regulatory proteins and respiratory enzymes, as well as genes involved in matrix production, in the morphogenetic responses of biofilms to redox conditions. To characterize endogenous electron acceptor production, we have developed a novel chip that serves as a growth support for biofilms and allows electrochemical detection and spatiotemporal resolution of phenazine production in situ. We are further developing this chip for detection of various redox-active metabolites. We have also begun to apply a new technique for monitoring phenazine-dependent metabolism within a colony biofilm that relies on stable isotope labeling and stimulated Raman scattering (SRS) microscopy. Through these diverse approaches, we are developing a broad picture of the mechanisms and metabolites that exert an integrated influence over redox homeostasis in *P. aeruginosa* biofilms.

[O38] NOVEL USES FOR SYNCHROTRON RADIATION IN THE STUDY OF BIOFILMS

Ben Libberton
1 Max IV Laboratory, Lund, Sweden

The field of biofilm research has pioneered the use of new technologies to study both fundamental and applied aspects of biofilm. Biophysics, microfluidics and advanced microscopy techniques have significantly changed the landscape of biofilm research and increased our understanding of how microorganisms live in complex, structured communities. The more we learn about these communities, the greater the need for technology that can deliver high spatial and temporal resolution data to help us unravel the complexity within them. Recent developments in synchrotron technology has dramatically expanded the potential uses in biological sciences. Traditionally, synchrotron X-rays have been used mainly by structural biologists to obtain the structures of proteins but now there is a wider scope for them to be applied to whole cells or tissues to provide atomic scale resolution over vastly larger areas. These advancements make X-rays useful additions to the biofilm researchers toolbox. On the one hand, synchrotron facilities are complex and require a lot of specialised knowledge to operate, however, they are also user facilities. This means that most synchrotrons are set up with user offices to help new users start experiments and interpret results. At the newly opened MAX IV Laboratory in Lund there are several beamline experimental stations that lend themselves to the study of biofilms.

BioMAX – state of the art structural biology experimental station
SoftiMAX – X-ray microscopy generating confocal-like images with element distribution
CoSAXS – X-ray scattering to analyse the dynamics of micro- and nanoscale structure
HIPPIE – A spectroscopy technique that can be performed at ambient pressures on living samples

The use of synchrotron radiation in microbiology is just beginning and there has never been a better time to start using this powerful technology to study biofilms.
[O40] NANOPARTICLE-BASED CHEMICAL IMAGING IN BIOFILMS AND TISSUES

Michael Kühl¹, Klaus Koren², Sergey Borisov³, Erik Trampe¹, Mads Lichtenberg⁴, Kasper Elgetti Brodersen¹

¹University of Copenhagen, Marine Biological Section, Department of Biology, Helsingør, Denmark
²University of Aarhus, Department of Bioscience, Denmark
³Technical University Graz, Austria

Biofilms exhibit variable structural complexity, which modulates the chemical microenvironment and can lead to pronounced heterogeneity in the distribution and activity of microbial populations. This complicates the mapping of microbial activity in biofilms. Microsensors only provide a limited amount of detailed point measurements not fully accounting for the heterogeneous structural and chemical landscape in biofilms. Planar optical sensors can map the chemical conditions at the base of biofilms, while the chemical conditions at the flow-exposed upper biofilm surface cannot be mapped by planar optode based imaging. Here we report on novel chemical imaging approaches for mapping O₂ and pH at high spatio-temporal resolution over biofilm, coral and plant tissue surfaces coated by luminescent sensor nanoparticles. Furthermore, we present first data on intra-tissue/biofilm O₂ measurements with nanoparticles perfused into the sample. We give an overview of relevant instrumentation, calibration and application of such nanoparticle-based chemical sensing in different natural and constructed biofilms.

In order to profit from beneficial biofilms or get rid of harmful ones, there is a need for better understanding biofilm development and structure. In addition to structural parameters the determination of material properties and resulting mechanical behavior (e.g., shear stress induced deformation) are also important. Hence, capturing the dynamics of material properties and mechanical behavior throughout a biofilm cultivation is of great interest and importance.

Optical coherence tomography (OCT) is an imaging modality ideal for biofilms since it allows for the monitoring of structure and deformation in real-time. Consequently, the mechanical characterization of biofilms can be performed in situ and non-invasively during biofilm cultivations. To gain a fundamental understanding of the relation between cultivation conditions and biofilm characteristics (e.g. structural, mechanical) a monitoring setup is required which allows for standardization of methods and analyses.

We thus developed a fully automated screening setup for lab-scale experiments. It is a robotic platform with an experimental layer on which mini-fluidic flow cells are operated in parallel (n ≤ 40). Visualization if biofilm developing is achieved by OCT imaging. The entire system is fully automated - incl. OCT positioning, focusing and dataset acquisition - allowing for direct inspection of biofilms in real-time and 3D. This methodology enables a valid description of the underlying interactions including a statistic treatment. Hard- and software are open source and can easily be adapted to specific experimental requirements.

Initial experiments investigated the effect of Fe²⁺ in the cultivation medium on the stability of Bacillus subtilis biofilms. Therefore, biofilms were cultivated in mini-fluidic flow cells (n = 8; sticky slides 0.4, ibidi GmbH, Martinsried, Germany) and exposed to different shear stress levels. Biofilm development was monitored daily applying OCT without user actions.
Meet our editorial team

Editor-in-Chief
Neil A.R. Gow
University of Aberdeen, UK
Area of expertise: Fungi

Associate Editors
Gurdyal S. Besra
University of Birmingham, UK
Area of expertise: Bacteria

Vincent Bulone
University of Adelaide, Australia
Area of expertise: Fungi/Plants

Herman Höfte
INRA, Versailles, France
Area of expertise: Plants

Professor Mark Carrington
University of Cambridge, UK
Area of expertise: Parasites

Aims and Scope

A new and multidisciplinary journal, with its unique aim of publishing high-quality research on all aspects of the cell wall across all relevant disciplines and all major groups of organisms that have cell walls: bacteria, plants, fungi and parasites.

For the full aims & scope, to contact our editors or to submit your article online, visit: journals.elsevier.com/the-cell-surface
[P1] RSMA+HFQ BINDING TO VFR mRNA CAUSES CASCADE REGULATION VIA FLEQ TO CONTROL PSEUDOMONAS AERUGINOSA BIOFILM POLYSACCHARIDE PEL

Yasuhiko Irie1, Matthew Parsek2, Victoria Shingler3
1University of Dayton, Dayton, Oh, United States
2University of Washington, United States
3Umeå University, Sweden

Expression of biofilm extracellular polysaccharide is often controlled by multiple regulatory elements. The PEL polysaccharides are one of the major biofilm matrix components produced by *Pseudomonas aeruginosa*. The post-transcriptional regulator RsmA has been implicated in the control of *pel* expression, but the only evidence to-date originates from transcriptomic studies. The RsmA protein binds to target mRNAs to modulate ribosomal access and thereby translation. RsmA is also known to de-stabilize some target mRNAs by unknown mechanisms. Here we show that RsmA is not a direct regulator of PEL. Rather, we trace the role of RsmA in PEL expression to the inhibition of the virulence transcription factor Vfr required for efficient transcription of *fleQ*. FleQ in turn, is a known transcription factor of the *pel* operon. Furthermore, we show that RsmA cannot bind vfr mRNA alone, but requires the RNA chaperone protein Hfq. This is the first example where an RsmA protein family member is demonstrated to require another protein for RNA binding.

[Q2] STAPHYLOCOCCUS EPIDERMIDIS DOES NOT RELY ON POLYSACCHARIDE PRODUCTION WHEN FORMING BIOFILM IN HUMAN PLASMA

Sandra Maria Skovdal1, Diana Fischer Malakær2, Natalia Zobek2, Guanghong Zeng3, Holger Rohde4, Nis Jørgensen5, Rikke Louise Meyer2
1Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
2Interdiciplinary Nanoscience Centre (Inano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
3Dfm A/S, Hoersholm, Denmark
4University Medical Center Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
5Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark

Background: *Staphylococcus epidermidis* is predominant in implant-associated infections as it is excellent at forming biofilms. The extracellular matrix of *S. epidermidis* was first thought to consist mainly of polysaccharide intercellular adhesin (PIA), encoded by the *icaADBC* operon. However, many clinical isolates do not contain this operon. A giant surface-bound extracellular matrix-protein (Embp) may be relevant for *in vivo* biofilm. *S. epidermidis* may depend on either PIA or Embp and eDNA in forming biofilms. This study aims to determine the importance of Embp versus PIA for biofilm formation in standard laboratory media and in *in vivo*-like media with human plasma, and to learn how these matrix components affect mechanical properties and antibiotic resistance of biofilms.

Materials/methods: The strains included were *S. epidermidis* 1558WT (deficient of *icaADBC*), and derivative strains that either lacked Embp, expressed Embp, or expressed *icaADBC* from a plasmid when induced. Strains were grown statically or under flow in standard laboratory media (BHI or TSB) or BHI supplemented with 10% or 50% human plasma. Confocal laser scanning microscopy determined biofilm structure and biovolume, and antibiotic binding was visualised with bodipyFL-vancomycin. Atomic force microscopy determined mechanical properties by nanoindentation.

Results: Three-dimensional imaging revealed that *S. epidermidis* only require polysaccharides for biofilm formation in absence of human plasma. Embp-expressing, PIA-negative strains that either lacked Embp, expressed Embp, or expressed *icaADBC* from a plasmid when induced. Strains were grown statically or under flow in standard laboratory media (BHI or TSB) or BHI supplemented with 10% or 50% human plasma. Confocal laser scanning microscopy determined biofilm structure and biovolume, and antibiotic binding was visualised with bodipyFL-vancomycin. Atomic force microscopy determined mechanical properties by nanoindentation.

Conclusions: We propose that the assumed importance of polysaccharides for biofilm formation is an artefact from growing biofilms in standard laboratory media void of human matrix proteins. *S. epidermidis* employ diverse mechanisms for biofilm formation, which can be activated under different circumstances. We must therefore back to the drawingboard to study how *S. epidermidis* incorporates self-produced and host-derived matrix components to successfully form antibiotic-resistant biofilms *in vivo*.
[P3] EFFECT OF SUCROSE ON BACTERIAL GROWTH, EXTRACELLULAR POLYMERIC SUBSTANCES PRODUCTION AND BIOFILM FORMATION IN TWO BACILLUS SUBTILIS STRAINS

Thomas Cousseau1, Damien SEYER1, Charlotte Vendrely1, Patrick Di Martino2
1University of Cergy-Pontoise, Ermeece - Eu139I, Neuville-Sur-Oise, France

We studied the influence of growth conditions on bacterial growth, extracellular polymeric substances production and biofilm formation of the two Bacillus subtilis strains CIP52.65T (Marburg type) and CIP102517 (clinical origin).

The effects of Trypticase Soy (TS) supplementation with sucrose (20% w/v, TSS) were studied on planktonic growth, colony growth on agar plates, extracellular polymeric substances production and biofilm formation. Biofilm formation was obtained on filters deposited on agar plates, on immersed glass slides, and on stainless steel petri dishes, depending on the experiments. The generation time of planktonic cells increased from 31 to 59 min for CIP52.65T and from 25 to 46 min for CIP102517 in TS and TSS broth, respectively. The diameter of a macro-colony on the agar medium surface increased from 1.2 (+/-0.1) to 8.4 cm (+/-0.3) for CIP52.65T and from 2.1 cm (+/-0.2) to 7 (+/-0.2) for CIP102517 after 24h in TS and TSS agar, respectively. Confocal scanning laser microscopy analysis of biofilms formed on glass slides and infrared spectroscopy of biofilms formed on filters on agar plates showed an increase in the matrix content in proteins and polysaccharides in the presence of sucrose. The rheological analysis of biofilms formed in stainless steel cups showed that the presence of sucrose induced huge increases in conservation and loss moduli values for the two strains: G’ increased from 10 to 208 Pa for CIP52.65T and from 3.5 to 82.5 Pa for CIP102517; G” increased from 2 to 53 Pa for CIP52.65T and from 1.5 to 26 Pa for CIP102517, respectively.

All these results showed that the presence of sucrose at high concentration induced an increase in the production of extracellular matrix polymers at the expense of cell growth, leading to a different organization of the biomass and to a modification of the corresponding mechanical properties.

Keywords: Bacillus subtilis, extracellular polymeric substances, matrix, biofilm, mechanical properties

[P4] THE DUAL ROLE OF PSEUDOALTEROMONAS PSCICIDA BIOFILM FOR THE CORROSION AND INHIBITION OF CARBON STEEL ALLOYS

Masoumeh Moradi1, Zhenlun Song1, Sai Ye1
1Ningbo Institute of Materials Technology and Engineering, Ningbo, China

It is well-known that bacteria and their metabolic byproducts can attach to the surface and induce the corrosion acceleration or inhibition. The microbiologically influenced corrosion is closely related to the biofilm formation. Generally, the biofilm is composed of bacterial cells, extracellular polymeric substance (EPS) secreted by bacteria, corrosion products, and so on. While some components can promote the steel corrosion, some have a protective effect for the steel. The study of biofilm community structure may provide information on the interactions of biofilm populations with metal alloys at different conditions. In this work, two different culturing conditions, shaker incubator and flow cells, were used to incubation of P. psicida isolates on carbon steel (CS) surfaces and then the corrosion behavior of metal alloys and biofilm structure were studied. It is found that, a heterogeneous and patchy biofilm was formed on the CS in flow cell; while the biofilm covered homogenously whole CS surfaces incubated in shaker and reduce the corrosion rate after 2 weeks. CLSM images (Fig. 1) also confirmed the presence of homogenous biofilm on the surface after 2 weeks which almost included died cells, but in the flow cells a patchy biofilm is composed of died and live cells. When the biofilm was removed from CS surfaces, a lot of cracks were examined on the surface exposed to P. psicida in flow cells for 2 weeks. However, intergranular corrosion was observed on the samples were incubated in shaker, but the surface was almost intact against of localized corrosion. So, it can be concluded that the biofilm structure will give information about the corrosion process of alloys.

Fig. 1 CLSM images of CS samples exposed in artificial seawater containing P. psicida in shaker incubator (a,b) and flow cells (c,d) for one and 2 weeks, respectively.
[P5] MEMBRANE DISTILLATION BIOFOULING: IMPACT OF FEED WATER TEMPERATURE ON BIOFILM CHARACTERISTICS AND MEMBRANE PERFORMANCE

Anne Bogler1, Edo Bar-Zeev 1
1Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel

Reclamation of highly contaminated water has prompted the need for novel sustainable membrane technologies, such as membrane distillation (MD). Water flux in MD is driven by a water vapor pressure gradient between heated feed and cold distillate water separated by hydrophobic porous membranes. The greatest challenge for membrane-based wastewater reclamation is microbial fouling (biofouling), the establishment of a bacterial consortium within self-produced extracellular substances on the membrane and spacer surfaces. The goal of this study is to determine the effect of feed water temperature on biofilm characteristics and MD system performance. Dynamic biofouling experiments with thermophilic *Anoxybacillus gonensis*, isolated from municipal wastewater, were conducted in a bench-scale system with a cross-flow membrane cell. Feed temperature was set to 45, 55 or 65°C, while distillate temperature was adapted to reach an initial distillate water flux of 25±1L/m²/h. System performance was continuously monitored via distillate water flux and conductivity. Biofilm was analyzed using total organic carbon, optical coherence tomography, confocal laser scanning microscopy (CLSM) and flow cytometry. Membrane performance was strongly impaired by biofouling, with best performance at 45°C. Flux decline was highest (87%) at 55°C, while at 65°C distillate conductivity increased more than 100fold and bacteria were observed in the distillate due to severe membrane wetting. Biomass and cell number on the membrane were highest at 55°C, while no significant differences between temperatures were observed on the spacer. Flow cytometry as well as CLSM showed more dead than live bacteria at all temperatures. Our results indicate that feed water temperature can be a determining factor for wastewater reclamation with MD. The impact of other parameters, such as flow conditions and bacterial community composition remain to be determined in future studies in order to maximize the potential of MD for wastewater reclamation.

Laura Quinn1, Caio Barros1, Henry Devlin1, Stephanie Fulaz Silva1, Dishon Hiebner1, Stefania Vitale1, Eoin Casey1
1University College Dublin, Dublin, Ireland

The surface associated communities of microorganism in biofilms are encased in a matrix of extracellular polymeric substances (EPS). The EPS is made up of mainly polysaccharides, proteins, nucleic acids and lipids and plays an important role in maintaining the integrity of the biofilm1. Although the general composition of the EPS is known, it can be highly variable among strains and also among different growth conditions for the same strain. Due to the large variety of biopolymers in nature and the difficulty in their analysis, EPS has been called “the dark matter of biofilms”2.

The difficulty in removing unwanted biofilms using conventional approaches has prompted the development of new technologies. Amongst these, engineered nanoparticles show some promise. It has been previously established that nanoparticles possess antibacterial properties but there is little understanding of the mechanisms involved in these actions3, particularly from the point of view of the role of the EPS. The complexity of the biofilm matrix together with the complexity of the nanoparticles within the environment of the matrix has hampered our fundamental understanding of the nanoparticle-biofilm interaction.

In order to develop a comprehensive understanding of the matrix of the biofilm and the interaction with nanoparticles, a range of experiments were carried out using two engineered bacterial strains: mCherry-expressing *Pseudomonas fluorescens* and GFP-expressing *Pseudomonas putida*. The biofilms were grown in both well-plates and on glass slides and were exposed to fluorescently labelled silica nanoparticles with different size and surface charge. Through UV-VIS and fluorescent spectroscopy and confocal scanning laser microscopy, it was possible to study the interaction between the nanoparticles and the biofilm and gain useful information on the uptake and diffusion of the nanoparticles within the biofilm matrix.

[P7] BIOFILM FORMATION AND DISPERAL OF KOCURIA VARIANS G23

Anders Meyer Tørp1, Henriette Lyng Røder1, Jakob Herschend2, Morten Simonsen Dueholm1, Brian Stougaard Vad4, Rikke Louise Meyer5, Daniel Otzen3, Mette Burnølle2

1University of Copenhagen, Department of Biology, Section of Microbiology, Copenhagen, Denmark
2University of Copenhagen, Department of Biology, Section of Microbiology, Denmark
3Aalborg University, Center for Microbial Communities, Department of Chemistry and Bioscience, Denmark
4Aarhus University, Interdisciplinary Nanoscience Center (Inano), Department of Molecular Biology and Genetics, Denmark
5Aarhus University, Interdisciplinary Nanoscience Center (Inano), Department of Bioscience, Denmark

Kocuria varians is a Gram-positive bacterium belonging to the family Micrococccae. The bacteria are predominantly isolated from biofilms in food-processing plants. Even though K. varians is considered to be non-pathogenic, studies have shown that native bacteria in these environments, such as K. varians, can promote the growth of potential pathogens, e.g. Listeria monocytogenes. A better understanding of biofilm growth of naturally occurring bacteria in food processing environments may therefore reduce the risk of product contamination by potential pathogens.

Here we report a study of biofilm formation of K. varians G23, originating from a Danish slaughterhouse under flow and static conditions. In the biofilm, K. varians G23 formed rigid cube-shaped structures followed by bursting and mass bacterial dispersal in both static and flow conditions. Comparison of five closely related Kocuria species revealed that the cubic biofilm structure was unique for K. varians G23.

The K. varians G23 biofilm was subjected to Confocal Laser Scanning Microscopy (CLSM) and component-specific stains to elucidate the unique biofilm structure. The fluorescent dye CDy1, which has particular affinity for amyloid structures, was localized on the surfaces of cells, consistent with earlier reports of amyloid-coated bacteria from other Gram-positive species. Addition of the amyloid inhibitor epigallocatechin-3-gallate (EGCG) to the media in the BioFlux flow system strongly impeded K. varians G23 biofilm formation and ultimately stopped it at 100 µM EGCG. The effect was reversed when EGCG was removed from the system. Addition of EGCG did not affect the growth rate of planktonic K. varians G23 cultures. Currently, biofilm samples from K. varians G23 are being analyzed by label-free quantitative proteomics which hopefully will help identify potential amyloid proteins.

REFERENCES

[P8] HOST PROTEINS DETERMINE MRSA BIOFILM STRUCTURE AND INTEGRITY

Cindy Dreier1, Astrid Nielsen1, Pernille Ommen Andersen2, Tue Wenzel Kragstrup1, Nis Jørgensen3, Rikke Louise Meyer5

1Interdisciplinary Nanoscience Center (Inano), Aarhus University, Aarhus C, Denmark
2Aarhus University, Interdisciplinary Nanoscience Center (Inano), Interdisciplinary Nanoscience Center, Aarhus, Denmark
3Department of Rheumatology, Aarhus University Hospital, Denmark
4Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
5Interdisciplinary Nanoscience Centre (Inano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark

Human extracellular matrix (hECM) proteins aids the initial attachment and initiation of an infection, by specific binding to bacterial cell surface proteins. However, the importance of hECM proteins in structure, integrity and antibiotic resilience of a biofilm is unknown. This study aims to determine how specific hECM proteins affect S. aureus USA300 JE2 biofilms.

Biofilms were grown in the presence of synovial fluid from rheumatoid arthritis patients to mimic in vivo conditions, where bacteria incorporate hECM proteins into the biofilm matrix. Difference in biofilm structure, with and without addition of hECM to growth media, was visualized by confocal laser scanning microscopy. Two enzymatic degradation experiments were used to study biofilm matrix composition and importance of hECM proteins: enzymatic removal of specific hECM proteins from growth media, before biofilm formation, and enzymatic treatment of 24-hour-old biofilms.

hECM addition changed the overall biofilm structure, with larger dispersion of cells within the biofilm matrix. Fibrin, elastin, and collagen were important in forming and maintaining the biofilm structure. Their absence, from growth media, reduced biofilm formation 5-fold, indicating their importance in biofilm initiation. Their enzymatic degradation, in an established biofilm, caused dispersal, showing that these proteins are critical for structural integrity. A combination of antibiotics with hECM degrading enzymes did not improve the treatment outcome.

We conclude that while hECM proteins are an integral part of the biofilm matrix, we find no evidence that these matrix components are directly responsible for the biofilm’s unique antibiotic resilience. The hECM proteins are however highly important in determining biofilm structure and initiation. When utilizing in vitro biofilm infection models, we therefore recommend addition of hECM proteins to standard growth media, in order to mimic biofilm properties and structure seen in vivo.
P9] BIOFILM MATRIX FUNCTIONALITY

Thomas Neu1, John R. Lawrence2
1Department of River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
2National Hydrology Research Centre, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada

The extracellular matrix represents an essential part of microbial biofilms and bio-aggregates. The matrix acts as a multi-functional structure and is considered to be of high importance in different stages of biofilm development. Nevertheless the matrix remains a challenge in many respects. The issues comprise the (1) biosynthesis, release and identity; (2) structural and biochemical analysis; (3) characterisation by -omics; (4) interactions and reactivity; (5) mechanics and dynamics; and (6) control and degradation. Focus of this discussion poster will be on matrix functionality. Several functions of the biofilm matrix are known and established, however there are emerging functions which are not readily known. The poster will present a comprehensive list of functions including: architecture, cryo-/osmo-protection, sorption, precipitation, adhesion, repellent, cohesion, connectivity, activity, surface-activity, information, competition, nutrition, motility, transportation, communication, conduction, dispersion, translocation (up till 2016) as well as more recently fractal formation and aggregation, toxin, microgel formation, hydrophobicity and mechanical properties, maturation, mineral scaffold, floating biofilm architecture, stress response (host, nutrition, desiccation, toxic compounds), cooperation-competition, protein scaffold, micro-domain production, avalanche motion, liquid crystal formation, growth on hydrocarbons, community positioning-evolution, detachment regulation, stratification, intercellular interaction, controlled bi-functionality, electron transfer, redox-activity, phage protection, socio-microbiology, ecosystem service. These functions will be linked to biochemical identity and briefly commented upon. The biofilm matrix functionality key-words listed will provide the basis for intense discussions of matrix function in different biofilm systems and various habitats.

[P10] EXTRACELLULAR DNA IN ANOXYBACILLUS AND GEOBACILLUS BIOFILMS

Basar Karaca1, Arzu Coleri Cihan1, Ayse Busra Karakaya1
1Ankara University, Ankara, Turkey

Some of thermophilic bacilli members, such as Anoxybacillus and Geobacillus are common contaminants of dairy products. The biofilm matrix are encased in polysaccharides, protein, and extracellular DNA. The eDNA in the matrix of biofilms is required for the structural integrity of many biofilms. The current study presents the role of eDNA in biofilms of thermophilic biofilms for the first time. G. thermosolvens DSM 465T and A. flavithermus DSM 2641T strains were preferred. Tyrptic Soy Broth with appropriate pH value and salinity for each strain was used to maintain optimum conditions for assays. DNase I treatment was performed for both pretreatment and post treatment points. The broth cultures were prepared at appropriate conditions (without NaCl TSB, pH 7.5, 55°C for DSM 2641T; 1.0% NaCl containing TSB, pH 7.5, 65°C for DSM 465T) for 18 h and following the incubation, the cultures were treated with 100 µg/mL DNase I (as final concentration) for 60 min at 37°C. The inactivation of the enzyme was also carried out before assays. 140 µL of the enzyme-treated and not treated samples were placed into 96-well polystyrene plates and the plates were incubated at appropriate conditions for 24, 48 and 72 hours. After the incubation, crystal violet assay was performed to determine biofilm yields. 48 h-old mature biofilm samples were also prepared for DNase I treatment. The mature biofilms were treated with 100 µg/mL enzyme for 1, 2, 4 and 12 h. The eDNA and genomic DNA of the strains were also purified and compared by electrophoresis. The mature biofilms samples (treated and control samples) were also stained with DEAD/LIVE BacLight kit and analysed by CLSM. The adhesion was drastically effected by enzyme treatment. The mature samples were dispersed effectively and these results were also confirmed with CLSM analysis. The molecular weight patterns of gDNA and eDNA were also found to be different. The sanitation procedures based on enzymatic treatment can be considered.

Key words: Thermophilic bacilli, Anoxybacillus, Geobacillus, biofilm, eDNA
[P11] SEARCHING FOR NOVEL FUNCTIONAL AMYLOIDS IN BIOFILMS

Susan Hansen1, Heidi N. Danielsen2, Florian-Alexander Herbst3, Henrik Kjeldal4, Allan Stensballe5, Per Halkjær Nielsen6, Morten Simonsen Dueholm7

1Aalborg University, Aalborg Ø, Denmark
2Aalborg University, Denmark
3Aalborg University, Center for Microbial Communities, Denmark
4Aalborg University, Aalborg
5Aalborg University, Department of Health Science and Technology, Aalborg, Denmark
6Aalborg University, Aalborg University, Dep. of Chemistry and Bioscience, Aalborg, Denmark
7Aalborg University, Center for Microbial Communities, Dept. Chemistry and Bioscience, Aalborg, Denmark

The identification of novel amyloids is key to understand the many roles of amyloids in biofilm structure and function. Unfortunately, isolation of amyloids is a challenging and not always successful process. However, by taking advantage of the structural stability and the polymeric nature of the amyloids, compared to most other proteins, a new method has been developed to screen for potential amyloids. Utilizing formic acid’s ability to depolymerize an amyloid fibril, the samples were freeze-dried and dissolved in increasing concentrations of formic acid (0-100%) and then analyzed for a characteristic increase in protein abundance at a higher percentage of formic acid, where they are dissolved. The proteins were identified using label-free quantitative LC-MS/MS, and plots of all identified proteins were studied for potential amyloid patterns. The method has successfully been evaluated on two established Gram-negative amyloid systems and used to find a novel amyloid candidate in the potential pathogenic Aeromonas sp. Proof of concept for the application to complex microbial biofilms was done using activated sludge, where amyloid producing E. coli was added and subsequently traced. In addition, another potential novel amyloid candidate was found in the activated sludge biofilm.

[P12] MECHANISMS OF EXTRACELLULAR DNA INCORPORATION WITHIN THE SALMONELLA TYPHIMURIUM BIOFILM

Lauren Nicastro1, Sarah A. Tursi1, Amanda A. Miller1, Bettina Buttaro1, Çağla Tükel1

1Lewis Katz School of Medicine Temple University, Department of Microbiology and Immunology, United States

Salmonella enterica serotype Typhimurium is a Gram negative, motile bacterium that causes infection via the fecal oral route. These bacteria, as well as other Enterobacteriaceae, produce amyloid proteins called curli as a major proteinaceous component of their biofilm. Amyloids, like curli, can be produced by bacteria as well as humans. Accumulation of amyloids in humans can be found in complex human diseases such as Alzheimer’s Disease. It is thought that the amyloids seen in humans are the result of misfolded aggregates, however bacterial amyloids have been found to be functional. Amyloid curli complexes with extracellular DNA within the biofilm. When purified from the matrix, these complexes are recognized by a variety of receptors. Previous studies have shown that the amyloid portion of these curli complexes is recognized by the Toll Like Receptor 2 (TLR2)/TLR1/CD14 complex as well as the NLRP3 inflammasome, leading to the production of proinflammatory cytokines such as interleukin-1 beta (IL-1β). Additionally, the eDNA within the complex has been shown to induce type I Interferon (IFN) production and autoimmunity through activation of TLR9. Recently, we determined variable amounts of DNA within the curli prepared in the lab. We have been testing two protocols and were able to manipulate the amount of DNA in the curli complexes. Controlling the variable of high and low amounts of DNA within the curli would be invaluable in future studies to delineate the role of eDNA in the autoantibody responses to curli treatments. To test this idea, we will treat groups of mice with high DNA and low DNA curli preps at the same amyloid concentration and determine autoantibody production. We expect that the autoantibody production will correlate with the amount of DNA present in the preps i.e., low DNA preps will induce little to no autoantibodies while high DNA preps will induce high autoantibodies. This will also provide insight into the role of curli in the autoimmune response seen in these mice. Additionally, moving forward we plan to test the role of NLRP3 and STING in their interactions with the high and low DNA content preps.
MOLECULAR MECHANISMS IN BIOFILM FORMATION

[P13] MOLECULAR MOTORS GOVERN LIQUID-LIKE ORDERING AND FUSION DYNAMICS OF BACTERIAL COLONIES

Anton Welker1, Tom Cronenberg1, Robert Zöllner1, Claudia Mei1, Katja Sievering1, Enno Oldewurtel1, Berenike Maier1

1Department of Physics, Köln, Germany

Bacteria can adjust the structure of colonies to enhance their survival rate under external stress. Here, we explore the link between bacterial interaction forces and colony structure. We show that the activity of extracellular pilus motors enhances local ordering and accelerates fusion dynamics of bacterial colonies. The radial distribution function of mature colonies shows local fluid-like order. The degree and dynamics of ordering are dependent on motor activity. At a larger scale, the fusion dynamics of two colonies shows liquid-like behavior whereby the ratio of surface tension over viscosity decreases with decreasing motor activity.

[P14] THE TRANSCRIPTIONAL REGULATION OF PSEUDOMONAS PUTIDA BIOFILM ADHESIN GENE LAPA

Hanna Ainelo1, Andrio Lahesaare1, Annika Teppo1, Maia Kivisaar1, Riho Teras1

1Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia

Pseudomonas putida forms biofilms on the roots of agriculturally important plants, protecting the plant from pathogens. *P. putida*’s biofilm is proteinaceous and known to contain two large adhesion proteins, LapA and LapF. LapA is the larger of the two (it is the largest protein in *P. putida* at 888 kDa) and seems to be essential for biofilm formation in all conditions. The presence of LapA on the cell surface is controlled by a well-described mechanism of cutting LapA off the cell.

We are investigating how the production of LapA is controlled on the transcriptional level. As the promoters of *lapA* were undescribed, we took it upon ourselves to search for them. Transcription of *lapA* in LB-grown bacteria is initiated from a surprisingly large number of promoters – six – and three of those display a moderate RpoS-dependence.

Secondly, we studied if and how *lapA* transcription is regulated by the global regulator protein Fis that we have previously linked to biofilm formation. We show that, indeed, Fis controls the transcription of *lapA*. *In vitro*, Fis binds the *lapA* promoter area in six specific positions and *in vivo* Fis activates the transcription of *lapA* while overexpressed in the cells. Two of the Fis binding sites, Fis-A7 and Fis-A5, are responsible for the positive effect of Fis on the transcription of *lapA*. Fis binding to the Fis-A7 site increases the level of transcription from the most distal promoter of *lapA*, whereas Fis binding to the Fis-A5 site could be important for modifying the promoter area topology.

These results shed light on the complex transcriptional regulation of *lapA* with its six promoters and show a potential mechanism how Fis regulates biofilm formation via LapA.
[P15] FIS’ INVOLVEMENT IN PSEUDOMONAS PUTIDA BIOFILM FORMATION

Riho Teras1, Hanna Ainelo1, Andrio Lahesaare1, Annik Teppo1

1Institute of Molecular and Cell Biology; University of Tartu, Tartu, Estonia

The regulators involved in the formation of *Pseudomonas putida* biofilm have been studied quite thoroughly. It is mostly described as a FleQ and c-di-GMP dependent biofilm, but little attention is paid to other potential regulators.

A global transcriptional regulator Fis participates in the biofilm formation of *P. putida*. We have shown that *fis*-overexpression enhances *P. putida*’s biofilm formation and have ascertained some mechanisms how Fis can participate in this process.

P. putida’s biofilm matrix in LB medium is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a significant role in the attachment of the cells to surface and cell-cell interaction, respectively. Therefore, the regulation of these genes seems to be crucial for understanding the biofilm formation in *P. putida*.

We have shown that Fis binds the upstream DNA of *lapA* and *lapF* genes in vitro, and respectively activates and represses the transcription of these genes according to β-galactosidase assay. Two such Fis-binding sites were identified for *lapA* and one, overlapping with the promoter, for the *lapF* gene. The mutation in these specific binding-sites abolished Fis regulation of transcription.

Additionally, Fis influences *P. putida* surface hydrophobicity that can be crucial for cell to cell aggregation or nonspecific adhesion to the surface. We have shown that cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. The hydrophobicity of cells is restored by expression of *lapF* from IPTG-controlled promoter P*<sub>tac* or mutating Fis-binding site Fis-F2 in front of the *lapF* gene.

In sum, Fis has a dual role in biofilm formation. It induces the expression of *lapA* and thereby enhances biofilm formation, and reduces hydrophobicity of cell surface that can weaken the cell-cell interaction in mature biofilm.

[P16] THE ROLE OF BIOFILMS IN THE PATHOLOGY AND TRANSMISSION OF THE HUMAN PATHOGENIC YERSSINIAE

Linzy Elton1, Steve Atkinson1, Paul Williams1

1The University of Nottingham, Nottingham, United Kingdom

There are three species of human-pathogenic Yersiniae; two which cause gastrointestinal disease (*Yersinia pseudotuberculosis* and *Yersinia enterocolitica*) and one which causes plague (*Yersinia pestis*), one of the deadliest diseases in human history. All are capable of a method of bacterial messaging known as Quorum sensing (QS), which allows individual cells to communicate in a density dependent manner and has been shown to regulate several virulence phenotypes, including biofilm formation.

Biofilms are especially important for *Y. pestis*, as transmission of plague relies on the blockage of the vector insect’s digestive tract. This occurs when the bacteria attach to the chitinous gut lining, forming biofilms that can then be regurgitated with subsequent blood meals. Understanding the mechanisms of biofilm development is therefore important, as recent research has suggested a more prominent role in the spread of plague for human insect pathogens, such as fleas (*Pulex irritans*) and body lice (*Pediculus corporis*), compared to the traditional view of rats being the main transmission sources.

In the Yersiniae, biofilms consist of aggregations of bacteria embedded in a protective extracellular polymeric substance (EPS) matrix, composed primarily of the polysaccharide *N*-acetyl-D-glucosamine (GlcNAc). The production of GlcNAc, is regulated by NagC. NagC has been well studied in a number of bacteria, including *E. coli* and *Y. pseudotuberculosis* (which is genetically very similar to *Y. pestis*), and it is known to have various functions, including the regulation of GlcNAc production.

Caenorhabditis elegans are used as a model for biofilm formation, as bacteria are capable of establishing biofilms on the outside of the worms. By deleting nagC, we aim to ascertain the role of NagC in the Yersiniae’s ability to regulate GlcNAc and therefore their ability to produce biofilms. This project aims to establish the role of NagC in the formation of Yersiniae biofilms in both *C. elegans* and *in vitro*, with a view to extending this research into flea and human body lice models.
[P17] THE ROLE OF THE STRESS SURVIVAL ISLET 2 IN BIOFILM FORMATION OF LISTERIA MONOCYTOGENES

Eva Wagner1, Eva Harter2, Cornelia Lehensteiner2, Andreas Zaiser2, Martin Wagner2, Kathrin Rychli2

1Fioqsi GmbH, Tulln, Austria
2Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria

Listeria (L.) monocytogenes is the causing agent of listeriosis, a rare but severe disease associated with high mortality rates in humans. L. monocytogenes is able to survive a variety of stress conditions and to form biofilms leading to the colonization of different niches like the food processing environment. Recently we showed that the stress survival islet 2 (SSI-2), consisting of the genes lin0464, encoding a transcription factor, and lin0465, encoding a PfpI protease, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Strains harboring SSI-2 mainly belong to sequence type 121 (ST121). ST121 strains are predominantly isolated from food and food processing environments and known to persist for months and even years. The aim of this study is to investigate the role of SSI-2 in adhesion and biofilm formation.

Therefore we generated deletion mutants of lin0464 and lin0465 and the corresponding complemented strains using the persistent strain 6179. To determine adhesion, bacteria were grown in polystyrene wells at 25°C and 37°C for 24 hours and at 10°C for four days using two different media (Brain-Heart-Infusion supplemented with yeast extract (BHI-Y) and BHI-Y supplemented with 4% NaCl), respectively. Adhesion was determined using the crystal-violet binding assay. To study biofilm formation we plan to establish a continuous biofilm model using flow chambers.

All strains showed adhesion in polystyrene wells. The addition of 4% NaCl to the growth medium resulted in a decreased adherence in all used strains. When the gene lin0465 encoding the protease was constitutively expressed, we observed a significant increase (p<0.05) of adhesion at all investigated temperatures (10°C, 25°C and 37°C). This effect was most drastic at 10°C which is the usual temperature in the food processing environment. In conclusion these preliminary results indicate that the protease Lin0465 has a role in adhesion, potentially resulting in increased biofilm formation.

[P18] AEROBIC VITAMIN B12 BIOSYNTHESIS IS ESSENTIAL FOR PSEUDOMONAS AERUGINOSA DURING BIOFILM GROWTH

Anna Crespo1, Núria Blanco-Cabra1, Eduard Torrents2

1Institute for Bioengineering of Catalonia (Ibec)
2Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (Ibec), Barcelona, Spain

P. aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B₁₂ cofactor for their enzymatic activity.

In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B₁₂ concentration constraints (biosynthesis or environmental availability). We demonstrated increased vitamin B₁₂ levels during aerobic, stationary and biofilm growth that activate class II RNR activity. Our results unravel the P. aeruginosa mechanisms for dNTP synthesis during biofilm growth.
MOLECULAR MECHANISMS IN BIOFILM FORMATION

[P19] DIVERSE LIGAND-BINDING DOMAIN COMBINATIONS AT THE DISTAL END OF BACTERIAL RTX ADHESINS ARE ZIP CODES FOR BIOFILM FORMATION

Tyler Vance1, Shayan Assaie-Ardakany1, Phil Guo1, Corey Stevens1, Laurie Graham1, Peter Davies1

1Queen’s University, Kingston, Canada
2Eindhoven University of Technology, Netherlands

Many Gram-negative bacteria produce Repeats-In-Toxin adhesion proteins (RTX adhesins) to facilitate microbial adhesion to a variety of biotic and abiotic substrates. These large, multi-domain proteins anchored on the outer membrane share a common architecture comprised of three regions: 1) an N-terminal cell-membrane-anchorage region; 2) a large extension region consisting of tens to hundreds of tandem Bacterial Immunoglobulin-like (Big) domains; and 3) a C-terminal region differing widely in structure, with domains responsible for adhesion and cohesion. Bioinformatic analyses of putative RTX adhesins suggest that many of their C-terminal regions contain currently unidentified ligand-binding domains, or domain homologues whose ligands are not yet known. Here we illustrate the variability in C-terminal regions having solved the structure of several RTX adhesin ligand-binding domains from diverse bacteria. The oil-eating bacterium Marinobacter hydrocarbonoclasticus and the opportunistic pathogen Aeromonas hydrophila both have calcium-dependent ligand-binding domains, specific for sugar and protein, respectively. The M. hydrocarbonoclasticus sugar-binding domain is of the type used by another bacterium (Marinomonas primoryensis) to adhere to diatoms to form a multispecies biofilm, while that of A. hydrophila is similar to integrin and other extracellular-protein-binding domains. Using the structures of these recombiantly-expressed proteins in concert with a series of biochemical assays and binding arrays, we have begun to identify the ligands for each domain, and understand how differences in domain complement reflect the organism-specific substrate-binding needs.

Funded by NSERC

MOLECULAR MECHANISMS IN BIOFILM FORMATION

[P20] QUORUM SENSING MOLECULES REGULATE EPITHELIAL CYTOKINE RESPONSE AND BIOFILM-RELATED VIRULENCE OF PREVOTELLA SPECIES

Dareen Fteita1, Eija Könönen1, Mervi Gürsoy1, Ma Xiaochu2, Herman Sintim2, Ulvi Gürsoy1

1Institute OF Dentistry, Faculty OF Medicine, University OF Turku, Turku, Finland
2Department of Chemistry and Purdue Institute for Drug Discovery, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA, United States

Activation of the host immune system by bacterial burden is critical to trigger the inflammatory response. Quorum sensing (QS) signaling regulates host inflammatory modulators against bacterial pathogenicity, and at the same time, regulates adhesion, motility and biofilm-related virulence of several bacterial species. We previously demonstrated that the QS molecule, dihydroxy-2,3-pentanedione (DPD) and its analogs, significantly inhibited the biofilm-related virulence of Prevotella aurantiaca. Here, we examined the effects of estradiol and QS signaling on 1) cytokine response of human gingival keratinocytes (HMK) against whole cell extract (WCE) of other Prevotella intermedia group organisms (P. intermedia, P. nigrescens, and P. pallens), and 2) biofilm formation of P. intermedia, P. nigrescens, and P. pallens. All experiments, which included 2 strains of each species, were performed in the presence or absence of estradiol, and different concentrations of DPD and its analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD). Concentrations of interleukin (IL)-1β, -6, and -8 were determined by a Luminex multiplex immunoassay, biofilm levels were examined by the Bradford assay, and the microtopography of the same biofilms were assessed by scanning electron microscopy (SEM) imaging. Concentrations of IL-6 and IL-8 were elevated when HMK cells were incubated with estradiol and WCE of P. intermedia and P. nigrescens, and were reduced when incubated with estradiol and P. pallens. Butyl-DPD neutralized the estradiol- and WCE-induced cytokine expression of HMK cells. In the absence of estradiol, biofilm formation was significantly inhibited with increasing concentrations of DPD and analogs. This inhibition was less obvious after the addition of estradiol to growth media. SEM micrographs revealed a decrease in biofilm mass most detectable among the strains P. intermedia ATCC 25611 and P. nigrescens ATCC 33563 and AHN 8293. Our results indicate that the QS molecule butyl DPD could significantly neutralize the epithelial cytokine response, and at the same time, inhibit biofilm-related virulence of the Prevotella species in strain- and dose-dependent manners.
[P21] THE ROLE OF THE PHOSPHODIESTERASE NBDA IN BIOFILM DISPERSAL OF PSEUDOMONAS AERUGINOSA

Susanne Zehner1, Katrin Gerbracht1, Martina Rüger1, Eric Bohn1, Nicole Frankenberg-Dinkel1

1Technische Universität Kaiserslautern, Abteilung Mikrobiologie, Kaiserslautern, Germany

The opportunistic human pathogen Pseudomonas aeruginosa causes a broad range of acute and chronic infections often involving the formation of biofilms. P. aeruginosa is able to switch between the sessile and the planktonic lifestyle by a process that is called biofilm dispersal. Several environmental cues have been identified to trigger biofilm dispersal. One of these cues are non-lethal concentrations of nitric oxide (NO). The activation of the dispersal process involves the degradation of the second messenger c-di-GMP (bis-(3’-5’) cyclic dimeric guanosine monophosphate) [1]. The protein NbdA (NO-induced biofilm dispersion locus A) was found to play a major role in the NO-induced biofilm dispersal response of P. aeruginosa [2]. The tripartite protein NbdA consisting of the conserved domains MHYT-AGDEF-EAL was postulated to be directly involved in NO sensing and c-di-GMP degradation. Biochemical analyses of recombinant protein variants lacking the transmembrane MHYT-domain revealed NbdA being an active c-di-GMP degrading phosphodiesterase (PDE). Functional complementation of an E. coli phosphodiesterase deficient strain with a truncated NbdA variant confirmed PDE activity in vivo. In order to study the impact of NO sensing on the enzymatic activity, full-length protein NbdA was recombinantly produced and subsequently purified via affinity chromatography.

While the main hypothesis for nbdA-mediated dispersal of biofilm postulates direct NO sensing via the MHYT-domain, initial experiments also suggest a transcriptional regulation of nbdA expression by NO [2]. In order to study the putative NO-responsive transcriptional network we are using promoter lacZ-fusions in the background of several mutant strains. The obtained data will be presented and discussed with respect to the current model of NO-induced biofilm dispersal in P. aeruginosa.

References

[P22] MOLECULAR MECHANISM OF NITRIC OXIDE-MEDIATED REGULATION IN PSEUDOMONAS AERUGINOSA BIOFILMS DISPERSAL

Yuming Cai1, Ivo Tews1, Jeremy Webb2

1University of Southampton, Centre for Biological Sciences, Institute for Life Sciences, Southampton, United Kingdom
2Institute for Life Sciences, University of Southampton, National Biofilms Innovation Centre, University of Southampton, Southampton NHS Foundation Trust, Southampton, United Kingdom

Previous studies have shown that low dose nitric oxide (NO) can trigger Pseudomonas aeruginosa biofilm dispersal by modulating the level of the intracellular secondary messenger cyclic dimeric guanosine monophosphate (c-di-GMP). Diguanylate cyclase (GGDEF motif) and phosphodiesterase (EAL/HD-GYP motif) activities are responsible for the synthesis and hydrolysis of c-di-GMP, respectively. Various sensor domains have been found to link environmental cues to GGDEF and EAL/HG-YP activities modulation, of which PAS and MHYT domains were of our interest due to their potentials to bind NO. In P. aeruginosa PA01, a total of 13 proteins containing either PAS-DGC+/PDE or MHYT-DGC+/PDE were thought to be responsible for the NO-induced biofilm dispersal and were selected as our targets for investigation of their relationships between NO responses and biofilm phenotypes.

A range of NO donors were first tested for their efficacies on dispersing P. aeruginosa biofilms, of which 250µM Spermine NONOate (S150) showed outstanding results in dispersing ~60% batch cultured PAO1 biofilms within only 2 hrs. Gene deletion was then applied to 13 candidates for phenotypic analysis of mutants. Phenotypic assays for 13 mutants suggested that PA0861 and PA5017 play essential roles in P. aeruginosa PA01 for reducing intracellular c-di-GMP levels, enhancing swimming motility and triggering biofilm dispersal in response to NO. PA4959 is responsible for both twitching and swimming motility, which contribute greatly to the 3D structures of the biofilms formed. Deleting PA4959 led to much enhanced biofilm dispersal upon NO treatment, providing insight that the deficiency in both Type IV pili and flagella functions may facilitate the elimination of P. aeruginosa biofilms. This work has enhanced our understanding of the NO-c-di-GMP-swarming-dispersal pathway and its regulators in PA01, shedding light on NO signaling mechanisms and providing potential new targets for therapeutic drug design.
MOLECULAR MECHANISMS IN BIOFILM FORMATION

[P23] GROWTH MODE AND CARBOHYDRATE SOURCE INDUCE SIGNIFICANT SURFACE PROTEOME CHANGES IN PROBIOTIC LACTOBACILLUS RHAMNOSUS GG

Kirsi Savijoki, Pia Siljamäki1, Tuula A. Nyman1, Adyary Fallarero1, Yassmin Abdelhamid2, Veera Kainulainen1, Reetta Satokari6, Jouko Sandholm7, Pia Vuorela4, Pekka Varmanen2

1University of Helsinki, Helsinki, Finland
2Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
3Faculty of Medicine, Pharmacology, University of Helsinki, Finland
4Faculty of Medicine, Pharmacology, University of Helsinki, Faculty of Medicine, Immunobiology Research Program, University of Helsinki
5Turku Imaging Centre, Institute of Biotechnology, University of Turku, Åbo Academy, Finland

Engineering bacterial cells for bio-industrial processes and applications has primarily been based on the use of planktonically growing cells. Yet, majority of the bacteria prefer to grow as biofilms, which clearly outperforms the capabilities of individual cells, as cells in the biofilm consortia are more robust. Aim of the present study was to compare the surface proteome composition (surfaceome) of the probiotic *Lactobacillus rhamnosus* GG grown in biofilm and planktonic states and on two metabolizable carbohydrates, glucose and fructose, known to affect acid tolerance, adherence and antimicrobial activity of this probiotic. The main idea was to explore how the two carbohydrates affect the biofilm formation efficiency and antigenicity of GG and if the observed phenotypes could be explained by the specific surfaceome changes. We show that switching the carbohydrate source from glucose to fructose increased the protein-mediated biofilm formation of GG over a wider range of concentration compared to glucose. Fructose in growth medium increased the surface-antigenicity of GG, as well as the number and abundances of the surfaceome proteins during both growth modes. The surface-proteins with classical cell-wall anchors/domains (e.g., PrtP, HtrA) and adhesive moonlighting (e.g., r-proteins, tRNA synthetases, PepN/PepC aminopeptidases, sulfatases, glycolytic and stress proteins) were remarkably more produced in biofilms grown on fructose. Although the identification data suggested higher abundances for the SpaA/SpaC pilus proteins on planktonic cells, we show that biofilm cells grown on fructose were more adherent to mucus than the planktonic cells grown on glucose. To explore this further, an additional anti-SpaC antibody-mediated mucus inhibition assay and whole-cell ELISA monitoring SpaC abundances were conducted, which suggested that the adhesive moonlighting proteins, indeed, conferred increased adherence to GG cells during growth on fructose. Finally, a whole-cell enzymatic assay measuring the PepN/PepC activity was performed, which indicated the highest aminopeptidase activity with fructose-associated biofilm cells, thereby confirming the proteomic results. In conclusion, this study shows that besides the pili the non-classical protein export contributes to adherent features of this well-known probiotic strain, and that fructose could provide a selective advantage for growth of GG in the gut environment.

REFERENCES

MOLECULAR MECHANISMS IN BIOFILM FORMATION

[P25] IMPACT OF THE QUORUM SENSING MOLECULE JAI-1 AND THE TYPVI SECRETION SYSTEM OF JANTHINOBACTERIUM IN BIOFILM FORMATION AND FUNGAL CELL DEATH

Christel Vollstedt¹, Laura Nissen¹, Wolfgang Streit¹

¹University Hamburg, Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, Hamburg, Germany

Janthinobacterium spp. and bacteria affiliated with the genus Duganella are Gram-negative, motile, and aerobic bacteria, which are commonly isolated from soil and aquatic samples. While Janthinobacterium as well as Duganella appear to be non-pathogenic to humans, animals, and plants, they are well-known for their antifungal effects. So far, little is known about the molecular aspects involved in the close bacterium-fungus interaction. To get insight into the bacterial mechanism employed for cell-cell communication and the interaction with the fungus Fusarium graminearum we established the genomes of 11 bacteria affiliated with the genera of Janthinobacterium and Duganella. The data indicate that all but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Additionally all strains contain genes encoding the type VI secretion system (T6SS). In coincubation assays with different janthinobacterial strains and F. graminearum we observed a biofilm formation around the fungal hyphae leading to a reduced fungal growth. Genome-wide RNA-seq studies employing the background of two isolates (J. sp. HH01 and HH102) and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Among the most strongly regulated genes were secondary metabolite and T6SS gene clusters. Interestingly the T6SS seems to be controlled by the autoinducer JAI-1 within the strain HH102, whereas the strain HH01 did not regulate the T6SS gene expression via JAI-1. To learn more about the role of the T6SS in the interaction of J. sp. HH102 with the fungal pathogen F. graminearum we constructed different deletion mutants in the T6SS of HH102 to analyse the involvement in bacterial fungal interactions.

[P26] THE ROLE OF CELL-CELL COMMUNICATION IN BACILLUS SUBTILIS FLOATING BIOFILMS

Mihael Spacapan¹, Tjaša Danevčič², Ines Mandic-Mulec²

¹Chair of Microbiology, Department of Food Science and Technology, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
²University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia

Bacterial cell-cell communication coordinates gene expression in multicellular communities (biofilms) to regulate public goods production. Public goods are extracellular molecules (e.g. extracellular enzymes, biofilm matrix components) that provide a fitness benefit to the entire bacterial population. Cell-cell mediated regulation of public goods has not been extensively studied in the biofilms of Bacillus subtilis, a Gram-positive spore forming and industrially important model bacterium. Our aim is to understand the regulatory role of ComX, the signaling peptide of the ComQXPA system of B. subtilis in regulation of public goods. We use the B. subtilis PS-216 undomesticated strain as a model.

It is well known that ComX positively regulates development of genetic competence and the production of the lipopeptide antibiotic surfactin, but its role in exoprotease and matrix components production during pellicle formation has not been studied in depth. Our recent results confirmed that ComX is crucial for the production of exoproteases, as the activity of fluorescent reporters in the pellicle and the overall proteolytic activity of the pellicle spent media is dramatically lower in the ComX deficient mutant as compared to the wt. Furthermore, using a biosensor assay we show also that exposure of the signaling peptide to the exoproteases reduces its biological activity: Thus, the proteolysis may have important consequences for the peptide based signaling. In the absence of ComX the pellicle formation rates drastically increase compared to the wt strain, consequently speeding up the entry into the stationary phase. Finally, by measuring the overall expression and the single cell expression of operons responsible for the production of matrix components we also investigate the role of ComX in pellicle formation We find that ComX has a positive regulatory role in pellicle development, however, this is not evident at all time points of the pellicle development. We conclude that this is due to a drastically different kinetics of pellicle formation in the wt and the signal deficient mutant. Thus, ComX may be a regulatory switch that delays the entry into sporulation but promotes investment into alternative survival strategies such as production of proteases and biofilm development.
[P27] THE THREE LEVELS OF PHOSPHODIESTERASE ACTIVATION IN C-DI-GMP HYDROLYSIS

Andrew Hutchin1, Curtis Phippen1, Jack Craddock1, Yuming Cai1, Dom Bellini2, Sam Horrell3, Richard Strange4, Martin Walsh5, Jeremy Webb6, Ivo Tews1

1University of Southampton, Centre for Biological Sciences, Institute for Life Sciences, Southampton, United Kingdom
2University of Warwick, School of Life Sciences, Coventry, United Kingdom
3University of Hamburg, Cél/Desy, Luruper Chausse 149, Hamburg, Germany
4University of Essex, School of Biological Sciences, Colchester, United Kingdom
5Diamond Light Source, Dares, United Kingdom
6Institute for Life Sciences, University of Southampton, National Biofilms Innovation Centre, University of Southampton, Southampton NH Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom

We are interested in the molecular mechanisms controlling c-di-GMP turnover in bacteria, which in turn controls the switch between planktonic and biofilm lifestyle. We study phosphodiesterases of the EAL type, named after a conserved amino acid sequence motif, involved in biofilm dispersal. While it was known for some time that dimer formation of these enzymes is obligatory for their activity, we have demonstrated by structural studies how dimer formation influences activity through formation of substrate binding sites that are not present in monomeric structures (1). Surprisingly, all these structures can be observed in the presence of substrate c-di-GMP, suggesting that formation of the active site and binding of substrates is insufficient to attain full activity. We now demonstrate the occurrence of three metal binding sites, suggesting a further activation step (2,3). Together, dimerization, active site formation and metal binding present three activation steps that may serve as levers to tune enzymatic activity. Understanding how phosphodiesterase activity can be raised may be a tractable way to induce biofilm dispersal and clear chronic infections. Further, drugs inducing dispersal could aid in combination therapy, getting around the challenge of antibiotic tolerance in bacterial biofilms.

Pseudomonas aeruginosa biofilms are involved in chronic infections, such as those affecting the lungs of Cystic Fibrosis patients. This is due to the presence of persistent cells within a biofilm which are highly tolerant to antimicrobials. We focus on comprehending the dispersal stage of pre-established P. aeruginosa biofilms. Phosphodiesterases (PDEs) responsible for the breakdown of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) can induce dispersal; here we study, at the molecular level, how these enzymes are regulated.

The bi-functional enzyme RbdA (Regulation of biofilm disposal) contains a PDE for hydrolysis of c-di-GMP, but also a diguanylate cyclase domain (DGC) for c-di-GMP synthesis. We study how the activity of the PDE domain is affected by the DGC domain. With crystallographic structure determination and biochemical assays we aim to elucidate the structural mechanisms of such regulation.

We find elevated intracellular c-di-GMP levels in the knockout mutant ΔrbdA. Furthermore, deletion of RbdA leads to increased extracellular polymeric substances (EPS) production, reduced swarming and swimming motility, and consequently, hyper-biofilm formation compared to wild type. Biochemical assays show reduced PDE activity in the DGC-PDE tandem protein, compared to the autonomous PDE domain. This implies that the DGC domain is negatively regulating the PDE domain of RbdA. We have determined the 3D structure of the RbdA PDE domain, and compare this domain with a recently determined tandem domain structure to explain the suppressor function of the DGC domain.

Stimulus perception via signal transduction pathways is essential for all life, allowing organisms to regulate their internal processes to suit the conditions of the external environment. Environmental stimuli are often transduced into physiological responses through the production of a second messenger, which can regulate many protein targets simultaneously. The second messenger cyclic diguanylate (c-di-GMP) in the model bacterium Pseudomonas aeruginosa regulates biofilm formation, which may be key for survival in a host. C-di-GMP is produced by a variety of intercellular diguanylate cyclases (DGCs), and can be degraded by c-di-GMP specific phosphodiesterases. However, the stimuli and mechanisms of DGC activation are in many cases unknown. Here we identify a thermosensing diguanylate cyclase (tdcA) that enables P. aeruginosa to increase biofilm formation as temperature rises from 25 to 37 °C. Recombinant TdcA displays thermostatted activity: it is inactive at 25 °C, but displays linearly increasing reaction rates between 28 and 42 °C, allowing for a large change in intracellular c-di-GMP over a narrow range of temperatures. Heat-sensing is enabled via a Per-Arnt-SIM type III (PAS_3) domain, which is a previously undescribed function for this widespread family of protein domains. We propose that TdcA exemplifies a new class of heat-sensing enzymes that behave like molecular thermostats, allowing for the rapid change of cellular c-di-GMP over a narrow but physiologically relevant range of temperatures.
[P31] ANTIBIOFILMOGRAMS HIGHLIGHTED THE EARLY ADHESION INDUCTION OF P. AERUGINOSA CYSTIC FIBROSIS ISOLATES BY β-LACTAM ANTIBIOTICS

Elodie Olivares1, Stephanie Badel2, Christian Provot2, Gilles Prévost1, Thierry Bernardi2, Francois Jehl3

1Biofilm Control - Ea7290 Virulence Bactérienne Précoces, Strasbourg, France
2Biofilm Control, Saint-Beauzire, France
3Ea7290 Virulence Bactérienne Précoces, Hopitaux Universitaires de Strasbourg, Strasbourg, France

P. aeruginosa is recognized as the most involved pathogen in the chronic lung colonization of cystic fibrosis (CF) patients. Bacteria are responsible for the decline in health of individuals and poor diagnosis. Once established, microorganisms grow in biofilm structures, highly tolerant to antimicrobial treatments. Sub-inhibitory concentrations of antibiotics were already described as having an induction effect in biofilm abilities.

According to the Antibiofilmogram® device, which allows the evaluation of sessile bacteria susceptibility to antimicrobials, we studied the effect of various concentrations of β-lactam antibiotics on clinical non-adherent strains of P. aeruginosa.

Results of Antibiofilmograms® showed the induction of the early steps of biofilm formation by some concentrations/antibiotics for originally non-adherent bacteria. To validate the inter-assay reproducibility, we estimated the colony forming units (CFU) on agar media of planktonic and sessile fractions of bacterial cultures supplemented or not with antimicrobials. For non-bactericidal concentrations of antibiotics, bacterial counts showed a higher proportion of adherent cells compared to the planktonic one. Conversely, for control strains growing without treatment, the fraction of free-mobile bacteria was more important than the one of sessile cells. These data correlate with previous results obtained with the Antibiofilmogram® assay and confirm the ability of antimicrobials to promote the early steps of biofilm formation. For non-bactericidal concentrations of antibiotics, bacterial counts showed a higher proportion of adherent cells compared to the planktonic one. Conversely, for control strains growing without treatment, the fraction of free-mobile bacteria was more important than the one of sessile cells. These data correlate with previous results obtained with the Antibiofilmogram® assay and confirm the ability of antimicrobials to promote the early steps of biofilm formation. This work has focused on the influence of different pilins and sortase C on (i) adhesion of cells to surfaces under dynamic conditions and (ii) nanomechanical properties of pili using single-molecule force spectroscopy. It has been reported that the presence of pili increased drastically the adhesion properties of L. lactis on polymeric surfaces and that sortase C was mandatory for cells to sustain the shear flow. Force spectroscopy experiments confirmed such requirement and provided data showing extreme flexibility of the pili, much more than DNA strands. Such discovery opens up new assumptions about homotypic interactions between two cells in particular and about self-assembly in general. A better understanding of the conditions that drives the bacterial colonization of biotic (e.g. intestinal tract) or abiotic surfaces (e.g. milking machine) remains a major socio-economic issue. Eventually, such type of biofilm would allow to struggle against pathogens (e.g. Listeria) but also against spoilage flora in order to propose in fine new solutions for food biopreservation.
[P33] A STICKY TRANSITION: THE ROLE OF EXTRACELLULAR MATERIAL IN THE TRANSITION FROM REVERSIBLE TO IRREVERSIBLE ADHESION OF STAPHYLOCOCCUS EPIDERMIDIS

Brandon Peterson¹, Henk Busscher¹, Henny C. van der Mei¹, Jelmer Sjollema¹

¹Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands

Bacteria are a major source of fouling for surfaces. Bacteria experience bond maturation phenomena that transitions the adhesion to a surface from reversible to irreversible. Recent studies have shown that the number of tethers between a bacterium and the surface is important for the transition from reversible to irreversible adhesion. The problem rests with the definition of a tether. Common perception would define tethers strictly as physical extrusions from the cell wall that can directly attach to the surface. However, extracellular material is also present on the cellular outer surface and can interact with the surface as a gel in collaboration with any physical extrusions.

Staphylococcus epidermidis ATCC 35983 was treated (buffer, DNaseI, N-acetyl-L-cysteine) prior to adhesion to a glass slide under shear stress (10s⁻¹). Bond maturation occurred statically or under continuous shear (10s⁻¹) and subsequently the vibrational movement was determined. Vibrations were monitored for 40s, and the standard deviation of the center position was converted to vibrational amplitude in nanometers. The mean-squared displacement was also monitored to describe the progression of bond maturation.

With static bond maturation, treatments containing DNaseI yielded significantly higher (p<0.05) vibrations while treatment with N-acetyl-L-cysteine alone yielded significantly lower vibrations against all treatments. Under continued shear stress, the vibrations were significantly reduced. The mean-squared displacement for all treatments suggests Brownian motion, with a linear increase, followed by a plateau, and ending with an exponential increase, albeit at different times and varying degrees.

Overall, the data clearly suggests that the use of DNaseI to break up eDNA on the cell surface of *S. epidermidis* promoted free movement of the bacterial cell, both during static adhesion and under shear stress. This confirms that eDNA aids the conversion from reversible to irreversible adhesion of *S. epidermidis* to a surface.

[P34] BENEFICIAL ORAL BIOFILMS AS SMART BIOACTIVE INTERFACES

Gutt Beatrice¹, Qun Ran¹, Hauser-Gerspach Irmgard², Kardas Piotr², Stübinger Stefan², Astasov-Frauenhoffer Monika², Waltimo Tuomas²

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland
²University of Basel, Switzerland

Periodontitis is a very common health problem caused by formation of pathogenic bacterial biofilm that triggers inflammation resulting in either reversible gingivitis or irreversible periodontal hard and soft tissue damages, leading to loss of teeth when left untreated. Commensal bacteria play an important role in oral health in many aspects. Mainly by colonizing oral tissues, they (i) contribute to maturation of immune response, and (ii) foreclose attachment of pathobiont and, therefore, prevent from infection. The main goal of the study was to investigate if blocking of receptors on a commensal biofilm can prevent or reduce the attachment of pathogenic strains. To do so, biofilm produced by commensal *Streptococcus sanguinis* was treated with whole cell lysate of pathobionts *Fusobacterium nucleatum* or *Porphyromonas gingivalis*, followed by incubation with respective strain(s). The study revealed significant reduction in pathobiont adhesion to lysate-treated commensal biofilm. Therefore, adhesion of pathobions onto the lysate-blocked biofilm was hindered; however, not completely eliminated supporting the idea that such approach in the oral cavity would benefit the production of a well-balanced and healthy bioactive interface.
[P35] ATOMIC FORCE MICROCOPY TO DETAIL IN REAL-TIME THE CELL WALL REMODELING OF ADHERING STAPHYLOCOCCUS AUREUS DURING BIOFILM GENESIS.

Rym Boudjemaa1, Karine Steenkeste1, Alexis Canette2, Romain Briandet2, Marie-Pierre Fontaine-Aupart1, Christian Marlière1

1Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France; 2Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France

Atomic Force Microscopy (AFM) in the approach-retract scanning mode is a powerful method to probe at the nanoscale the topography and mechanical properties of live bacteria in aqueous environment. We took benefit from this method to describe the time evolution of the surface nanotopography of the strain *S. aureus* 27217 from bacterial adhesion to the first step of biofilm genesis. Two types of adhering bacteria were observed without and with herring-bone patterned bacterial envelope decorations. These AFM observations on individual bacteria were further confirmed by Scanning Electron Microscopy (SEM) experiments on large cell population, revealing an equal ratio between the two populations. AFM revealed that the herring-bone pattern is characterized by lateral dimensions of ~70 nm and the mean depth of the trough between them is ~15nm. The corresponding root-mean-square (RMS) roughness of such cells was ~5nm (on (400nm)² image), one order of magnitude higher than that for a cell of the second population, the so-called “smooth” one. Concomitantly with these topographic investigations, AFM mechanical characterization of the two types of adhering bacteria was performed: the upper patterns (the herring-bone motif) are stiff (Young modulus of ~ 2.3 MPa) while the lower ones are much softer (~ 0.35 MPa) similar to the stiffness of the smooth population.

Another important result is that we observed, thanks to our 4-hour real-time AFM experiments, the gradual detachment of the herring-bone patterns from the bacterial surface and its progressive smoothing. Accumulation of these herring-bone tiles in the form of highly adhesive globular deposits between bacteria was observed. Furthermore we observed that these cell surface decorations were removed by centrifugation and thus loosely attached to the cell wall. Proteomic analysis of the supernatant highlighted the presence of *Staphylococcus aureus* surface proteins well-known to be implicated in adhesion and biofilm formation.

[P36] CO-AGGREGATION PROPERTIES OF TRIMERIC AUTOTRANSPORTER ADHESINS

Jack Leo1, Hawzeen Salah Khalil1, Jonas Øgaard2

1University of Oslo, Department of Biosciences, Evolution and Genetics, Oslo, Norway 2Oslo University Hospital, Research Institute for Internal Medicine, Oslo, Norway

Trimeric autotransporter adhesins (TAAs) comprise a group of virulence-related proteins in Gram-negative bacteria. These obligate homotrimeric proteins are embedded in the outer membrane and function mainly as adhesins. Members of this family bind to extracellular matrix components such as collagen and fibronectin, but in addition to their primary adhesive activity exhibit a number of other functions, such as conferring serum resistance and autoaggregation. Autoaggregation promoted by TAAs is homotypic and mediated by the sticky, globular head domains of these lollipop-like molecules. However, whether TAAs mediate heterotypic intercations (i.e. co-aggregation) has not been studied. To address this question, we investigated the co-aggregation of two model TAA groups: YadA from the enteropathogens *Yersinia enterocolitica* (YeYadA) and *Y. pseudotuberculosis* (YpYadA), and the immunoglobulin-binding Eib proteins from *Escherichia coli*: EibA, EibC and EibD. Both groups promote strong autoaggregation. To study TAA co-aggregation, we co-expressed a fluorescent label (sfGFP or mCherry) together with a particular TAA and followed the aggregative interactions using fluorescent readout. Our results show that there is co-aggregation between some population expressing different TAAs, which can be explained by relatively high sequence similarity between the interacting TAAs. In most cases, the level of co-aggregation correlated with the sequence similarity. However, in other cases the TAAs did not interact despite high sequence similarity, showing exclusion of non-self-bacteria. Based on these results, we investigated biofilm formation by a subset of co-aggregating bacteria to see whether they form mixed biofilms or segregated microdomains within the biofilm. Also in this setting, the more similar TAAs formed highly mixed biofilms, whereas non-aggregating TAAs formed separate microdomains. These data demonstrate that TAAs can mediate bacterial co-aggregation, but in some cases prevent co-aggregation of bacteria with disparate TAAs.
Silica (SiO2) an inorganic solid substrate known for its optically transparent properties in the visible range of the spectrum is regularly used in microelectronics, in plasmonics as a host matrix, or in biomedicine for the development of materials useful for tissue regeneration and for drug screening systems. To understand the interactions between thin dielectric layers of SiO2, with tailored by silver nanoparticles (AgNPs) properties and microorganisms, a primary study of adhesion on thin layer of SiO2 only is necessary. The present study focuses on the phenomena of rolling, circumvention or adhesion to other adherent cells has also been noted. The steps in progress are to evaluate how the AgNPs embedded in SiO2 layer of the surface. The phenomena of rolling, circumvention or adhesion to other adherent cells may be due to macromolecular interactions. A conditioning film of growth medium strongly decreases the attachment forces which may be due to macromolecular interactions.

Here, we report on the seawater bacterium Paracoccus seriniphilus on titanium, steel and glass. The purpose is to understand the influence of wettability, roughness, defined structures, and environmental conditions (pH, ionic strength) on the viability of the cells as well as the bacterial attachment/detachment.

In a biofilm reactor different forces act on the cells: forces perpendicular to the interface (dominate the first contact), lateral shear forces, and forces on the cell-wall by turgor pressure (viability of the cells). The interplay of these forces plays a major role in the biofilm formation.

The first “forcescopy” experiment (scanning force microscopy, SFM) determines the turgor pressure of the bacteria as a function of pH and salinity. P. seriniphilus can easily adapt to saline conditions and can survive at NaCl concentrations up to 100 gL−1. Its turgor pressure and thus its elasticity and size depends on the ionic strength. P. seriniphilus has its optimum pH at 7, but the results at pH 4 point to an active adaptation mechanism to acidic conditions whereas at pH 11 P. seriniphilus is not viable.

The next “forcescopy” measures the vertical adhesion forces of a single bacterium as a function of pH, ionic strength, and substrate. The adhesion force of one single cell decreases from pH 4 to pH 11. The adhesion forces increase with increasing ionic strength with a pronounced higher adhesion force at 0.9 % NaCl. All adhesion forces on bare substrates correlate with the electrostatics as determined by zeta potential measurements. A conditioning film of growth medium strongly decreases the attachment forces which may be due to macromolecular interactions.

The last “forcescopy” experiment determines the lateral detachment forces of the bacteria. There is a clear correlation between the applied force and the number of moved bacteria, but the detachment forces vary for individual bacteria. Overall, the surface energy of the substrate influences the detachment process while any structuring of the substrate hinders the detachment substantially. At pH 4 bacteria are harder to detach than at pH 7. This can either be due to electrostatics or changes in membrane composition.

POSTER ABSTRACTS

[P39] ENRICHING ELECTROACTIVE BIOFILMS ON ELECTRODES MIMICKING OXYGEN USING A POTENTIOSTAT

Carlos Sanchez1, Piet N. L. Lens1

1NUI Galway, Galway, Ireland

Waste to energy transformations are gaining importance in both research and real-world applications. Direct harvesting of electricity from waste by the use of microbial fuel cell (MFC) is a promising alternative due to the low temperature environment applicability and the decentralization advantage in comparison to the more centralized infrastructures required for anaerobic digestion (AD). Nonetheless, several impediments need to be overcome before the technology can be upscaled for real-world applications. Most of the drawbacks stem from the high cost and suboptimal efficiency of the electrodes. It is hypothesized that microbial communities have an important role in improving electrode’s characteristics. Consequently, this project aims to analyze the microbial communities growing at the electrode surface. Direct interspecies electron transport (DIET) and long distance electron transport (LDET) can improve waste-to-electricity transformations and electrode efficiency through microbial electrical syntrophy. For this reason, the electrode potential is posed under oxygen-mimicking conditions by means of a potentiostat. The experiment sets triplicates of a 2 L semibatch reactor at 12.0 (± 1.0) °C with a mix of artificial seawater and synthetic wastewater as electrolyte (neutral pH; 20% salinity; 2.0 μm Sulfide; and COD mixture 1500 mg L−1 consisting on 50.0% Acetic acid and 50.0% Propionic acid). Two different mixed culture inocula are analyzed: blended AD granules and sulfide-rich sediment with focus on the presence of recently discovered cablebacteria. The community differences will be characterized by a 16s rRNA composition analyses after 35 to 40 days under the stated conditions. Chronoamperometric measurements and water quality analyses will help in the comprehension of the microbial activity and waste-to-electricity transformations.

Keywords: Bioelectrochemistry, biofilm, microbial fuel cell, anaerobic digestion, waste-to-energy, microbial ecology, 16S rRNA, sustainability, electrodes, cable bacteria, sediment, biorefinery, potentiostat.

[P40] POLYMER COATINGS ON STAINLESS STEEL TO IMPROVE THE POWER OF MICROBIAL FUEL CELLS

Melanie Grams1, Christopher Moß2, Thomas Gengenbach1, Uwe Schröder2, Henning Menzel2

1Technical University Braunschweig, Institute for Technical Chemistry, Brunswick, Germany
2Technical University Braunschweig, Institute of Environmental and Sustainable Chemistry, Brunswick, Germany
3Csiro Manufacturing, Clayton, Australia

Microbial fuel cells (MFCs) convert chemical energy from waste water into electrical energy, however the current densities are still low and need to be improved. Because of its biocompatibility graphite is the most common material for anodes in MFCs. Stainless steel would be a great alternative material because of its lower costs and much better electric conductivity compared to graphite. However Geobacter (G.) sulfurreducens dominated biofilms, which are common in MFCs, do not grow well on stainless steel. To improve the growth of bacteria we test polymer coatings, which will support the bacterial colonization on the electrode. Therefore copolymers containing phosphonates or phosphates and quaternary ammonium salts have been prepared by radical copolymerization. Phosphonates and phosphates are used to chemically bind the polymer on stainless steel[3]. Furthermore it has been shown that positive charges like quaternary ammonium salts can support the growth of anodophilic bacteria like G.sulfurreducens[3].

Copper has an even better conductivity than steel, but it is regarded to be antimicrobial. In contrast to that Baudler et al. have shown that biofilms dominated by G. sulfurreducens are able to grow on copper[3]. However copper has a limited voltage range it can be used at because of its easy oxidation at low potentials. Copolymers that should bind chemically to copper and are expected not to change but to protect the good conductivity of copper have been synthesized by copolymerization of 2-Methyldisulfanylethyl-methacralate (MDEMA) and vinyl-ferrocene (VFC).

Stainless steel is coated by spin or spray coating whereas copper is coated by dip coating (formation of a self-assembled monolayer). The coatings are analyzed by ellipsometry, contact angle, Xray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The polymer coatings show layer thickness within the range of monolayers. The coated substrates are further analysed by chronoamperometry in the presence of G. sulfurreducens. The thickness of the biofilms obtained is subsequently analysed by confocal microscopy.
Title: Structural Determinants of Staphylococcus epidermidis Extracellular Matrix Binding Protein Embp and Its Interaction with Fibronectin

Authors: Henning Buettner1, Markus Perbandt2, Holger Rohde1

Affiliations:
1. University Medical Center Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Hamburg, Germany
2. University of Hamburg, The Hamburg Centre for Ultrafast Imaging, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany

Introduction

Staphylococcus epidermidis is the leading cause of foreign body associated infections. The great success of this pathogen is attributed to colonize artificial surfaces via biofilm formation. This crucially depends on interactions between S. epidermidis and surface immobilized fibronectin. Here, we investigated the structural basis of S. epidermidis – Fn interactions, focusing on the 1MDa extracellular matrix binding protein Embp. Bioinformatics analysis showed that Embp is mainly organized by stretches of ten F- and forty FG-repeats. Structural analysis showed that both repeats mainly display an α-helical secondary structure. Small angle X-ray scattering (SAXS) analysis of recombinant Embp fragments suggest that repetitive elements are organized as elongated rods rather than being globularly folded.

Material and methods

These experiments focus clinical isolate S.epidermidis 1585. We investigated the bacterial attachment to immobilized fibronectin in ELISA experiments. In order to map the potential site of interaction Far-Western Blot analysis and peptide library screening revealed type III repeat FN12 to be the major site of interaction.

To further elucidate the interaction of Embp and fibronectin investigation of the Embp structure was begun. Bioinformatics analysis of the Embp primary sequence revealed 170 (F-) and 126 amino acids (FG-) repeats as most presumably minimal structural units. By means of X-ray crystallography the structure of these repeats was determined. SAXS was employed to get first insights in the global Embp architecture.

Results

We identified the fibronectin type III repeat FN12 as the potential site of Embp – fibronectin interaction.

On the bioinformatics level F-repeats in the FIVAR region as well as FG-repeats in the FIVAR/ GA region were identified as minimal structural units of the Embp protein. Both of these repeats mainly display α-helical secondary structure. In SAXS studies of multiple repeats Embp presumably shows an elongated rather than globular architecture.

Discussion

We showed Embp to be sufficient and of great importance for fibronectin binding.

By means of bioinformatics analysis confirmed by X-ray crystallography minimal Embp structural units, F- and FG-repeat, were identified. Results from SAXS gave the impression that Embp posses an elongated shape. Ongoing project focuses on the molecular determinants for the interaction between Embp and fibronectin.
To prevent the inflammation of a medical implant, its material specifications are of crucial importance. An ideal surface would hinder bacterial biofilm formation and/or kill adhering pathogens without harming surrounding somatic cells. Our study focuses on the influence of surface structure of silicon on bacterial (Staphylococcus aureus) adhesion and viability, using AFM force spectroscopy [1], where the probe is a single bacterium, as well as flow chamber experiments. While surface chemistry and subsurface composition of the silicon surfaces are consistent, bacterial adhesion rate and viability on nano-rough silicon can be ascribed to geometry constraints, as changes in the adhesion strength due to a variation of the long-range van der Waals force can be neglected. Comparing adhesion rate and viability on hydrophobic and hydrophilic substrates of identical roughness reveals the influence of short-range, e.g. hydrophobic, forces [2]. The data obtained from our single cell force spectroscopy can be compared to our flow chamber measurement data on the same surfaces.

Earlier investigations of our research group have shown the suitability of utilizing paper-based arrays for biofilm formation studies by Staphylococcus aureus (1, 2). Paper is a sustainable and recyclable material, and its physicochemical properties (i.e. topography, roughness, stiffness, surface energy, polarity, porosity and pore geometry) can be modified quite conveniently by various coating materials and methods and surface treatments (3). Although paper-based arrays are excellent innovative tools for biofilm sensing purposes, they have the limitation that biofilm formation cannot be followed by microscopy evaluation techniques. In this investigation, newly developed latex-coated glass coverslips were tested for biofilm adhesion studies in representative Gram-positive and Gram-negative strains. The Static Biofilm Method was optimized to evaluate the adhesion of Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 at different time points ranging from 2 to 48 hours. The formed biofilms were simultaneously quantified by viable plate counts and biomass staining as well as Fluorescence Microscopy (LIVE/DEAD® BacLight™ staining). Biofilm adhesion increased over time when measured on latex-coated substrates of three different compositions. At similar times, the attachment of P. aeruginosa onto latex-coated coverslips seemed to be slightly higher than S. aureus (for instance at 24 h the attachment of P. aeruginosa in 40:60 substrates is 6.4 Log CFU/cm² compared to 5.2 Log CFU/cm² for S. aureus). As proof-of-concept, Fluorescence Microscopy images were also taken of the formed biofilms on the selected substrates. This investigation shows the feasibility of using latex-based glass coverslips as tools for orthogonal investigation approaches of bacterial adhesion.

Staphylococcus epidermidis is responsible for a large number of implant-associated infections, and its pathogenicity is linked to its ability to form biofilm. Attachment to the implant occurs through unspecific interactions or specific receptor-ligand interactions with adsorbed host proteins. One important receptor for S. epidermidis is the giant extracellular matrix binding protein (Embp), which binds to fibronectin (Fn). Embp, like many other bacterial adhesins, bind to host proteins that are present as soluble compound in body fluids as well as adsorbed to the surface of biomedical implants. So how can interaction with these proteins promote attachment to the surface? We hypothesized that Embp only mediates attachment to immobilized fibronectin, and that the distinction between soluble and immobilized fibronectin lies in the availability of binding domains in Fn. These domains may become exposed only when the protein adsorbs to an implant surface and undergoes conformational changes.

To investigate these hypotheses we first used fluorescently labelled Fn and confocal microscopy to show that S. epidermidis interacted with adsorbed but not soluble Fn. Soluble Fn is in a globular conformation, while adsorbed Fn can either remain in the globular conformation, or change conformation to form fibrils as adsorption-induced conformational changes expose Fn-Fn binding domains. To study the bacterial interaction with Fn in these two conformations, we produced surfaces coated with (poly)methyl acrylate (PMA) and (poly)ethyl acrylate (PEA), which adsorb Fn in the two different conformations. Atomic force microscopy confirmed that Fn adsorbed to PMA remained globular, while Fn adsorbed to PEA fibrillated. We then quantified Embp-mediated bacterial attachment to Fn on these two surfaces, using Staphylococcus carnosus expressing a recombinant fragment of Embp. Fibrillar Fn promoted bacterial attachment while globular Fn did not. This result supports our hypothesis that adsorption-induced conformational changes dictate if a host protein promotes or prevents bacterial attachment to an implant surface. Our results underline that the materials properties of implants affect biofilm formation indirectly by making host proteins available in the right or wrong conformation. This knowledge adds a new layer to that the materials properties of implants affect biofilm formation indirectly by making host proteins available in the right or wrong conformation. This knowledge adds a new layer to that the materials properties of implants affect biofilm formation indirectly by making host proteins available in the right or wrong conformation.
[P47] BACTERIAL CONTACT FORMATION AND BREAKING: REVEALING THEIR CONTACT AREA & CONTACT CHARACTERISTICS ON DIFFERENT TYPES OF SURFACES

Christian Spengler1, Nolle Friederike1, Mischo Johannes1, Thewes Nicolas1, Santen Ludger1, Bischoff Markus1, Jacobs Karin1

1Saarland University, Experimental Physics, Saarbruecken, Germany

Pathogenic bacteria adhering to surfaces are a nuisance in a wide area of healthcare applications. We present a combined experimental and computational approach to characterize the adhesion of *Staphylococcus aureus* and other cocci. Single cell force spectroscopy (SCFS) [1] paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation [2]. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the cells are pulled into close contact with the surface as proteins of different mechanical properties attach consecutively. This mechanism, however, can be manipulated by genetically/ enzymatically/chemically modifying the cell wall proteins [3]. On hydrophilic surfaces, contact formation needs a longer time and only few cell wall proteins contribute to the cell's stickiness. On hydrophobic surfaces, contact formation needs a longer time and only few cell wall proteins are involved in this process. By performing numerous SCFS measurements on gradually varying positions near a sharp interface between a hydrophobic and a hydrophilic surface, the contact area between staphylococcal cells and flat surfaces could be determined [4]. The contact area shows to be a cell-individual property that is quite robust against varying loading forces. Furthermore, the adhesive strength of an individual bacterial cell is not dependent on the contact area. Rather, the cell’s adhesion capability is a matter of which and how many molecules of the bacterial species’ cell wall form the contact.

References:

[P48] EFFECTS OF MILK FAT CONCENTRATION AND ABIOTIC SURFACES ON BIOFILM FORMATION OF *GEOBACILLUS THERMODETRIFICANS*

Basar Karaca1, Ayse Busra Karakaya1, Arzu Coleri Cihan1

1Ankara University, Ankara, Turkey

The thermophilic bacillus such as *Geobacillus thermodenitrificans* is an important contaminant in the dairy industry. This bacillus is not pathogenic, its presence in dairy products is an indicator of poor hygiene. In the present study, different types of abiotic surfaces that are frequently used in dairy industry and milk products [whole (3.0 % fat content, semi-skimmed (1.5 % fat content) and skimmed (0.1 % fat content)] were evaluated for their effects on biofilm formation of *G. thermodenitrificans*. The strain was cultured at both 55°C and 65°C for 48 h in standart whole milk containing different types of abiotic surfaces (polyvinyl chloride, polycarbonate, polystyrene, 316 L stainless steel, glass and polypropylene; R: 14 mm). After the incubation, the biofilm cells were harvested from the surfaces and counted as logCFU/cm². The biofilm suspensions were also heated at 100°C for 15 min in order to eliminate vegetative cells. The remaining suspensions were also diluted and counted for the calculation of thermophilic spores. Following this study, the mostly preferred two abiotic surfaces were selected and biofilm sampling was carried out in the whole, semi-skimmed and skimmed milk contents with these surfaces. The total biofilm content (vegetative forms, and spores) and only spores were also counted. While the strain preferred hydrophilic surfaces such as stainless steel and glass at lower temperatures (55°C), the hydrophobic surfaces (polyvinyl chloride, polycarbonate, polystyrene and polypropylene) were preferred at higher temperatures (65°C). The whole milk (30 % fat content) was found to be the most problematic milk type for both biofilm formation and sporulation. It was the first report for *G. thermodenitrificans*, commonly isolated from dairy environments, in order to determine the potential risks of abiotic surfaces and milk fat concentration in terms of thermophilic biofilm formation.

Key words: Thermophilic bacilli, *Geobacillus*, biofilm formation, abiotic surfaces, milk product
[P49] BACTERIAL ATTACHMENT IS AFFECTED BY FLOW AND HYDROPHOBICITY

Alexander Lai1, Ali Mosayyebi2, Dario Carugo2, Maria Salta1
1University of Portsmouth, School of Biological Sciences, Portsmouth, United Kingdom
2University of Southampton, Mechatronics and Bioengineering Science Research Groups, Southampton, United Kingdom

Biofilms are intricate communities of microorganisms encapsulated within a self-produced matrix of extra-polymeric substances, creating complex three-dimensional structures allowing for liquid and nutrient flow through. These aggregations offer constituent microorganisms enhanced protection not only from environmental pressures like flow but are associated with higher resistance to antimicrobial compounds, providing a persistent cause of concern in relation to marine biofouling and medicinal infections. Bacterial attachment is affected by surface properties, such as hydrophobicity, as previously shown. Using an innovative microfluidic flow cell, we investigated the relationships between both shear stress and surface properties upon early biofilm formation of two biofilm forming species, Cobetia marina and Pseudomonas aeruginosa. In this study we investigated biofilm development under flow conditions and on surfaces with varying degree of hydrophobicity, namely low-density polyethylene membranes, permanox and standard glass slides. Biofilm development was measured using nucleic acid staining and end-point confocal laser scanning microscopy. Flow conditions affected biomass, maximum thickness and surface area of biofilms, with higher shear stresses (5.6 Pa) resulting in thinner, more compact biofilms than lower shear stresses (0.2 Pa). Control experiments performed under static conditions have shown that an absence of flow creates much thinner, smaller biofilms suggesting a growth response to the surrounding flow. With respect to surface properties, initial biofilm formation was also impacted as hydrophilic surfaces resulted in thinner biofilms when compared to hydrophobic ones. Alongside this, we observed the formation of biofilm streamer-like structures under laminar flow conditions within straight, micro-channels for the first time.

[P50] POLYMER SCAFFOLDS FOR BIOCATALYSIS USING BIOFILMS

Pavan Adoni1, Tim Overton2, Francisco Fernandez-Trillo3
1University of Birmingham, Birmingham, United Kingdom
2University of Birmingham, School of Chemical Engineering, Birmingham, United Kingdom
3University of Birmingham, School of Chemistry, Birmingham, United Kingdom

There has been growing interest in using biocatalysts in industry due to their ability to catalyse highly stereoselective transformations in a sustainable manner. A major problem however is the sensitive nature of enzymes which are easily denatured in adverse reaction conditions. A potential solution is to use enzymes expressed by bacteria in biofilms, with the robust extracellular polymeric substances protecting the enzymes from external stresses. The aim of this project is to design polymers onto which biofilm forming bacteria adhere in a controlled manner, to form protected communities that can express useful enzymes for use in stereoselective reactions.

Poly(acryloyl hydrazide) has been chosen as the polymer scaffold, due to ease of post polymerisation modification resulting in highly functional polymers. To date, the polymer has been functionalised with range of aldehydes (Imidazole-3-carboxaldehyde, 2-Amino-3-Formylpyridine, Benzaldehyde and Isovaleraldehyde) predicted to interact with bacteria. Clustering of the biofilm-forming Escherichia coli strain PHL644 has been analysed upon mixing with differently substituted polymers. When suspended in phosphate buffer, the polymers induce clustering of cells. However, when the same assay is performed in water or NaCl solution, clustering is significantly decreased. It is likely that in the absence of buffer, the relatively basic aldehydes become protonated whereas in the presence of buffer they remain in their native state. It is known that charge and hydrophobicity of a surface are two important factors influencing bacterial adhesion so it is possible that E. coli PHL644 preferentially binds to hydrophobic polymers over positively charged polymers. Further experiments have been performed to investigate crystal violet binding by the clusters, with preliminary results indicating an increase in binding by bacteria clustered with hydrophobic polymer, potentially due to the formation of adhesins formed during the early stages of biofilm formation.
Bacterial adhesion onto surfaces of biomedical devices such as implants or catheters and the formation of biofilms are non-trivial phenomena which cause a major problem in the clinic. Opportunistic bacteria such as Staphylococci and Pseudomonas can form biofilms on medical devices introducing one of the leading factors in failures and microbial infections, which can lead to serious health concerns. Efforts to prevent or treat these microbial infections such as using antibiotics or cleaning surfaces with disinfectants, can create a potential for the evolution of antimicrobial resistance (AMR). The evolution of AMR poses a real threat in the clinic as it can hinder the effectiveness of current treatments and methods.

In order to better assess the best methods to counter antimicrobial resistance, adhesion and biofilm formation, we need to understand better the influence of surface properties on the microorganisms. Through adhesion force measurements by making use of atomic force microscopy we can gain insight into the behavior of antibiotic resistant and non-resistant bacterial strains of Staphylococcus aureus ATCC12600 and Pseudomonas aeruginosa PAO1 on surfaces with different physico-chemical properties.

We have studied the influence of treated and non-treated glass surfaces with different levels of hydrophobicity, topology and antimicrobial activity. Through adhesion studies we have found that characteristics such as hydrophobicity play a more important role on strains of P. aeruginosa PAO1 than on S. aureus ATCC12600 and that bacterial modification (antimicrobial resistance or fluorescence) can affect the adhesion of a bacterium to a given surface.

Bacterial adherence and biofilm formation on the surface of biomaterials can cause intractable implant associated infections. This process is vary depending on species of microorganisms, host’s immune response and characteristics of dental materials, including material surface. In this in vitro research, we evaluated biofilm production ability of the selected clinical S. aureus strains the main pathogen in implant-related infections isolated from patients with mucoviscidose. This study compared the susceptibility of three different implant biomaterials: titanium alloy Ti-6Al-4V (Grade 5), zirconium oxide and CoCr alloy; actually used in clinical practice with similar surface roughness with S. aureus biofilm formation. SEM observation demonstrate that the bacteria on Co-Cr alloy was more aggregated than for Ti-6Al-4V and zirconium oxide. After culturing for 48 hours, biofilm on zirconium oxide was more tightly colonized than for Ti-6Al-4V and Co-Cr alloy. Biofilm colonies on the surface of Ti-6Al-4V compared to the pattern for the other biomaterials tended to be scattered. This is consistent with fluorescence microscopy images with similar biological properties in terms of biofilm composition and bacterial adherence. However, the quantity of adhering microorganisms varied among the materials. The amount of S.aureus growth was significantly lower with statistically lower logCFU/ml values than the other materials (P < 0.05) on the surfaces of the zirconium oxide Our findings, evaluating CFU values, indicate that implants composed of CoCr had a statistically (P < 0.05) higher proclivity towards biofilm formation compared to titanium-alloy and zirconium oxide implants. In relation to the implant material types, titanium is the most commonly used material in dentistry due to its excellent physical and chemical characteristics. Overall, the conclusion derived from this in vitro investigation is that a significant correlation exists between dental biomaterials and the amount of adhering clinical S. aureus strains. Different implant treatment with different biomaterials including zirconium oxide should be considered in patients with chronic infection like mucoviscidose.
BACTERIAL ATTACHMENT

[53] THE ROLE OF FIBRONECTIN NANOPATTERN IN LIMITING THE STAPHYLOCOCCUS AUREUS ADHESION TO BIOMATERIAL SURFACE

Heba Khateb1, Rikke Louise Meyer2 and Duncan Sutherland1.

1Nanointerfaces group, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
2Biofilm group, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark

Bacterial adhesion to materials surfaces is of critical importance in many application areas, in particular in controlling infection related to medical implants. A range of bacteria can adhere specifically to proteins from the extracellular matrix found in tissue enabling infection and biofilm formation. Here we study specific interactions of staphylococcus aureus with fibronectin (Fn) adhered to materials surfaces and address the following questions:

-Does the nanoscale distribution of the Fn influence the adhesion?
-How does Fn adherent layers influence bacterial adhesion to nanoscale topography?

We utilized colloidal lithography to prepare patterns of Fn (from 0.1 µm - 1 µm) in a protein rejecting background of silicon dioxide coated with a precoated layer of Fn and study bacterial adhesion under flow. The results indicate that the adhesion of S. Aureus to surface adsorbed Fn is altered at sub micrometer patterns in a size dependent manner with a threshold for between 300nm patches. Above the threshold, increased adhesion was observed for larger patterns. Moreover, there was not a significant difference between the 300 and 500 nm in number of adherent bacterial cells. However, interestingly, 800 nm patches were more influenced for a bacterial adherence. Meanwhile, no significant difference has been noticed between the former size and 1000nm on the adherence number.

BIOFILM ECOLOGY

[54] PLANKTONIC AND BIOFILM PSEUDOMONAS AERUGINOSA METABOLISM COMPARED BY BOTTOM-UP PROTEOMICS

Yeni P. Yung1, S. Lee McGill2, Aruni Pulukkody1, Stephanie M. Cologna1, Hui Chen1, Ross Carlson2, Luke Hanley3

1University of Illinois at Chicago
2Montana State University,, United States
3University of Illinois at Chicago, Department of Chemistry, Chicago, United States

Pseudomonas aeruginosa is a problematic opportunistic pathogen often isolated from burn wounds, pressure ulcers and cystic fibrosis patient lungs. Proteomics can help elucidate different metabolic strategies utilized by this pathogen when grown as either planktonic or biofilm cultures. The role of carbon, nitrogen and energy sources such as glucose, lactate, and amino acid nutrients are of interest as they contribute to cellular growth, maintenance, and structural support. Untargeted label free quantification proteomics was applied here to illuminate metabolic differences in a comparative analysis of planktonic cultures and sessile membrane biofilms of P. aeruginosa.

A clinical isolate of P. aeruginosa was grown in amino-acid rich (CSP) or lactate-enriched CSP media (LCSP) and sampled at various growth phases. Biofilms were grown under no-shear conditions on tissue culture insert membranes.

Whole cell lysate of planktonic and biofilm cultures were treated by RIPA buffer supplemented with DTT, lysozyme, and protease inhibitors. Protein concentrations were measured using DC-Bradford assay. Liquid chromatography electrospray ionization tandem mass spectrometry was performed on a Thermo Fisher Scientific Orbitrap Velos Pro. MaxQuant software was used for protein identification and label-free quantification. Statistical analysis was performed by Perseus software while functional enrichment analyses were performed with the String database search engine.

Over ~500 proteins were identified on whole cell-lysate of P. aeruginosa, including membrane proteins previously found in mature biofilms and cytosolic proteins linked to key portions of cellular metabolism. Ca. 50 proteins in planktonic culture and ~55 in biofilm culture were statistically significant after 11 hours of growth. Of these, 15 proteins from the planktonic cultures and 10 from biofilms displayed significant expression differentials between LCSP and CSP. For example, the enzyme for conversion of L-lactate to pyruvate - L-lactate dehydrogenase - was expressed with large differentials in planktonic cultures and biofilms grown in LCSP. Preferential use of different substrates was observed based on protein abundance changes, suggesting shifts in metabolic strategies as a function of nutrient environment.

This proteome data will be used to refine computational models of this opportunistic pathogen. Laser ablation sample transfer is also being implemented to permit site-specific sampling of proteins from intact biofilms.
The gut microbiome can be divided into two fraction, one allochthonous microbiome in the feces and one authochthonous, biofilm-forming microbiome in the gut mucus. Changes in the authochthonous microbiome can have a major impact on the health of the host organisms. That's why chemicals, which alter the composition of the gut flora, are becoming more and more to the focus of research. For metformin, an antidiabetic drug, population-shifts in the gut microbiome of humans and mice were described, also in phyla, in which pathogenic bacteria naturally occur, for example in the phylum *Proteobacteria*. Also an increase in the expression of virulence factors was described in mice and rats during metformin-treatment. But the effect of metformin on the aquatic biocenosis und therefore on the ecosystem is largely unknown. Our research aims on the investigation of the potential impact of metformin on the gut microbiome of fishes. Such interactions might be a reason for a missing recovery of some fish species.

The experiments were executed with brown trouts (*Salmo trutta fario*) and metformin concentrations of 0 µg/L - 1000 µg/L in triplicates at 11°C and 7°C. The gastrointestinal tracts were preperated for the population analysis. For the analysis of the gut microbiome two methodic approaches were used: 1) PCR-DGGE and 2) 16S-Illumina-Amplicon sequencing. Furthermore, gene expression analysis of pathogen specific virulence factors were conducted after Reverse Transcription with subsequent qPCR. For that, bacteria cultures were exposed to different metformin concentrations. In parallel different constitutively expressed housekeeping genes were used for normalization.

Microbial population shifts were observed in intestinal mucus as well as faecal microbiome fractions in presence of metformin. The most significant impacts was analysed for the phylum *Proteobacteria*. The expression of virulence genes in pathogens associated with the fish gut microbiomes was found to be increased in presence of metformin at distinct concentrations. These different alterations in the fish microbiome are discussed to possess a direct effect on the vitality of the fishes.
Microbial invasion concerns the establishment of an ‘alien’ microbial species in a resident microbial biofilm community. Understanding the process of microbial invasion is crucial as invasion is an ubiquitous process involving beneficial as well as detrimental organisms and affecting various domains with an impact on economics and health. Pollutant-degrading bacteria are such beneficial organisms for which a successful invasion of a polluted environment, also known as bioaugmentation, is aimed for. In recent years, bioaugmentation was dug up again as a technique to remove micropollutants from drinking water by applying micropolllutant-degrading bacteria in existing sand filters which are part of the drinking water production process.

Challenges for micropolllutant-degrading bacteria to invade the sand filter environment were explored using Aminobacter sp. MSHI, a strain currently investigated to remove 2,6-dichlorobenzamide (BAM) from contaminated drinking water. Strain MSHI is able to form biofilms in the sand filter environment relying only on a very low amount of assimilable organic carbon for energy, while exposed to high shear forces. Proteomics reveal signs of starvation stress leading to a reduced gene expression and metabolisation of enzymes including BAM-catabolic enzymes. In addition, plasmids carrying the genes for BAM-mineralization become a burden due to a high maintenance cost for replication, translation and oxidative stress due to catalytic activity and are discarded.

Starvation puts MSHI in a bad position to invade a resident sand filter biofilm community well-adapted to oligotrophic conditions in sand filters. Using a synthetic microbial community reconstituted from previously isolated sand filter bacteria, reveals, however, that introduction of an ‘alien’ bacterium such as MSHI, brings new opportunities for resident bacteria. Upon invasion by MSHI, a shift was observed from a community previously dominated by Paucibacter sp. to a community evenly dominated by Rhodococcus sp., Pseudomonas sp. and strain MSHI itself, and corroborates with a co-localization of strain MSHI with resident bacteria, indicating cooperative associations.

Hampered growth, starvation and shear undermines maintenance of active MSHI cells, but adequate BAM removal from drinking water is assured largely due to MSHI’s exceptionally high reactivity towards the micropolllutant BAM and the resilience to cooperate with bacteria in the residing biofilm community.
Acne vulgaris is a common skin problem that results from abnormal inflammation of the pilosebaceous unit and causes various lesions (hyperpigmentation, papules, comedos etc.). It mainly affects the face, the torso and the upper back and arms. The proliferation of Cutibacterium (formerly known as Propionibacterium) acnes (C. acnes) is one of the factors involved in acne. C. acnes is a skin commensal and a Gram-positive bacillus that resides in pilo-sebaceous follicles. Nevertheless, the presence of C. acnes does not solely account for acne and healthy and acne prone persons can both exhibit the same level of colonization by C. acnes.

First, it is a well-known fact that the pathogenicity of C. acnes lies at least partly in its capacity to form biofilms i.e., in most cases, virulence factors are overexpressed in a biofilm state. Biofilm formation by C. acnes also significantly reduces its susceptibility to antibiotics (vancomycin, clindamycin, erythromycin, levofloxacin, ciprofloxacin). Secondly, at least 3 phylotypes of C. acnes have been described (I, II, III) and are suspected to have different implications in acne or other infections, suggesting different virulence profiles.

In order to better understand biofilm formation by C. acnes and its link with virulence, an in vitro biofilm model in 24-wells microplates was optimized. Results show that C. acnes is able to form biofilms of approximately 10^6 CFU/well after 72 h in a medium with a reduced concentration of nutrients, a density that is comparable to biofilms obtained in rich media like BHI (Brain Heart Infusion) or RCM (Reinforced Clostridial Medium). Interestingly, BB does not support planktonic growth, contrary to BHI or RCM.

Our results also indicate that some virulence factors (lysozyme M1, CAMP factors, GehA lipase or Dermatan Sulfate adhesion) are differentially expressed among the different phylotypes of C. acnes.

Current work now focuses on the influence of artificial sebum, also known to play an important role in acne, and possibly on biofilm formation by C. acnes.

Background:
In subgingival regions, oral microbes release variety of molecules to the microenvironment and these metabolic by-products of one microbe are utilized by others as an energy or nutrient source. Very recently, we reported a metabolic cross-talk between an accessory pathogen Streptococcus gordonii and the periodontal pathogen Porphyromonas gingivalis via para-aminobenzoic acid, which promoted P. gingivalis accumulation on Streptococcal biofilms, whereas suppressed its virulence in mouse models. However, comprehensive metabolic interactions between these bacterial species remain unknown. In this study, we employed CE/MS-based metabolomics to examine a global metabolic interaction between S. gordonii and P. gingivalis.

Materials and methods:
S. gordonii DL1 and P. gingivalis ATCC33277 were individually cultured, harvested and re-suspended in a modified chemically defined medium containing neither proteins, peptides, nor amino acids. Six-transwell polystyrene cell culture plates were inoculated with P. gingivalis (1 x 10^10 cfu) in the lower compartment and S. gordonii (1 x 10^5 cfu) in the upper transwell insert. Both strains were co-cultured at 37 °C under anaerobic conditions. Culture supernatant was harvested at 6 hours of incubation, then ionic metabolites were extracted. CE-TOFMS was used to measure metabolite levels simultaneously.

Results:
A metabolome analysis illustrated that glyceric acid and glycerol 3-phosphate, both are intermediates between central carbon and lipid metabolic pathways, were released into the supernatant only by cooperative interaction between S. gordonii and P. gingivalis. Furthermore, accumulation of ornithine, Gln, Thr, homoserine and uracil was synergistically enhanced by the co-existence of S. gordonii and P. gingivalis, compared to those in mono-culture supernatants (p<0.001). His, Gln, Pro, succinate, dipeptides (Gly-Gly, Gly-Leu, Gly-Glu-Glu, His-Glu, Ser-Glu, Tyr-Glu) and some decarboxylation products, such as agmatine and GABA, were released only by P. gingivalis, and markedly decreased in the co-culture supernatant (p<0.001), indicating the consumption or inhibition by S. gordonii. On the other hand, Asp and carbamoyl-Asp were mainly released by S. gordonii, and their production was synergistically enhanced by the existence of P. gingivalis (p<0.001).

Conclusion:
These results offer new insight into the unknown metabolic flux affected by the cooperative action of S. gordonii and P. gingivalis.
[P61] COLONY MICRO-FEATURE DIVERSITY IN ENVIRONMENTAL AND CLINICAL PSEUDOMonas AERUGINOSA ISOLATES

Jennifer Rattray1, Pedro Márquez Zacarías1, Evgeniya Molotkova1, Sam Brown1

1Georgia Institute of Technology, Atlanta, United States

Pseudomonas aeruginosa, an opportunistic pathogen and highly social microbe, is a metabolically diverse and phenotypically rich organism. Previous research has shown high levels of structural organization in assemblages driven by both physical limitations of colony growth and emergent characteristics of the population.

This study aims to survey fine-level phenotypic diversity in over 100 fully sequenced P. aeruginosa environmental and clinical isolates, explore techniques for characterization of observed micro-features, and automate analysis of their phenotypic diversity to look into the application of colony structure as a predictive variable of medically relevant characteristics.

Using high-resolution light microscopy, we have imaged entire centimeter scale colonies grown on 2% LB-Congo Red agar for three days, enough time to reveal major phenotypic landmarks. With this method, we can resolve colony structure on the sub-millimeter scale and uncover layers of complexity overlooked at lower magnifications.

In an effort to explain what these emergent micro-features physically are, we consider the pros and cons of various characterization techniques from white light interferometry to scanning electrochemical microscopy and imaging mass spectrometry.

Finally, we are developing a custom deep convolutional network from the augmentation of the original image dataset in order to extract features in morphological space. We can then relate these features with 30 physiological variables related to growth, antibiotic resistance, biofilm formation and virulence factor production that we measured and explore the relationship between morphological features and these variables. If a relationship exists, it would be possible to use colony morphology, a relatively simple technique, to predict medically relevant characteristics about strains, allowing for cheaper diagnostics.

[P62] NITROGEN FIXATION IN A SYNTROPHIC COCULTURE ALTERS BIOFILM STRUCTURE AND FUNCTION

Kristen Bireley1, Isaac Miller1, Alison Osborn1, Matthew Fields1

1Montana State University, Center for Biofilm Engineering, Bozeman, United States

Free-living diazotrophic bacteria and archaea are key players in global nitrogen cycling, making fixed nitrogen available in anoxic systems with significant contribution to dinitrogen flux from the atmosphere. Current research on nitrogen fixation in biofilm is dominated by examples from root-associated bacteria. In this study, a previously characterized syntrophic coculture of Desulfovibrio vulgaris and Methanococcus maripaludis was evaluated for potential to fix nitrogen under syntrophic growth conditions and in continuous culture biofilm. Extensive work has been done on the regulation of nitrogen fixation in M. maripaludis, while less is studied in D. vulgaris, and coculture. Little attention has been directed to the role of nitrogen limitation and fixation in the SRB:methanogen syntrophy that is perched at the edge of thermodynamic constraints. The purpose of this work was to determine the feasibility of nitrogen fixation in coculture biofilm and infer the role of both members. We predicted that diazotrophic biofilm structure and composition would be distinct from ammonium-fed biofilm. Coculture growth rate was reduced in batch planktonic diazotrophic studies, and biomass yield was low, presumably due to poor transport of N2 gas to the aqueous phase. Continuous culture in a biofilm reactor afforded constant sparging with N2 and mixing, which resulted in biofilm formation along with a robust planktonic community. Biofilm structure was notably different under diazotrophic growth compared to ammonia conditions as visualized with electron microscopy, with a thin biofilm that appeared to allow for gas transport. Relative abundance of D. vulgaris and M. maripaludis in the biofilm was similar to intermediate aged ammonium-grown biofilm, while the planktonic ratio was reversed with 61% M. maripaludis and 39% D. vulgaris for a comparable amount of total planktonic protein. Biofilm protein represented just under 10% of the total reactor biomass, while ammonium-grown biofilm accounted for 80% of the total reactor biomass. The total ratio of D. vulgaris: M. maripaludis was 1:1 compared to a ratio of 2.5:1 in ammonium-grown conditions. The results suggest that the required energy burden of nitrogen fixation lowers biofilm biomass allocation and promotes more equalized carrying-capacity for the two biofilm populations.
The potential of Drinking Water Distribution Systems (DWDSs) to provide thermal energy in the form of cold has been recently explored, and it seems a promising resource for cooling purposes. However, due to cold recovery by means of a heat exchanger, the drinking water temperature rises instantaneously in and after the heat exchanger, and the influence of suddenly increased temperature on microbiological water quality and microbial ecology of DWDSs is still not known. This work studied DWDSs with cold recovery from the perspective of microbiological changes. Specifically, this study aimed to evaluate the impacts of cold recovery on the biofilm development in pilot distribution systems (PDSs) and the microbiological quality of drinking water. Two small scale PDSs were used in this study: a PDS with a cold recovery system, and a reference system without cold recovery. Both water and biofilm samples taken from these systems were analysed for biomass (measured by ATP, heterotrophic plate counts and cell counts (TCC) with flow cytometry) and microbial community diversity and composition (Illumina MiSeq, 16S rRNA). After a period of 9 months, significant changes were observed in the biofilm formed after cold recovery in terms of 3 times higher TCC and ATP compared to the biofilm in the reference system. Moreover, the results of 16S rRNA revealed a less diverse and significantly different (p < 0.01) biofilm community formed in the cold recovery system compared to the reference system. In the cold recovery system, bacterial groups that are related to formation of thicker and stronger biofilms are more abundant than in the reference system. The relative abundance of Legionella spp. was 2% higher in the cold recovery system compared to the biofilm in the reference system. In bulk water, no major changes were observed, most likely linked to the short hydraulic residence time in the system (60 seconds) as compared to biofilm (38 weeks). It is concluded that temperature increase due to cold recovery inside DWDSs is more likely to impact the biofilm phase than the water phase. However, due to interaction between both phases it may contribute to changes in the water phase on the long term. Hence, cold recovery from drinking water systems combined with subsequent temperature increase requires continuous monitoring and investigation to control the drinking water quality.

Reverse Osmosis (RO) membranes are increasingly being used in the food industry for treatment of product water subsequently used for different purposes within the industrial facilities in order to save water intake and discharge of waste water. Although the spiral wound RO membranes offer high filtration efficiency, their compact structure increases susceptibility to biofilm formation, which may lead to flux reduction and changes in the water quality. Even after Cleaning-In-Place (CIP) operations using strong alkaline and acidic solutions, some microorganisms may still survive in biofilms. We investigated the biofilm communities on several RO membranes used for after-treatment of ultrafiltered product water in food industry and their response to cleaning and disinfection. Light and Confocal Laser Scanning Microscopy (CLSM) were used to visualize the biofilms. The total microbial population was enumerated using Standard Plate Count (SPC) method, while 16S and 26S rRNA sequencing were used for identification of bacteria and yeast isolates. Tolerance to different temperature combinations and CIP solutions was tested.

A dense network of filamentous yeast covering a great area together with budding yeast and bacteria was observed before CIP, while after CIP only yeast species were detected. The dominant species were identified as the filamentous yeast genera Saprochaete clavata and Magnusomyces spicifer and they exhibited high tolerance towards heat (15 min. / 75°C) and CIP compounds.

Filamentous yeast species are rarely described as part of RO membranes biofilms. We believe that although they may cover large areas on membrane surface, they can be easily overlooked due to their slow growth and low numbers relative to the many fast growing bacteria. Work is in progress to elucidate their role in microbial adhesion and survival as well as removal strategies.
ON A MICROSCALE

Hydrogen produced from periodic excess of electrical energy may be added to biogas reactors where it is converted to methane that can be utilized in the existing energy grid. It has been demonstrated that hydrogen can be readily utilized by microorganisms in anaerobic digesters. One of the major challenges with this technology is the low hydrogen solubility and gas-to-liquid mass transfer limitations when introducing hydrogen to the anaerobic digester. Gas-filled reactors containing a carrier material with a large surface area covered by a methanogenic biofilm could ensure efficient gas-liquid transfer and circumvent the problem with low hydrogen solubility.

Two different kinds of biofilm carrier material were tested; BIO-BLOK® and glass fiber filter paper. The incubations were made in slurry-filled serum bottles with 75% headspace. Controls consisted of slurry without carrier material. After five weeks of incubation the average methane production rate for the control was 0.59 (n=2) L CH₄/L slurry/day, 0.79±0.35 (SD, n=3) L CH₄/L slurry/day for the glass fiber filter paper and 7.43±4.84 (SD, n=3) L CH₄/L slurry/day for the BIO-BLOK®. Hence, the methane production rate for the control and glass fiber filter paper was comparable while the average hydrogen flux towards the BIO-BLOK® was 13 times higher. The hydrogen fluxes towards the slurry and the different biofilm carrier materials were comparable. Hence, the enhancement of the methane production rate by a methanogenic biofilm could ensure efficient gas-liquid transfer and circumvent the problem with low hydrogen solubility.

It was demonstrated that it is possible to grow a hydrogen consuming biofilm and enhance the methane production rate. The hydrogen fluxes towards the slurry and the different biofilm carrier materials were comparable. Hence, the enhancement of the methane production rate in the BIO-BLOK® incubation must be interpreted as a result of an increased surface area for the hydrogen to methane conversion.

Biofilms colonize surfaces in cooling water systems, where cause operational issues and microbiologically induced corrosion as well as may pose health problems associated with the presence of pathogens. Control strategies, mainly based on the addition of chemical additives to the water, may not be fully effective in biofilm removal resulting from the protection provided by the biofilm matrix. The scanty information on biofilm occurrence and development in industrial systems strongly limits the efficacy of the current control strategies as the development of more effective alternative procedures. Our aim was to evaluate the temporal patterns in diversity and structure of seasonal biofilm samples collected from a full scale cooling tower over one year. To this end, next generation sequencing, CARD-FISH and lectin staining, combined with confocal microscopy were used. A bacterial core microbiome constituted by members of Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae families was found in all samples. Marked seasonal variations were observed in the phototrophic fractions. Summer samples showed the highest species richness and were dominated by filamentous cyanobacteria immersed in a α-Mannose, α/β-Glucose rich matrix. They also formed aggregates building a scaffold for coccal cyanobacteria and bacteria, whose capsules had N-acetyl-glucosamine. Filamentous green algae were also found showing fucoxane on their surface. Raphid diatom species were also present, binding N-acetyl-glucosamine specific lectins on frustule surfaces. Conversely, the lowest species richness was recorded in winter biofilms, dominated by diatoms surrounded by a loose matrix containing abundant mineral particles. Autumn and spring samples had similar phototrophic composition showing a prevalence of green algae, surrounded by AAL labelled mucilaginous material.

We could suggest that a single control strategy cannot be used all over the year since as a biofilm variability has been retrieved.
[P67] ELUCIDATING PRIORITY EFFECTS AND SUCCESSION IN MULTISPECIES BIOFILM ASSEMBLY

Nanna Olsen1, Henriette Lyng Røder1, Jakob Russel1, Ida E Bruhn Hemmingsen1, Søren Johannes Sørensen1, Mette Burmølle1

1University of Copenhagen, Denmark

The arrival order of different species to a specific niche may strongly impact community assembly and succession dynamics. In this study, we used a model consortium composed of four soil isolates (Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus) to determine if priority effects exist and influence the assembly of a multispecies biofilm grown under different in vitro conditions. We tested our four species individually for exerting priority effects on later arriving species by determining the species ratios of the biofilms at different time points. The IBIDI microfluidics system was used to grow the biofilms. The procedure was to pre-inoculate the strains into separate flow-cells and grow them individually for 6h. Cultures with all four strains were subsequently inoculated in all flow-cells and incubated for a total of 48h and 96h. All biofilm biomass was collected from the flow-cells and 16S rRNA gene amplicon sequencing was performed to determine relative species ratios. Absolute bacterial numbers were estimated by flow cytometry and plate counts. Moreover, the spatial structure of fluorescently-tagged S. rhizophila and X. retroflexus in the biofilms will be assessed by confocal microscopy. Preliminary results indicate that specific species alter the niche and thus influence the quantity of biofilm produced and the composition of the community.

[P68] INCREASED INTRASPECIES DIVERSITY IN ESCHERICHIA COLI BIOFILMS PROMOTES CELLULAR GROWTH AT THE EXPENSE OF MATRIX PRODUCTION

Gislaine Passarela1, João Baptista2, Carina Almeida3, Andreia Azevedo4, Joana Peres1, Filipe Mergulhão4, Nuno Azevedo5

1Feup
2Faculdade de Engenharia Da Universidade Do Porto, Porto, Portugal
3Iniav
4Feup/Lepabe
5Lepabe – Dep. of Chemical Engineering Faculty of Engineering, University of Porto, Porto, Portugal

Intraspecies diversity in biofilm communities is associated with enhanced survival and growth of the individual biofilm populations. In here, the influence of intraspecies diversity in biofilm populations composed of up to six different Escherichia coli strains was evaluated. For that, standard methods were employed including crystal violet (CV) staining, cultivability in solid medium and extracellular polymeric substances (EPS) matrix quantification. In general, with the increasing number of strains in the biofilms, a slight increase in cell cultivability and a decrease in EPS matrix production were observed. It hence appears that increased genotypic diversity in a biofilm leads E. coli to direct energy towards the production of its offspring, in detriment of the production of public goods (i.e. matrix components). In fact, an intraspecific competition seems to take place between phylogenetically close bacteria. This behaviour is particularly noticeable during the first hours of biofilm growth, where a trend for multi strain biofilms to cluster themselves as low biomass producers is observable. Interestingly, the most phylogenetically distant isolate seems to induce an increase in biomass production when paired with the remaining strains in consortia. Multiplex PNA-Fluorescence in situ hybridization (FISH) combined with confocal laser scanning microscopy (CLSM) analysis of polymicrobial biofilms suggests a well-mixed, “carpet-like” structure of the biofilm. Adding to the ecological implications, these results can be explored in clinically-relevant biofilms, as a decrease in EPS matrix production, by introducing avirulent strains, may render these biofilms more sensitive to antimicrobial agents.
The development of a biofilm can protect food spoilage microorganisms against classical cleaning and disinfection protocols used in the food industry. In this study, the tolerance of a Stenotrophomonas maltophilia biofilm forming strain (Sm), isolated from a food processing environment, against cleaning and disinfection agents was investigated. Its ability to form bispecies biofilms with a food spoilage organism Lactobacillus brevis, isolated from the same food company, was evaluated. Mono- and bispecies biofilms of both micro-organisms were subjected to classical cleaning and disinfection protocols in a reactor designed to simulate food processing conditions. Biofilms of the Sm strain showed a high tolerance against the cleaning and disinfection agents, with on average a LOG 3.5 reduction after the total sanitation protocol and the residual biofilm completely recovering within 24 hours when supplied with new growth medium. The monospecies biofilm of Lactobacillus brevis was completely eradicated by cleaning and disinfection and no regrowth was observed when new growth medium was supplied. However, when co-cultured with the Sm-strain showed a high tolerance against the cleaning and disinfection agents, with on average a LOG 3.5 reduction after the total sanitation protocol and the residual biofilm completely recovering within 24 hours when supplied with new growth medium. The monospecies biofilm of Lactobacillus brevis was completely eradicated by cleaning and disinfection and no regrowth was observed when new growth medium was supplied. However, when co-cultured with the Sm-strain a bispecies biofilm, the Lactobacillus brevis strain survived the sanitation protocols and recovered completely within 24 hours. This suggests that to reduce food spoilage, the removal of the Sm-strain from food surfaces is necessary.

The optimization of the removal strategy was done by analyzing the EPS composition of different Sm-strains, with different biofilm-forming capacities. The protein composition of the EPS determined by SDS-PAGE of the different Sm-strains was different depending on the biofilm-forming capacity of the strain. All Sm-strains show proteins in their EPS layer with a molecular weight of 54 kDa. However the EPS layer of the Sm-strains exhibiting strong biofilm forming capacities consisted of extra proteins of 18, 19 and 34 kDa.

This study shows the importance of multi-species consortia in food spoilage being the possible source of recurring contamination problems in the food industry and the need to develop a biofilm removal strategy to eliminate food spoilage organisms from the production plant.

Nowadays, impacts of buildings on the environment and on the health of inhabitants are priority issues. For many reasons, the demand for building products (bricks and plasters) made of materials such as clay and bio-based materials (vegetal fibres, granulates...) is increasing. Under certain conditions, a microbial development on such surfaces can be observed, which raises many questions about their use in buildings due to potential health hazards for inhabitants.

The BIOTERRA ANR project (2014-2018) aims to identify and to characterize microbial proliferation on bio-based earthen construction products, and to propose solutions to reduce or inhibit these proliferations, in order to ensure healthy and durable buildings.

Samplings have been performed in several earthen dwellings, sometimes on bio-based building materials: three sampling campaigns have been carried out between 2015 and 2016, on 11 sites with an average of 4 sampled areas per site. The composition and diversity of bacterial and fungal biofilms communities on the indoor walls have been characterized and identified by high throughput sequencing (MiSeq). The main bacteria identified belonged to the Arthrobacter, Bacillus, Actinomycetospora and Saccharopolyspora genera. The Aspergillus, Cladosporium, Wallemia and Fusarium fungal genera were the most abundant taxa on the surface of earthen building materials. The analysis of the microbial flora suggests an effect of the addition of vegetal fibres on the composition of bacterial biofilms, but not on the fungal communities. The abundance of fungal genera seems to be more associated to the sampled house than to the building material composition. Microbial communities on earthen building materials are close to those identified on other building materials and do not represent a hazard for the occupants under conventional environmental conditions.
[P71] A SIX MONTH STUDY MONITORING THE FATE OF LISTERIA INNOCUOUS INTRODUCED TO A MATURE BIOFILM COMMUNITY ESTABLISHED IN A MODEL DRAIN SYSTEM

Timothy Ellis1, John Storrie2, Michele Elliot1, Dale Hebb1, Nicholas Petronella1, Stephen Brooks1, Martin Kalmokoff3

1Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Canada
2Acadia University, Department of Biology, Wolfville, Canada
3Health Canada, Health Products and Food Branch, Bureau of Food Surveillance and Science Integration, Ottawa, Canada

Listeria monocytogenes is a foodborne pathogen of major concern as it can establish and persist within food processing facilities. Floor drains are prime locations for buildup of Listeria-harboring biofilms due to constant wetting and contact with food residues. As such, the pathogen can be disseminated from these reservoirs onto foods or food contact surfaces through the production of aerosols. In this study, a five strain cocktail of L. innocua was used as a surrogate for L. monocytogenes to investigate the ability of Listeria to integrate into an established biofilm within a floor drain model, and persist following multiple exposures to benzalkonium chloride (BAC). A new cast iron floor drain was obtained, cleaned and sterilized. The drain was inoculated by the addition of ground beef slurry which was left to stand at 15°C for 24 h to allow the natural microflora associated with the meat time to colonize drain surfaces. A regimen of nutrient cycling was employed where the biofilms were subjected to alternating days of nutrient exposure (1/10 cooked meat medium) and starvation (water) over 28 weeks. The microbial community composition of the biofilm were detected throughout the hose, with a higher α-diversity for the bottom compared to the top. From these biogeographical variations, we conclude that considerable heterogeneity in biofilms does occur already on small-scale. While this had already been described on large scale (e.g., through a full-scale distribution system), heterogeneity on smaller scales is poorly quantified. In this study, we assessed the heterogeneity of building plumbing biofilms on small-scale. To achieve this, indigenous biofilms were grown inside flexible shower hoses over the course of 12 months under controlled conditions; hoses (1.20 m) were horizontally aligned and exposed to twice-daily shower events (15 min) with non-chlorinated warm water (~ 42°C). For analysis, hoses were dissected into 100 cross sections, which were then halved to yield 200 pieces of approximately 1.2 cm². Biofilms were characterized by their thickness (µm-scale, optical coherence tomography), total cell concentration (TCC) (cm-scale, flow cytometry), and microbial community composition (cm-scale, 16S rDNA amplicon sequencing). We found considerable heterogeneity on small-scale throughout the length of a hose. Biofilm thickness along the entire hose ranged between 35.8 – 890.7 µm, with significantly higher values for the bottom (323.0 ± 91.7 µm) compared to the top part (244.1 ± 54.4 µm). On small-scale, the thickness varied within 75% within as little as 500 µm hose length. TCC varied throughout the hose between 1.2 x 10⁸ – 3.9 x 10⁹ cells/cm², with successive 1.2 cm biofilm sections showing differences between 0.04 – 96.4 %. Interestingly, averaged TCC did not differ between bottom (2.6 ± 0.7 x 10⁸ cells/cm²) and top (2.6 ± 0.4 x 10⁸ cells/cm²) as observed for thickness. In addition, changes in the microbial community composition of the biofilm were detected throughout the hose, with a higher α-diversity for the bottom compared to the top. From these biogeographical variations, we conclude that considerable heterogeneity in biofilms does occur already on small-scale, even when biofilms were formed under controlled and consistent conditions within the same hose. These findings are particularly valuable with respect to (1) an improved understanding of biofilm ecology; (2) developing sensible biofilm sampling strategies; and (3) understanding the driving factors for biofilm formation and how small-scale development impacts the microbiology of building plumbing systems on a large-scale.

[P72] SMALL-SCALE HETEROGENEITY IN DRINKING WATER BIOFILMS

Lisa Neu1, Frederik Hammes1

1Eawag, Dübendorf, Switzerland

The majority of bacteria reside in biofilms and multiple factors give rise to heterogeneity within these. While this had already been described on large scale (e.g., through a full-scale distribution system), heterogeneity on smaller scales is poorly quantified. In this study, we assessed the heterogeneity of building plumbing biofilms on small-scale. To achieve this, indigenous biofilms were grown inside flexible shower hoses over the course of 12 months under controlled conditions; hoses (1.20 m) were horizontally aligned and exposed to twice-daily shower events (15 min) with non-chlorinated warm water (~ 42°C). For analysis, hoses were dissected into 100 cross sections, which were then halved to yield 200 pieces of approximately 1.2 cm². Biofilms were characterized by their thickness (µm-scale, optical coherence tomography), total cell concentration (TCC) (cm-scale, flow cytometry), and microbial community composition (cm-scale, 16S rDNA amplicon sequencing). We found considerable heterogeneity on small-scale throughout the length of a hose. Biofilm thickness along the entire hose ranged between 35.8 – 890.7 µm, with significantly higher values for the bottom (323.0 ± 91.7 µm) compared to the top part (244.1 ± 54.4 µm). On small-scale, the thickness varied within 75% within as little as 500 µm hose length. TCC varied throughout the hose between 1.2 x 10⁸ – 3.9 x 10⁹ cells/cm², with successive 1.2 cm biofilm sections showing differences between 0.04 – 96.4 %. Interestingly, averaged TCC did not differ between bottom (2.6 ± 0.7 x 10⁸ cells/cm²) and top (2.6 ± 0.4 x 10⁸ cells/cm²) as observed for thickness. In addition, changes in the microbial community composition of the biofilm were detected throughout the hose, with a higher α-diversity for the bottom compared to the top. From these biogeographical variations, we conclude that considerable heterogeneity in biofilms does occur already on small-scale, even when biofilms were formed under controlled and consistent conditions within the same hose. These findings are particularly valuable with respect to (1) an improved understanding of biofilm ecology; (2) developing sensible biofilm sampling strategies; and (3) understanding the driving factors for biofilm formation and how small-scale development impacts the microbiology of building plumbing systems on a large-scale.
[P73] AN AUTOMATED SYSTEM FOR OCT IMAGING OF BIOFILMS UNDER DIFFERENT HYDRODYNAMIC REGIMES

Anna Depetris¹, Hannes Peter¹, Tom Battin¹

¹Épfl, Lausanne, Switzerland

Benthic biofilms contribute substantially to the biogeochemistry of streams and provide important ecological functions. Depending on local hydrodynamics, these complex communities are constantly exposed to the shear stress of the flowing water, with consequences for mass transfer of solutes, biofilm metabolism and ultimately biofilm architecture. We developed a laboratory mesocosm setup to monitor the growth of phototrophic biofilms under a variety of hydrodynamic regimes using optical coherence tomography (OCT). OCT is a meso-scale 3-dimensional imaging technique that provides information on volume, height and roughness of biofilms. The OCT was mounted on a precision positioning device and integrated in an automated system of images collection and processing. We designed plexiglass flumes with a funnel-like shape, which generates a gradient in flow velocity within the single flume. These flumes can be utilized in a nozzle or diffuser configuration, resulting in different levels of turbulence and shear stress distribution. Here we present the capabilities of this setup to rigorously monitor biofilm growth and architectural differentiation with the aim to understand biofilm morphogenesis as a function of local hydrodynamics.

[P74] MARINE BIOFILM DIVERSITY ON ANTIFOULING COATINGS: A METAGENOMICS APPROACH

Maria Salta¹, Samuel Robson², Giovanni Pavanello³, Giuliano Greco³

¹University of Portsmouth, School of Biological Sciences, Portsmouth, United Kingdom
²University of Portsmouth, School of Pharmacy and Biomedical Sciences, Portsmouth, United Kingdom
³Cnr-Ismar Italian National Research Council, Genova, Italy

Marine biofilms (mainly composed of bacteria, diatoms, spores/larvae of macro-organisms) constitute an important component of the overall biofouling process i.e. accumulation of marine macro-organisms (e.g. algae, barnacles, ascidians etc) on artificial surfaces. The maritime industry is largely affected by biofilms as their presence can increase roughness on ship hulls therefore impacting the ship’s hydrodynamics, leading to higher CO₂ emissions and fuel consumption. Current antifouling (AF) coatings, such as Foul Release Coatings (FRCs) only inhibit colonization of macro-organisms, however biofilms remain the main issue as they tenaciously adhere on FRCs. Very little is known about biofilm species composition, especially when formed on FRCs, therefore it is crucial to gain knowledge on biofilm biodiversity. In the current work we investigated the biofilm community composition found on FRC coatings (plus controls) and exposed in two different sites, Southampton, UK and Genova, Italy for 12 days via Next Generation Sequencing targeting the 16s rRNA and 18s rRNA. Some key findings: Overall PCO analysis showed a clustering of OTUs with site and surface properties. For the 16s rRNA analysis, Cyanobacteria were the main phylum in Southampton Water while for the Mediterranean site it was Proteobacteria and Bacteriodetes. On FRCs these main taxa were significantly reduced when compared to the controls. For eukaryotes, the FRCs significantly decreased crustacean presence in both sites, while the diatom genus *Navicula* was abundant in the Southampton Water but not in the Mediterranean, however when compared to the controls, FRCs showed reduced abundance. We believe that data like the ones we present here, will aid the AF industry towards a more informed coating design.
Hydrated porous systems with their high surface availability are attractive substrates for biofilm growth. A prime example of such a system is the hyporheic zone of streams hosting diverse microbial communities concealed within the sediment interstices. Within this sedimentary environment, topographic heterogeneity and fluid flow constrain biofilm growth by altering solute supply and hydrodynamic stress. The interplay between hydrodynamics and biofilm architecture and function in porous systems remain poorly understood. To better appreciate these links, we designed porous-like fluidic devices, exposed to streamwater flow containing bacterial cells. Biofilm formation and local hydrodynamics were investigated using time-lapse microscopy and micro-particle image velocimetry. We found two different architectures: a biofilm coating the grains and streamers extending into the pore space. We show that the architectural differentiation was the result of biofilm growth on the grains and of cell retention by the streamers. We also found that biofilms competed for space and substrates, and that the differentiation into streamers and coating biofilm was beneficial and of cell retention by the streamers. We also found that biofilms competed for space and substrates, and that the differentiation into streamers and coating biofilm was beneficial to the entire biofilm. Our work advances previous studies on streamer formation in porous systems and highlights the importance to work with diverse microbial communities rather than monospecies systems if the biophysical processes that shape the most successful mode of microbial life is to be understood.

Keywords: biofilm morphology, porous-media, filtration

[P75] UNVEILING BIOFILM ARCHITECTURAL DIFFERENTIATION IN SEDIMENTARY ENVIRONMENTS

David Scheidweiler1, Hannes Peter2, Pietro DeAnna3, Tom Battin2

1Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
2University of Lausanne, Switzerland
3Epfl, Switzerland

[P76] MULTISPECIES BIOFILM FORMATION BY STREPTOCOCCUS PNEUMONIAE, HAEMOPHILUS INFLUENZAE AND MORAXELLA CATARRHALIS AND THEIR INTERACTION WITH NASOPHARYNGEAL MICROBIOTA AND PROBIOTIC SPECIES

Priscila Reinaldo Vitola1, David Cleary2, Stuart Clarke1, Jeremy Webb1

1Institute for Life Sciences, University of Southampton, National Biofilms Innovation Centre, University of Southampton, Southampton NHS Foundation Trust, Southampton, United Kingdom
2Southampton NHS Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
3Southampton NHS Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom

Streptococcus pneumoniae (Sp), *Haemophilus influenzae* (Hi) and *Moraxella catarrhalis* (Mc) commonly colonise the young child's nasopharynx (NP), exhibiting a ubiquitous and strong positive association. NP colonisation and subsequent biofilm formation are essential steps for the development of invasive diseases. In the present study we aimed to show the interactions between these pathogens with other members of NP microbiota and potential probiotic species in a multispecies (MS) biofilm (BF) model.

Single- (SS), dual- (DS) and MS-BF were grown in vitro for 72 hours, and individual species were quantified at different time points by propidium monoazide real-time polymerase chain reaction (PMA-qPCR). MS-BF were performed with Sp-Mc-Hi only, or in combination with *Staphylococcus aureus* (Sa), *Lactococcus lactis* (Lc) or *Lactobacillus casei* (Lc). *Sp-Mc-Hi* MS-BF were also qualitatively analysed by confocal laser scanning microscopy (CLSM).

Sp-Mc-Hi formed a stable MS-BF over a 72-hour period. In comparison to its SS-BF, *Hi* increases in MS, whilst *Mc* decreases by approximately 4 log10 units. Conversely, *Sp* formation was mostly unaffected by *Mc* and *Hi*, either in DS or MS-BF. In DS-BF, *Hi* shows a 3 log10 increase in combination with *Mc*, and *Mc* has restored its counts from SS-BF, suggesting that their association is more positive than that of *Mc* or *Hi* with *Sp*. Spatial organisation analysis of CLSM images corroborate these results. Whilst *Mc-Hi* interaction seems neutral in MS-BF, their interaction with *Sp* is negative.

The presence of *Sa* or *Lc* reduced *Sp-Mc-Hi* MS-BF, although an increase of *Mc* on *BF containing Lc* was noted. Conversely, when in combination with a bacterial species not commonly found on NP, *Sp-Mc-Hi* either increased or maintained similar numbers, even in the presence of high *Lc* counts.

In conclusion, the results show that the interplay amongst *Sp-Mc-Hi* seems to be the balance of cooperative and competitive interactions. In addition, *Li* and *Sa* (a known NP competitor) have affected but not eradicated *Sp-Mc-Hi* on MS-BF, which might reflect some of the interactions occurring in the NP. Additionally, these results can provide a basis for future studies of *Li* as a probiotic for the respiratory tract.
The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. In situ underwater microsensor measurements in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to >pH 10 over the first 1–2 cm into the ikaite. This outer layer of freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring diverse phototrophic biofilms dominated by diatoms and cyanobacteria, as revealed by molecular analyses and pigment analysis. In situ measurements of O₂ and variable chlorophyll fluorescence measurements demonstrated high levels of oxygenic photosynthesis with strong irradiance-driven O₂ dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, which exhibited strong attenuation of visible light (400–700 nm) down to 1% of incident irradiance at 20 mm depth into the ikaite. Variable chlorophyll fluorescence imaging showed active photosynthesis with high-light acclimation in the outer diatom layer, and low-light acclimation in the underlying cyanobacterial part. Bright field, CLSM and electron microscopy showed that the microbial phototrophs were embedded in exopolymers forming endolithic biofilms in close association to the ikaite crystal matrix. These biofilms may interact with mineral formation and cementing of ikaite crystals and thus might play a significant role in ikaite column formation.

Keywords: microplastic particles, bacterial communities, plastisphere, genomic fingerprint.
[P79] THE ROLE OF ADAPTIVE DIVERSIFICATION IN BURKHOLDERIA CENOCEPACIA BIOFILM COMMUNITY

Caroline Turner1, Eisha Mhatre1, Dan Snyder1, Emily Sileo1, Vaughn Cooper1

1University of Pittsburgh, Pittsburgh, United States

Bacterial biofilms evolve strategies that reduce intercellular conflicts and develop cooperative interactions that enhance population-level fitness. The evolutionary process is characterized by the diversification of genotypes shaping the ecological structure and productivity within.

In long-term evolved populations of *Burkholderia cenocepacia* propagated in a biofilm model, the lineages selected not only underwent ecological differentiation into an early attaching wrinkled ecotype, a densely clustering ruffled ecotype, and an exterior colonizing studded ecotype but also increased the overall biofilm productivity. The main factor driving this adaptation is the coordination of quorum sensing (QS) and regulation of intracellular cyclic-di-GMP (cdG) levels. Here, we distinguish these effects genetically to determine how different mutations influence both the genotype and other ecotypes in the evolved community.

We observe distinct mutations in *rpfR* that cause increased levels of cdG and alter the binding of *Bacillus Diffusible Signal Factor* (BDSF). One such genotype associated with the studded lineage, Y355D, stimulates the activity of diguanylate cyclase domain that produces cdG; as a result, the biofilms formed exhibit uniform surface coverage. This genotype is dominant in co-cultures and outcompetes most other genotypes except A106P. A106P mutation selected in the ruffled lineage produces large aggregates in biofilms and coexists when grown in co-cultures with A106P. Uniquely, we also describe it as a facilitator as it enables the growth of other partner genotypes in clusters increasing their fitness in co-culture communities.

Other nonsynonymous mutations in the membrane-bound WspA or terminal kinase WspE observed in wrinkled lineage cause constitutive activation of phosphorelay regulator, upregulating the biofilm matrix production. These *wsp* genotypes along with the facilitator ecotype synergistically increase the total biofilm biomass.

Overall evolved biofilm ecology demonstrates both competitive and cooperative assembling of genotypes. It is remarkable how enhanced biofilm formation is the feature observed among most evolved populations in different bacterial species. In the ongoing study, we plan to ask if the ecological significance of these ecotypes plays role in multispecies bacterial interactions.

[KIN DISCRIMINATION IN BACILLUS SUBTILIS BIOFILMS]

Barbara Kraigher1, Maja Bolješić1, Iztok Dogša1, Manja Mozetič1, Tjaša Stošicki1, Barbara Jerič Kokalj1, Polonca Stefanic1, Ines Mandic-Mulec1

1University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia

In their natural habitats microorganisms are surrounded by other strains and species with whom they engage in competitive, cooperative or neutral interactions. Understanding decision making that drives competition and cooperation and the consequences of this interactions is of fundamental importance. We have recently shown that *Bacillus subtilis*, a gram positive bacteria, engage in cooperative swarming only with highly related (kin) strains, but not with less related (non-kin) strains of the same species. We here address whether this differential behavior is also evident during other types of multicellular existence, namely in floating biofilms (pellicles) where *B. subtilis* invades liquid – air interphase or in colony biofilms that form on nutrient agar. Cell distribution of two strains in mixed biofilms was monitored by fluorescent technology and confocal microscopy. In addition we also quantified viscoelastic properties of biofilms and fitness of strains in biofilms initiated by two self, kin or non-kin strains. These were labeled with different antibiotic resistance and fluorescence markers. We observed a spatially close intermixing of cells in kin biofilms. In contrast, segregation into larger and well visible patches of cells was evident in non-kin biofilms. Mixed biofilms also showed changed viscoelastic properties but this change did not correlate with the kinship of the two strains. Fitness of kin biofilms was comparable to fitness of the monoculture biofilms. However, in non-kin combinations one strain of the two always experienced a decreased fitness. The observed fitness dynamics indicates a more intense ecological competition or even interference competition between non-kin, which underscores the importance of kin discrimination for social outcomes in different modes of bacterial multicellular existence.
[P81] COMMUNITY STRUCTURE AND IDENTIFICATION OF BIOFOULERS IN A SEAWATER REVERSE OSMOSIS DESALINATION PLANT.

Tamar Jamieson1, Sergio Balzano1, Sophie Leterme1

1College of Science and Engineering, Flinders University, South Australia

The acceleration of climate change and the increasing population growth has placed additional stress on an already vulnerable global water supply. Seawater reverse osmosis (SWRO) is considered the simplest and most cost-effective method of freshwater production to overcome this current problem. However, even after seawater pre-treatment and cross flowing within the system, SWRO is often hindered by biofouling. The conditioning of the membrane and adhesion of microorganisms allow for the rapid growth of biofilms on the reverse osmosis (RO) membrane. This study is novel in that SWRO intake water and pre-treated feed water were assessed as a biofouling indicator. Communities from the intake water and autopsied spiral bound RO membranes following a lead and lag 2 – 4-year operational life-span were characterized by 16S and 18S gene metabarcoding. Proteobacterial prevalence within microbiomes of the intake water as well as the fouled membranes reflecting natural seasonal variation within seawater and also the natural aging process of biofilms. However, the communities differed from those found in the intake water and on the RO membranes indicating selection pressures with the desalination plant. Prokaryotes, Actinobacteria, Alphaproteobacter and Thermoleophilic and eukaryotes, Chromodorea, Cristidiscoidea, Trebouxiophyceae and Sordariomycetes dominated the biofilms. However, the prokaryotic communities of the intake water were found to be dominated by Cyanobacteria, Acidobacter, Fibrobacteres, Marinimicrobia, which suggests that a sole survey of seawater cannot predict the biofouling potential of the community. This study also highlights the role that eukaryotic organisms such algae, fungi and protists have on the formation of biofilms with desalination plants.

[P82] ACTIVITY PARTITIONING IN AN ARCHAEAL-BACTERIAL CO-CULTURE BIOFILM

Laura B Camilleri1, Ben P Bowen2, Chris J Petzold2, Roland Hatzenpichler3, Trent R Northen2, Matthew Fields1

1Montana State University, Center for Biofilm Engineering, Bozeman, United States
2Lawrence Berkeley National Laboratory, United States
3Montana State University, United States

Symbiosis is widespread throughout the biosphere with well-studied examples in and across all three domains of life. In communities of bacteria and archaea, mutualism is typically referred to as syntrophy (“eating together”) where by-products of one metabolism serve as substrates for another metabolism. The syntrophy between sulfate-reducing bacteria (SRB) and methanogenic archaea is of interest because these guilds both play crucial roles in many different anaerobic environments. In the absence of sulfate as an electron acceptor and the addition of the hydrogenotrophic methanogen, Methanococcus maripaludis, the two cell types are interdependent via previously proposed product inhibition syntrophy, and cross-feeding of by-products allows a cooperative syntrophic relationship to be established. In monocultures, only Desulfovibrio vulgaris Hildenborough readily forms biofilm, and the topography of the biofilm is relatively flat and thin. However, the co-culture biofilm is evenly interspersed with M. maripaludis, and is thicker and filled with topographical features such as ridges, spires, and valleys. In order to better understand the interactions between M. maripaludis and D. vulgaris Hildenborough, deuterium-labeled proteomics and BONCAT microscopy was used delineate activity states of the two biofilm populations. Deuterium-labeled proteins were observed in both populations, and the D. vulgaris labeled proteins were enriched in proteins involved in carbon oxidation and electron transfer while the M. maripaludis proteins were enriched in carbon dioxide processing and methane generation. Interestingly, BONCAT labeling was observed for both organisms grown as monocultures under sulfate-reducing or hydrogen-utilizing conditions, respectively. However, under co-culture biofilm conditions, only D. vulgaris was detected to be BONCAT active, yet methane was being actively produced. In addition, when an active methanogenic co-culture biofilm was perturbed with a constant sulfate influx, the methanogen population not only persisted but increased and remained viable. The data suggest that a mutualistic co-culture biofilm partitions activity to optimize carbon processing and energy conservation.
Biofilm surface roughness, or variation in surface height, can play a crucial role in biofilm function. Surface roughness controls diverse characteristics such as the extent of pathogen adhesion, genetic mixing and hence potential for cooperation, antibiotic penetration and the chances of fixation of antibiotic resistant mutants. These characteristics, in turn, can feed back on the roughness of the biofilm. We have used the iDynoMiCs agent-based biofilm modelling software to establish how the roughness of model *Pseudomonas aeruginosa* biofilms in a flow cell set up changes with time, nutrient availability and bacteria maximal growth rate. We analyse our results firstly in terms of the Kardar–Parisi–Zhang equation for interface growth, which is well known in statistical physics, and secondly in terms of the variations in the thickness of the layer of actively growing cells at the top of the biofilm, or ‘active layer’. We investigate in detail the phase transition from a low roughness regime, characterised by a smooth biofilm, to a high roughness regime, characterised by the presence of biofilm “fingers”. This transition happens when the active layer becomes discontinuous and the troughs of the biofilm fingers become stationary, or ‘pinned’. We also present preliminary results on how biofilm roughness relates to genetic diversity, which has implications for the evolution of resistance to antimicrobials in biofilms.

HPC showed that, for both non-potable and potable water, effluent samples reached an equilibrium around day 16 (10^5-10^6 CFU/ml) and for biofilms between day 23 and 30 (10^7-10^8 CFU/cm²). In effluent samples, the hypochlorite induced a LOG 5 reduction in HPC, but regrowth in both effluent and biofilm samples occurred within 14 days.

Microbiome analysis revealed that both non-potable and potable water, but also biofilm and effluents, differed significantly in composition. The use of hypochlorite resulted in a selection of organisms.

To conclude, this model (i) can produce replicable biofilms, (ii) differentiate between different inocula and (iii) can recover from an intervention. Further studies to test the efficacy of common dental unit disinfectants are being performed to answer more fundamental questions on how disinfectants act on biofilm structure and development.
[P85] SEQUENCING-BASED MICROBIOME ANALYSES FOR PREDICTIVE BIOFILM MODELS

Matthias Buhmann¹, Dominik Abt¹, Nolte Oliver ¹, Patrick Betschart², Valentin Zumstein³, Thomas Neu⁴, Sebastian Strempel⁵, Werner Albrich⁶

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland
²Cantonal Hospital St. Gallen, Department of Urology, St. Gallen, Switzerland
³Center for Laboratory Medicine, St.Gallen, Switzerland
⁴Department of River Ecology, Helmholtz Centre for Environmental Research – Ufz, Magdeburg, Germany
⁵Next Generation Sequencing, Microsynth AG, Balgach, Switzerland
⁶Kantonsspital St. Gallen, Infektiologie / Spitalhygiene, Department of Infectiology, St. Gallen, Switzerland

Laboratory biofilm in vitro models are only a rough approximate for the complex situation in reality. Modelling bacterial biofilm formation in clinical and environmental settings requires mimicking the situation in reality as close as possible. For the efficacy assessment of antimicrobial materials or antibiotics, mostly laboratory model strains or clinical and environmental isolates are being used, but the interplay of pathogens with associated commensal bacteria is mostly neglected.

We have performed a 16S microbiome profiling study to explore bacterial communities on clinical ureteral stent samples, thin plastic tubes inserted into the urinary tract between kidney and bladder in case of blockage by kidney stones or malignancy. Beyond sequencing, we additionally characterized the biofilms by X-ray diffraction analysis of crystals, cultivation of bacteria, and microscopy. While microbiome profiling indicated a vast variety of bacteria, complementary methods indicated low numbers of bacteria in most of the investigated samples. Only few samples contained high numbers of bacteria, with limited bacterial diversity.

In summary, we suggest that for biomaterial assessment bacterial communities including both pathogens and commensals to simulate the relevant (clinical/environmental) situations should be considered. Our research directs towards the closer investigation of the members of the identified bacterial communities regarding their function in their ecosystem and possible roles in health and disease.

Supported by CIHR and ERC

[P86] STRUCTURE OF A 1.5-MDA BACTERIAL ADHESIN REVEALS ITS ROLE IN THE MIXED-SPECIES BIOFILM WITH DIATOMS ON ICE

Shuaiqi Guo¹, Ilja Voets², Peter Davies³

¹Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
²TU/e
³Queen’s University

Bacterial adhesins are modular cell-surface proteins that mediate adhesion to other cells, surfaces and ligands. The Antarctic bacterium Marinomonas primoryensis uses a 1.5-MDa adhesin comprising over 130 domains to position it on ice at the top of the water column for better access to oxygen and nutrients. We have reconstructed this 0.6 µm-long adhesin using a ‘dissect and build’ structural biology approach and have established complementary roles for its five distinct Regions. Domains in Region I (RI) tether the adhesin to the Type I secretion machinery in the periplasm of the bacterium and pass it through the outer membrane. RII comprises ~120 identical Ig-like β-sandwich domains that rigidify on binding Ca²⁺ to project the adhesion regions RIII and RIV into the medium. RIII contains ligand-binding domains that join diatoms and bacteria together in a mixed species community on the underside of sea ice where incident light is maximal. RIV is the ice-binding domain; and the terminal RV domain contains several ‘Repeats-in-Toxin’ motifs and a non-cleavable signal sequence that target proteins for export via the Type I secretion system. Similar structural architecture is present in the adhesins of many pathogenic bacteria and provides a guide to finding and blocking binding domains to weaken infectivity

Supported by CIHR and ERC
Biofilms are communities of microorganisms attached to hydrated surfaces and enclosed in a self-produced extracellular polysaccharide matrix. By that, the bacteria become resistant to exogenous assaults like antibiotics or the conventional immune defense mechanisms of the host. Biofilm infections represent a serious health burden in the clinics since the microorganisms are able to colonize biological surfaces or surfaces of indwelling medical devices. Presently, too little knowledge exists on biofilm physiology to clear such infections efficiently, if at all. We here studied the biofilm forming, Gram positive bacterium *Staphylococcus aureus* Xren29 in the mouse model of a pre-colonized subcutaneously implanted osmotic pump. Biofilm formation on this device was confirmed by Light-sheet microscopy and Scanning Electron Microscopy. The model permits the ectopic provision of different innate immune recruiting and activating agents like cytokines or chemokines to test their role during biofilm development in vivo. When applied ectopically, the pro-inflammatory cytokine IL-1b had a very strong effect on biofilm development compared to all other agents tested. Its presence resulted in a significant increased magnitude of infection and biofilm development. This was concluded from noninvasive imaging of the bioluminescent signal emitted by the lux expressing bacteria and the quantification of bacterial load in blood and other tissues and confirmed by the microscopic techniques. In addition, increased numbers of neutrophils were observed under these conditions. The correlation between these two findings will be studied now.

Background: Growth of biofilms inside endoscope channels can be the cause of device-related nosocomial outbreaks. Therefore, it is essential to clean and disinfect them effectively between patients to avoid this risk. The objective of this study was to examine the impact of biofilm removal by detergents in bacterial eradication achieved by high-level disinfection (HLD) in a biofilm model mimicking the accumulation of bacteria within endoscopes.

Methods: Two clinically relevant species *P.aeruginosa* and *K. pneumoniae* were used to grow biofilm in the Buildup Biofilm model (BBF) that mimics the endoscope environment (1). Briefly biofilm was developed in MBEC 96-well plates (Innovotech, Canada). Bacteria were suspended in Artificial Test Soil (ATS) to achieve 10^8 CFU/ml. Biofilm was formed for 8 days at room temperature in ATS, with rocking action. Four rounds of HLD using 2.6% glutaraldehyde were included. Biofilms were then treated with four detergents: EnziQure, Revital-Ox, Prozyme Active, Endoclean at their recommended dosage (1 hour at 40°C) in the absence of friction. Optionally, after the treatment with cleaners, biofilms were exposed to peracetic acid (PAA) at a concentration of 900 ppm (3 min at 40°C). Remaining biofilm biomass was assessed using crystal violet assay (2) and residual bacterial viability was quantified by CFU counting (1).

Results: Regression analysis revealed that the cleaner plays a predominant role in biomass and CFU elimination. The Figure shows the effect of the treatment with the 4 cleaners included, either with or without PAA, on biofilm biomass removal and CFU/cm². EnziQure showed biofilm biomass and CFU removal activity superior to the three other cleaners both with and without PAA. Prozyme Active, Revital-Ox and Endoclean displayed very similar performance and showed biofilm biomass and CFU removal significantly higher than the control after PAA treatment. Correlation was found between biofilm biomass and CFU reduction after PAA treatment but not when the biofilms were treated only with the cleaners (no PAA).

Conclusions: Strong correlation between biofilm removal and CFU reduction was observed suggesting that treatment with a potent biofilm-disruptive cleaner before disinfection is necessary to achieve successful decontamination of biofilm-colonized endoscopes.
[P89] COLONIZATION AND BIOFILM FORMATION BY STAPHYLOCOCCUS AUREUS ON ENDOTHELIAL CELL LAYERS UNDER FLOW

Rasmus Birkholm Grønnemose1, Cecilie Antoinette Asferg1, Hans Jørn Kolmos1, Thomas Emil Andersen1

1Research Unit of Clinical Microbiology, University of Southern Denmark, Odense C, Denmark

Staphylococcus aureus is a major human pathogen and known for causing vascular infections such as sepsis and infective endocarditis. It has previously been proposed that S. aureus succeed in colonization of the endothelial wall by specific surface attachment likely followed by biofilm formation. Furthermore, S. aureus is known to invade human cells, which has been proposed to promote persistence through immune and antibiotic evasion. In the current study, we sought to investigate endothelial colonization, invasion, and biofilm formation by S. aureus using a newly developed vitro flow chamber model. We show that under physiological shear rates, S. aureus utilizes cellular invasion to enable the following surface colonization and biofilm formation. These observations might help explain the success of S. aureus as a bloodstream pathogen and guide further studies in S. aureus pathogenesis and treatment of S. aureus biofilms.
We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert’s law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and character of biofilm growth, we also make kymographs using the local colonization time.

During the Apollo 16 space mission in 1972, Bacillus subtilis, an endospore- and biofilm-forming microorganism, became one of the first microbial model-systems used in space experiments. Since then, space facilities (i.e. MIR-space station or ISS) have become burdened with microbial growth, which has generated an emerging interest in the highly resistant endospores and biofilms problematic for both crew and spacecraft machinery. Indeed, the resultant clogging or contamination from biofilm growth on life-support systems, such as air or water leading pipes, endangers the security of space missions.

Due to various constraints (financial, time, and sample amount) associated with space missions, we simulate space conditions (vacuum, radiation, microgravity) in the German Aerospace Center facilities and other research institutes in order to study the biological response and adaptation to spaceflight-relevant conditions. We use the biofilm-forming B. subtilis strain NCIB 3610 to study the impact of microgravity and additional space related parameters on young biofilms (Fuchs et al., 2017). Our major research goal is to monitor and visualize the overall process, starting with spores differentiating into biofilms in simulated microgravity (sim-µg), using a fast-rotating 2D clinostat, and terrestrial gravity (1g) conditions. White light profilometry, scanning (SEM) and transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) are then used to analyse spores and biofilms regarding their topology and structure.

During early phases of spore germination and outgrowth, no structural differences were observed between spores germinating at 1g or sim-µg. While, young biofilms formed at sim-µg and 1g showed qualitative architectural differences in cross-sections, no significant qualitative variations in biofilm surface topography were shown. When comparing the CFU (colony forming units), spore levels, and sporulation efficiency in biofilms formed at 1g or sim-µg, no differences were observed. However, spores isolated from sim-µg biofilms showed spontaneous germination in water, indicating a potential instability. We also found that biofilms formed at sim-µg exhibited similar resistance to space-conditions, such as vacuum or ionizing and galactic cosmic radiation, compared to biofilms formed at 1g.

References

Antimicrobial resistance (AMR) is becoming an increasingly problematic healthcare issue as it has been predicted that by the year 2050 more deaths will be associated with AMR than with cancer (AMR review, 2016). To combat AMR it is essential to understand its development and the underlying evolutionary mechanisms. AMR development has been studied by conducting planktonic evolution experiments which provided deeper insights into AMR development. However, planktonic bacterial cultures do not reflect reality sufficiently as nature bacteria are found in biofilms. An important characteristic of biofilm growth is the presence of antimicrobial gradients. These could influence AMR development differently than conventional homogeneous treatments used in planktonic studies. The research hypothesis is that gradients (of different steepnesses) could influence the resulting resistance levels and resistance conferring mutations.

To test this hypothesis, a planktonic gradient evolution experiment was designed to mimic biofilm gradients, because manipulating spatial antibiotic gradients in biofilms is technically very challenging. In this experiment, 30 Salmonella Typhimurium ATCC 14028 populations were evolved in increasing antibiotic concentrations, subjecting the populations to temporal antibiotic gradients of cefotaxime (CTX). Furthermore, gradient steepness was varied by five fixed factors, called steepness factors which represent the daily concentration increase. For example, in a strong selection treatment the antibiotic concentration increased with 1×MIC per day (steepness factor 1). Other treatments had decreasing selection strengths as the steepness factor decreased to 1/2, 1/4, 1/8 and 1/16. When populations reached a predetermined maximum concentration their MIC was determined. Resistance levels of populations evolved under steep gradients (1, 1/2) were lower than those of populations evolved under less steep gradients (1/4, 1/8, 1/16). Furthermore, all populations were sequenced which revealed mutations in resistance associated genes including envZ, multidrug efflux pumps, and in the CTX target penicillin-binding-protein3 (PBPS). However, PBPS mutations only occurred in populations grown under less steep gradients in contrast to the other genes which were common in all populations.

These results imply that gradients might influence AMR development. Moreover, it seems that populations grown under slowly increasing gradients are capable of reaching higher resistance levels than those grown under faster increasing concentrations.
[P94] DETERMINING FITNESS OF CLINICAL P. AERUGINOSA ISOLATES ASSOCIATED WITH PERSISTENT LUNG INFECTIONS USING A PHARMACO-DYNAMIC BIOFILM MODEL SYSTEM

Janus Anders Juul Haagensen1, Jakob Frimodt-Møller1, Biljana Mojsoska1, Katherine Yang2, Alfred Spormann3, Helle Krogh Johansen4, Søren Molin1

1Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark
2Ucsf, San Francisco, United States
3Stanford University, Stanford, United States
4Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark

Pseudomonas aeruginosa is a dominating airway colonizer in patients with cystic fibrosis (CF). Longitudinal investigations of bacterial isolates from CF patients have shown that persistent infection by *P. aeruginosa* is associated with adaptive evolution of the bacteria, suggesting a gradual increase in fitness properties of the infecting bacteria. Few investigations, however, have addressed bacterial fitness development, since it cannot be performed in the specific environment (the patient airways), from which the bacteria are derived. As an alternative we apply an in vitro model system mimicking the airway environment with emphasis on the antibiotic selection pressure and the structural architecture of the lung environment.

The pharmacodynamic/pharmacokinetic (PD/PK) system used is based on bacterial biofilms grown under continuous culture conditions, simulating the changing antibiotic concentrations in CF patients during intravenous dosing. The antibiotics will decay in a way similar to what takes place in CF patients during treatment. Using differentially tagged sub-lineages isolated from the patients, competition experiments are performed in this system including confocal microscopy imaging after live dead staining in combination with quantification using COMSTAT.

In an investigation of *P. aeruginosa* variants derived from CF patients, isolates with increased persister levels after treatment with high doses of ciprofloxacin (Hip mutants) were tagged with CIp and co-cultured with Yfp tagged wild type persister bacteria from the same patient (and with the same MIC) in our PD/PK dbiofilm system treated with one bolus ciprofloxacin. Using dead staining (red) it was found that mainly the wild type persister bacteria were killed.

In a second application of the PD/PK biofilm system, the fitness properties of frequent mexZ mutations observed in isolates from CF lungs were investigated. A mexZ deletion mutant tagged with CIp was constructed in the reference *P. aeruginosa* strain, PAO1, and competed against Yfp tagged wild type bacteria using one bolus ciprofloxacin added to the biofilm system. The CIp tagged mexZ deficient bacteria were found to survive treatment significantly better than the Yfp tagged wild-type biofilm cells.

We suggest that the PD/PK biofilm system can be applied as an alternative to animal models for investigations of antibiotic treatment of biofilm associated infections.

[P95] INDUCTION OF VIABLE BUT NON-CULTURABLE P. AERUGINOSA IN IN VITRO BIOFILMS. ROLE OF SUB-INHIBITORY ANTIBIOTIC CONCENTRATIONS

Gianmarco Mangiaglia1, Nicholas Cedrazo2, Barbara Citterio3, Carla Vignaroli1, Francesca Biavasco1

1Department of Life and Environmental Sciences, Politecnico University of Marche, Ancona, Italy
2Department of Biomolecular Sciences Sect. Biotechnology, University of Urbino “carlo Bo”, Italy

Pseudomonas aeruginosa pulmonary infections are the main cause of morbidity and mortality in Cystic Fibrosis (CF) patients and result characterized by biofilm formation and recurrence. The latter feature is likely due to the presence, within biofilms, of persistent bacterial forms, including those known as Viable But Non-Culturable (VBNC), usually undetected by routine cultural diagnosis. According to the hormesis hypothesis, the antibiotic treatment, specifically subinhibitory antibiotic concentrations, could be responsible of the VBNC state induction, modulating the bacterial gene expression. In this study, we evaluated the ability of antibiotics used to contrast *P. aeruginosa* infections (ciprofloxacin and tobramycin) to induce *P. aeruginosa* VBNC forms in in vitro biofilms. Bacterial biofilms were developed in microtiter plates and exposed to starvation (growth in Non Nutrient broth) and starvation supplemented with subinhibitory (1/4xMIC) antibiotic concentrations for 170 days. *P. aeruginosa* culturability and viability were monitored by CFU counts, performed after 24 and 72 h of incubation at 37°C, *ecfX*-targeting qPCR and epifluorescence microscopy. Although biofilms did not lose their culturability, a slow-down of *P. aeruginosa* growth was observed in tobramycin-exposed biofilms, since, starting from 40 days of antibiotic exposure, CFU counts were available only after 72 h incubation. Biofilms exposed to starvation alone and starvation plus ciprofloxacin did not show any particular effect. Moreover, the presence of a stable *P. aeruginosa* VBNC population was detected, starting from 80 days of antibiotic exposure, in tobramycin-exposed biofilms by qPCR counts, that resulted about 1-2 log10 higher than CFU counts. The same difference was not evidenced in starved biofilms, while subinhibitory ciprofloxacin concentrations induced only a transient VBNC population, between 120 and 140 days, usually undetected by routine cultural diagnosis. According to the hormesis hypothesis, antibiotic treatment, specifically subinhibitory antibiotic concentrations, could be responsible of the VBNC state induction, modulating the bacterial gene expression. In conclusion, our study demonstrated the tobramycin inference in inducing a stable VBNC population, between 120 and 140 days, most likely a pre-mortem state. The molecular data were confirmed by epifluorescence microscopy experiments. In conclusion, our study demonstrated the tobramycin inference in inducing a stable VBNC population in *P. aeruginosa* biofilms, probably responsible for the CF infection recurrence. These data, despite preliminary, give new insights about the bacterial dynamics occurring during the *P. aeruginosa* CF lung infections and allow to design novel therapeutic treatments, affecting even VBNC forms, in order to improve the patients’ life expectancy.
[P96] Prosthetics and Biocompatibility: Synthetic Biology Approach for Better Integration and Functionality

Etienne Axelos1, Hermine Bildstein2, Alice Dejoux3, Claire Dumont4, Antoine Ehret4, Andreas Pyrillas4, Aymen Ghame4, Léa Guerassimoff5, Samuel Jaoui5, Manon Madelénat5, Jonathan Naccache6, Eléa Paillarès7, Emma Picaud-Lucet8, Sarah Porte9, Ellyn Redheuil1, Charlotte Richard9, Gabriela Sacheti2, Thomas Starck2, Florian Thomas1, Kelly Tran2, Anna Segu Cristina10, Serena Petracchini2, Guillian Graves1, Deshmukh N. Gopaul9

1Ensci-Les Ateliers, France
2Faculté Jean Monnet, France
3Chimie Paristech, France
4Espci, France
5Centrale-Supélec, France
6Sup’biotech, France
7Université Pierre et Marie Curie, France
8Ecole Polytechnique, France
9Institut Pasteur, France

The International Genetically Engineered Machine competition, also known as iGEM, is a competition that focuses on synthetic biology. Every year, hundreds of teams coming from all around the world meet in Boston in an event organized by the MIT to try and solve problems from our day-to-day lives. This year at Institut Pasteur, we created a team composed of students working in different engineering fields such as biology, physics, chemistry, industrial design, and intellectual property law allowing us to develop a project from A to Z. The project we will be working on is at the interface of prosthetics and molecular/bacterial interfaces. Indeed, bacterial biofilms often develop on prosthetics or other implantable devices. These biofilms can cause infections, and major health risks to patients. In the USA, it is estimated that 5% of people who are implanted with an orthopedic prosthesis require re-intervention on their devices [1]. Some of the possible remedies include the improving of the interface at the nerve / prosthetics junction, and secondly preventing this interface from getting infected by other pathogenic bacteria. We will be discussing these possibilities at the Biofilms 8 conference to meet with researchers and professionals.

Terri A. Camesano1, Lindsay D. Lozeau1, Kathleen W. Swana2, and Marsha Rolle3

1Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester MA 01609, United States
2Natick Soldier Research, Development and Engineering Center, Molecular Sciences and Engineering Team, Natick MA 01760, United States
3Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester MA 01609, United States

The prevalence of antibiotic-resistant infections has led to a need to develop alternative treatments, among which antimicrobial peptides (AMPs) are most promising. AMPs are short, cationic proteins with broad-spectrum activity attributed to biophysical interactions with bacterial membranes. AMPs have potential to be used against bacterial biofilms, as they are effective against Gram-negative and Gram-positive bacteria, and have even show efficacy against multidrug resistant bacteria. Our work has centered on a few AMPs, including alimethicin, a 20- amino acid, alpha helical peptide, and LL37, which is a human derived AMP. We are developing a detailed understanding of the mechanism of interaction between AMPs and cell membranes, using supported lipid bilayers as models for either bacterial cell membranes or mammalian cell membranes, depending on the specific lipids chosen. Most AMPs initially adsorb onto cell membranes, but there is controversy over whether the next steps involve detergent-like action, transient pores, and/or whether toroidal pores form as mechanisms of toxicity. We measured AMP interactions in real-time with model lipid bilayers using quartz crystal microbalance with dissipation (QCM-D). The lipids studied included phosphatidylcholine (PC), or 4:1 POPC:POPG mixtures (4:1 molar ratio of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(l-rac-glycerol). Using QCM-D, we related interfacial changes on the bilayer to peptide adsorption and aggregation kinetics and bilayer integrity. We used the Voigt-Kelvin model to calculate membrane thickness changes at various LL37 concentrations, allowing us to propose a model for its real-time interaction mechanism at different peptide-to-lipid (P/L) ratios. The relationship between P/L ratio and the mechanism of AMP action against the two different types of membranes was described. These data provide a real-time mechanistic insight into AMP interactions with mammalian cell membranes, which will enable rational design of less toxic AMP therapeutics for clinical applications.

[P98] NANOPARTICLES TO OVERCOME THE OBSTACLES OF BIOFILMS UNDER STATIC AND DYNAMIC FLUIDIC CONDITIONS

Mareike Klinger-Strobel¹, Julia Ernst¹, Dagmar Fischer², Oliwia Makarewicz³, Mathias Pletz⁴

¹Jena University Hospital, Center for Infectious Diseases and Infection Control, Jena, Germany
²Friedrich-Schiller-University Jena, Department of Pharmaceutical Technology, Jena, Germany
³Jena University Hospital, Institute of Infectious Diseases and Infection Control, Jena, Germany

Cystic fibrosis (CF) is a genetic disorder that affects mostly the lungs, associated with chronic bacterial infections and subsequent inflammation. Infections with pathogenic bacteria, like *Pseudomonas aeruginosa* and *Burkholderia cepacia complex* (*Bcc*), cause high mortality due to the recurrent formation of antibiotic-resistant biofilms in the abnormal CF mucus, and both the biofilm matrix and mucus hinder efficient treatment with inhaled antibiotics. In this study, tobramycin (Tb) was encapsulated in nanoparticles based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol)-co-poly(D,L-lactide-co-glycolide) diblock (PEG-PLGA) to overcome these barriers with particle types of 225 - 231 nm (nanoparticles, NPs) and 896 - 902 nm (microparticles, MPs) and negative zeta potentials. The effectiveness against biofilms of both pathogens *P. aeruginosa* and *Bcc* was strongly enhanced by the encapsulation under static and fluidic experimental condition as well as in artificial mucus (AM). The biofilm-embedded bacteria were killed by less than 0.77 mg/l encapsulated Tb, whereas 1000 mg/l of free Tb was ineffective. Moreover, encapsulated Tb was even effective against biofilms of the intrinsically aminoglycoside-resistant *Bcc*, indicating the synergistic effect of PEG and PLGA with Tb. No cytotoxicity was detected in vitro in human lung epithelial cells with any formulation.

[P99] SELENIUM NANOPARTICLES INHIBIT PSEUDOMONAS PUTIDA GROWTH AND BIOFILM FORMATION

Arvind Behal¹, Vishnu D. Rajput²

¹Xinjiang Institute of Ecology and Geography, Ggd Sd College, Chandigarh, India, Urumqi, China
²Southern Federal University, Rostov-on-Don, Russian Federation

Selenium nanoparticles (SeNPs) have been suggested as antibacterial and anti-biofilm agents for biomedical devices and instruments. Increase in widespread use also leads to increase in the environmental concentration of nanoparticles. Targeted for pathogenic microorganisms, nanoparticles can also kill microorganisms helpful for the environment. Present study evaluates the effect of SeNPs on bacterial growth, change in concentration of extracellular polymeric substances (EPS), their ability to inhibit biofilm formation and disrupt grown biofilms.

SeNPs were synthesized using *Shewanella putrefaciens* CN-32 under anaerobic conditions. EPS (loose & tight bound) was extracted from *Pseudomonas putida* (ATCC 23483) grown for 48 hours under shaking in presence of varying concentration of SeNPs. Proteins, polysaccharide, and total organic content were measured along with 3D EEM fluorescence spectra of EPS. Nanoparticles coated plastic surface was used to test the ability to inhibit bacterial adherence on the surface. Fluorescence microscopy was utilized to determine the effect of increasing concentration of nanoparticles on the growth of bacterial biofilm.

Biochemical tests of EPS show the decrease in protein, polysaccharide, and TOC values with increase in NPs for LB-EPS while values for TB-EPS initially increased and then decreased more with increasing concentration of nanoparticles. 3D EEM indicated the presence of aromatic and tryptophan type of proteins in EPS. An increasing concentration of SeNPs coating on polystyrene surface decreased adherence of bacteria and biofilm formation. Biofilm viability staining show inhibition of biofilm growth at the high concentration of NPs with further confirmation of cell death inside the biofilm using confocal laser scanning microscope.

Experiments demonstrated that elevated concentration of SeNPs is capable of disturbing the metabolism of *P. putida*. High concentration can not only inhibit bacterial adherence to a surface further leading to inhibition of biofilm formation, however, it is also capable of causing cell death in already established biofilms. Therefore, increasing use of nanoparticles has shown potential to affect environmentally important microorganisms, and capability to alter the ecological balance.
[P100] ELECTROCHEMICALLY DEPOSITED SURFACES BASED ON COPPER AND SILVER WITH BIOCIDAL EFFECT AGAINST METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS

Yijuan Xu1, Trine Rolighed Thomsen2, Lone Gram2, Nicole Ciacotich3
1Danish Technological Institute, Aarhus, Denmark
2Aalborg University, Life Science Division, The Danish Technological Institute, Dept. of Chemistry and Bioscience, Aarhus, Denmark
3Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark

Introduction: Inert surfaces can be a reservoir for pathogenic agents and play an important role in the acquisition and spread of healthcare infections. Therefore, surface treatments that aim to provide the surfaces with antibacterial activity are receiving increasing attention and scientific interest. Copper can inactivate a multitude of bacteria, fungi and viruses and copper or copper alloys have been suggested as alternative to stainless steel to help reduce the occurrence of hospital-acquired infections. Silver also has antibacterial activity and it has been suggested to combine these for enhanced, potentially synergistic, antibacterial action.

Aim: The purpose of the present study was to investigate the antibacterial efficacy of a novel electropated copper-silver alloy coating against methicillin resistant S. aureus (MRSA) with the aim of developing antibacterial surfaces for the medical and health care sector. We investigated if the alloy could prevent adhesion and biofilm formation.

Methods: The EPA Test Method for Efficacy of Copper Alloy Surface as a Sanitizer was carried out on Cu/Ag coating and stainless steel against MRSA. In a static biofilm model, four different surfaces were evaluated in parallel (Cu/Ag, Cu, Ag coatings and stainless steel) to estimate MRSA biofilm formation.

Results: Under dry conditions, the Cu/Ag coating reduced in numbers of MRSA on the surface with more than 99.9% after 2 hours of exposure as compared to numbers on stainless steel. When testing for MRSA biofilm formation, no difference was observed between silver and stainless steel coupons. However, compared with stainless steel, the most significant bacterial number reduction was found for the copper surface (close to 100 fold) followed by the Cu/Ag electroplated surfaces (10 fold) (P<0.001).

Conclusions: Pure copper-coated and copper-silver alloy surfaces were effective in killing bacteria and preventing MRSA biofilm formation in vitro. Further research is planned to determine the efficacy against other clinically relevant pathogens and to do in vivo test for biocidal and antibiofilm efficacy in healthcare settings.

[P101] ANTI-BIOFILM EFFICACY OF TRICLOSAN-AMPHOTERICINB COMBINATION AGAINST FILAMENTOUS FUNGUS, ASPERGILLUS FUMIGATUS

Roya Tamimi1, Godfrey Kyazze1, Tajalli Keshavarz1
1University of Westminster, London, United Kingdom

Triclosan (TRC), an antimicrobial agent, has been reported to be safe for topical and surface-coating applications. It possesses a broad-spectrum of antimicrobial activity. The combination of TRC and DispersinB (DspB, a biofilm disruptor) displayed synergistic efficacy against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Candida albicans. There was a significant difference in the adherence of each of these microorganisms to TRC+DspB-coated silicone catheters compared with uncoated control catheter. Therefore, TRC+DspB has antibiofilm effect against both gram positive and gram negative, as well as yeast strains. Furthermore, for the first time, TRC effect against Aspergillus fumigatus biofilm formation on a glass surface was investigated alone and in combination with amphotericinB (AMB). AMB is effective against fungal infections. Viability was measured by determining colony forming units (c.f.u.) using 6-mm paper disks impregnated with TRC (0.5 to 32 mg/l) and AMB (0.125 to 16 mg/l). The diameters of the growth inhibition zone on agar plates were measured after incubation at 37° for 24 hrs. Determination of metabolic activity of hyphae was assessed using viability staining with FUN-1. Double-strength RPMI–2% glucose medium+MOPS containing 10° conidia/ml was incubated at 37° for 24 hrs. Subsequently, TRC and AMB at Minimum Inhibitory Concentration (MIC) doses were added and incubated at 37° for more 24 hrs. As control, A. fumigatus hyphae were incubated in the absence of TRC and AMB in the medium. Microscopic visualization and image acquisition of biofilms were conducted using a confocal laser scanning microscope (CLSM). Based on the optical microscopy and CLSM images, the number of hyphae structures as well as extracellular polymeric substances (EPS) formation were reduced in TRC and AMB/MICs treated samples in comparison with the non-treated control groups. Also, 3D surface plots showed the least biofilm depth in TRC/MIC treated sample in comparison with AMB/MIC treated, and control groups. Finally, Synergy Checkerboard Assay revealed that there is a synergistic activity when A. fumigatus was treated with TRC following by AMB.
[102] RESISTANCE SELECTION IN BACTERIAL BIOFILMS GROWING ON ANTIMICROBIAL SURFACES IN A MULTIDRUG ENVIRONMENT

Franziska Pietsch¹, Frank Schreiber¹, Hans-Jörg Kunte¹

¹Federal Institute for Materials Research and Testing (Bam), Berlin, Germany

Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the implanted biomaterials in combination with systemically administered antibiotics. Due to their inherent tolerance towards toxic compounds, bacteria growing in biofilms can survive high concentrations of antimicrobials long enough to acquire antimicrobial resistance. The frequent practice of combination therapy harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics.

Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays on a single cell level.

Methodology To study the effect of antimicrobial-antibiotic exposure on resistance development and population dynamics on bacterial biofilms in a multidrug environment, we will grow *Pseudomonas aeruginosa* on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo.

Relevance Studying the bio interfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance.

[P103] SELECTING RAW GOAT MILK LACTOCOCCUS LACTIS FOR SUSTAINABLE BIOPRESERVATION?

Christine Roques¹, Gwénaëlle Jard², Sophie Pecastaings¹, Ibrahima Drame³, Philippe Schmitz², Hélène Tormo¹, Mickaël Castelain³

¹Laboratoire de Génie Chimique Umr 5503, Université de Toulouse, Inpt, Cnrs, Ups, Équipe Biosym, Toulouse Cedex 4, France
²Université de Toulouse, Iinp El-Purpan, Laboratoire Sciences Agronomiques et Agroalimentaire, Toulouse Cedex 3, France
³Lisly, Université de Toulouse, Cnrs, Insa, Insa, Toulouse, France

Biofilms forming in dairy installations can dramatically affect the quality of dairy products and cause technological and health issues. Colonizing milking machines (MM) with lactic acid bacteria (LAB) such as lactococci to form positive biofilms and compete with negative flora would be an interesting solution. The MM is known to be colonized by both lactococci and negative flora such as *Pseudomonas* sp. which cause defects on cheese. In order to prevent the presence of spoilage microorganisms and pathogens in the MM, this project aims to select indigenous strains of lactococci isolated from goat raw milk, candidates for the establishment of a positive biofilm in the MM.

In this study, 37 strains of *Lactococcus lactis* ssp *lactis* (L. lactis) were isolated from raw goat milk. These strains exhibited a wide genetic variety and various physicochemical surface properties. Among them, 9 representative strains were tested in a shear-stress flow chamber to evaluate their adhesion to stainless steel (the main component of MM). The biofilm-forming ability was also checked. All strains were able to form biofilms in our laboratory conditions. The two most adherent strains on stainless steel were then selected and used to form biofilms. Dual-species biofilms were performed to test the aptitude of *L. lactis* to control *Pseudomonas fluorescens* CIP6913T as a model for negative flora. No difference was observed in bacterial density when *L. lactis* and *P. fluorescens* were inoculated simultaneously, whichever was the material used as substratum (polystyrene or stainless steel). Moreover when *L. lactis* was inoculated before *Pseudomonas* (24 to 48 h), the same bacterial density was obtained after 24h to 72 h of incubation. These results were confirmed with two environmental isolates of *Pseudomonas* (*P. fluorescens* and *P. korensis*). Finally, Confocal Laser Scanning Microscopy revealed that both species coexisted together on surfaces.

This study demonstrates that the tested *L. lactis* strains are not good candidates to control *Pseudomonas* in MM in spite of their biofilm forming capacities. Other *L. lactis* or other species of bacteria of interest or a dairy microbial ecosystem should thus be tested to address this issue.
Bacterial resistance to commonly used drugs is one of the greatest threats to global health. Biofilm formation may be deemed one of the main determinants accounting for treatment failure of infections. Nanotechnology is offering new options for treatment, including for biofilm-associated infections. Spherical silver nanoparticles (AgNPs), also called nanospheres, are well known potent antimicrobial agents.

This study aims to explore the inhibitory and antibiofilm activities of AgNPs and star-shaped silver nanoparticles, the nanostars (AgNSs), against susceptible and multidrug-resistant Gram-positive and Gram-negative bacteria, as the starting point for further development of silver-based nanomaterials specifically targeting biofilms unique features, such as the biofilm matrix. Therefore, the initial assays reported herein consisted in determining i) minimum inhibitory concentrations (MICs) of AgNPs and AgNSs against several reference strains and multidrug-resistant isolates and ii) the antibiofilm activity of AgNPs and AgNSs against preformed biofilms (so far only the biofilms of *Pseudomonas aeruginosa* ATCC 27853 and *Staphylococcus aureus* ATCC 25923 were studied). For the antibiofilm activity evaluation, 24-h biofilms were treated with AgNPs and AgNSs (at concentrations equal to 0.125 nM, which correspond to the MIC for AgNSs and to a sub-MIC for AgNPs) for further 24 h, after which biofilms were visualized microscopically by both confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM). Tryptic soy broth (TSB) was the medium used in all assays.

MIC values of AgNPs and AgNSs ranged from 0.25 to 0.50 nM and from 0.125 to 0.25 nM, respectively. The generally lower MIC values of AgNSs may indicate an influence of the shape in the antibacterial activity. Regarding the microscopic analysis of AgNSs-treated biofilms, CLSM images showed a bactericidal effect on some of the bacterial cells composing the biofilm both of *P. aeruginosa* and of *S. aureus*, in comparison to the controls. By AFM, damaged bacterial cells could be observed in the treated biofilms. AgNPs-treated biofilms were practical identical to the controls (non-treated).

These preliminary results need to be further confirmed by repeating the antibiofilm experiments in more strains and by treating the biofilms with concentrations higher to the MIC (2× MIC, 4× MIC or even higher).
[P106] ORGANIC BIOELECTRONICS FOR CONTROL OF BIOFILM FORMATION

Susanne Löffler1, Salvador Gomez-Carretero1, Mikael Rhen1, Agneta Richter-Dahlfors1

1Karolinska Institutet, Solna, Sweden

Bacterial metabolism and is governed by an intricate electrochemical balance and biofilm formation has been directly linked to the periplasmic redox status in Salmonella Typhimurium as periplasmic oxidoreductases participate in regulation of biofilm formation. It is therefore likely that control of redox microenvironments will allow for control of biofilm formation. To achieve electrochemical control of the redox status in the vicinity of an active device surface, we prepared a range of polyelectrolyte composites based on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), known for its superior biocompatibility and electrochemical stability. The redox potential of PEDOT is very low and application of a small potential leads to electrochemically oxidized PEDOT+ or reduced PEDOT0 while charges are equilibrated by ions in the electrolyte. We used a two-electrode device with PEDOT electrodes covering the wall of a culturing plate. Applying a continuous electrical potential over the PEDOT electrodes led to opposing redox states on each electrode while Salmonella Typhimurium was cultured and allowed to form biofilm at the air-liquid interface. Removing the electrodes and analyzing biofilm formation using crystal violet and a new stratogram technique, we found that biofilm formation is promoted on oxidized surfaces and minimized on reduced surfaces. This implies that electron acceptors provided by various biotic and abiotic materials can favor biofilm formation, while electron saturation of bacterial growth substrates might be a means to prevent biofilm formation.

As biofilm was reduced, but not abolished on reduced PEDOT electrodes, we explored functionalization of a PEDOT derivative with silver nanoparticles (AgNPs). We used a two-electrode device with AgNP-functionalized PEDOT electrodes covering the bottom of a culturing plate. Application of a transient electrical potential over the two PEDOT electrodes led to a continued current flow. While Staphylococcus aureus was cultured in the device, near prevention of biofilm formation was obtained through the synergistic effect of AgNPs and current flow. The work performed in these studies shows the potential of conducting polymers to control biofilm formation. We suggest that these polymers provide an excellent toolset to study the influence of redox environments on biofilm growth and architecture.

[PI07] QUATERNARY AMMONIUM CHITOSAN DERIVATIVES FOR CONTROLLING STAPHYLOCOCCUS AUREUS BIOFILMS

Priyanka Sahariah1, Már Másson1, Rikke Louise Meyer2

1Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland
2Inano, Aarhus University, Aarhus, Denmark

Due to the increased emergence of antibiotic resistant biofilms, several strategies for combating bacterial biofilms have recently been developed such as using amphiphilic small molecules, nanoparticles, biomaterials and plant extracts. One such new approach uses the biodegradable biopolymer chitosan and its derivatives as antimicrobials for the treatment and prevention of bacterial biofilms. Chitosan and its derivatives are widely used for controlling the growth of planktonic bacteria. However, due to poor aqueous solubility, the application of this polymer is limited to few areas. In this study, we aimed at synthesizing chitosan derivatives that would improve the aqueous solubility of the polymer under neutral pH. At the same time, we also intended to enhance the antimicrobial efficacy of chitosan, particularly towards mature biofilms. Hence, we synthesized a series of water soluble chitosan derivatives containing quaternary ammoniumyl groups and investigated their efficacy towards Staphylococcus aureus biofilms. For this purpose, we utilised TBDMSS-protected chitosan to selectively introduce different moieties at varying ratios at the 2-amino position of chitosan. Selective modification enabled us to have cationic groups, such as trimethyl amine (linked directly to chitosan or via an acetyl spacer) and hydrophobic alkyl chains. Simultaneously, we also synthesized a chitosan derivative containing multiple functional groups. The average molecular weight of the polymers after size exclusion chromatography was 8-21 kDa, and dispersity was ~1.

We then investigated how the combination of different functional groups influenced chitosan’s efficacy against planktonic bacteria and biofilm. Minimum Biocidal Concentrations (MBC) against planktonic bacteria was 16 µg/mL for all compounds, while the Minimum Biofilm Eradication Concentration (MBEC) was more variable. The antimicrobial efficacy of cationic chitosan derivatives towards biofilms was greatly enhanced in presence of hydrophobic groups (alkyl chains), and the extent of their effect was determined by the ratio and length of the alkyl chains. Living and dead cells were visualized by fluorescence staining, and three-dimensional imaging of biofilms confirmed the accessibility and antimicrobial effect of chitosan derivatives with alkyl chains in the full depth of the biofilms.
[P108] DETECTION OF P. POLYMYXA BIOFILM AND DAIRY FOULING BY A PORTABLE NIR DEVICE

Olga Fysun1, Emily Grisanti2, Peter Thomas Auernhammer3, Christina Krick Caldecorn2, Johannes Rauschnabel4, Horst-Christian Langowski1

1Tum School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany, Robert Bosch Packaging Technology GmbH, Waiblingen, Freising, Germany
2Robert Bosch GmbH, Renningen, Germany
3Tum School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
4Robert Bosch Packaging Technology GmbH, Waiblingen, Germany

A variety of processing conditions in food manufacturing can cause unwanted biofilm and fouling formation. Biofilms and fouling in dairy processing equipment can lead to transmission of diseases, food spoilage, metal corrosion, and constitutes economic losses. Psychrotolerant sporeformers, specifically

Paenibacillus spp

, are important spoilage bacteria for pasteurized milk due to the bacterial adhesion in production lines. Moreover,

Paenibacillus polymyxa

, which is isolated from processing plant environments, produces extracellular enzymes causing spoilage of pasteurized milk. Lecithinase activity of

P. polymyxa

is responsible for “bitty cream” defect in milk because of the floating clumps of fat. Due to the current lack of early warning systems, the presence of biofilms is often presumed when poor process performance and product quality is observed. Therefore, there is a need of an on-line monitoring system.

The present work investigates a NIR portable device to detect

P. polymyxa

biofilm and dairy fouling in the wavelength range from 900 to 1630 nm. The NIR device was tested in static and dynamic conditions using 6-multicell culture plates and a polycarbonate flow cell produced by 3-D printing, respectively. The spectra of specifically produced

P. polymyxa

biofilms, dairy fouling films and their references (sterile nutrient medium and milk, respectively) were collected after 24 h of incubation. All spectra were smoothened using Savatzky-Golay method.

In static experiments, the most promising results with good reproducibility were obtained for dairy fouling samples. A clear difference between dairy fouling samples and the reference (milk) is evident. The difference between

P. polymyxa

biofilm and corresponding reference, however, was less pronounced. In dynamic experiments, higher reflectance at 900 to 1130 nm was observed during biofilm formation compared to the reference (sterile nutrient medium). Different flow rates showed no effect on NIR results. Therefore, after further improvements, NIR devices can be potentially implemented in dairy production lines to detect the formation of biofilms and fouling.

[1] We investigate the impact of antibiotic exposure on the formation and spatial architecture of

E. faecalis

biofilms at single cell resolution. At sub-Minimum Inhibitory Concentrations (MIC), we find antibiotics inhibiting cell wall synthesis promote biofilm formation. Using a range of in-vitro assays combined with confocal microscopy and live-dead cell staining, we show that the counterintuitive increased biofilm mass reflects a true increase in the number of viable biofilm cells and is also associated with an increase in both cell lysis and extracellular DNA (eDNA). Furthermore, non-antibiotic chemical agents that inhibit cell lysis shift the peak in total biofilm mass to higher drug concentrations, while agents that promote cell lysis exhibit a similar increase in biofilm mass at low doses, even in the absence of antibiotics. We similarly tested other antibiotics outside the cell wall inhibitor class, but found no such increase in biofilm formation. Our results, along with a simple mathematical model of biofilm formation, suggest that environmental perturbations leading to small increases in cell lysis may actually promote biofilm formation by increasing eDNA concentrations.

As drug concentration increases beyond the Sub-MIC regime, biofilm formation eventually plummets in homologous populations of drug-sensitive cells. However, the size, composition and architecture of the biofilms can change dramatically in mixed populations of drug-sensitive strains and drug-resistant strains expressing β-lactamase, an enzyme responsible for degradation of β-lactam antibiotics. Here we use confocal microscopy and mathematical modeling to show that β-lactamase producing cells dramatically impact biofilm architecture at single-cell resolution. Surprisingly, drug-resistant cells constitute a significant fraction of mixed-strain biofilms, even at drug concentrations that completely eliminate sensitive-only biofilms. Furthermore, we show these mixed-strain biofilms are characterized by islands of sensitive cells spatially arranged in local neighborhoods enriched for protective resistant cells. Finally, we combine these experiments with mathematical model to predict the impact of different time-dependent drug dosing protocols on biofilm formation and eradication. Our results highlight the important roles of cooperation and spatial heterogeneity in shaping spatially structured microbial communities and modulating their responses to antibiotics in the sub- and super-MIC regimes.
[P110] A TROJAN HORSE STRATEGY FOR ANTIMICROBIAL BIOLOGICALS

Chelsea Thorn1, Katharina Richter1, Ben Boyd2, Clive Prestidge3, Nicky Thomas1

1University of South Australia, Adelaide Biofilm Test Facility, Sansom Institute for Health Research, Adelaide, Australia
2Monash Institute for Pharmaceutical Sciences, Drug Delivery Disposition and Dynamics, Arc Centre for Excellence in Bio-Nano Science & Technology, Melbourne, Australia
3University of South Australia, Adelaide Biofilm Test Facility, Arc Centre for Excellence in Bio-Nano Science & Technology, Adelaide, Australia

Background: Glycoside hydrolases have emerged as potent, novel therapeutics that can disrupt biofilms, thereby increasing the susceptibility of the residing bacteria to co-administered antibiotics [1]. The broader clinical use of glycoside hydrolases such as alginate lyase (AL) is limited due to challenges in maintaining enzyme stability, adequate delivery and release of the enzyme at the site of infection. Herein, we present a Trojan Horse carrier for AL using environment-sensing lyotropic liquid crystalline gels (LLC) [2].

Aim: To design a LLC-gel carrier based on the lipid glycerol monooleate to protect, deliver and release AL in combination with the antibiotic gentamicin (GENT) as a novel anti-biofilm strategy.

Methods: The effect of *Pseudomonas* lipase on the release of AL/GENT from LLC-gels was evaluated and the efficacy of the gel was determined over 1 week in vitro against biofilms formed by alginate producing *P. aeruginosa* (clinical isolate) and compared to an unformulated simple drug solution. Finally, the stability of AL after fabrication of the LLC gel was assessed.

Results: GENT and AL were released at different rates and extent from the LLC-gels (10% AL over 9 days; 60% GENT over 2 days, respectively). Addition of *Pseudomonas* lipase increased AL release >2-fold (20-30% within 2 days). The LLC-gel demonstrated similar anti-biofilm activity (2.5 log reduction in CFU) compared to unformulated solution, confirming preservation of AL activity in the LLC-gels. Interestingly the antimicrobial effect could not be sustained over extended period (>2 days) which was attributed to a gradual loss of AL activity from prolonged exposure to 37°C during the assay, rather than short exposure to higher temperatures (60°C) during LLC-gel fabrication.

Summary: LLC gels present a promising Trojan Horse strategy to conceal and protect biologicals such as glycoside hydrolase. The ability of infection-triggered release provides potential as a future site-specific anti-biofilm therapeutic system.

References

[P112] ANTIBIOFILM ACTIVITY OF SALINE BASED NASAL SPRAYS EVALUATED WITH A NOVEL NASAL BIOFILM METHOD

Kristina Blom1, Karl Persson2, Astrid Persson3, Anders Bared4

1Medibiome Ab, Gothenburg, Sweden
2University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
3Medibiome Ab, Mölndal, Sweden
4Aurena Laboratories Ab, Karlstad, Sweden

Introduction and Aim Nasal colonization with *Staphylococcus aureus* is common and is a major source of health care associated infections. A complicating factor is that these pathogens form biofilms that drugs like antibiotics have difficulties to eliminate. Moreover, with the increasing rise of resistance to antibiotics, current drugs have limited success. Thus, alternative approaches must be developed. Nasal sprays, are commonly used to clear the nose. Also, to relieve sinusitis. The aim with this study was to evaluate, in vitro, the antibiofilm activity of saline based nasal sprays with a novel biofilm assay mimicking the nasal surface including mucin, to which *S. aureus* adheres to and thus critical for its colonization.

Method *S. aureus* was mixed with mucin, a glycoprotein covering the nasal surface. This mixture was inoculated onto membranes that were transferred to agar plates and incubated for 24 hours. The formed biofilm on the membrane were then moved to a cell strainer placed in a 6-well plate before treatment. Treatments, once or daily for 4 days, were done for 1 second and the biofilm load analyzed with plate count. In addition, the biofilm on the membranes was assessed qualitatively by staining with Filmtracer LiveDead and analyzed with fluorescence microscopy. Also, Crystal Violet staining was performed on 24 hours biofilm, established in a 96 well plate, to evaluate if the nasal sprays had a biochemical activity.

Results All nasal sprays reduced the biofilm load after 1 treatment with more than 93% and after daily treatments for 4 days with more than 99%. Fluorescence imaging of live and dead cells showed a substantial decrease of cells after treatment and that most cells stained red indicating dead cells. Crystal Violet staining showed that mature biofilm was reduced by nasal sprays.

Conclusion In conclusion, the saline based nasal sprays reduced *S. aureus* biofilm which was shown with the novel nasal biofilm method, LiveDead and Crystal Violet staining assays. This study suggests that the reduction of the biofilm load was due to that saline based nasal sprays irrigate, i.e. removes the biofilm by physical force and by biochemical activity on the extracellular matrix.

[P113] INDUCING BIOFILM FORMATION WITH POLY(ACRYLOYL HYDRAZIDE) POLYMERS

Jose Luis Brioso Jimenez1, Tim Overton1, Francisco Fernandez-Trillo2

1University of Birmingham, School of Chemical Engineering, Birmingham, United Kingdom
2University of Birmingham, School of Chemistry, Birmingham, United Kingdom

About 99% of the world’s population of bacteria are found in the form of a biofilm at various stages of growth. Biofilm could be described as a consortium of bacteria attached to a surface and embedded in a matrix of extracellular polymeric substance. In this stage, the bacterial community behaves more like a supra-cellular organism rather than a unicellular one, showing off traits that individuals lack.

Our aim is to synthesize polymers that induce biofilm formation in *Escherichia coli*. We chose to synthesize Poly(acryloyl-hydrazide), every monomer unit is easily modifiable with functional groups that carry ketones or aldehydes, these groups will be positively charged, or able to interact with membrane receptors. We used the RAFT polymerization technique, this allow control over the average length of the polymer chain.

We were able to successfully synthesize the backbone and eight different modifications. Polymers were tested against *E. coli* PHL644 and its effect measured via: spectrophotometry, flow cytometry, optic microscopy, and metabolic assays.

Three polymers were able to induce aggregation on *E. coli* PHL644: protonated Poly(acryloyl hydrazide), Poly(acryloyl-hydrazide-glucopyranose), Poly (acryloylhydrazide-mannopyranose). Clusters appear between the first 3 hours and aggregates can be seen with the naked eye, this aggregation is stable after applying dissociative forces. As clusters turn bigger and denser we measure a drop in optic density, as bacterial aggregates fall to the bottom of the culture. Optic microscopy pictures of bacterial samples inoculated with these polymers show clusters of bacteria embedded into an extracellular mucus like substance.

We suspect that the protonated backbone induces clustering due to charge interaction with the negatively charged bacteria, and that the sugar functionalized polymers are recognized by FimH adhesins inducing biofilm formation.
[P114] BIOFILM FORMATION IN SPACE (BFS): DESIGNING A SPACEFLIGHT EXPERIMENT

Marta Cortesao1, Jiaqi Luo2, Daniel Müller2, Zæna Nisar3, Phil Rubin3, Frank Mücklich2, Ruth Hemmersbach3, Christine E. Hellweg1, Luis Zea3, Ralf Moeller1

1Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
2Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
3Bioserve Space Technologies, University of Colorado Boulder, Colorado, United States
4Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany

Fungal growth has been detected aboard the Russian Space Station (Mir) and the International Space Station (ISS), promoting biodegradation of the spacecraft materials and compromising life-support systems [1-2]. Defining filamentous fungi biofilms is currently in debate among the scientific community. Nevertheless these are indeed associated with higher tolerance and resistance to adverse conditions [3-5]. To better monitor and control fungal contamination during long duration spaceflight missions, the NASA-funded project “Biofilm Formation in Space (BFS)” comprises a spaceflight experiment aboard the ISS, planned to be launched late 2018/early 2019 on a SpaceX flight. It will study growth and biofilm formation in microgravity also testing coupons of different materials (such as quartz, aluminum silicone, and polycarbonate developed by the Saarland University), in the search for antimicrobial surfaces.

To mature the experimental design to be spaceflight ready, several pre-flight tests need to be performed. For this, one of the tasks of the German Aerospace Center (Institute of Aerospace Medicine, Cologne) is to help define and optimize the culturing conditions for the fungus *Penicillium rubens* on the space hardware: the 12-well BioCell (developed by BioServe Space Technologies). Because growth in the BioCell will inevitably differ from common laboratory containers (such as flasks or multi-well plates), it is important to assess: i) growth and biofilm formation in the BioCell; ii) growth and adherence to coupons compared with planktonic growth iii) needed adaptations for the space-proven culturing system. Two different material coupons were tested – cellulose membrane and aluminum.

Results revealed fungal growth on all the 12-wells of the BioCell culturing system, within 48h and 96h of incubation. Biomass measurements showed more adhered biomass in cellulose membrane coupons (average 100% increase) than in aluminum coupons (average 3% increase). Additionally, fluorescence microscopy of coupon-attached biomass disclosed their hyphal structure and surrounding matrix. The 12-well BioCell was established as an adequate culturing system for growth of *P. rubens* in the upcoming spaceflight experiment aboard the ISS. This marks an important step in the development of novel methodologies to study filamentous fungi biofilms, leading to new ways of controlling them both on Earth and in space.

[174]

[P115] PHOTODYNAMIC INACTIVATION OF ORAL BIOFILMS WITH INDOCYANINE GREEN AS PHOTOSENSITIZER

Ali Al-Ahmad1, Thomas Burchard1, Lamprini Karygianni2, Annette Wittmer1, Elmar Hellwig1

1Albert Ludwigs-University Freiburg, Freiburg, Germany
2University of Zürich, Zürich, Switzerland

Due to the increasing antibiotic resistance, the development of alternative therapies such as antimicrobial photodynamic therapy (aPDT) is required. The aim of this study was to investigate the effect of visible light and water-filtered infrared A (VIS + wIRA) in combination with indocyanine green on the initial and mature oral biofilm grown in situ.

In situ biofilm samples were cultivated on disinfected bovine enamel slabs (BES) which were fixed on individual splint systems of three volunteers. The irradiation of the biofilm samples with VIS + wIRA was conducted for 5 minutes in combination with different concentrations of indocyanine green. Biofilms treated with 0.2% chlorhexidine (CHX) served as positive control and the untreated biofilms served as negative control. The colony forming units (CFU) were quantified. Additionally, the bacterial vitality was determined using live/dead staining and ApoTome microscope or confocal laser scanning microscopy (CLSM).

The applied aPDT reduced the CFU of initial biofilm up to 4.3 log₁₀ whereas the killing effect of CHX was lower (3 log₁₀). The CFU of mature oral biofilm were killed at a range of 2.5 log₁₀ which was also higher than the CFU reduction caused by CHX (1.5-2 log₁₀). A high bactericidal effect of aPDT against the initial (92%) and mature oral biofilm (74%) was revealed by the live/dead staining. CHX reduced the vitality of the initial and mature biofilm at a range of 96% and 55%, respectively.

The aPDT using VIS + wIRA and indocyanine green is a promising adjunctive therapy to treat periodontitis and peri-implantitis.
Biofilms established by fish pathogenic strains of Vibrio causes large problems in aquaculture by increasing fish mortality. Application of bacteriophages (phages) has been suggested to reduce biofilm formation, however little is known about phages and biofilm formation by Vibrios and how it is influenced by Quorum-Sensing (QS).

The main causative agent of Vibriosis is Vibrio anguillarum, whose QS system resembles the phosphorelay arrangement in Vibrio harveyi. There are three parallel systems transmitting signals via phosphorylation of a single regulatory protein, LuxO, activating or repressing the QS-mutations mentioned above. We compare non-prophage and prophage harbouring strains exposed to phages, in order to test our hypothesis. Previous studies have shown that QS regulates the expression of the phage receptor, OmpK, in V. anguillarum PF430-3 resulting in reduced phage sensitivity in mutants mimicking high cell density [1]. Our mutants enable us to test if QS-mediated anti-phage defence is a unique general phenomenon in Vibrio anguillarum.

Background: Staphylococcus aureus has the capacity to form biofilms and small colony variants (SCVs), which are slow-growing subpopulations with distinctive phenotypic and pathogenic traits, such as an atypical metabolism, altered production of virulence factors and intracellular lifestyle. S. aureus biofilms and SCVs are linked to antibiotic tolerance and resistance, are challenging to eradicate and have significant clinical implications. Despite aggressive antimicrobial therapies and surgery, infections often recur after weeks, months and years due to persistent biofilms and SCVs.

Aim: In the context of infectious diseases involving S. aureus biofilms and SCVs, a therapy targeting bacterial iron metabolism was evaluated.

Methods: The combination of the iron-chelator deferiprone (Def) and the heme-analogue gallium-protoporphyrin (GaPP), in solution and incorporated in a surgical wound gel, was tested for antibiofilm and anti-SCV activity. The Def-GaPP activity was determined using multidrug-resistant S. aureus SCVs in an intracellular infection model. Moreover, the antibiofilm activity was assessed in vitro in the colony biofilm model and an artificial wound model, as well as in an in vivo infection model in nematodes (Caenorhabditis elegans).

Results: While Def alone failed to show substantial antibacterial activity, GaPP and the combination of Def-GaPP demonstrated concentration- and strain-dependent antibacterial properties. Specifically, the Def-GaPP combination significantly reduced the bacterial load in an artificial wound model (1.4 log10 reduction) and increased the survival of S. aureus SCV infected nematodes (86% survival of infected, treated worms vs. 25% survival of infected, untreated worms over 3 days). When Def-GaPP were combined with ciprofloxacin (Cip) or gentamicin (Gent), the triple combinations exceeded the antibiofilm activity of the individual compounds in the colony biofilm model against Cip- and Gent-resistant strains (5.4 log10 reduction for Def-GaPP-Cip and 3.4 log10 reduction for Def-GaPP-Gent). Moreover, Def-GaPP-Gent eradicated intracellular SCVs in human bronchial epithelial cells.

Summary: In targeting bacterial iron metabolism, Def-GaPP showed significant activity against S. aureus biofilms and SCVs. Def-GaPP could potentiate the activity of Cip and Gent against resistant strains. Delivered in a wound healing gel, Def-GaPP has potential to be used as a biofilm control strategy for the topical treatment of S. aureus infections.
[P118] BACTERIAL COMMUNITIES FORMING BIOFILMS IN WASHING MACHINES

Pia Praefcke¹, Burga Braun¹, Ulrich Szewzyk¹

¹Technische Universität Berlin, Berlin, Germany

Biofilm formation is a widely known phenomenon in both natural and technical systems. In technical systems such as water pipes they are also known to cause problems due to the pathogenicity of some organisms inhabiting the biofilms. Also washing machines are subject to biofilm formation, including the risk for pathogenic bacteria to accumulate. Nowadays washing habits changed to washing at lower temperatures in order to save energy. This trend leads to a better survival of biofilm bacteria during laundry processes. Biofilm growth within washing machines can have varying effects ranging from unpleasant odors or biocorrosion to the risk of infection with pathogenic organisms.

Eliminating this problem has been subject to ongoing research. Respected work examined the effects of washing temperature and detergent composition on biofilms in the washing machine. Our approach to deal with the problem of biofilms is to identify the organisms inhabiting washing machines via Next Generation Sequencing (NGS) for a more customized approach to eliminating biofilms. To determine the best way to tackle this problem, samples from the inner and outer tub were taken to get insight into the composition of the bacterial communities inhabiting biofilms in washing machines.

[P119] TOPOGRAPHICAL CHANGES INDUCED BY ETHANOL TREATMENT RENDER BIOFILMS WETTABLE AND INCREASE BIOFILM EROSION

Carolina Falcon Garcia¹, Felix Stangl¹, Oliver Lieleg¹

¹Technische Universität München, Garching bei München, Germany

Biofilm control strategies rely on the inactivation and/or removal of the bacterial material via chemical and/or physical processes. In both cases, it is crucial to sufficiently wet the biofilm surface with antibacterial or eroding agents; however, certain biofilms efficiently resist wetting, and the origin of this behaviour is to date still not fully understood.

Here, we show that depending on the nutrient media biofilms are grown on, three different modes of wetting can be observed: hydrophilic, lotus-like hydrophobic and rose petal-like hydrophobic. Using light profilometry, a variant of confocal reflectance microscopy, we demonstrate that the topography of the biofilm surfaces and their wetting behaviour are related. In particular, the degree of microscopic surface roughness present on those biofilms determines whether lotus-like or rose-like hydrophobicity occurs.

Although certain biofilms efficiently resist wetting of ethanol up to 70% concentrations, this solvent is still used as disinfectant in both industrial and medical settings. We here show that biofilm exposure to ethanol solutions with concentrations above 70% can induce a smoothening of the biofilm surface – even for ethanol exposure times as short as 10 min. As a consequence of this smoothening effect, the wetting resistance of the biofilm surface is reduced and the erosion sensitivity of the biofilm is increased.

Converting the surface polarity of a biofilm, as demonstrated here, could facilitate biofilm removal in industrial or medical settings by increasing the biofilm wettability.
[P120] TIME-KILL ANALYSIS TO SCREEN AN ANTIMICROBIAL WOUND IRRIGANT AGAINST METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) BIOFILM CULTURED IN 3D ACELLULAR SOFT TISSUE

Kristina Blom1, Johanna Asserlind2, Caroline Scott3

1Medibiome Ab, Gothenburg, Sweden
2Mölnlycke Health Care Ab, Gothenburg, Sweden

Aim: To assess the biofilm killing activity of antimicrobial solution against Methicillin resistant Staphylococcus aureus (MRSA) in a novel 3D collagen biofilm model at four different timepoints, i.e. 5, 10, 60 minutes and 24 hours.

Method: Acellular Synthetic Soft Tissue (ASST) was prepared containing collagen and serum proteins. To each well of a 96-well plate, ASST was applied and cured. To form the biofilm, 1-3 x 10^5 CFU/well of methicillin resistant Staphylococcus aureus (MRSA) was inoculated and incubated for 24 hours before application of antimicrobials. After treatment, for different time periods, samples underwent neutralization and the biofilm matrix was digested. Kill was assessed by taking drops of digested ASST and applying them onto TSA-plates with a multichannel pipette. The TSA plates were then incubated until colonies of the growth controls were clearly visible.

Results: A MRSA biofilm was formed within the ASST and reached a biofilm load of 1-3 x 10^8 CFU/well after 24 hours incubation. Microbial inhibition could be detected but was obscured for substances that precipitated in the ASST. Kill was detected as absence of viable colonies on TSA plates.

Conclusion: It was shown that MRSA could grow a biofilm in the in vivo like 3D skin tissue (ASST). This study also demonstrated that the inhibitory effect of antimicrobials could be assessed directly by visual inspection of the ASST and the killing effect by assessing growth of treated ASST applied as drops on agar plates. In conclusion, we successfully developed a time-kill method assessing MRSA biofilm, grown in a clinical relevant soft tissue adopted to a microplate assay format, that is very rapid and screens both inhibitory and killing activity of antimicrobials.

[P121] DO BLOCKSTRUCTURES IMPROVE THE COPOLYMER’S PROPERTIES COMPARED TO THEIR STATISTICAL ANALOGUES?

Anne Seiffert1, Marco Waßmann1, Andreas Winke1,2, Meike Stiesch1, Henning Menzel1

1Technical University Braunschweig, Institute for Technical Chemistry, Brunswick, Germany
2Hannover Medical School, Clinic of Dental Prosthetics and Biomedical Material Science, Hannover, Germany

Worldwide, more than one million in dental implants are placed per year [1] whereof up to 4.2% of the patients suffer from postoperative infections [2]. The mouth’s humidity, temperature and food remnants favor an increased bacteria growth that often results in a biofilm formation. The biofilm causes infection of the bone with severe consequences up to failure of the implant. One current solution approach is the synthesis of copolymeric coatings containing an antimicrobial moiety like a quaternary ammonium group [2] and a phosphonate group to attach the implant [3].

Statistical copolymers (Poly-BMADUA-co-DMMEP) containing the monomers N-benzyl-11-(methacryloyloxy)-N,N-dimethylundecane-1-ammoniumbromide (BMADUA) and dimethyl(2-methacryloxyethyl)-phosphonate (DMMEP) were prepared via free radical polymerization in tetrahydrofurane (THF) by WASSMANN [3]. The analogous diblockcopolymers Poly(BMADUA-b-DMMEP) were synthesised via sequential reversible addition-fragmentation chain transfer (RAFT) in N,N-dimethylformamide (DMF). All polymers were synthesised with different BMADUA/DMMEP ratios, then spin-coated onto titanium plates and characterised by ellipsometry as well as water contact angle measurements. Antimicrobial tests are existent for the statistical copolymers by now; they show good results against (S. aureus) [3]. In general, the ellipsometry and contact angle measurements of the diblockcopolymers had smaller values than Poly(BMADUA-co-DMMEP). Comparing similar BMADUA percentage contents, the wettability increases by approx. 10° and the layer thickness increases by approx. 10 nm for statistical copolymers. It appears as though different polymer architectures have an influence in physicochemical properties for the described copolymer system.

Derived from these results the antimicrobial properties might change positively for blockcopolymers as well. Necessary measurements will be performed in the near future.
[P122] DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION OF NEW QUORUM SENSING INHIBITORS FOR MULTI-SPECIES WASTEWATER BIOFILMS

Fatima El Garah¹, Barbora Lajoie¹, Salomé El Hage¹, Geneviève Baziard¹, Marion Alliet¹, Christine Roques¹

¹Laboratoire de Génie Chimique, BioSyM department. Université de Toulouse, France

Keywords: Multi-species biofilms, Quorum sensing, inhibitors, wastewater, auto-inducers

Microbial biofilms colonize water systems and are the major cause of membrane biofouling leading to reduced efficiency of water treatment processes. Biofouling starts with the formation of a biofilm followed by growth and colonization across the overall surface. Bacteria living within biofilms are markedly more tolerant to disinfectants. Therefore, understanding and controlling bacterial biofilms is crucial for a better water systems management.

One of the mechanisms behind biofilm formation is Quorum Sensing (QS), a communication system where bacterial cells produce, detect and respond to small diffusible signal molecules, also called auto-inducers, such as AHLs in Gram negative bacteria [1], or PQS, specially involved in *P. aeruginosa* QS [2]. Some QS signals can also be recognized by many species, thereby allowing inter-species communication [3].

Since the signal molecules are the key factor in the bacterial communication processes that lead to biofilms, their inhibition is a promising target to control biofilms. However, very few studies on targeting Quorum Sensing have been applied to multi-species biofilms so far. In view of this, our group is focused on developing an anti-biofilm strategy based on synthetic molecules as inhibitors of the natural AHLs and the PQS [4].

Here, we have synthesized and evaluated various structural analogs of the PQS. We have also developed a 96-well high throughput assay to evaluate their ability to inhibit wastewater-related biofilms.

Several compounds showed significant anti-biofilm activity, with a significant decrease of the total adherent biomass, making them promising leads for further development in the prevention of multi-species biofilms.

The protocol optimization, inhibition results and structure-activity relationships will be presented.

[P123] OPTIMIZATION OF A HIGH-THROUGHPUT SCREENING PLATFORM IN 384-WELL PLATES FOR EXPLORATION OF ANTI-BIOFILM ACTIVITY

Shella Gilbert-Girard¹, Malena Skogman¹, Kirsi Savijoki¹, Jari Yli-Kauhaluoma¹, Adyary Fallarero²

¹University of Helsinki, Helsinki, Finland
²Thermo Fisher, Vantaa, Finland

Bacteria biofilms are responsible for 60-80% of human infections. They can be over 1000-times more tolerant to antibiotics compared to single floating i.e., planktonic cells, therefore frequently leading to chronic infections and complicating the treatment using the current prophylactic regiments. Thus, there is an urgent need for next-generation drugs specifically developed for treating biofilm-related infections. One way to achieve this goal is to screen a large set of different compounds to pinpoint potential leads. In the present study, we have optimized the in-house screening platform based on the sequential staining with resazurin and crystal violet, giving confirmatory and complementary information on biofilm formation and formed biofilms in term of viability and total biomass. Here, the two staining assays were optimized for high-throughput drug screening in a 384-well format using clinical *Staphylococcus aureus* ATCC 25923 and *Pseudomonas aeruginosa* ATCC 15442 as the gram-positive and -negative biofilm models, respectively. Both pre- and post-exposure modes were applied for investigating the drug-induced effects to gain a better insight into the mechanistical action of the most promising leads. For maximising the statistical reliability of this screening assay, several parameters (growth characteristics, sample volumes etc.) were first examined. With the optimised assays we have now screened over 2700 compounds from libraries of repurposed drugs, both for their activity in preventing biofilm formation and in eliminating mature biofilms. The advantage of screening FDA approved and investigational drugs is that information on their structure and toxicity is already available, which reduces the cost and time before reaching the next step in drug development (in vivo analyses). The most active compounds will be selected for further mechanistic studies and structural optimization with the ultimate goal for preventing and treating biofilm and/or device-related biofilm infections.
[P124] PERTURBATION OF EFFLUX BY AN AMPHIPHILIC CARGO-LOADED NANOMATERIAL: POTENTIAL SYNERGY FOR MITIGATION OF METHICillin-RESISTANT Staphylococcus aureus BIOFILM

Thiyagarajan Durairaj1

1National Institute of Immunology, New Delhi, India

Staphylococcus aureus is the one of the major organism causing nosocomial infection in the clinical set up. The development of resistance in S. aureus is creating obstacle to treat infection with the normal antibiotics. Fluoroquinalone resistance in S. aureus is one of the major resistance mechanism conferred by this organism and treating such pathogen would require elevated concentration of the antibiotic. The combination therapy is an alternative strategy to minimize the therapeutic concentration of an antibiotic to treat such infection. In this regard, a pyridinium based cationic amphiphile-loaded poly (lactic-co-glycolic acid) (PLGA) nanocarrier (C1-PNC) was developed as a potential adjuvant to eliminate clinically isolated methicillin-resistant S. aureus (MRSA) biofilm in combination with ciprofloxacin. Interestingly, CI-PNC was found to render 6-fold reduction of minimum biofilm elimination concentration (MBEC90) of ciprofloxacin against a clinical MRSA strain in combination therapy. Further, CI-PNC found to inhibit efflux pump activity in MRSA planktonic cells which can be correlated with the superior intra-cellular accumulation of ciprofloxacin in presence of CI-PNC. The molecular modelling of the Nor A protein and consecutive docking of the C1 with Nor A model revealed its potential in comparison with the standard efflux pump inhibitor. Interestingly, the combinatorial dosing regimen of C1-PNC and the ciprofloxacin was nontoxic to cultured Human embryonic kidney (HEK293) cells. This nontoxic amphiphile-loaded nanomaterial holds considerable promise as an adjuvant for antibiotic-mediated elimination of MRSA biofilms.

[P125] ACTIVITY OF COMBINATIONS OF AN ENZYMATIC COCKTAIL (ENZ) WITH TOBRAMycin (TOB), AMIKACin, (AMK), CIPROfloXACIn (CIP), MOXIFLOXACIn (Mx) , VANCOMYCIn (VAN) OR LINEZOLID (LDZ) AGAINST BIOFILMS OF CLINICAL ISOLATES FROM ESKAPE PATHOGENS

Wafi Siala1, Hoche Alice2, Francoise Van Bambeke1, Thomas Vanzieleghem2

1Molecular and Cellular Pharmacology, Université Catholique de Louvain, Brussels, Belgium
2Onelife S.A., Louvain-la-Neuve, Belgium

Background: The capacity of bacteria to form biofilms is a major cause for nosocomial infections. Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa are ESKAPE pathogens that are frequently associated with biofilm infections. Antibiotics and antiseptics are usually considered as weakly active against bacteria growing in biofilms as they have only a poor access to bacteria. We developed an enzymatic cocktail containing DNase and polysaccharidases (ENZ) which allows the dispersion of bacterial biofilms of species mentioned above. We examined whether ENZ could restore activity of antibiotics against these biofilm, taking TOB, AMK, CIP, MXF, VAN and LDZ as examples.

Materials/methods: We used 6 clinical isolates of Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa (coming from infections on medical devices). Biofilms were grown for 24 h in 96-wells plates and then exposed for 24 h to Cmax of CIP, TOB, AMK, MXF, VAN and LDZ, alone or in combination with ENZ. Bacterial viability in biofilms was quantified using the redox indicator resazurin as previously described (1). Cytotoxicity induced by ENZ (5X concentrated) was tested towards 4 human cells lines (THP-1; HA-60, U937 and T24) by measuring the release of the cytosolic enzyme lactate deshydrogenase (LDH) into the culture supernatant (cytotoxicity detection kit PLUS; Roche, Basel, Switzerland).

Results: See Table. At human Cmax, CIP, TOB, AMK, MXF, VAN and LDZ alone reduced bacterial viability of 20-47%, 0-17%, 0-13%, 10-48%, 0% and 47-57% respectively. Combining ENZ with each of these antibiotics improved efficacy, with reduction in viability reaching 69-89 %, 65-94%, 68-96%, 66-99%, 69-92% and 79-89% when CIP, TOB, AMK, MXF, VAN and LDZ were used at their Cmax, respectively.

No cytotoxicity of the enzymatic cocktail was observed when incubated with four human cells lines.

Conclusions: Combining ENZ with 6 antibiotics belonging to 4 classes proves highly synergistic against biofilms of 6 clinical isolates. This opens perspectives for testing these enzymes as adjuvant for the treatment of biofilm infections.

Reference
EVALUATION OF THE ACTIVITY OF A NOVEL ANTIMICROBIAL PEPTIDE AGAINST STAPHYLOCOCCUS AUREUS BIOFILMS

Angelo Colagiorgi1, Aniello Anastasio1, Pierluigi Aldo Di Ciccio1, Marco Balestrieri2, Raffaele Marrone2, Adriana Ianieri1, Gianna Palmieri3

1Department of Food and Drug, University of Parma, Parma, Italy
2Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
3Institute of Biosciences and Bioresources - Uos Naples, National Research Council, Naples, Italy

Bacterial antimicrobial resistance is of great concern to global health. Biofilm formation is usually involved in increasing bacterial resistance. With regard to this, the development of new antimicrobial and anti-biofilm molecules, such as antimicrobial peptides (AMPs), is of pivotal importance.

AMPs are effector molecules of the innate immune system of Mammalia that present biocidal activity. Because of their properties (e.g., low propensity for developing bacterial resistance, broad antimicrobial spectrum activity, synergy with common antimicrobials) are emerging tools to contrast antimicrobial resistance and to control microbial biofilms. Staphylococcus aureus is an ubiquitous worldwide-distributed pathogen responsible for both nosocomial infections and food poisoning.

The aim of this study was to evaluate the antimicrobial action of HCAT, a novel AMP obtained by modifying the cathelicidin-derived peptide IDR-1018, against biofilms of S. aureus.

S. aureus ATCC 35556 (a well-known strong biofilm producer) was used in this study. The antimicrobial activity of HCAT (80 µmol/L) was measured with Minimum Biofilm Eradication Concentration (MBEC) assay at different treatment time-points (24, 48, and 72 H) against 24 hours-old biofilms, obtained using two different initial inoculum concentrations (10⁵ and 10³ cfu/ml).

Results showed anti-biofilm activity of HCAT against S. aureus. In details, 6.14±0.17 Log₁₀ cfu/peg, and 5.57±0.23 Log₁₀ cfu/peg reductions were observed following treatment at different time-points against staphylococcal biofilms grown starting from 10⁵ and 10³ cfu/ml initial inoculum concentration, respectively. Interestingly, the characterization of HCAT showed a remarkable stability under a wide range of pH and temperature conditions.

Although further studies are necessary to confirm these initial findings, our results suggest that HCAT might represent a useful alternative to commonly used antimicrobials to contrast biofilms. Furthermore, because of its properties, HCAT might be involved in a wide range of applications in both food and healthcare industries.
[P127] MULTIPLATFORM APPROACH TO PROBE PENETRATION, ACCUMULATION AND EFFLUX OF ANTIMICROBIAL AGENTS INTO BIOFILMS OF PSEUDOMONAS AERUGINOSA

James Brown1, Paul Williams1, Morgan Alexander1, Kim Hardie1

1University of Nottingham, Nottingham, United Kingdom

The structure of *Pseudomonas aeruginosa* biofilms is not uniform and this heterogeneity influences the effectiveness of antimicrobials by altering their penetration and accumulation. This heterogeneity combined with mechanisms such as porin overexpression and development of persister cells contributes to the innate resistance of *Pseudomonas* in biofilms to antibiotics, creating a significant issue in the treatment of infections and resulting in elevated levels of mortality and morbidity. Whilst the mechanisms through which innate resistance arises have been elucidated, the dynamics of these processes are significantly less understood.

Here, we use a microfluidic system coupled with time-lapse microscopy to investigate the rate of cell death within the biofilm following treatment with a variety of antimicrobial agents. Using fluorescent labels we examine the effect antimicrobial agents have on distribution of exopolysaccharide (EPS) and extracellular DNA (eDNA) within the biofilm. Further, working with partners in the European Association of National Metrology Institutes (EURAMET) we are developing cross-platform methods to study the dynamics of the penetration, accumulation and efflux of antimicrobial agents within the biofilms using a variety of techniques including 3D OrbiSIMS (secondary ion mass spectrometry) and X-ray photoelectron spectroscopy (XPS) amongst others. Here we describe initial findings and demonstrate their potential in label-free imaging of bacterial biofilms.

[P128] A TARGETING AGENT FOR DRUG DELIVERY TO STAPHYLOCCUS AUREUS BIOFILM INFECTIONS

Pernille Ommen Andersen1, Line Hansen2, Hieu Quang3, Jørgen Kjems4, Rikke Louise Meyer5

1Aarhus University, Interdisciplinary Nanoscience Center (Inano), Interdisciplinary Nanoscience Center, Aarhus, Denmark
2Unisense A/S, Århus N, Denmark
3Aarhus University, Denmark
4Interdisciplinary Nanoscience Center, Department of Molecular Biology and, Aarhus, Denmark
5Interdisciplinary Nanoscience Centre (Inano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark

Targeted drug delivery is a promising new strategy to combat biofilm infections because it ensures delivery of antibiotics in close proximity to the bacterial cells and thereby maximizes exposure. However, a key challenge to this strategy is to find a suitable targeting agent that provides specific interaction with bacteria in biofilms.

Nucleic acid aptamers are uniquely suited as targeting agents for drug delivery due to the ease of their synthesis, and their high target affinity and specificity.

In this study, we investigate the use of DNA aptamers as a targeting agent to deliver encapsulated antibiotics to *Staphylococcus aureus* biofilms. We first compared the ability of different *S. aureus* specific aptamers to target *S. aureus* biofilms, and then investigated if the aptamer could be used to target and accumulate drug-loaded liposomes in *S. aureus* biofilms. Lastly, we investigated if the retained targeted drug-loaded liposomes could eradicate *S. aureus* biofilms.

The *S. aureus* specific aptamer or a non-specific scrambled version of the aptamer was conjugated to fluorescent liposomes by click chemistry. To mimic *in vivo* conditions, *S. aureus* biofilms were grown in brain heart infusion broth with 5% human plasma in microwell plates preconditioned with 50% human plasma. The functionalized liposomes interacted with 24-hour-old biofilms for one hour. Upon removal of unbound material, fluorescent signal from the retained liposomes confirmed that liposomes accumulated in the biofilm if they were functionalized with *S. aureus* specific aptamers, while the non-specific aptamers did not promote binding. Confocal laser scanning microscopy showed that liposomes functionalized with the *S. aureus* specific aptamers penetrated the entire depth of the biofilm and bound to the surface of bacterial cells. Finally, preliminary studies have shown that the retained drug-loaded and targeted liposomes could mediate full kill of *S. aureus* biofilms upon 24 hours of treatment.

In conclusion, the aptamer candidate investigated is a suitable targeting agent for drug delivery to *S. aureus* biofilms.
[P129] STUDYING ANCIENT MECHANISM TO SYNTHESIZE NOVEL ANTI-BIOFILM DRUGS

Annegrete Visnapuu1, Benjamin Horemans1, Jeroen Wagemans1, Jeroen De Smet2, Dirk Springael1, Rob Lavigne3

1Kuleuven, Leuven, Belgium
2Kuleuven, Geel, Belgium
3Kuleuven, Heverlee, Belgium

Bacteriophages are the natural enemies of bacteria. They have co-evolved with bacteria from the beginning of life and presumably have evolved evolutionary optimized mechanisms to inhibit biofilm formation. Bacteriophages are able to diffuse biofilm, infect and kill cells, even persisters can be infected. Some phages even contain enzymes that enable them to extract extracellular matrix before they reach to their prey; others can encode biofilm degrading enzymes once they have taken over hosts transcriptional machinery and release them after lysis. The latter can be coded from host genome or from phage itself (as reviewed by Abadeon, 2015 and Harper et al., 2014). Phage genes that inhibit biofilm formation are not been described to date. Here we present four non-toxic biofilm-inhibiting phage proteins from different lytic *Pseudomonas aeruginosa* phages that were identified out of 170 tested proteins. Their anti biofilm effect on laboratory, clinical and synthetic strains was evaluated using Calgary device and flow cell system. The phage proteins inhibit biofilm formation significantly, up to 85% biomass reduction in 48 hour flow-cell biofilm. These phage proteins can be used to synthesize target-based small molecules, that will mimic the anti biofilm effect (Wagemans & Lavigne, 2012).

[P130] PREVENTING MEMBRANE BIOFOULING WITH A MICROPARTICLE REACTOR

Ana Cláudia Barros1, Idalina Machado1, Manuel Simões1, Maria Carmo Pereira1, Luis Melo1

1Lepabé-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department Chemical Engineering, University of Porto, Portugal, Porto, Portugal

Introduction: Biofouling is undoubtedly one of the major problems affecting the performance of membrane water treatment processes. In fact, membrane flux decline results from a set of combined mechanisms where biofouling is considered to be responsible for 45% of the problems. Some rather recent approaches to water treatment processes for membrane biofouling prevention include the development of new antimicrobial compounds to kill microorganisms before membrane filtration.

Aim: The main purpose of this work was the development of a bed reactor with biocide loaded microparticles for water pre-treatment in order to prevent membrane biofouling.

Materials and Methods: A synthetic crystalline aluminosilicate also designed zeolite (3-5 µm) and hydroxyapatite (5 µm), were selected as core materials for functionalization. The particles were prepared using the layer-by-layer (LBL) self-assembly technique and benzyldimethyldodecyl ammonium chloride (BDMDAC) was selected as biocide. Microparticles were used in the reactor to determine the log-reduction of *Escherichia coli* in 30 min. In order to determine if BDMDAC was released from the particles, the biocide concentration was determined after six washing steps. Microparticles were after tested to evaluate their antimicrobial efficiency. These microparticles were further tested to prevent biofouling formation on filtration membranes.

Results: The zeolite particles functionalized by LBL with BDMDAC at 200 and 500 mg/L were able to totally reduce the presence of viable microorganisms in 30 min. Regarding antimicrobial hydroxyapatite functionalized particles, a concentration of BDMDAC of 100 mg/L was able to completely kill *E. coli*. After six washing steps, particles kept their antimicrobial load.

Conclusion: This work showed that zeolite and hydroxyapatite microparticles are efficient cores as biocide transporters since these particles can target bacteria without releasing biocide. This is of utmost important since chlorine (which damages membranes) can now be replaced for a safer biocide, without releasing harmful chemicals to the water. This is also a proof of concept on the development of a new microparticle reactor as water pre-treatment strategy to impair biofouling development on filtration membranes.
POSTER ABSTRACTS

[P131] INHIBITION OF BIOFILM FORMATION ON URINARY CATHETERS BY VANILLIN: A STUDY USING ESCHERICHIA COLI ISOLATED FROM URINARY TRACT INFECTIONS

Jesil Aranjani1, Gopichand L1, Kiran Chawla2, Angel Alex1, Ananthamurty Koteswara1

1Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, India

2Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, India

Urinary Tract Infection (UTI) is a primary bacterial infection affecting around 150 Million people in the world every year. UTI can even lead to death in children, older men, and women. Catheterisation was involved in 70-80% of complicated UTI. More than 50% women are affected with UTI at least once in a lifetime. It is recurrent in 40% cases. Most common bacterial pathogen associated with UTI is Escherichia coli. Uropathogens commonly form biofilms in the bladder which helps these organisms to inhabit the host. Use of antimicrobial agents can lead to the emergence of antibacterial resistance. In the present study, Escherichia coli from hundred patients of both the sex and diverse age group suffering from UTI were isolated and analysed for their sensitivity against a panel of 10 different fluoroquinolone antibiotics. This analysis revealed that nearly 80% of the isolates are resistant to fluoroquinolone antibiotics. The resistant organisms were further checked for their ability to produce biofilms and to produce haemolysis in blood agar. The ten high biofilm producers showing significant antibiotic resistance were chosen for further studies. Biofilm production of selected UPEC strains was quantified using microtiter plate assays. Vanillin, a naturally occurring phenolic aldehyde is found to inhibit the biofilm formation in the microtiter plate assays. A microtiter plate assay was performed using vanillin against selected isolates of E.coli to quantify the inhibitory effect of vanillin on biofilm formation. Further, these isolates were tested on their haemolytic potential in the presence of sub MIC concentration of vanillin. The biofilm forming ability of selected strains was evaluated on urinary catheters. Vanillin was found to efficiently reducing the formation of biofilms on urinary catheters and prevent the haemolysis in some cultures. Thus incorporation of vanillin, a non-toxic natural product, which is the primary component of the extract of vanilla bean is revealed to be a practical approach to prevent biofilm formation and expression of virulence factors on urinary catheters.

[P132] ANTIFOULING PROPERTIES OF DNA COATINGS

Guruprakash Subbiahdoss1, Guanghong Zeng1, Alexander N. Zelikin2, Rikke Louise Meyer1, 3

1Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark

2Department of Chemistry, Aarhus University, Aarhus C, Denmark

3Department of Bioscience, Aarhus University, Denmark

 Fouling is a major concern for surfaces subjected to the liquid environment in applications ranging from medical devices to food contact surfaces, industrial heat exchangers, and marine equipment. One of the approaches to fouling control is the use of hydrophilic polymer coatings. Coatings made from poly-anions and poly-cations with the layer by layer (LBL) method are straightforward to produce, inexpensive, and provide a high degree of control over coating thickness compared to thin film deposition methods. DNA is a poly-anion and therefore suited for LBL coatings. We hypothesized that the poly-anionic properties and the poly-phosphate backbone of DNA would provide DNA coatings anti-biofouling and anti-scaling properties. To test this hypothesis, we characterized the physicochemical properties of DNA/poly(ethyleneimine) LBL coatings and evaluated their resistance against microbial fouling and scaling (CaCO3 precipitation). The coatings reduced scaling from tap water when incubated statically or under flow and temperature conditions that mimicking surfaces in heat exchangers. The DNA coating also impaired microbial fouling from tap water, and resulted in lower adhesion force and less colonization by the human pathogens *Staphylococcus aureus*, *Staphylococcus epidermidis* and *Pseudomonas aeruginosa*. The antifouling properties of DNA presented in this study demonstrates a proof of concept that LBL coatings with poly-anions harboring phosphate groups can address fouling in several applications.

Keywords: Biofouling, DNA, antifouling, biofilms, heat exchangers, calcium carbonate, scaling, calcite.
NOVEL METHODS FOR BIOFILM CHARACTERIZATION

[P133] REAL-TIME OPTOTRACING OF CURLI AND CELLULOSE IN LIVE SALMONELLA BIOFILM USING LUMINESCENT OLGOTHIOPHENES

Ferdinand X Choong1, Marcus Bäck2, Sara Fahlén1, Leif BG Johansson2, Keira Melican1, Mikael Rhen1,3, K Peter R Nilsson2 and Agneta Richter-Dahlfors1

1Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
2Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
3Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.

Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. We have developed a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibers and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualizing the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this opto-tracing technology, and it’s ability to redefine biofilm research.

[P134] FAST, A NEW QUANTITATIVE REPORTER FOR BIOFILM REAL-TIME MONITORING

Amaury Monmeyran1, Thomen Philippe1, Casella Jean-François1, Dahmane Narimane2, Ballarda Aurélie2, Gautier Arnaud1, Aymerich Stéphane 2, Henry Nelly1

1Sorbonne Université, Université Pierre et Marie Curie, Laboratoire Jean Perrin, Paris, France
2Micalis Institute, Inra, Agroparistech, Université Paris-Saclay, Jouy-En-Josas, France
3École Normale Supérieure, Psl Research University, Sorbonne Université, Upmc Unv Paris 06, Cnrs, Département de Chimie, Pasteur, Paris, France

In nature, biofilms are composed of a multitude of micro-organisms that can be bacteria, fungi or micro-algae, all embedded in an extracellular matrix. Thus, these communities of microbes form a highly concentrated and heterogeneous material displaying cell sub-populations, multiple gradients of nutrients, metabolites and physico-chemical parameters. Even the single-species laboratory models of biofilm demonstrate considerable microscale heterogeneity. In this context, optical microscopy imaging strategies have widely spread to grab local information and to capture the spatial complexity of these adherent communities.

In our laboratory, we are studying biofilms in millifluidic channels under a constant flow of nutrient medium using video microscopy to monitor real-time development processes. Our approach requires reliable specific and quantitative labeling strategies, which prompted us to investigate more closely the relevance of the fluorescent reporters to draw the spatio-temporal distribution of a gene expression in the biofilm. We examined GFP and mCherry fluorescence signal along the formation of a model Escherichia coli biofilm in parallel with the microscopic optical density signal which reports biomass formation. We found a strongly non-linear response of these fluorescent reporters that we could relate to the environmental oxygen shortage occurring during biofilm growth. To overcome this problem, we propose an alternative strategy using a novel protein tag so called Fluorescence-Activating and Absorption-Shifting Tag:FAST. This protein has the ability to bind to a small synthetic molecule which activates the fluorescence of the complex with a non-oxygen-dependent mechanism. We will show here the advantages of using this protein in our E. coli model biofilm and show the first results we obtained in the more complex background of a multi-species community, monitoring Bacillus thuringiensis among three other species.

We conclude to the efficient and accurate properties of this new family of genetic reporters for biofilm imaging and point out the hazardous interpretation of the fluorescence signal of the popular GFP and its derived analogs in the context of the bacterial biofilms.
NOVEL METHODS FOR BIOFILM CHARACTERIZATION

[P135] MAPPING THE CHEMICAL AND STRUCTURAL LANDSCAPE OF MICROBIAL INTERACTIONS IN A 4-MEMBER MODEL CONSORTIUM OF SOIL BACTERIA

Klaus Koren1, Jakob Herschend2, Mette Burmølle3, Michael Kühl4

1Aarhus University - Bioscience, Aarhus, Denmark
2Section for Microbiology, Copenhagen, Denmark
3University of Copenhagen, Section of Microbiology, Department of Biology, Faculty of Science, Copenhagen, Denmark
4University of Copenhagen, Marine Biological Section, Department of Biology, Helsingør, Denmark

Soil bacteria live in complex communities that host a plethora of different species. Knowledge of community composition, growth and function is essential for understanding and potentially modulating microbial life e.g. in the rhizosphere for plant growth promotion or in treatment of pathogens. Microbial community ecology is in part determined by interspecies interactions, but the underlying mechanisms driving such interactions are often unknown and difficult to identify due to community complexity. Inter-species interactions are therefore often identified and studied in simpler model communities. By applying microsensor measurements of N2O, O2 and pH, we identified key functional mechanisms governing community synergy and development from a previously assembled bacterial model consortium with four co-isolated soil isolates: Microbacterium oxydans, Xanthomonas retroflexus, Stenotrophomonas rhizophila and Paenibacillus amylolyticus. We show that in vitro acid and alkali production from individual community members leads to an overall pH stabilisation of the local environment over time, which in turn leads to enhanced community growth. As in vitro observations were made with standard laboratory culture media, we continued by investigating whether metabolic activity of these isolates would be able to affect pH in bulk soil and observed pH changes within the natural habitat. Identifying metabolic interactions between bacteria is essential to understand their effects on the local environment and to harvest the full potential of bacterial consortia. The combination of sensor-technology and microbiological culturing methods appears to be ideal to do so.

[P136] NISIN PRODUCTION IN LACTOCOCCUS LACTIS BIOFILMS

Daniel Kleine1, Anna-Lena Maus1, Roland Ulber1

1TU Kaiserslautern, Kaiserslautern, Germany

Biofilms can be considered complex agglomerates of microorganisms, which grow associated to a surface. This naturally predominant way of bacterial growth has already been used for decades in wastewater treatment, but their application in biotechnological production processes is still limited. To assess their applicability, the model organism Lactococcus lactis is used. This lactic acid bacterium (LAB) is commonly applied in the large-scale production of dairy products and is known to be capable of biofilm formation. As a secondary metabolite, L. lactis produces the antimicrobial peptide Nisin which contains several uncommon amino acids and is a member of the class of lantibiotics. This peptide is effective against many Gram-positive organisms and is already used as a food preservative (E234). The focus of this project is the cultivation of L. lactis as a self-immobilized biofilm in flow-through bioreactors (A) on different metallic and structured surfaces (Fig. 1B). After an initial batch-phase of 24 h with a flow rate of 5 mL min⁻¹ that allows for sufficient biofilm formation, the setup is switched to a continuous process for Nisin production at 0,376 mL min⁻¹ (dilution rate D = 2 h⁻¹). Due to its inhomogeneous nature and structures, the productivity supposedly varies not only over time, but throughout the biofilm itself. To assess these differences on a molecular level, an assay for gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR) will be used. This technique allows the analysis of the regulation of the Nisin gene cluster with comparably small sample volumes and thus an increased spatiotemporal resolution.

Fig. 1: A: Assembled flow-through bioreactor for biofilm cultivation; B: Titanium substrata with different surface roughnesses Rₐ.
Heterogeneities are a common occurrence in biofilms. A biofilm is never absolutely uniform, but rather composed of several layers and areas that differ in e.g. gene expression levels, what genes are expressed, the amount of environmental stress it is exposed to, or metabolic stress.

In order to elucidate the processes in a biofilm and gain a better understanding of them, this work focuses on establishing a reaction-diffusion model for nutrient and product transport in Lactococcus lactis biofilms. L. lactis is a lactic acid bacterium used in production of cheese and yoghurt, but it also produces the antimicrobial compound Nisin, which is used as a food additive. To study the production behavior of Nisin in biofilms of L. lactis confocal microscopy (CLSM) and different FRAP (Fluorescence Recovery After Photobleaching) techniques are employed to on-line assess diffusion constants of glucose and Nisin in the biofilm with a focus on how diffusion may differ in different strata and growth phases of the young biofilm. Different sensor systems are integrated in a continuous reactor system with micro structured surfaces for online monitoring of e.g. pH changes. The whole reactor set-up is integrated into the CSLM system (Fig. 1).

Different reaction rates are assessed via HPLC and LC-MS-MS. Based on these data the reaction model is iteratively developed by simulation and fitting. The project is funded by the [MICOS].

Infections caused by bacterial biofilms are a major healthcare problem given their reduced susceptibility to conventional antibiotics. Thus, there is a demand for new antibacterial molecules that are active against bacterial biofilms. Antimicrobial peptides (AMPs) have been considered potential alternatives as antibiofilm agents. However, more work is still needed specially to understand their mode of action at the molecular level, which will contribute to their optimization towards drug development. In this work, we studied the antibiofilm activity and mode of action of pepR, a previously developed cationic peptide derived from the dengue virus capsid protein, against Staphylococcus aureus (S. aureus) biofilms. The activity of pepR against S. aureus in the planktonic form was evaluated using standard microdilution procedures to determine the minimum inhibitory concentration and the minimum bactericidal concentration. Different assays were used to study the activity of the peptide on S. aureus biofilm formation and preformed biofilms: the total biomass was quantified using crystal violet staining, and the bacterial cells viability within the biofilm was tested using a resazurin reduction assay. The mechanism of action of pepR against planktonic and biofilms of S. aureus was investigated through a combination of different assays including colony count, flow cytometry and confocal microscopy. To assess locally the peptide antibiofilm mechanism of action we used time-lapse confocal scanning laser microscopy. The technique allowed for the simultaneous imaging biofilm structure and followed disruption of cellular membrane integrity along the biofilm. Our results showed that pepR was able to prevent biofilm formation and act on preformed biofilms. The peptide exhibits a fast bactericidal activity against planktonic bacteria, which is related to its ability to disrupt the bacterial membrane integrity as demonstrated by flow cytometry data, and is also involved in its capacity to prevent biofilm formation. Our confocal microscopy data showed that the peptide is able to diffuse through a preformed biofilm and significantly reduce bacterial cells viability in a dose-dependent manner by direct killing of embedded bacteria.

Overall, our studies demonstrate the potential of pepR against staphylococcal biofilms and suggest this peptide as a promising lead towards the development of new antibiofilm agents.
After one month of liquid culture, \(\Phi \) II of the attached alga increased as the biofilm developed towards maturation. Under light condition, of attached alga was low compared to those of planktonic life form. The status of photosynthetic activity, measured by pulse amplitude modulation fluorometer. Among the parameters indicating off and photosynthetic electron transport of the attached algae in the inner surface was obtained more than a concentration of the population. Photosynthetic electron transports of attached or clustered algae were compared with those in a freely living state by the pulse amplitude modulation fluorometry. Methacrylic fluorescence cuvettes were placed in Chlorella saccharophila liquid culture to obtain the formation of algal biofilms on the surface of the cuvettes. Every two weeks, the cuvettes were taken out and the alga attached to the outer surface of the cuvettes was wiped off and photosynthetic electron transport of the attached alga in the inner surface was measured by pulse amplitude modulation fluorometer. Among the parameters indicating the status of photosynthetic activity, \(\Phi II \), which is indicative of photosynthetic activity under light condition, of attached alga was low compared to those of planktonic life form. However, \(\Phi II \) of the attached alga increased as the biofilm developed towards maturation. From these results, the development of algal biofilms may enhance phototrophic activity of the cells composing the biofilms. However, a mere clustering of the cell did not promote photosynthesis compared to the planktonic state. Hence, the formation of the biofilms may mean more than a concentration of the population.

Photosynthetic activities of attached or clustered algae with planktonic algae

Hiroshi Hirotani¹, Hoyoung Joo¹, Ayaka Hisagawa¹

¹Osaka Kyoiku University, Kashiwara, Japan

Adhesion of microorganisms and organic matter to membrane surfaces triggers the development of biofilms that can decrease transmembrane flux and affect filtration efficiency, therefore, biofouling control is challenging. High throughput method using resazurin dye (known also as alamarBlue™) as metabolic indicator, was used to assess an antimicrobial (antifouling, anti-biofilm) efficiency of electrospun nanofibre filtration membranes functionalized by quaternary ammonium salts and nanosilver particles. Membrane cuts were placed in 12-wells microplate, inoculated by Escherichia coli suspension and incubated at 37 °C for 4 and 24 hours for resazurin assay and cultivation, respectively. Then, resazurin was added, incubated for another 30 minutes. Membranes were removed, and the fluorescence was measured each 30 minutes for 6 hours. To express amount of bacteria in colony forming units per milliliter (CFU/mL), relative fluorescence units were converted through the calibration curve that formulates relation between growth rate as OD₆₀₀ and respective fluorescence of metabolized resazurin. Based on the calibration curve, limit of detection was set to 4.5 logCFU/mL. Cultivation method was also used to relate the results with resazurin assay. The results showed good relation between resazurin and cultivation methods. Membranes with nanosilver resulted in >5 logCFU/mL removal compared to control membranes. Membranes with quaternary ammonium salts were far less efficient with bacterial removal only about 1 logCFU/mL. Compared to standard cultivation method, resazurin assay does not require sonication or vortexing even when working with porous and complex matrices, and results are delivered in shorter time period. Moreover, microplate design is much less laborious compared to work with tubes and agar plates.

Adhesion of microorganisms and organic matter to membrane surfaces

Eva Travnickova¹, Premysl Mikula¹, Jakub Oprsal², Marie Bohacova¹, Lubomir Kubac³, Dusan Kimmert¹, Jana Soukupova¹, Michal Bittner¹

¹Research Centre for Toxic Compounds in the Environment, Masaryk University, Faculty of Science, Brno, Czech Republic
²Synpo A.S., Pardubice, Pardubice, Czech Republic
³Centre for Organic Chemistry, Ltd., Rybitvi, Czech Republic
⁴Spur A.S., Centre of Polymer Systems, University Institute, Tomas Bata University, Zlin, Czech Republic
⁵Department of Physical Chemistry, Palacky University Olomouc, Faculty of Science, Olomouc, Czech Republic

This research was supported by the project of the Ministry of Industry and Trade of the Czech Republic (FV10323), project of the Ministry of Education, Youth and Sports of the Czech Republic (LO1214), and RECETOX Research Infrastructure (LM2015051 and CZ.02.1.01/0.0/0.0/16_013/0001761).
[P141] RAMAN SPECTROSCOPIC DISTINCTION OF SMALL COLONY VARIANT FROM WILD TYPE PHENOTYPE AS NON-DESTRUCTIVE METHOD TO ANALYZE STAPHYLOCOCCUS AUREUS BIOFILMS

Frederike Gladigau1, Maren Reger1, Christina Ebert1, Jürgen Popp2, Lorena Tuchscherr1, Bettina Löffler1, Ute Neugebauer1

1Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, Jena, Germany, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany
2Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, Jena, Germany, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany, Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena, Germany

S. aureus is frequently found in biofilm-associated infections on implants (1). Bacteria in biofilms can develop small-colony variants (SCVs) characterized by smaller colonies on solid media due to reduced metabolism. It is assumed that this adaptation mechanism allows the bacteria to persist in the biofilm for a long time. Additionally, SCVs from *S. aureus* are also increasingly formed as intracellular adaptation during long-time infection of specific host cell types (2). To identify SCVs the bacteria are plated on solid media and cultivated for at least two days. Since this method is time-consuming and destructive, it would be advantageous to have a tool to distinguish the SCV from wild type (WT) phenotype directly in the biofilm sample.

Raman-spectroscopy is a non-invasive and label-free method that is based on inelastic scattering of light through different vibrational modes of molecules. The recorded spectra thus represent important biochemical information from the sample. Furthermore, images can be obtained by point-by-point scanning. They can for example be used to detect and analyze *S. aureus* bacteria for their growth state intracellularly in host cells (3).

Here, we would like to present Raman spectroscopy as a tool to differentiate SCVs from WT bacteria in a rapid and non-destructive way. We first selected stable SCV strains that do not revert back to WT from *S. aureus* and their original WT strains for measurement. The obtained Raman spectra were used to build a classification model for discrimination of both phenotypes. We used independent stable SCV and WT strains for testing the model. As result our model was able to readily discriminate both phenotypes with high accuracy and sensitivity.

The SCV-WT discrimination model transferred on biofilm samples by using Raman spectroscopic imaging will provide helpful information about the complexity of the biofilm composition and spatial arrangement.

[P142] PIXEL RESOLVED MICRORHEOLOGY OF BIOFILMS USING OPTICAL COHERENCE TOMOGRAPHY

Khalid El Tayeb1, Rob Lammertink2

1Utwente, Enschede, Netherlands
2University of Twente, Netherlands

Particle tracking techniques are used to assess the rheological properties and structural heterogeneities of complex fluids. The motion of the particles is captured and used to extract the mean-square displacements (MSD); this gives information about the environment in which the particles reside. Optical Coherence Tomography (OCT) is a useful microscopy tool for biofilm studies, it allows for depth resolved structural imaging with micron level resolutions. With the addition of nanoparticles to the fluid (<1µm), depth resolved particle dynamics can be measured in and around biofilms. In a previous study we investigated the use of OCT to measure the flow around a biofilm. This allowed the estimation of local shear forces over the surface of a biofilm growing in a microfluidic channel [1]. The velocities of the particles were found to be sensitive to small changes on the channel walls. Looking at the flow around biofilms can help detect their locations before any significant growth could be seen with regular OCT imaging; specifically when the biofilm has a refractive index similar to water. To measure the flow around the biofilms it is important to minimize particle-biofilm interactions, otherwise they will “stick” to the biofilm. This was achieved by using coated particles with polyethylene glycol. Currently we are investigating the dynamics of particles trapped in the biofilm. This allows for the estimation of the rheological properties of biofilms growing under different shear stress condition. The dynamic information of the particles is obtained from the autocorrelation function (ACF) at each pixel of the OCT detector. The ACF contains both diffusive and convective dynamics. The ability of distinguishing between the two depends on their ratio defined as the Péclet number (Pe = convective motion/diffusive motion). For Pe > 1 convective dynamics. The ability of distinguishing between the two depends on their ratio defined as the Péclet number (Pe = convective motion/diffusive motion). For Pe > 1 convection dominates the signal and only velocities can be measured, at Pe < 0.1 diffusive motion dominates. When Pe=1, both the diffusive and convective signals are present and care should be taken to correct for both.

Biofilms are communities of one or multiple species adherent to a surface. To estimate species specific cell count in multispecies biofilms, biofilm detachment and subsequent determination of colony forming units (CFU) on selective agar is an appropriate method. Commonly used methods to detach biofilms are sonication as well as scraping. The biofilm detaching capabilities of dithiothreitol (DTT; Sputasol®), which is able to reduce disulfide bonds of proteins, are investigated in this study, revealing the most efficient method for the detachment of fungal and bacterial biofilm.

Five different methods for biofilm detachment were tested on biofilms of the bacteria P. aeruginosa, S. maltophilia, S. aureus and the fungus E. dermatitidis: Incubation with 1 g/L DTT for 15/30 minutes under slight agitation, sonication for 10 minutes at 60 Hz with DTT or phosphate buffered saline (PBS) and scraping. Therefore, biofilms were formed over a period of 24 (bacteria) to 48 hours (fungi) on the surface of a polystyrene 24 well-plate. An inoculum was set to 1 x 10⁷ and 1 x 10⁶ cells/mL, respectively. The biofilm was washed thrice in sterile PBS. A dilution row was prepared after biofilm detachment and two appropriate diluted suspensions were plated in a volume of 100 µL on suitable selective agar plates. After incubation, colonies were counted and CFUs were calculated. Every strain was examined in double determination and every experiment was repeated three times. The means of the double determination were compared to each other using the statistical program GraphPad Prism 6.

Each method applied showed biofilm detachment of viable cells in a method dependent-manner. The least effective and accurate method of S. maltophilia and S. aureus biofilm detachment was scraping. For P. aeruginosa and E. dermatitidis, the sonication showed weakest effect. The incubation with DTT was highly effective for the four tested species. The incubation with DTT was chosen as most appropriate for biofilm removal and subsequent CFU determination.
[P145] DIRECT IDENTIFICATION OF FUNCTIONAL AMYLOID BY QUANTITATIVE MASS SPECTROMETRY

Heidi. N. Danielsen1, Susan Hove Hansen2, Florian-Alexander Herbst2, Per Halkjaer Nielsen3, Morten Simonsen Dueholm4

1Aalborg University, Aalborg, Denmark
2Aalborg University, Center for Microbial Communities, Denmark
3Aalborg University, Aalborg University, Dep. of Chemistry and Bioscience, Aalborg, Denmark
4Aalborg University, Center for Microbial Communities, Dept. Chemistry and Bioscience, Aalborg, Denmark

Amyloids are highly ordered fibrillar protein polymers used by organisms from all domains of life due to their exceptional properties. We have previously shown that amyloids are widespread among microorganisms in biofilms from various habitats. They are therefore believed to play important roles in biofilm ecology. Despite their common appearance in biofilms, few amyloids have been characterized from biofilm-associated bacteria. However, the few amyloids that have been studied so far have already provided an astonishing demonstration of how the amyloids can be exploited with roles ranging structural components of biofilms, cell envelopes and spore coats to cytotoxins and as reservoirs for quorum-sensing signaling molecules.

The identification of novel functional amyloids is key to understand the many roles of amyloid in biofilms. Isolation of amyloids is unfortunately not a straightforward task. The insolubility and extreme stability of most functional amyloids exclude them from traditional protein analyses. Many functional amyloids are also highly adhesive and therefore bind to pipette tips and other consumables. Pure cultures, large sample volumes and high productivity of amyloids are therefore required for successful purification. We here present a quantitative proteomics technique that allow direct identification of functional amyloid candidates in complex samples based on their structural stability in the presence of increasing concentrations of formic acid.

[P146] VIBRATIONAL SFG SPECTROSCOPY SHEDS NEW LIGHT ON BACTERIAL ADHESION ON CONDITIONED SURFACES WITH ANTIMICROBIAL PEPTIDES

Marie-Pierre Fontaine-Aupart1, Ammoun Mohamad1, Bourguignon Bernard1, Rym Boudjemaa1, Thebault Pascal2

1Institut des Sciences Moléculaires d’Orsay (Ismo) – Cnrs, Orsay Cedex, France
2Laboratoire “Polymères, Biopolymères et Surfaces”, Université de Rouen, Mont Saint Aignan, France

These last years, specific surface coatings able to prevent bacterial adhesion are a very active topic of research which may concern many applications (food industries, health, environment, etc.). In this context, bioinspired strategies, such as the use of antimicrobial peptides (AMP), are recognized as promising. These compounds have a broad spectrum of antibacterial, antiviral, antifungal and antiparasitic activity. They are usually active at low concentrations and can act in synergy with antibiotics. In this study, the AMP Nisin Z was covalently tethering on acid-terminated self-assembled monolayers (SAMs). The acid-terminated SAM (MUA) was either concentrated, or four time diluted with hydroxylated thiol (MUA25). As expected, both conditioned surfaces were efficient against Staphylococcus aureus contamination (less bacterial adhesion and increased bacterial mortality), but surprisingly higher antibacterial activity was measured for MUA25-Nin Z coated surface (90% inhibition of bacterial adhesion). This raises the interest in a better understanding of the interaction between the bacteria and the surface at the molecular scale. For this purpose, the vibrational Sum Frequency Generation (SFG) spectroscopy, a second order non-linear optical method, appears highly appropriate for probing ordered surfaces and interfaces in situ conditions (e.g., in aqueous environment in order to preserve biomolecules structure, functionality and viability). It consists in overlapping in time and in space onto the sample a visible beam (800 nm) and an infrared beam corresponding to the wavelength of molecular vibrational bands of interest, and to detect the spectrum of the emerging beam at the sum-frequency wavelength. We have used the wavelength tunability capabilities of our device to probe C-H bonds of MUA as well as amid I and II bands of the AMP Nisin Z. Results will be presented, showing the sensitivity of SFG to the peptide film. This approach was a mandatory step to improve peptide-tethering strategy and thus to obtain their maximum effectiveness.
[P147] NOVEL METHOD FOR TRANSCRIPTION FACTOR PURIFICATION AND CHARACTERISATION PROVIDES THE FIRST INSIGHT INTO THE TRANSCRIPTIONAL REGULATION OF THE FAP OPERON RESPONSIBLE FOR AMYLOID BIOGENESIS IN PSEUDOMONAS

Maria Rasmussen1, Heidi. N. Danielsen1, Florian-Alexander Herbst1, Henrik Kjeldal1, Carl Martin Peter Nilsson2, Tim Tolker-Nielsen3, Daniel Otzen4, Per Halkjær Nielsen5, Morten Simonsen Dueholm7

1Aarhus University, Aalborg, Denmark
2Aalborg University, Center for Microbial Communities, Aalborg, Denmark
3University of Copenhagen, Denmark
4University of Copenhagen, Dept. of Immunology and Microbiology, København, Denmark
5The Interdisciplinary Nanoscience Center at Aarhus University, Denmark
6Aalborg University, Aalborg University, Dep. of Chemistry and Bioscience, Aalborg, Denmark
7Aalborg University, Center for Microbial Communities, Dept. Chemistry and Bioscience, Aalborg, Denmark

The functional amyloid of *Pseudomonas* operon (fapA-F) encodes the molecular machinery for amyloid fibril biogenesis, and it is found in multiple *Pseudomonas* species. Expression of the Fap system leads to highly aggregative phenotypes that produce very stable biofilms, which may have consequences, e.g. for the establishment of chronic infections. There is currently no information about how transcription of the Fap system is regulated. To gain in-depth knowledge regarding the regulation a new method for isolation and identification of transcription factors was developed. Biotinylated double-stranded DNA fragments, corresponding to overlapping regions of the fap promoter, were used as probes for affinity purification of transcription factors, which were then analysed with label-free quantitative MS/MS. The analysis of samples purified in the presence of various concentrations of competitor DNA and eluted with increasing concentrations of NaCl allowed not only identification of the transcription factors but also characterisation of their specificity and binding strength. Using the method, we identified multiple transcription factors that bound specifically to the fap operon, and due to the sensitivity of the MS/MS analysis, we were even able to characterise the composition of the transcription machinery. The method is universal and can be used to identify DNA-binding proteins for other systems as well.

[P148] A META-PROTEOMICS APPROACH TO IDENTIFY INTER-SPECIES INTERACTIONS DURING BIOFILM DEVELOPMENT IN SIMPLE MICROBIAL MODEL COMMUNITIES

Jakob Herschend1, Zacharias B. V. Damhol1, Andrea M. Marquard3, Birte Svensson2, Søren J. Sørensen1, Per Hägglund2, Mette Burmølle1

1Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
2Department of Biotechnology and Biomedicine, Technical University of Denmark
3Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark

Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial co-isolated soil isolates, which has previously been shown to interact synergistically; *Stenotrophomonas rhizophila*, *Xanthomonas retroflexus*, *Microbacterium oxydans* and *Paenibacillus amylolyticus*. Biofilms of mono- and four-species cultures were cultivated in drip flow reactors to allow biofilm formation under low-shear stress and in the air-liquid interphase. To obtain full taxonomic resolution on proteomic profiles between closely related species in the biofilm and to enhance protein quantification, we developed a pipeline for generating reduced reference proteomes for spectral database searches. By performing comparisons of proteomic profiles from mono- and four-species biofilms, we identified occurring inter-species interactions and the resulting changes in active metabolic pathways. By example, meta-proteomics profiling indicated that community development was influenced by cooperative interactions between community members facilitating e.g. cross-feeding on specific amino acids. However, opposite regulation patterns of fermentation and nitrogen pathways in *Paenibacillus amylolyticus* and *Xanthomonas retroflexus*, also indicated that competition for limited resources and/or niche separation influenced community development. By sampling developing four-species biofilms over time and comparing different time points we were able to show that these inter-species interactions developed over time during biofilm growth.
[P149] ADVANCED SINGLE MOLECULE OPTICAL MICROSCOPY FOR THE INVESTIGATION OF COAGULASES IN STAPHYLOCOCCUS AUREUS BIOFILMS

Dominique Evans1, Olatz Niembro2, Melissa Eriksen1, Rikke L. Meyer1, Mark Leake2

1Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
2Department of Physics, University of York, York, United Kingdom

Staphylococcus aureus is a leading cause of implant associated infections, which are notoriously difficult to treat using antibiotics. The ability of **S. aureus** to form biofilms is a major cause of its pathogenicity; so it is important to understand the fundamental molecular mechanisms behind the extracellular matrix formation. A bespoke fluorescence microscope capable of imaging single molecules inside biofilms is under development, which will be used to address questions regarding the production, localization, and roles of extracellular matrix proteins during biofilm formation.

Single molecules inside biofilms are challenging to image using fluorescence microscopy: samples have a large thickness, and the optically heterogeneous environment strongly scatters light and lowers the signal to noise ratio. The new microscope features transverse illumination, which reduces background noise from out of focus fluorescence. Samples will be excited using a single non-diffractive, self-reconstructing Bessel beam instead of a traditional Gaussian profile laser beam, giving an improved depth of imaging in a strongly scattering sample, and increasing the signal to noise ratio to enable single molecule detection on a millisecond timescale.

The microscope will be used to investigate the formation of fibrin, which is the key matrix component in **S. aureus** biofilms in vivo. **S. aureus** produces two coagulases to trigger fibrin formation: Coagulase (Coa) and von Willebrand factor binding protein (vWbp). Fluorescent fusion proteins of Coa-mCherry and vWbp-GFP have been developed, and they will be visualized in real-time with single-molecule resolution to study their production and localization during biofilm development, and to determine the different roles that these two coagulases play in biofilm matrix formation.

[P150] INVESTIGATION OF THE INFLUENCE OF FLOW ON THE pH MICROENVIRONMENT IN UREOLYTIC BIOFILMS

Nathan Blood1, Esther Karunakaran1, Annette Taylor1

1University of Sheffield, Sheffield, United Kingdom

Ureolytic bacteria produce urease enzymes that catalyse the degradation of urea resulting in formation of ammonia and carbon dioxide. The process is often accompanied by a raised pH that drives the formation of mineral precipitates. Potent ureolytic organisms include *Streptococcus salivarius* present in dental plaque biofilms and *Proteus mirabilis* implicated in catheter biofilm infections. To date laboratory investigations of enzyme activity in these species has mainly involved bulk measurements of analytes in the effluent or rough spatial mapping with pH microelectrodes. However, the chemical microenvironment can be different in the biofilm as a result of local heterogeneities in the enzyme activity and the composition of the biofilm. In addition, the presence of fluid flow may influence the pH gradient in the biofilm. Given that pH plays such an important role in processes including biomineralisation, methods are now emerging for the 3d spatial mapping of the pH microenvironment in biofilms.

Here we investigate *P. mirabilis* biofilm formation in a controlled flow environment with shear rates that reflect the urinary flow rate typically obtained in catheters. The formation of biofilms with various laboratory and clinical strains was compared and the effect of the shear rate on the biofilm density was determined. We present preliminary results on the spatial mapping of the pH in these biofilms and correlate the results with the expression of urease. Our laboratory results are supported by 3D reaction-diffusion-advection (RDA) computer simulations to determine the influence of the spatial variation of enzyme activity on the pH in the biofilms. We found that the local pH in the biofilm could reach high values of pH > 10 when the bulk solution pH remains acidic, resulting in the initiation of crystallisation before the urinary pH is raised. Our goal is to develop an early warning system which provides an indication of a local pH increase as a result of ureolytic biofilms in flow environments when visualisation is not possible (eg in a catheter tip).
NOVEL METHODS FOR BIOFILM CHARACTERIZATION

[P151] IMAGING O2 DISTRIBUTION IN A NEW IN VITRO MODEL SYSTEM FOR CHRONIC INFECTION BIOFILMS

Mads Lichtenberg1, Majken Sønderholm1, Klaus Koren2, Kasper N. Kragh1, Thomas Bjarnsholt1, Michael Kühl3
1University of Copenhagen, Costerton Biofilm Center, Department of Health and Medical Sciences, Copenhagen, Denmark
2Aarhus University, Department of Bioscience - Microbiology, Aarhus, Denmark
3University of Copenhagen, Marine Biological Section, Department of Biology, Helsingør, Denmark

Biofilms involved in chronic infections typically consist of relatively small (~20-200 µm wide) cell aggregates suspended in host material and surrounded by polymorphonuclear neutrophil immune cells that impose strong O2 depletion and slow growth of the pathogenic bacteria. However, most in vitro studies of biofilms involve use of microtiter plate assays or biofilm growth in flow chambers, which do not reproduce the mentioned in vivo growth patterns. We recently introduced growth of pathogenic bacteria (Pseudomonas aeruginosa) in alginate beads as a simple model system for studying biofilms under in vivo-like conditions. The system shows in vivo-like growth of pathogenic bacteria, enables application of a wide range of experimental methods at high reproducibility and replication, and allows easy experimental modulation of gradients of substrates and electron acceptors and exposure to antibiotics. We present the model system, with special emphasis on novel ways to map the distribution of the key electron acceptor O2 in the alginate bead model system, using embedded O2 sensitive sensor nanoparticles in combination with ratiometric luminescence imaging. Such measurements can now be combined with microscopic measurements of bacterial biomass enabling novel high-resolution studies of the growth and activity of pathogenic bacteria under in vivo-like conditions.

[P152] PERFORMANCE OF A GLOW LUMINESCENCE-BASED ATP VIABILITY ASSAY FOR THE QUANTIFICATION OF STAPHYLOCOCCUS AUREUS BIOFILMS AND PERSISTER CELLS

Ilkka Miettinen1, Shella Gilbert-Girard1, Malena Skogman1, Adyary Pallarero1
1Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland

Viability determination based on ATP (adenosine triphosphate) is an established technique in microbiology work used, e.g., for antimicrobial screening. A typical assay consists of a lysis buffer and a luminogenic reagent mix of luciferase and its substrate. ATP, a cofactor for the reaction, is liberated from living cells upon lysis generating light output relative to its concentration. Despite the widespread usage of these assays there is somewhat less experience on applying such methods for intact biofilms. In antimicrobial screening assays involving the cultivation of bacterial suspensions in microtiter well-plates, the presence of biofilm is practically a given after hours of incubation. Since a notable fraction of bacteria may have converted into biofilm growth prior to the endpoint measurement, the phenotype should be considered when validating such assays. Another relatively uncharted phenotype of interest for applying high-throughput viability determination to is known as persisters – non-reproducing cells with low metabolic activity.

Our focus has been on the development of novel methods and workflows for viability testing in biofilms and persisters. As a part of this work we have sought to explore and validate luminometric ATP assays in these more unusual settings with the common biofilm pathogen Staphylococcus aureus. Using previously identified anti-biofilm and anti-persister agents, we assessed the ability of a commercial ATP-based assay to detect changes in viability in both biofilms and persister cultures. We also studied the effect of mechanical disruption of the biofilms on the luminescence signal output. Differences in viability were variably detected between test settings. The results indicate that this assay is not very sensitive for the ATP content in biofilms, and the lysis reagent cannot effectively reach the cells within. The disruption of biofilms and even the delicate manipulation of static, persistent cultures affected the measured signal levels dramatically. We conclude that assay performance depends heavily on the phenotypes present, which should be considered in routine work. Still, the impressive overall sensitivity of ATP-based assays makes them a promising tool for studying persister bacteria, in which the inherently low level of metabolism limits the usefulness of other types of indicators.
[P153] BIOFILM MATRIX VISUALISATION

Thomas Neu¹, Michael Wagner²

¹Department of River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
²Water Chemistry and Water Technology, Engler-Bunte Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany

The extracellular matrix represents an essential part of microbial biofilms and bio-aggregates. The matrix acts as a multi-functional structure and is attributed to be of high importance in different stages of biofilm development. Nevertheless the matrix remains a challenge in many respects. The issues comprise the (1) biosynthesis, release and identity; (2) structural and biochemical analysis; (3) characterisation by -omics; (4) interactions and reactivity; (5) mechanics and dynamics; and (6) control and degradation. Focus of this discussion poster will be on matrix presence – Yes/No, and matrix imaging – laser scanning microscopy/optical coherence tomography. For this purpose selected 3-dimensional image data sets will be used to demonstrate several critical aspects of matrix investigations and techniques. In view of this process, these two most popular imaging approaches will be compared and evaluated. In addition, emerging ideas on matrix staining and visualisation will be elaborated and rated. In summary, this contribution intends to raise the controversy on the in situ biofilm matrix related to presence, characterisation and structure. Furthermore, it is intended to push the envelope in order to reveal thoughtful ideas and new approaches in biofilm matrix research.

[P154] DEFINING CONDITIONS FOR BIOFILM INHIBITION AND ERADICATION ASSAYS FOR GRAM-POSITIVE CLINICAL REFERENCE STRAINS

Cristina Cruz¹, Sherya Shah², Päivi Tammela³

¹University of Helsinki, Helsinki, Finland
²University College London, London, United Kingdom
³University College London, London, United Kingdom

Biofilms are formed by a complex bacterial community encapsulated by a polymeric matrix, with strong adherent and persistent phenotype. Biofilms are considered one of the most challenging areas of modern medicine, accounting for over 80% of hospital-acquired infections. Existing antibiotics have been developed against free-floating bacterial cells, thus many treatments of biofilm-linked infection fail. In this study, we compared the effects of different media on biofilm growth of clinical reference strains of Staphylococci and Enterococci, including multi-drug resistant representatives. Further we optimized the resazurin-based assay for determining the minimal biofilm inhibitory and eradication concentrations (MBIC and MBEC) of standard antibiotics. We showed that tryptone soy broth supplemented with 1% glucose was an optimum media for an average maximum biofilm growth of all strains tested, with an extended incubation time for Enterococci. A range of parameters was tested for the resazurin assay including concentration, temperature and time of incubation. Using quality parameters to analyze the assay’s performance, the conditions for the resazurin assay were set as follows: 4 µg/mL and 8 µg/mL, with incubation at 25°C for 20 min and 40 min for Staphylococci and Enterococci, respectively. In summary, we defined conditions for optimum biofilm growth and for standardized resazurin assay for MBIC and MBEC determination against six Gram-positive clinical reference strains.
[P155] TARGETING INTRACELLULAR BACTERIA WITH SUPRAMOLECULAR ANTIMICROBIAL “NANOBULLETS”

Jiankang Song1, Peter-Paul K.H. Fransen1, Shuqiqi Guo1, Maarten H. Bakker1, Sjors PW. Wijnands1, Sabrina Zaccaria1, Patricia Y.W. Dankers1

1Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands

Introduction

Bacterial infections are common disease in human beings. Although endless effort has been spent to combat infections, complex and persistent infections, e.g., intracellular infections1, are still emerging. With these infections, the bacteria can survive and persist inside the professional phagocytic cells, e.g., macrophages and neutrophils2, as well as non-professional phagocytes e.g., epithelial and endothelial cells3. These bacteria shield themselves from the host immune system and antibiotic treatment, which may cause antibiotic resistance and induce chronic and recurrent infections4. To address this problem, intracellular delivery of antimicrobial peptides via a supramolecular method is proposed to treat the intracellular bacterial infections.

Experiments and results

To this end, supramolecular ureidopyrimidinon (UPy)-based materials were used as intracellular carriers since they have been successfully used for intracellular delivery purpose5. The antimicrobial peptide was coupled onto the UPy molecules to form functional UPy-assembly. Antimicrobial “nanobullets” were obtained through assembling of the functional UPy-assemblies in aqueous phase. The formation, ζ-potential and morphology of these nanobullets were fully characterized. These “nanobullets” are rod-like fibrils and can be internalized by HK-2 cells and THP-1 derived macrophages.

Conclusion

Supramolecular antibacterial “nanobullets” containing antimicrobial peptide has been successfully prepared. These “nanobullets” can be internalized by professional and non-professional phagocytes, which indicates their potential to treat intracellular infections.

Acknowledgement

We acknowledge the support from the Netherlands Cardiovascular Research Initiative (CVON 2012-01). The Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences. Additionally, this work was financially supported by the European Research Council (FP7/2007–2013) ERC Grant Agreement 308045, the Ministry of Education, Culture and Science (Gravity program 024.001.03).

References

[P156] UTILIZATION OF BIOFILM DISPERSAL AS A THERAPEUETIC STRATEGY TO ERADICATE COLISTIN RESISTANT STRAINS

Dan Roizman1, Celine Vidaillac2, Liang Yang1

1Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
2Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore

The potential of biofilm dispersal to restore antimicrobial in-vitro efficacy against 1-day biofilms formed by a colistin resistant strain is evaluated. *P. aeruginosa* PAO1 strain containing the arabinose-inducible pBAD-yhjH plasmid has evolved to resist high levels of colistin and is characterized. The strain morphology, virulence, susceptibility, and resistance profile are examined as compared to the parent strain. Whole genome sequencing and analysis revealed point mutations in *phoQ* and *lpxC*, two genes involved in the biosynthesis of the lipid-A located in the bacterial membranes and the biological target of colistin. Other mutations included genetic alterations in *tpbA*, causing an alteration to the production of eDNA in the biofilm matrix. This change is suspected to reduce the penetration of the positively charged drugs; results were further confirmed with experimental data.

The colistin-resistant derivative exhibited an altered drug susceptibility profile, with increased susceptibility to carbapenems and glycopeptides: “The seesaw effect”, heterogeneous resistance and biofilm dispersal principles are further explored. In this context, we demonstrated that following induced dispersal, the seesaw effect is facilitated, enabling a synergistic effect between colistin and vancomycin, to eradicate the resistant biofilms. The results show an example how the development of resistant bacteria populations could be prevented. This change is suspected to reduce the penetration of the positively charged drugs; results were further confirmed with experimental data. Of interest, colistin plus vancomycin (at clinically relevant concentrations) demonstrated a synergistic effect only against the dispersed biofilms of the colistin resistant strains.

The results of this work indicate the enormous potential for biofilm dispersal as a therapeutic strategy for efficient treatment of biofilm-associated infections. Further developments in novel biofilm dispersal agents represent a promising therapeutic strategy against both susceptible and resistant bacterial biofilms, when used in combination with existing antimicrobial therapies.
[P157] BIODEGRADABLE AND ANTIBACTERIAL P4HB FILMS TO TREAT AND PREVENT S. AUREUS INFECTION

Claudia Fessele1, Flavia Zuber1, Katharina Maniura1, Qun Ren1
1Empa, Materials Science and Technology, St Gallen, Switzerland

For the reduction of bacterial infections in wounds it is advantageous to have a slow but sustainable release of antibacterial active compounds. Herein poly(4-hydroxybutyrate) (P4HB) produced by Escherichia coli was selected because it possesses excellent biocompatibility and its biodegradation takes place via surface erosion rather than burst degradation known for other often used biopolymers. P4HB was fabricated to films together with different metal protoporphyrine complexes such as gallium, copper and zinc, as antibacterial agents. The fabricated films were first analyzed for the release of incorporated metal ions. In the next step the antibacterial properties of the films against methicillin resistant Staphylococcus aureus were examined by in the standard method ASTM2180 where bacterial cells are in direct contact with surfaces. The antimicrobial activity of the lixiviates released from the films were also tested by Minimal Inhibitory Concentration (MIC) susceptibility test, to correlate the released metal ion and antibacterial effect. It was found that the film incorporated with gallium complex showed excellent antibacterial activity even after 1 week incubation.

[P158] ARSENIC-RELATED MICROORGANISMS IN AQUATIC ENVIRONMENTS: DISTRIBUTION AND EXPLOITATION IN BIOREMEDIATION

Simona Crognale1, Sarah Zecchin1, Stefano Amalfitano1, Barbara Casentini1, Stefano Fazi1, Anna Corsini2, Lucia Cavalca2, Simona Rossetti1
1Water Research Institute, National Research Council of Italy (Irsia - Cnr), Rome, Italy
2Dipartimento Di Scienze Per Gli Alimenti, la Nutrizione e l’ambiente (Defens), Università Degli Studi Di Milano, Milan, Italy

Arsenic (As) is one of the most toxic and widely distributed element in the environment. Aquatic microorganisms are able to resist to high As concentration and/or metabolize it, with metabolic potentialities suitable for biotechnological applications. In particular, microbiological As(III)-oxidation is one of the most promising application as a precursor step in As removal from contaminated groundwater, since conventional iron-based treatments are more effective in removing As(V) rather than As(III). This work is aimed to (i) investigate the identities and metabolic potentialities of microorganisms occurring in As-rich aquatic environments (e.g. groundwater, freshwater and geothermal waters) and (ii) optimize the biological pre-treatment of As-contaminated waters in column systems (biofilters). Next Generation Sequencing and CARD-FISH technique were applied to describe microbial community structure in As-contaminated waters. The analysis highlighted a marked diversity between samples and revealed the occurrence of novel thermophiles in geothermal environments. Furthermore, the abundance of functional genes involved in bacterial As-resistance was estimated by qPCR and the main microbial functional groups were evaluated by MPN (Most Probable Number) through selective growth media. Additionally, the main parameters affecting the As(III)-oxidation process in engineered systems were tightly evaluated on different filling materials (i.e., coarse sand, fine sand and sintered glass rings) under a variety of operating conditions (e.g. flow rates, column volume, different As(III) concentrations, use of biofilm at different maturation stages). Biofilm samples were taken at the end of the kinetic experiments and subsequently microbial communities composition were investigated using high-throughput sequencing. The tridimensional structure and microbial colonization on filling materials were assessed using CARD-FISH technique in combination with Confocal Laser Scanning Microscopy. This study confirmed the high potentials of microbially-mediated As(III)-oxidation process in water treatment and assessed the impact of inflow water quality and hydraulic conditions to efficiently scale-up the laboratory set-up for long term/high volume field application.
[P159] SYNTHETIC BIOLOGY APPROACHES FOR ENGINEERING PSEUDOMONAS PUTIDA CATALYTIC BIOFILMS

Daniel Volke1, Pablo Nikel1

1Systems Environmental Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark

Even though biofilms are the most common form of bacterial growth in nature, industrial fermentations rely almost entirely on planktonic lifestyle. Biofilms, however, offer several advantages to be exploited in modern fermentation processes. Bacteria in biofilms are more tolerant to several stresses than free cells, including toxic chemicals and shear stress. Furthermore, the adhesion of cells to a surface can be used to operate a continuous fermentation process without excessive loss of biomass, thereby facilitating downstream processing. So far, catalytic biofilms have exploited the natural ability of bacteria to form such structures, and switchable genetic systems to control bacterial adherence at the user’s will would be desirable. Here, we use Pseudomonas putida to engineer this switchable system. P. putida is a robust soil bacterium for biotechnology as it can thrive under harsh operating conditions, has high tolerance towards several chemicals, and is able to generate NADPH at high rates. These characteristics make P. putida a promising chassis for the production of a broad spectrum of chemicals. Biofilm formation in P. putida is mainly controlled by the trigger signal cyclic diguanylate (c-di-GMP). A network of di-GMP phosphodiesterases (PDE) and diguanylate cyclases (DGC) adjusts the level of c-di-GMP according to internal and external stimuli, like quorum sensing and carbon starvation. Therefore, we decoupled the activity of PDE and DGC from their native regulation network and integrated them into a synthetic circuit. Furthermore, we used a feedback resistant DGC from Caulobacter crescentus. Through this engineering, biofilm formation and dispersion was controllable by addition of cheap inducer molecules such as 3methylbenzoate. Upon activation of the system in P. putida, biofilm formation increased 8-fold after 18 hours of shaken cultivation. Future endeavors will focus on rendering biofilm formation and dispersal controllable through a toggle switch, thereby circumventing the need of permanently present inducer in the medium.

[P160] FLOW CYTOMETRY ANALYSIS OF MOUTHWASH FORMULATIONS TO INVESTIGATE THE MECHANISMS OF ROBUSTNESS AGAINST MICROBIAL CHALLENGE

Maria Charalampous1, Venda Porter Maloney2, Monika Dzwonek-Strzelecka3, Pamela Tulloch4, Kylee Goode1, Tim Overton1

1University of Birmingham, School of Chemical Engineering, Edgbaston, United Kingdom
2Colgate-Palmolive, Piscataway Township, United States
3Colgate-Palmolive Manufacturing Poland, Swidnica, Poland
4Boots Contract Manufacturing Limited, Nottingham, United Kingdom

Mouthwash is a complex formulation for cleansing the mouth and teeth, acting as a liquid vehicle for the delivery of active agents to the oral cavity. As the market and regulatory agencies shift towards demand of fewer preservatives in products, a fundamental understanding of the key drivers preventing contamination by environmental bacteria is needed for the development of micro-robust products. Specifically, an understanding of how different formulations and ingredients are affected by processing conditions can help develop improved manufacturing processes that ensure the prevention of microbial contamination. Developing a clear understanding of how the micro robustness of the product is impacted is critical to improving the speed to market of quality products.

The majority of the published research on mouthwash has focused on the efficacy of oral care products in the mouth and effects on oral microbiota. However there is little publically available research on mouthwash formulation and preservation against environmental bacteria. In this study, flow cytometry was used to investigate the effect of different mouthwash formulations on environmental bacteria that could be introduced during manufacturing. Flow cytometry is a rapid technique for studying particles using scattered light and fluorescence. Using fluorescent dyes with specific binding characteristics, flow cytometry can be used to rapidly enumerate bacteria and determine bacterial physiology and viability.

Flow cytometry analysis of environmental bacterial species showed a high number of dead cells immediately after treatment with different concentrations of four different mouthwash products. There was an increase in the mean forward scatter of samples incubated with two mouthwash products, indicating an increase in particle size. These two mouthwash products had common ingredients not present in the other mouthwash products tested and likely responsible for the aggregation of bacteria. An understanding of how such aggregates impact robustness can provide direction for future processing, sanitization, and formulation recommendations.
[P161] IDENTIFICATION OF GENES INVOLVED IN BIOFILM-SPECIFIC RESISTANCE AGAINST ANTIMICROBIALS IN PSEUDOMONAS AERUGINOSA

Jules Valentin1, Matthias Buhmann1, Henny C. van der Mei2, Qun Ren1

1Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland
2Biomedical Engineering, UnCG, Biomedical Engineering, Groningen, Netherlands

Bacteria living in biofilms tolerate much higher antibiotic concentrations compared to planktonic bacteria and survive long enough to evolve antimicrobial resistance (AMR). Biofilms can cause persistent, hard-to-treat infections and exhibit an intrinsic biology that promotes the development and transmission of AMR. The goal of this project is to improve our understanding of the phenotypic adaptation of biofilms against antibiotics and antimicrobial surfaces, using Pseudomonas aeruginosa as a model organism. P. aeruginosa is one of the ESKAPE pathogens, known to be multi-drug resistant bacteria responsible for many infections. In order to identify biofilm-specific resistance genes, a P. aeruginosa transposon-mutant library is screened in presence of antibiotics, antimicrobial surfaces and a combination of both. Gene expression of wild type P. aeruginosa is analyzed via RNA sequencing in relation to different antibiotic exposure in order to unveil potential pathway of resistance. Another set of screening is focused on key genes related to bacterial surface sensing and biofilm formation toward antibacterial materials. By doing so, we expect to elucidate the induction of AMR of biofilms in response to materials. This work will help us with understanding the contribution of biofilms to AMR acquisition and will facilitate the development of novel antimicrobial strategies and medical devices that are more effective in preventing biofilm-associated infection and AMR.

[P162] ESTABLISHMENT AND CHARACTERIZATION OF A LABORATORY MODEL OF A MIXED SPECIES MICROBIAL SKIN CONSORTIUM

Viduthalai Rasheedkhan Regina1, Tarun Chopra2, Chew Yean Ming1, Li Yongling Adelicia1, Kelvin Lee1, Lee-Ann Clegg1, Jette Petersen1, Kay Sarah1, Sean Booth1, Shruti Pavagadhi1, Scott A. Rice1

1Singapore Center for Environmental Life Science and Engineering, Nanyang Technical University, Singapore, Singapore
2L’Oréal Research and Innovation Singapore, Singapore, Singapore

The commensal skin microbiota plays an active role in maintaining skin health and function. Several clinical phenotypes are associated with an imbalance in the relative proportions of these microbiota including, atopic dermatitis, psoriasis, and dandruff. For example, dandruff, a scalp disorder that is characterized by abnormal flaking and irritation, is correlated with higher incidence of Malassezia restricta and Staphylococcus epidermidis, and lower incidence of Propionibacterium acnes compared to healthy scalp (p<0.05). Despite considerable advancements in the field, we have limited knowledge on how the skin microbes interact with each other, and with the host, to establish and maintain a stable equilibrium in relative abundance that could play an important role in defining the skin/scalp phenotypes. Therefore, it is crucial to ascertain the mechanistic basis of such interactions to understand the equilibrium that will help designing novel interventional strategies.

To study the mechanisms by which skin microbes maintain a stable community, we have developed a robust and reproducible microbial community with three major skin microbial species: S. epidermidis, P. acnes and M. restricta. We have established growth conditions that allow co-cultivation of all three microbes that form a mixed-species biofilm, and have standardized methods to label, quantify, and track their relative abundances within this biofilm community. One intriguing observation is that the mixed-species community produces significantly higher biofilm biomass than the mono-species biofilms. Dissection of this collaborative behavior revealed both cooperative and antagonistic interactions between different members of this community. Our data further suggests that the relative proportions of each member may modulate the growth of other community members. Based on these results, we have defined the interaction network and gained a detailed understanding of the community dynamics of skin microbes, which could be further modulated by varying environmental parameters. This in-vitro model system forms the basis for development of a fully characterized skin microbiota model that could help develop novel microbiota-targeted therapies.
The growth of microbial biofilms on process manufacturing surfaces is a significant industrial problem. Due to their progressive accumulation and resistant phenotype, biofilms are responsible for substantial losses in industrial productivity, as well as product and capital equipment damage. Despite their negative impact on manufacturing processes, industrial surfaces that prevent biofilm deposition and growth are lacking. There is a lack of knowledge of the key physical, biological, and chemical mechanisms that drive bacterial attachment to industrial surfaces and biofilm development under manufacturing hydrodynamic conditions.

To understand how the substratum physical properties affect bacterial attachment and biofilm formation under manufacturing conditions, biofilm growth on different industrially relevant materials (metal and plastics) was investigated. To mimic roughening that occurs during manufacturing processes, coupons of metal (stainless steel) and plastics (polycarbonate, polyethylene, and polypropylene) with different physical properties (categorised as smooth, rough and very rough) were used. The physical properties of the coupons (in terms of roughness, surface free energy for bacterial attachment, wettability, and coefficient of friction) were qualitatively characterised by using interferometry, goniometry and tribometry. *Pseudomonas aeruginosa* ATCC 15442 biofilms were grown on the coupons under manufacturing hydrodynamic conditions (wall shear stress of 0.07 N m⁻², bulk linear velocity of 0.8 m s⁻¹ and Reynolds number of 6383), using the CDC biofilm reactor. The biofilms were visualised by confocal microscopy and the biomass volume per area quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTAT2. Despite no significant differences (with 95% confidence) in the biomass volume per area unit quantified by COMSTA...
[P165] BIOFILM REMOVAL BY VANCOMYCIN AND TOBRAMYCIN WITH DIFFERENT BIOFILM AGE, MEDIA AND EXPOSURE TIME

Xiaofeng Chen1, Yijuan Xu2, Trine Rolighed Thomsen2

1Aalborg University, Dep of Chemistry and Bioscience, Aalborg, Denmark
2Danish Technological Institute, Aarhus, Denmark

Osteomyelitis is an inflammatory process with bone destruction caused by infecting microorganisms. Chronic osteomyelitis is especially difficult to treat due to biofilm formation. The common treatment includes antibiotics therapy and surgery. Although a lot are done to investigate the effect of antibiotics removing biofilms, it is difficult to compare those results due to various test conditions and different biofilm models. In this study, we investigated the possibility of eradicating biofilm in vitro by using vancomycin and tobramycin in clinically relevant concentrations and tested influence of biofilm age, growth media, and antibiotics exposure time on biofilm removal.

Staphylococcus aureus and Pseudomonas aeruginosa, the common pathogens in osteomyelitis, were tested with vancomycin and tobramycin, respectively. We used MBEC™ assay for growing both 24 hours and 72 hours old biofilms. The biofilms were exposed to different doses of antibiotics (vancomycin: 1.25 mg/L to 3000 mg/L; tobramycin: 0.31 mg/L to 80 mg/L) for 1, 2, 4 and 7 days in Tryptic Soy Broth (TSB) or Cation-adjusted Mueller Hinton Broth (CAMHB). Minimum inhibitory concentration (MIC), minimum biocidal concentration (MBC) and biofilm removal efficacy were determined in each test.

We found that choice of media influences biofilm removal, i.e. biofilms were more difficult to remove in TSB than in CAMHB (p<0.001 for both strains). Furthermore, 72 hours biofilms were more difficult to remove than 24 hours biofilms (p<0.001 for S. aureus, p<0.001 in P. aeruginosa). Prolonged exposure of S. aureus biofilm to vancomycin significantly improved removal (p<0.001). For S. aureus biofilms, two-day treatment is required to raise the biofilm removal efficacy in CAMHB, while four-day treatment is required in TSB. On the contrary, prolonged exposure to tobramycin did not affect P. aeruginosa biofilm removal. The data indicated that it was possible to eradicate local S. aureus biofilm infection with high local dose of vancomycin if required treatment duration was ensured. It was also possible to eradicate local P. aeruginosa biofilm infection if enough local dose of tobramycin was provided.

The Galleria mellonella infection model has shown increasing popularity among the non-mammalian infection models in the last years. However, antimicrobial drug testing has been so far only studied in planktonic, but not biofilm-embedded bacteria in this model. We therefore expanded the biofilm toothbrush bristle implantation model established by Benthall et al. using a novel research grade G. mellonella breeding line (TruLarv™, BioSystems Technology). These age and weight defined, genome sequenced larvae overcome the variability normally associated with larvae from e.g. bait shops. To assess anti-biofilm effects in our model, we analysed the biofilm-eradicating activities of ampicillin, gentamicin and ceftaroline, all currently discussed for the treatment of Enterococcus faecalis endocarditis, a classic biofilm-associated disease.

Before implantation in the larvae, enterococcal biofilm establishment on the bristles was examined by confocal laser scanning microscopy and colony forming unit (CFU) determination of detached biofilms. Biofilm and sterile control bristles were injected via one proleg of the larvae and implanted parallel to the intestinal tract. Antibiotics were injected into the haemocoel 1 hour post-implantation using a Hamilton syringe. Biofilm treatment was assessed by an intern pathology scoring system of the larvae, plating of the haemolymph and histological sections using GFP-labeled bacteria. Survival, movement and melanization of the larvae were not impaired by sterile bristles, whereas biofilm-overgrown bristles led to melanization and death of the larvae. None of the antibiotics in 2x the minimal inhibitory concentration were able to significantly improve survival of biofilm-burdened larvae, in contrast to planktonically infected larvae. CFU/mL values in the isolated haemolymph were not reduced by antibiotic treatment. Histological sections allowed for visualization of biofilm size and structure, but showed no difference between the different treatment groups. The TruLarv™ bristle implantation model allows for a rapid, low cost and reproducible analysis of anti-biofilm treatments in an in vivo setting. G. mellonella larvae possess an innate immune system that is structurally and functionally similar to that of mammals, enabling biofilm bristle infections in TruLarv™ to reflect the virulence of biofilm-associated pathogens in mammals. Surfaces of toothbrush bristles can be further modified by using anti-adhesion coatings to analyze the prevention of biofilm formation.
[P167] CLINICAL ISOLATES OF THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTophilia DISPLAY DISTINCT BIOFILM ARCHITECTURES

Ifey Alio¹, Christel Vollstedt¹, Mirja Gudzuhn¹, Sabrina Bielfeld¹, Uwe Mamat², Ulrich Schallbe², Stefan Niemann³, Thomas Kohl³, Jörg Steinmann⁴, Wolfgang Streit⁵

¹Department of Microbiology and Biotechnology, Bio Center Klein Flottbek, University of Hamburg, Hamburg, Germany
²Cellular Microbiology, Priority Area Infections, Research Center Borstel, Borstel, Germany
³German Center for Infection Research, Tübingen, Germany
⁴Institute for Clinical Hygiene, Medical Microbiology and Clinical Infection, Paracelsus Medical Private University Clinic, Nürnberg, Germany

Biofilm-producing bacteria are a major cause of morbidity and mortality in immunocompromised patients. Today in clinical settings, *Stenotrophomonas maltophilia* is considered an important multidrug resistant opportunistic pathogen that is frequently isolated from the lungs of cystic fibrosis patients (CF) and can contribute significantly to disease progression in these patients.

Here we report on the biofilm characteristics of *S. maltophilia* clinical isolates. By utilizing the microtiter plate technique, 350 clinical isolates, isolated from patients at various clinics in Germany were screened for their biofilm forming abilities. Further 42 environmental isolates were included in this study. This screen revealed a strong variation in biofilm forming capabilities among the individual isolates. Based on these results, isolates were then classified as strong, intermediate and weak biofilm formers. For a more detailed observation, the biofilms of strong and weak biofilm forming isolates were grown for 72 hours in flow cells under the same in vitro conditions. The biofilm 3D structures were then examined after a live/dead staining with a laser scanning microscope. It was evident that there is a high variation in the structure of biofilms formed by the various clinical isolates of *S. maltophilia* on a strain level regardless of their origin. While some isolates formed thick lawn like biofilms, other isolates formed sparse patchy like biofilms. Because of these observations, we speculate that under *in vitro* conditions *S. maltophilia* displays varying biofilm architectures on a strain-specific level. These data are correlated with whole genome analyses.

[S168] ELUCIDATING THE POTENTIAL ROLE OF QUORUM SENSING IN SULFATE REDUCING BACTERIA AND ITS POSSIBLE LINK TO BIOCORROSION

Krishnakumar Sivakumar¹, Giantommaso Scarascia¹, Tianyue Wang¹, Pei-Ying Hong¹

¹Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia

Sulfate reducing bacteria (SRB) are widely regarded as the dominant microbial community involved in biocorrosion within the marine environments. The high sulfate content of seawater enhances the proliferation of SRBs within the marine biofilms, which contributes to biocorrosion. Considering the major role played by SRB biofilms in biocorrosion, there is an urgent requirement to reduce its abundance within the marine environment. Conventional methodologies involve the use of non-environmentally benign biocides and antibiotics and, hence, are limited by health, safety and environmental concerns. Quorum sensing is a type of cell density-dependent intercellular chemical communication mediated by a group of small signal molecules such as acyl homoserine lactones (AHLs), which play an important role in biofilm formation. Previous studies have reported on the production of several AHLs by SRB species and these signal molecules have also been implicated to be the driving force for the metabolic activities of SRB and its interspecies interactions in a highly complex natural environment such as the microbial mats. Using *Desulfovibrio vulgaris* and *Desulfobacterium corrodens* as model sulfate reducers, we showed that SRBs produce and release AHLs into extracellular space in the presence of lactate and Na₂SO₄ as electron donor and acceptor respectively. Under saline conditions, the specific AHL production rate (expressed as nmoles of AHLs produced/cells/h) at logarithmic phase was found to be ~3-folds higher for both *D. vulgaris* and *D. corrodens*. In addition, salinity also induced a higher rate of sulfate reduction (~2-folds), which correlated well with the logarithmic phase-AHL production kinetics. Taken together, the results suggest that quorum sensing play a potential role in enhancing sulfate reduction under saline conditions and hence, could lead to elevated rates of biocorrosion in seawater environments. This study could harness a relationship between quorum sensing, sulfate reduction and biocorrosion. Further, this study could serve as a platform to design and deploy environmentally benign quorum quenching approaches to control SRB and their subsequent impacts on biocorrosion.
[P169] COMPARISON OF THE EFFECTS OF PULP CAPping MATERIALS ON ORAL CARIogenic BACTERIA: AN IN VITRO STUDY

Basma Mourad1, Abdelaziz Fayed1, Osama Mohamed1, Ahmed Musrati2

1Alexandria University, Egypt
2Institute of Dentistry, University of Turku, Finland

Background/Aims: Pulp capping agents are synthetic materials used in clinical dentistry to protect the dental pulp and facilitate its healing after being exposed traumatically or pathologically. The aim of this in vitro study was to compare three different pulp capping materials, Biodentine™, White ProRoot® mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal®) with regard to their antibacterial effect against two reference strains of cariogenic bacteria, Streptococcus mutans and Lactobacillus acidophilus.

Materials and methods: The three pulp capping materials: Biodentine™, Mineral Trioxide Aggregate (MTA) and Calcium hydroxide (Dycal®) were tested on S. mutans (ATCC No. 25175) and L. acidophilus (DSM No. 20079). The samples were divided into 3 groups according to the time interval between mixing and testing. Direct contact test (DCT) was the method used in assessing the antibacterial effect at different time points and the numbers of colony-forming units (CFU/ml) on the agar plates were calculated for each tested material.

Results: All tested materials in the three groups showed significant activity against both bacteria (P < 0.001) compared with the control group. After 24 h and 7 days both Biodentine and MTA showed superior antibacterial effects against S. mutans compared to Dycal. For L. acidophilus, after 7 days Biodentine showed the most antibacterial effect compared to the other two.

Discussion: The antibacterial properties of certain pulp capping materials over others dictate their preferential selection in clinical settings where the dentist encounters deep dental cavities with bacterial potential. Such proper material selection raises the chances of treatment success at the long run.

[P170] EFFECTS OF AN ETHANOLIC EXTRACT OF YELLOW TAGETE (TAGETES ERECTA) ON STAPHYLOCOCCUS SPP. BIOFILMS

Cristina Moliner1, Inés Reigada2, Carlota Gómez-Rincón1, Adyary Fallarero1

1Facultad de Ciencias de la Salud, Universidad San Jorge
2Anti-Infective Research (Air), Pharmaceutical Design and Discovery Group (Pharmdd), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
3Protein and Cell Analysis, Division of Biosciences, Thermo Fisher Scientific

Bacterial biofilms display an increased tolerance towards antimicrobial therapy when compared to their suspension counterparts, making the discovery of effective anti-biofilm molecules tremendously challenging. Due to the recognized value of natural-derived chemotypes in drug discovery, it is worth exploring plant-derived molecules as sources of novel anti-biofilm. However, so far, the studies of anti-biofilm activity among flower extracts has been very scarce. The essential oils of Tagetes erecta, a plant species originally from Mexico, are rich in carotenoids like lutein and terpenoids. These terpenoids have been reported to exert biocidal activity and thus it is plausible to hypothesize that they may have anti-biofilm effects. In this investigation, the ethanolic extract of the flowers of T. erecta was tested for biofilms inhibiting effects using orthogonal approaches.

The ethanolic extract of the flower was prepared by Sohxlet extraction. Viability of both (planktonic bacteria and biofilms) as well as biofilm biomass, were quantified using resazurin and crystal violet staining sequentially in the same plate, while biofilm matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate, as in Skogman et al. 2012. The extract was tested against Staphylococcus aureus ATCC 25923, Staphylococcus aureus Newman and Staphylococcus epidermidis. This quantitative data was complemented with Brightfield imaging of the microbial attachment pattern and Fluorescence microscopy of samples stained with the LIVE/DEAD™ BacLight™ bacterial viability kit. The extract of T. erecta reduced the viability of the suspensions of all bacterial strains, with the potency (IC50) values of 0.73 ± 0.18; 1.36 ± 0.11 and 1.25 ± 0.19 mg/mL when treating S. aureus, S. aureus Newman and S. epidermidis, respectively. The extract was also similarly effective in reducing S. aureus Newman biofilm biomass, with a potency value of IC50 of 1.35 ± 0.19 mg/mL.

In conclusion, the ethanolic extract of T. erecta represents displayed significant bactericidal effects against planktonic bacteria and anti-biofilm activity against S. aureus Newman. Even though results were not overly positive with this particular extract, this investigation does provide an example of a project devoted to natural products discovery in the field of anti-biofilms, more of which are definitively needed.
[P171] USING THE ZEBRAFISH TUBERCULOSIS MODEL TO TEST BIOFILM-TARGETING TREATMENTS COMBINED WITH ANTIBIOTICS

Milka Hammarén1, Leena-Maija Vanha-aho2, Anni Kleino3, Mataleena Parikka3

1University of Tampere, Tampere, Finland
2Aarhus Institute of Advanced Studies, Denmark
3University of Tampere, Tampere University Hospital, University OF Tampere, Finland

The zebrafish has established itself as a convenient model to study tuberculosis, which is a difficult-to-treat infection affecting millions of people. There is in vitro evidence on the formation of biofilms by the causative pathogen, Mycobacterium tuberculosis. The formation of biofilm is a likely cause of the requirement of a prolonged treatment of tuberculosis with multiple antibiotics. We have developed an adult zebrafish-Mycobacterium marinum model and want to use it to study biofilm formation and its role in antibiotic tolerance in vivo. Anti tuberculosis drugs can be used against M. marinum, but similarly to human tuberculosis, their efficacy against this fish pathogen is suboptimal. We are therefore planning to test different biofilm-targeting strategies to improve the efficacy of antibiotic treatment against pathogenic mycobacteria using the zebrafish model.

[P172] COMPARISON OF IN VITRO BIOFILM PRODUCTION OF STAPHYLOCOCCUS PSEUDINTERMEDIUS STRAINS ON CONGO RED AGAR AND MICROTITER PLATE TEST

Adrienn Mercédesz Veres1, Vivien Orban1, Orsolya Juhasz1

1University of Veterinary Medicine, Budapest, Hungary

Background:
Biofilm formation of staphylococci is a common cause of antibiotic resistance. As a virulence factor, it enables bacteria to adhere to biological and artificial surfaces and to produce extracellular matrices. Compared to non-biofilm producers, bacteria embedded in biofilms have enhanced resistance towards harmful environmental conditions such as antimicrobial agents and disinfectants. In veterinary medicine, early detection of biofilm formation is crucial and essential for effective therapy of chronic ear, skin or mammary gland infections.

Aims:
In this study, biofilm-forming Staphylococcus pseudintermedius strains causing chronic canine otitis externa and dermatitis were tested. The aim was to find the correspondence between the amount of biofilm biomass detected by Crystal Violet (CV) staining and the colony morphology on Congo Red Agar (CRA).

Methods:
In total 79 strains of S. pseudintermedius isolated from canine external ear canal infections were tested. The biofilms produced by each strain were evaluated on 96-well Microtiter Plates (MTP) after 24 hours of incubation in Mueller-Hinton broth at 37 °C. The biofilm biomass was detected by the application of 0.1% CV solution and absorbance was measured with spectrophotometry at the wavelength of 545 nm. Colony morphology was simultaneously examined with CRA method after 24 hours of incubation at 37 °C. Biofilm producer strains formed black, while biofilm non-producer strains red colonies.

Results:
The CRA method showed low sensitivity (83%) and negative predictive volume (5,8%) compared to MTP test. Therefore, the widely used MTP test cannot be replaced by CRA method for detection of biofilm production of S. pseudintermedius strains. Further investigations are needed to find a quicker and reliable method to detect biofilms.

The Project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. EFOP-3.6.3-VEKOP-16-2017-00005, project title: „Strengthening the scientific replacement by supporting the academic workshops and programs of students, developing a mentoring process)
[173] BIOFILM FORMATION BY DIFFERENT GENOTYPES OF DAIRY STAPHYLOCOCCUS AUREUS ISOLATES FROM NORTHERN ITALY

Pierluigi Aldo Di Ciccio1, Angelo Colagliorgi2, Ilaria Bruini2, Emanuela Zanardi1, Sergio Ghidini1, Virginia Filipello2, Guido Finazzi2, Adriana Ianieri1

1Department of Food and Drug, University of Parma, Parma, Italy
2Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’emilia Romagna – Headquarters, Brescia, Italy

Staphylococcus aureus (S. aureus) is a pathogen that causes several serious diseases in both humans and animals worldwide. It represents a great concern in the dairy production chain, since it is often isolated from raw milk and dairy products. Furthermore, it is considered a major issue for the food processing industry due to its ability to form biofilms, that can become persisting sources of contamination.

It has been observed that different genotypes of S. aureus differ in their contagiosity and pathogenicity. In particular, S. aureus genotype B (GTB) is associated with high within-herd prevalence. This indicates an increased contagious and virulence potential compared with other genotypes (OGTs). Furthermore, in a recent study dairy S. aureus GTB from Switzerland showed significantly higher biofilm formation compared with OGTs.

The aim of this study was to evaluate the biofilm-forming abilities of different genotypes of dairy S. aureus strains isolated from Italy (Piedmont and Emilia Romagna).

A total of 49 dairy isolates were genotyped by using ribosomal spacer PCR and MLST. Biofilm formation was evaluated under static conditions on six-wells polystyrene plates (37°C, 24 h).

15 out of 49 (30.6%) isolates were found to be GTB, whereas the remaining isolates (=34) belong to other ten different genotypes. Six of GTB isolates (40%) showed biofilm forming ability. In particular, four isolates were classified as weak and two as moderate biofilm producers. As OGTs isolates concern, 13 strains (38.2%) resulted capable to form biofilm: five weak, six moderate, and two strong biofilm producers. The majority of STs found are previously reported to be bovine-associated.

In contrast with previous findings, in this work differences in biofilm forming ability between S. aureus GTB and OGTs were not observed. Interestingly, both the strong biofilm producers were not GTB (AA, ND).

In summary, no specific genotype or MLST could be categorized significantly into one level of biofilm formation. Further studies are necessary to confirm these initial findings.

[PI74] A MOVING STORY: HOW EPITHELIUM WITH IMPAIRED CILIARY FUNCTION RESPONDS TO BIOFILM INFECTION

Woolf Walker1, Samuel Collins2, Raymond Allan2, Claire Jackson2, Luanne Hall-Stoodley3, Jane Lucas1

1University Hospital Southampton NHS Foundation Trust, United Kingdom
2University of Southampton, Southampton, United Kingdom
3Ohio State University, United States

Background Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogeneous disorder that is characterised by abnormal ciliary function. Resultant failure of mucociliary clearance is associated with long-term bacterial colonisation of the airways, causing localised inflammation and airway damage. PCD patients also have low airway nitric oxide levels compared to healthy individuals. We hypothesised that the lack of mucociliary clearance would result in increased biofilm formation by non-typeable Haemophilus influenzae (NTHi), the most frequently isolated pathogen from the airways of PCD patients. To examine this we compared NTHi biofilm formation on primary respiratory epithelial cells cultured from PCD patients and healthy volunteers, and also characterised the epithelial response to colonisation.

Methods Epithelial cells isolated from nasal brushings of PCD patients and healthy volunteers were cultured at air-liquid interface to form established ciliated layers. Epithelial cells were co-cultured with a clinical NTHi isolate and biofilm formation assessed over 72 hours using scanning electron microscopy, fluorescent in situ hybridisation, and conventional culturing techniques. Ciliary beat frequency, antimicrobial peptide (LL-37) production, cytokine production, and nitric oxide synthase activity were measured for all co-culture models. A label-free LC/MS proteomic approach was applied to elucidate any resultant changes in cellular protein expression.

Results A significant increase in NTHi biofilm formation was observed on PCD epithelial cells compared to healthy epithelium (p<0.001). With the exception of impaired ciliary function both PCD and healthy epithelium demonstrated similar cytokine, LL-37 and NO production profiles. Label-free proteomic analyses revealed that NTHi biofilm colonisation of PCD epithelial cells resulted in dysregulated cytoskeletal remodelling and increased expression of S100 proteins in comparison to healthy epithelium.

Conclusions Impaired ciliary function is the primary defect in PCD and renders the airway epithelium more permissive to NTHi biofilm formation, with dysregulated cytoskeletal remodelling also suggesting enhanced cellular invasion.
[P175] EFFECT OF LED LIGHT ON PSEUDOMONAS FLUORESCENS BIOFILMS ON A HYDROPHOBIC SURFACE

Valeria Angarano¹, Cindy Smet², Simen Akkermans³, Maria Baka², Andre Chieffi³, Jan Van Impe²

¹Ku Leuven Technologiecampus Gent, Gent, Belgium
²Ku Leuven, Belgium
³P&G

Bacteria are ubiquitous and may cause clinical infections (e.g., in catheters or needles), corrosion, loss of efficiency in different processes (e.g., water process, bleaching teeth processes). Nowadays, many antimicrobial agents (e.g., ampicillin, ciprofloxacin) are used to avoid bacterial infections. However, when bacteria attack a surface and grow as resistant biofilms, they become less susceptible to biocides and disinfectants. Current research in the field aims to provide alternative solutions to tackle this problem, by chemical and also by physical means. An alternative solution could be the utilization of light to kill or facilitate the detachment of biofilms from different consumer relevant surfaces, whether or not in synergy with different surface modification techniques. Light treatments exhibit various advantages. They are environmentally friendly and easy to use, making them extremely desirable for the food or medical industry. They could represent a new way to tackle the biofilm problematics. The use of cheaper light sources (e.g., LED - Light Emitting Diodes) represents a future perspective for the realization of household devices or small hospital devices for photodynamic inactivation. This work aims to unravel the underlying mechanism which governs the biofilm detachment or death by investigating and optimizing different light sources. This work aim to develop a protocol to grow a reproducible biofilm.
<table>
<thead>
<tr>
<th>Name</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Miller, Amanda</td>
<td>P12</td>
</tr>
<tr>
<td>A. Rice, Scott</td>
<td>P162</td>
</tr>
<tr>
<td>A. Tursi, Sarah</td>
<td>P12</td>
</tr>
<tr>
<td>Abdelhamid, Yassmin</td>
<td>P23</td>
</tr>
<tr>
<td>Abdiyan, Patricia</td>
<td>O4</td>
</tr>
<tr>
<td>Abt, Dominik</td>
<td>P85</td>
</tr>
<tr>
<td>Adan, Abdullahi</td>
<td>O15</td>
</tr>
<tr>
<td>Adelicia, Li Yongling</td>
<td>P162</td>
</tr>
<tr>
<td>Adoni, Pavan</td>
<td>P50</td>
</tr>
<tr>
<td>Agneasens, Laura M</td>
<td>P65</td>
</tr>
<tr>
<td>Agneta, Richter-Dahlfors</td>
<td>P133</td>
</tr>
<tr>
<td>Ahmad J., Jawaria</td>
<td>P63</td>
</tr>
<tr>
<td>Ainelo, Hanna</td>
<td>P14, P15</td>
</tr>
<tr>
<td>Akkermans, Simen</td>
<td>P175</td>
</tr>
<tr>
<td>Al-Ahmad, Ali</td>
<td>P115</td>
</tr>
<tr>
<td>Albrich, Werner</td>
<td>P85</td>
</tr>
<tr>
<td>Alc, Angel</td>
<td>P131</td>
</tr>
<tr>
<td>Alexander, Morgan</td>
<td>P127</td>
</tr>
<tr>
<td>Alice, Hoche</td>
<td>P125</td>
</tr>
<tr>
<td>Alio, Ely</td>
<td>P167</td>
</tr>
<tr>
<td>Allan, Raymond</td>
<td>P174</td>
</tr>
<tr>
<td>Allen, Rosalind J.</td>
<td>P83</td>
</tr>
<tr>
<td>Alliet, Marion</td>
<td>P122</td>
</tr>
<tr>
<td>Almblad, Henrik</td>
<td>P30, O8</td>
</tr>
<tr>
<td>Almida, Carina</td>
<td>P68</td>
</tr>
<tr>
<td>Almblad, Stefano</td>
<td>P158</td>
</tr>
<tr>
<td>Amano, Atsuo</td>
<td>P60</td>
</tr>
<tr>
<td>Anastasio, Aniello</td>
<td>P126</td>
</tr>
<tr>
<td>Andersen, Thomas Emil</td>
<td>P89</td>
</tr>
<tr>
<td>Andreasen, Maria</td>
<td>O10</td>
</tr>
<tr>
<td>Andres, Camilo</td>
<td>P92</td>
</tr>
<tr>
<td>Andrea, David</td>
<td>P138</td>
</tr>
<tr>
<td>Angarano, Valeria</td>
<td>P175</td>
</tr>
<tr>
<td>Apermanns, Kenny</td>
<td>P92</td>
</tr>
<tr>
<td>Aranjani, Jesil</td>
<td>P131</td>
</tr>
<tr>
<td>Arnaud, Gautier</td>
<td>P134</td>
</tr>
<tr>
<td>Asfeg, Cecile Antoinette</td>
<td>P89</td>
</tr>
<tr>
<td>Aslan, Hüsni</td>
<td>P45, O15</td>
</tr>
<tr>
<td>Assadian, Ojan</td>
<td>P164</td>
</tr>
<tr>
<td>Assaie-Ardakany, Shayan</td>
<td>P19</td>
</tr>
<tr>
<td>Asserlind, Johanna</td>
<td>P120</td>
</tr>
<tr>
<td>Atkinson, Steve</td>
<td>P16</td>
</tr>
<tr>
<td>Aubert, Jean-Emmanuel</td>
<td>P70</td>
</tr>
<tr>
<td>Auer, Manfred</td>
<td>O5</td>
</tr>
<tr>
<td>Auernhammer, Peter Thomas</td>
<td>P108</td>
</tr>
<tr>
<td>Augustynowicz-Kopec, Ewa</td>
<td>P52</td>
</tr>
<tr>
<td>Aurelle, Bariarda</td>
<td>P134</td>
</tr>
<tr>
<td>Axelos, Etienne</td>
<td>P96</td>
</tr>
<tr>
<td>Azevedo, Andrea</td>
<td>P68</td>
</tr>
<tr>
<td>Azevedo, Nuno</td>
<td>P68</td>
</tr>
<tr>
<td>Bäck, Marcus</td>
<td>P133</td>
</tr>
<tr>
<td>Bade, Stephanie</td>
<td>P31, P111</td>
</tr>
<tr>
<td>Baka, Maria</td>
<td>P175</td>
</tr>
<tr>
<td>Bakker, Maarten H.</td>
<td>P155</td>
</tr>
<tr>
<td>Baidry, Maria</td>
<td>P24</td>
</tr>
<tr>
<td>Balestri, Marco</td>
<td>P126</td>
</tr>
<tr>
<td>Bailer, Balázs</td>
<td>O30</td>
</tr>
<tr>
<td>Balzano, Sergio</td>
<td>P81</td>
</tr>
<tr>
<td>Baptista, João</td>
<td>P68</td>
</tr>
<tr>
<td>Barred, Parsons</td>
<td>P112</td>
</tr>
<tr>
<td>Barros, Ana Cláudia</td>
<td>P130</td>
</tr>
<tr>
<td>Barros, Caio</td>
<td>P6</td>
</tr>
<tr>
<td>Bar-Zeev, Edou</td>
<td>O5</td>
</tr>
<tr>
<td>Bart, Tom</td>
<td>P73, P75</td>
</tr>
<tr>
<td>Baziard, Geneviève</td>
<td>P122</td>
</tr>
<tr>
<td>Beatrice, Gutt</td>
<td>P34</td>
</tr>
<tr>
<td>Behal, Arvind</td>
<td>P99</td>
</tr>
<tr>
<td>Beloijan, Katarina</td>
<td>P28</td>
</tr>
<tr>
<td>Bellini, Dom</td>
<td>P27</td>
</tr>
<tr>
<td>Benintende, Graciela</td>
<td>O4</td>
</tr>
<tr>
<td>Bernard, Bourguignon</td>
<td>P146</td>
</tr>
<tr>
<td>Bernardi, Thierry</td>
<td>P31</td>
</tr>
<tr>
<td>Berretta, Marcelo</td>
<td>O4</td>
</tr>
<tr>
<td>Bertron, Alexandra</td>
<td>P70</td>
</tr>
<tr>
<td>Bessa, Lucinda J.</td>
<td>P104</td>
</tr>
<tr>
<td>Betschart, Patrick</td>
<td>P85</td>
</tr>
<tr>
<td>Biavasco, Francesca</td>
<td>P95</td>
</tr>
<tr>
<td>Bielfield, Sabrina</td>
<td>P167</td>
</tr>
<tr>
<td>Bildstein, Hermine</td>
<td>P96</td>
</tr>
<tr>
<td>Bischoff, Markus</td>
<td>P43</td>
</tr>
<tr>
<td>Bitner, Michal</td>
<td>P140</td>
</tr>
<tr>
<td>Bjornsholt, Thomas</td>
<td>P151</td>
</tr>
<tr>
<td>Blanco-Cabra, Núria</td>
<td>P18</td>
</tr>
<tr>
<td>Bloch, Sylvia</td>
<td>P144</td>
</tr>
<tr>
<td>Blom, Kristina</td>
<td>P112, P120</td>
</tr>
<tr>
<td>Blood, Nathan</td>
<td>P150</td>
</tr>
<tr>
<td>Bogler, Anne</td>
<td>P5</td>
</tr>
<tr>
<td>Bohacova, Marie</td>
<td>P140</td>
</tr>
<tr>
<td>Bohn, Eric</td>
<td>P21</td>
</tr>
<tr>
<td>Bolješić, Maja</td>
<td>P80</td>
</tr>
<tr>
<td>Bonafos, Caroline</td>
<td>P37</td>
</tr>
<tr>
<td>Booth, Sean Cameron Morrison</td>
<td>P162, O20</td>
</tr>
<tr>
<td>Borisov, Sergey</td>
<td>O40</td>
</tr>
<tr>
<td>Boudjemaa, Rym</td>
<td>P146, P35</td>
</tr>
<tr>
<td>Bowen, Ben P</td>
<td>P82</td>
</tr>
<tr>
<td>Boyd, Ben</td>
<td>P110</td>
</tr>
<tr>
<td>Brandt, Bernd</td>
<td>P84</td>
</tr>
<tr>
<td>Braun, Burga</td>
<td>P118</td>
</tr>
<tr>
<td>Briandet, Romain</td>
<td>P35, O32</td>
</tr>
<tr>
<td>Briandet, Romain</td>
<td>P35, O32</td>
</tr>
<tr>
<td>Briandet, Romain</td>
<td>P35, O32</td>
</tr>
<tr>
<td>Briliys, Kristen</td>
<td>P62</td>
</tr>
<tr>
<td>Brioso Jimenez, Jose Luis</td>
<td>P113</td>
</tr>
<tr>
<td>Brodersen, Kasper Eigetti</td>
<td>O40</td>
</tr>
<tr>
<td>Brooks, Stephen</td>
<td>P71</td>
</tr>
<tr>
<td>Brown, James</td>
<td>P127</td>
</tr>
<tr>
<td>Brown, Sam</td>
<td>P61</td>
</tr>
<tr>
<td>Bruini, Ilaria</td>
<td>P173</td>
</tr>
<tr>
<td>Brun, Yves</td>
<td>O14</td>
</tr>
<tr>
<td>Brunhede, Maja</td>
<td>O15</td>
</tr>
<tr>
<td>Buettner, Henning</td>
<td>P41, P45</td>
</tr>
<tr>
<td>Buhmann, Matthias</td>
<td>P161, P85</td>
</tr>
<tr>
<td>Burchard, Thomas</td>
<td>P115</td>
</tr>
<tr>
<td>Burmielle, Mette</td>
<td>P7, P64, P67, P116, P135, P148, O29</td>
</tr>
<tr>
<td>Busscher, Henk J.</td>
<td>P33, P51</td>
</tr>
<tr>
<td>Buttaro, Bettina</td>
<td>P12, O33</td>
</tr>
<tr>
<td>Cai, Yuming</td>
<td>P29, P22, P27</td>
</tr>
<tr>
<td>Cameseno, Terri</td>
<td>P97</td>
</tr>
<tr>
<td>Camilleri, Laura B</td>
<td>P82</td>
</tr>
<tr>
<td>Canette, Alexis</td>
<td>P35</td>
</tr>
<tr>
<td>Caramelo, Julio</td>
<td>O4</td>
</tr>
<tr>
<td>Larson, Ross</td>
<td>P54</td>
</tr>
<tr>
<td>Carmen, Marie</td>
<td>P37</td>
</tr>
<tr>
<td>Carlson, Ross P</td>
<td>O22</td>
</tr>
<tr>
<td>Carrera, Julián</td>
<td>O2</td>
</tr>
<tr>
<td>Caruño, Dario</td>
<td>P49</td>
</tr>
<tr>
<td>Casentini, Barbara</td>
<td>P158</td>
</tr>
<tr>
<td>Casey, Eoin</td>
<td>O6</td>
</tr>
<tr>
<td>Castanedo, Olga</td>
<td>P51</td>
</tr>
<tr>
<td>Castanho, Miguel</td>
<td>P138</td>
</tr>
<tr>
<td>Castelain, Mickael</td>
<td>P32</td>
</tr>
<tr>
<td>Castenholz, Richard W.</td>
<td>P77</td>
</tr>
<tr>
<td>Catherine, Feuilloy</td>
<td>P59</td>
</tr>
<tr>
<td>Cava, Lucia</td>
<td>P158</td>
</tr>
<tr>
<td>Cedaro, Nicholas</td>
<td>P95</td>
</tr>
<tr>
<td>Chapman, Matthew R.</td>
<td>O10</td>
</tr>
<tr>
<td>Charalampous, Maria</td>
<td>P160</td>
</tr>
<tr>
<td>Chawla, Kiran</td>
<td>P131</td>
</tr>
<tr>
<td>Chen, Hui</td>
<td>P54</td>
</tr>
<tr>
<td>Chen, Xiaofeng</td>
<td>P165</td>
</tr>
<tr>
<td>Chiefi, Andre</td>
<td>P175</td>
</tr>
<tr>
<td>Chih-Yu, Hsu</td>
<td>P56</td>
</tr>
<tr>
<td>Chodorski, Jonas</td>
<td>P137</td>
</tr>
<tr>
<td>Choon, Ferdinand Xiankeng</td>
<td>P133</td>
</tr>
<tr>
<td>Chopra, Tarun</td>
<td>P162</td>
</tr>
<tr>
<td>Christensson, Magnus</td>
<td>O21</td>
</tr>
<tr>
<td>Christiane, Ziegler</td>
<td>P38</td>
</tr>
<tr>
<td>Christiansen, Gunna</td>
<td>P105</td>
</tr>
<tr>
<td>Christiansen, Rikke</td>
<td>O36</td>
</tr>
<tr>
<td>Christin, Schlegel</td>
<td>P38</td>
</tr>
<tr>
<td>Ciocotich, Nicole</td>
<td>P100</td>
</tr>
<tr>
<td>Ciccarese, Davide</td>
<td>O19</td>
</tr>
<tr>
<td>Citterio, Barbara</td>
<td>P95</td>
</tr>
<tr>
<td>Clarke, Stuart</td>
<td>P76</td>
</tr>
<tr>
<td>Cleave, David</td>
<td>P76</td>
</tr>
<tr>
<td>Clegg, Lee-Ann</td>
<td>P163</td>
</tr>
<tr>
<td>Coates, Anthony</td>
<td>O31</td>
</tr>
<tr>
<td>Coenye, Tom</td>
<td>P117</td>
</tr>
<tr>
<td>Colagigori, Angelo</td>
<td>P126, P173</td>
</tr>
<tr>
<td>Coker, Isma, Arzu</td>
<td>P10, P48</td>
</tr>
<tr>
<td>Collins, Samuel</td>
<td>P174</td>
</tr>
<tr>
<td>Cologna, Stefanie M.</td>
<td>P54</td>
</tr>
<tr>
<td>Congestri, Roberta</td>
<td>P66, O35</td>
</tr>
<tr>
<td>Consonni, Marco</td>
<td>P46</td>
</tr>
<tr>
<td>Cooper, Vaughn</td>
<td>P79, P93, O27</td>
</tr>
<tr>
<td>Correa, Joaquín</td>
<td>O5</td>
</tr>
<tr>
<td>Corsini, Anna</td>
<td>P158</td>
</tr>
<tr>
<td>Cortesao, Marta</td>
<td>P114</td>
</tr>
<tr>
<td>Cousseau, Thomas</td>
<td>P3</td>
</tr>
<tr>
<td>Coutinho, Ana</td>
<td>P138</td>
</tr>
<tr>
<td>Craddock, Jack</td>
<td>P29, P27</td>
</tr>
<tr>
<td>Crespo, Anna</td>
<td>P18</td>
</tr>
<tr>
<td>Crielard, Wim</td>
<td>P84</td>
</tr>
<tr>
<td>Crognaule, Simona</td>
<td>P158</td>
</tr>
<tr>
<td>Cronenberg, Tom</td>
<td>P13</td>
</tr>
<tr>
<td>Cruz, Cristina</td>
<td>P154, P144</td>
</tr>
<tr>
<td>Cunliffe, Clare</td>
<td>O24</td>
</tr>
<tr>
<td>D. Rich, Jacqueline</td>
<td>P30</td>
</tr>
<tr>
<td>Damholt, Zacharias B. V.</td>
<td>P148</td>
</tr>
<tr>
<td>Danević, Tjaša</td>
<td>P26</td>
</tr>
<tr>
<td>Danielsen, Heidi N.</td>
<td>P11, P45, P47</td>
</tr>
<tr>
<td>Dankers, Patricia YW.</td>
<td>P155</td>
</tr>
<tr>
<td>Davies, Peter</td>
<td>P19, P86</td>
</tr>
<tr>
<td>Name</td>
<td>Abstract</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Muriel, MERCIER-BONIN</td>
<td>P32</td>
</tr>
<tr>
<td>Muratli, Ahmed</td>
<td>P169</td>
</tr>
<tr>
<td>Muzaki, Muhammad Zulfadly Bin Mohammad</td>
<td>O20</td>
</tr>
<tr>
<td>N. Gopaul, Deshmukh</td>
<td>P96</td>
</tr>
<tr>
<td>Naccache, Jonathan</td>
<td>P96</td>
</tr>
<tr>
<td>Nadell, Carey D.</td>
<td>O18</td>
</tr>
<tr>
<td>Najjarzadeh, Zahra</td>
<td>P105</td>
</tr>
<tr>
<td>Narimane, Dahmane</td>
<td>P124</td>
</tr>
<tr>
<td>Naras, Laura</td>
<td>O4</td>
</tr>
<tr>
<td>Neda, Daroudi</td>
<td>P38</td>
</tr>
<tr>
<td>Nejman-Faleńczyk, Bożena</td>
<td>P144</td>
</tr>
<tr>
<td>Nelly, Henry</td>
<td>P134</td>
</tr>
<tr>
<td>Neu, Lisa</td>
<td>P72</td>
</tr>
<tr>
<td>Neu, Thomas</td>
<td>P66, P9, P153, O35, P85</td>
</tr>
<tr>
<td>Neugebauer, Ute</td>
<td>P141</td>
</tr>
<tr>
<td>Nicaso, Lauren</td>
<td>P12, O33</td>
</tr>
<tr>
<td>Nicolas, Thewes</td>
<td>P47</td>
</tr>
<tr>
<td>Nielsen, Astrid</td>
<td>P8</td>
</tr>
<tr>
<td>Nielsen, Lars Peter</td>
<td>P65</td>
</tr>
<tr>
<td>Nielsen, Per Halkjær</td>
<td>P147, P11, P145</td>
</tr>
<tr>
<td>Nielsen, Signe Maria</td>
<td>O36</td>
</tr>
<tr>
<td>Niemann, Stefan</td>
<td>P167</td>
</tr>
<tr>
<td>Niembro, Olatz</td>
<td>P149</td>
</tr>
<tr>
<td>Nikel, Pablo</td>
<td>P159</td>
</tr>
<tr>
<td>Nilsson, Carl Martin Peter</td>
<td>P147</td>
</tr>
<tr>
<td>Nilsson, K. Peter R.</td>
<td>P133</td>
</tr>
<tr>
<td>Nisar, Zeena</td>
<td>P114</td>
</tr>
<tr>
<td>Nissen, Laura</td>
<td>P25</td>
</tr>
<tr>
<td>Nolle, Friederike</td>
<td>P43</td>
</tr>
<tr>
<td>Northen, Trent R.</td>
<td>P82</td>
</tr>
<tr>
<td>Nyman, Tuula A.</td>
<td>P23</td>
</tr>
<tr>
<td>Öberschmidt, Dirk</td>
<td>P58</td>
</tr>
<tr>
<td>Ödman, Peter</td>
<td>O24</td>
</tr>
<tr>
<td>Øgaard, Jonas</td>
<td>P36</td>
</tr>
<tr>
<td>Oldewurtel, Enno</td>
<td>P13</td>
</tr>
<tr>
<td>Olędzka, Gabriela</td>
<td>P52</td>
</tr>
<tr>
<td>Olivas, Elodie</td>
<td>P31</td>
</tr>
<tr>
<td>Oliver, Notle</td>
<td>P85</td>
</tr>
<tr>
<td>Olsen, Nanna</td>
<td>P67</td>
</tr>
<tr>
<td>Ommen Andersen, Pernille</td>
<td>P8, P128</td>
</tr>
<tr>
<td>Opsahl, Jakub</td>
<td>P140</td>
</tr>
<tr>
<td>Orban, Vivien</td>
<td>P172</td>
</tr>
<tr>
<td>Osborn, Alison</td>
<td>P62</td>
</tr>
<tr>
<td>Ottoosen, Lars D. M.</td>
<td>P65</td>
</tr>
<tr>
<td>Otzen, Daniel</td>
<td>P7, P24, P105, P147, P10</td>
</tr>
<tr>
<td>Overton, Tim</td>
<td>P50, P113, P163, P163, O33</td>
</tr>
<tr>
<td>Paillarès, Eléa</td>
<td>P96</td>
</tr>
<tr>
<td>Palmieri, Gianna</td>
<td>P126</td>
</tr>
<tr>
<td>Pandin, C</td>
<td>O32</td>
</tr>
<tr>
<td>Parikka, Mataleen</td>
<td>P171</td>
</tr>
<tr>
<td>Parsek, Matthew</td>
<td>P1</td>
</tr>
<tr>
<td>Pascal, Thibault</td>
<td>P146</td>
</tr>
<tr>
<td>Passarella, Gisline</td>
<td>P68</td>
</tr>
<tr>
<td>Pavagadhi, Shruti</td>
<td>P162</td>
</tr>
<tr>
<td>Pavanello, Giovanni</td>
<td>P74</td>
</tr>
<tr>
<td>Peixoto de Almeida, Miguel</td>
<td>P104</td>
</tr>
<tr>
<td>Peltonen, Jouko</td>
<td>P44</td>
</tr>
<tr>
<td>Perbandt, Markus</td>
<td>P41</td>
</tr>
<tr>
<td>Pereira, Eulalia</td>
<td>P104</td>
</tr>
<tr>
<td>Pereira, Maria Carro</td>
<td>P130</td>
</tr>
<tr>
<td>Peres, Joanna</td>
<td>P68</td>
</tr>
<tr>
<td>Perez, Julio</td>
<td>O2</td>
</tr>
<tr>
<td>Persson, Karl</td>
<td>P112</td>
</tr>
<tr>
<td>Peter, Hannes</td>
<td>P73, P75</td>
</tr>
<tr>
<td>Petersen, Jette</td>
<td>P162</td>
</tr>
<tr>
<td>Peterson, Brandon</td>
<td>P33</td>
</tr>
<tr>
<td>Petracchi, Serena</td>
<td>P96</td>
</tr>
<tr>
<td>Petronella, Nicholas</td>
<td>P71</td>
</tr>
<tr>
<td>Petzold, Chris J</td>
<td>P82</td>
</tr>
<tr>
<td>Philippe, SCHMIDTH</td>
<td>P103, P32</td>
</tr>
<tr>
<td>Philippe, Thomen</td>
<td>P134</td>
</tr>
<tr>
<td>Phippen, Curtis</td>
<td>P27</td>
</tr>
<tr>
<td>Picou-Lucet, Emma</td>
<td>P96</td>
</tr>
<tr>
<td>Picioaneau, Cristian</td>
<td>O25</td>
</tr>
<tr>
<td>Pietsch, Franziska</td>
<td>P102</td>
</tr>
<tr>
<td>Pinto, Sandra</td>
<td>P138</td>
</tr>
<tr>
<td>Pirot', Kardas</td>
<td>P34</td>
</tr>
<tr>
<td>Piard, JP</td>
<td>O32</td>
</tr>
<tr>
<td>Pletz, Mathias</td>
<td>P98, P166</td>
</tr>
<tr>
<td>Pobara, Igor</td>
<td>O2</td>
</tr>
<tr>
<td>Poh, Yanhong</td>
<td>O28</td>
</tr>
<tr>
<td>Popp, Jürgen</td>
<td>P141</td>
</tr>
<tr>
<td>Porte, Sarah</td>
<td>P96</td>
</tr>
<tr>
<td>Porter, Maloney, Venda</td>
<td>P160</td>
</tr>
<tr>
<td>Praefcke, Pia</td>
<td>P118</td>
</tr>
<tr>
<td>Presterl, Elisabeth</td>
<td>P164</td>
</tr>
<tr>
<td>Prestidge, Clive</td>
<td>P110</td>
</tr>
<tr>
<td>Prévost, Gilles</td>
<td>P31</td>
</tr>
<tr>
<td>Prieto, Manuel</td>
<td>P318</td>
</tr>
<tr>
<td>Provot, Christian</td>
<td>P31, P111</td>
</tr>
<tr>
<td>Puligedda, Ramdev</td>
<td>O33</td>
</tr>
<tr>
<td>Pulukkody, Aruni</td>
<td>P154</td>
</tr>
<tr>
<td>Quang, Hieu</td>
<td>P128</td>
</tr>
<tr>
<td>Quinn, Laura</td>
<td>P6</td>
</tr>
<tr>
<td>R. Lawrence, John</td>
<td>P9</td>
</tr>
<tr>
<td>Rajewskas, Magdalena</td>
<td>P42</td>
</tr>
<tr>
<td>Rajput, Vishnu D.</td>
<td>P99</td>
</tr>
<tr>
<td>Randall, Trevor</td>
<td>O8</td>
</tr>
<tr>
<td>Rasheedkhan Regina, Viduthalai</td>
<td>P162</td>
</tr>
<tr>
<td>Rasmussen, Maria</td>
<td>P147</td>
</tr>
<tr>
<td>Rath, Peter-Michael</td>
<td>P143</td>
</tr>
<tr>
<td>Ratrav, Jennifer</td>
<td>P61</td>
</tr>
<tr>
<td>Rauschnabel, Johannes</td>
<td>P108</td>
</tr>
<tr>
<td>Rebsdorf, Maria</td>
<td>O29</td>
</tr>
<tr>
<td>Redheuil, Eilyn</td>
<td>P96</td>
</tr>
<tr>
<td>Reffuville, Fany</td>
<td>O13</td>
</tr>
<tr>
<td>Reger, Maren</td>
<td>P141</td>
</tr>
<tr>
<td>Reichert, Jessica</td>
<td>P78</td>
</tr>
<tr>
<td>Reigada, Inés</td>
<td>P170</td>
</tr>
<tr>
<td>Reinaldo Vitola, Priscila</td>
<td>P76</td>
</tr>
<tr>
<td>Reino, Clara</td>
<td>O2</td>
</tr>
<tr>
<td>Remis, Jonathan</td>
<td>O5</td>
</tr>
<tr>
<td>Ren, Dacheng</td>
<td>O34</td>
</tr>
<tr>
<td>Ren, Qun</td>
<td>P34, P157, P161</td>
</tr>
<tr>
<td>Revsbech, Niels Peter</td>
<td>P65</td>
</tr>
<tr>
<td>Rhen, Mikael</td>
<td>P106, P133</td>
</tr>
<tr>
<td>Rice, Scott</td>
<td>O20</td>
</tr>
<tr>
<td>Rich, Jacquelyn</td>
<td>O8</td>
</tr>
<tr>
<td>Richard, Charlotte</td>
<td>P96</td>
</tr>
<tr>
<td>Richter, Katharina</td>
<td>P110, P117</td>
</tr>
<tr>
<td>Richter-Dahlrohr, Agnet</td>
<td>P106</td>
</tr>
<tr>
<td>Riedel-Kruse, Ingmar</td>
<td>O26</td>
</tr>
<tr>
<td>Robson, Samuel</td>
<td>P74</td>
</tr>
<tr>
<td>Röder, Henriette Lyng</td>
<td>P7, P67</td>
</tr>
<tr>
<td>Rogall, Eike</td>
<td>P55</td>
</tr>
<tr>
<td>Rohde, Holger</td>
<td>P2, P41, P45</td>
</tr>
<tr>
<td>Roisman, Dan</td>
<td>P156</td>
</tr>
<tr>
<td>Roland, Ulber</td>
<td>P38</td>
</tr>
<tr>
<td>Rolle, Marsha</td>
<td>P97</td>
</tr>
<tr>
<td>Roques, Christine</td>
<td>P37, P59, P70, P103, P122</td>
</tr>
<tr>
<td>Rossetti, Simona</td>
<td>P66, P158, O35</td>
</tr>
<tr>
<td>Rossi, Claudio</td>
<td>P46</td>
</tr>
<tr>
<td>Roux, Christophe</td>
<td>P70</td>
</tr>
<tr>
<td>Rubin, Phil</td>
<td>P114</td>
</tr>
<tr>
<td>Rüger, Martina</td>
<td>P21</td>
</tr>
<tr>
<td>Russel, Jakob</td>
<td>P67</td>
</tr>
<tr>
<td>Russo, Daniela</td>
<td>O4</td>
</tr>
<tr>
<td>Rychli, Kathrin</td>
<td>P17</td>
</tr>
<tr>
<td>Sachet, Gabriela</td>
<td>P96</td>
</tr>
<tr>
<td>Saharih, Priyanka</td>
<td>P107</td>
</tr>
<tr>
<td>Sakanaka, Akito</td>
<td>P60</td>
</tr>
<tr>
<td>Salta, Maria</td>
<td>P74, P49</td>
</tr>
<tr>
<td>San Martín Galindo, Paola</td>
<td>P44</td>
</tr>
<tr>
<td>Sanchez, Carlos</td>
<td>P39</td>
</tr>
<tr>
<td>Sandholm, Jouko</td>
<td>P23</td>
</tr>
<tr>
<td>Sarah, Kay</td>
<td>P162</td>
</tr>
<tr>
<td>Safran, Jawad</td>
<td>P44</td>
</tr>
<tr>
<td>Satozaki, Reetta</td>
<td>P23</td>
</tr>
<tr>
<td>Savijoki, Kirsi</td>
<td>P123, P23</td>
</tr>
<tr>
<td>Scarangella, Adriana</td>
<td>P37</td>
</tr>
<tr>
<td>Scarascia, Giamommaso</td>
<td>P168</td>
</tr>
<tr>
<td>Schaible, Ulrich</td>
<td>P167</td>
</tr>
<tr>
<td>Scheidweiler, David</td>
<td>P75</td>
</tr>
<tr>
<td>Schreiber, Frank</td>
<td>P102</td>
</tr>
<tr>
<td>Schröder, Uwe</td>
<td>P40</td>
</tr>
<tr>
<td>Schubert, Patrick</td>
<td>P78</td>
</tr>
<tr>
<td>Schwartz, Thomas</td>
<td>P55</td>
</tr>
<tr>
<td>Scott, Caroline</td>
<td>P120</td>
</tr>
<tr>
<td>Scribner, Michelle</td>
<td>P93</td>
</tr>
<tr>
<td>Segu Cristina, Anna</td>
<td>P96</td>
</tr>
<tr>
<td>Seguenni, Abdelaziz</td>
<td>P111</td>
</tr>
<tr>
<td>Seiffert, Anne</td>
<td>P121</td>
</tr>
<tr>
<td>Setlow, Peter</td>
<td>P91</td>
</tr>
<tr>
<td>SEYER, Damien</td>
<td>P3</td>
</tr>
<tr>
<td>Shah, Sherya</td>
<td>P154</td>
</tr>
<tr>
<td>Shingler, Victoria</td>
<td>P1</td>
</tr>
<tr>
<td>Shojaosadati, Seyed Abbas</td>
<td>P105</td>
</tr>
<tr>
<td>Siafas, Wafi</td>
<td>P125, P88</td>
</tr>
<tr>
<td>Siewering, Katja</td>
<td>P13</td>
</tr>
<tr>
<td>Sileo, Emily</td>
<td>P79</td>
</tr>
<tr>
<td>Sljaimaki, Pi</td>
<td>P23</td>
</tr>
<tr>
<td>Simões, Manuel</td>
<td>P130</td>
</tr>
<tr>
<td>Simons, Alexis</td>
<td>P70</td>
</tr>
<tr>
<td>Simonsen Dueholm, Morten</td>
<td>P147, P11, P145</td>
</tr>
<tr>
<td>Simonsen Dueholm, Morten</td>
<td>P7</td>
</tr>
<tr>
<td>Singh, Praveen K.</td>
<td>O18</td>
</tr>
<tr>
<td>Name</td>
<td>Abstract</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Sintim, Herman</td>
<td>P20</td>
</tr>
<tr>
<td>Sisman, Aysegül</td>
<td>P58</td>
</tr>
<tr>
<td>Siudzak, Gary E</td>
<td>O5</td>
</tr>
<tr>
<td>Sivakumar, Krishnakumar</td>
<td>P168</td>
</tr>
<tr>
<td>Sjøllem, Jelmer</td>
<td>P33</td>
</tr>
<tr>
<td>Skogman, Malena</td>
<td>P123, P152</td>
</tr>
<tr>
<td>Skovdal, Sandra Maria</td>
<td>P2</td>
</tr>
<tr>
<td>Smet, Cindy</td>
<td>P175</td>
</tr>
<tr>
<td>Smets, Barth</td>
<td>O21</td>
</tr>
<tr>
<td>Snyder, Dan</td>
<td>P79</td>
</tr>
<tr>
<td>Snyder, Daniel</td>
<td>P93</td>
</tr>
<tr>
<td>Sønderholm, Majken</td>
<td>P151</td>
</tr>
<tr>
<td>Song, Jiankang</td>
<td>P155</td>
</tr>
<tr>
<td>Song, Zhenlun</td>
<td>P4</td>
</tr>
<tr>
<td>Sonia, BENAMMAR</td>
<td>P11</td>
</tr>
<tr>
<td>Sophie, PECSTAINGS</td>
<td>P103, P59</td>
</tr>
<tr>
<td>Sørensen, Sven Johannes</td>
<td>P67, P148, O29</td>
</tr>
<tr>
<td>Soukupova, Jana</td>
<td>P40</td>
</tr>
<tr>
<td>SOUMBO, MARVINE</td>
<td>P37</td>
</tr>
<tr>
<td>Spaccapan, Mihael</td>
<td>P26</td>
</tr>
<tr>
<td>Spengler, Christian</td>
<td>P43, P47</td>
</tr>
<tr>
<td>Spielvogel, Anja</td>
<td>P58</td>
</tr>
<tr>
<td>Spormann, Alfred</td>
<td>P94</td>
</tr>
<tr>
<td>Springael, Dirk</td>
<td>P129, P57</td>
</tr>
<tr>
<td>Sretenovic, Simon</td>
<td>O12</td>
</tr>
<tr>
<td>Stangl, Felix</td>
<td>P119</td>
</tr>
<tr>
<td>Stanley-Wall, Nicola</td>
<td>P56, O1</td>
</tr>
<tr>
<td>Starck, Thomas</td>
<td>P96</td>
</tr>
<tr>
<td>Steenackers, Hans</td>
<td>P92, P69</td>
</tr>
<tr>
<td>Steeenkeste, Karine</td>
<td>P35</td>
</tr>
<tr>
<td>Stefan, Stübinger</td>
<td>P34</td>
</tr>
<tr>
<td>Stefaniac, Polonca</td>
<td>P28, P80</td>
</tr>
<tr>
<td>Steinmann, Jorg</td>
<td>P167</td>
</tr>
<tr>
<td>Steinmann, Jörg</td>
<td>P143</td>
</tr>
<tr>
<td>Stenskæde Madsen, Jonas</td>
<td>P116</td>
</tr>
<tr>
<td>Stensballe, Allan</td>
<td>P11</td>
</tr>
<tr>
<td>Stéphane, Aymeric</td>
<td>P134</td>
</tr>
<tr>
<td>Stevens, Corey</td>
<td>P19</td>
</tr>
<tr>
<td>Stielsch, Meike</td>
<td>P121</td>
</tr>
<tr>
<td>Stoica, Iuliana Madalina</td>
<td>P64</td>
</tr>
<tr>
<td>Stojkovic, Biljana</td>
<td>O12</td>
</tr>
<tr>
<td>Stopar, David</td>
<td>O12</td>
</tr>
<tr>
<td>Storrie, John</td>
<td>P71</td>
</tr>
<tr>
<td>Stolički, Tjaša</td>
<td>P80</td>
</tr>
<tr>
<td>Stougard Vad, Brian</td>
<td>P7</td>
</tr>
<tr>
<td>Strange, Richard</td>
<td>P27</td>
</tr>
<tr>
<td>Streit, Wolfgang</td>
<td>P25, P167</td>
</tr>
<tr>
<td>Strempel, Sebastian</td>
<td>P85</td>
</tr>
<tr>
<td>Strom, Kamila</td>
<td>P52</td>
</tr>
<tr>
<td>Subbaiahoss, Guruprakash</td>
<td>P132</td>
</tr>
<tr>
<td>Subramoni, Sujatha</td>
<td>O20</td>
</tr>
<tr>
<td>Sutherland, Duncan</td>
<td>P53</td>
</tr>
<tr>
<td>Svenningsen, Sine Lo</td>
<td>P116</td>
</tr>
<tr>
<td>Svensson, Birte</td>
<td>P148</td>
</tr>
<tr>
<td>Swana, Kathleen</td>
<td>P97</td>
</tr>
<tr>
<td>Szewczyk, Ulrich</td>
<td>P118</td>
</tr>
<tr>
<td>Tamimi, Roya</td>
<td>P101</td>
</tr>
<tr>
<td>Tamella, Päivi</td>
<td>P144</td>
</tr>
<tr>
<td>Tamella, Päivi</td>
<td>P154</td>
</tr>
<tr>
<td>Tan, Demeng</td>
<td>P116</td>
</tr>
<tr>
<td>Tandoi, Valter</td>
<td>P66, O35</td>
</tr>
<tr>
<td>Taylor, Annette</td>
<td>P150</td>
</tr>
<tr>
<td>Taylor, Jonathan D.</td>
<td>O10</td>
</tr>
<tr>
<td>Teppo, Annika</td>
<td>P14, P15</td>
</tr>
<tr>
<td>Teras, Riho</td>
<td>P14, P15</td>
</tr>
<tr>
<td>Tews, Ivo</td>
<td>P29, P22, P27</td>
</tr>
<tr>
<td>Thaysen, Dorrít</td>
<td>P64</td>
</tr>
<tr>
<td>Theves, Nicolas</td>
<td>P43</td>
</tr>
<tr>
<td>Thieme, Lara</td>
<td>P166</td>
</tr>
<tr>
<td>Thomas, Florian</td>
<td>P96</td>
</tr>
<tr>
<td>Thomas, Nicky</td>
<td>P117, P10</td>
</tr>
<tr>
<td>Thomsen, Trine Rolighed</td>
<td>P100, P165</td>
</tr>
<tr>
<td>Thorn, Chelsea</td>
<td>P110</td>
</tr>
<tr>
<td>Tolker-Nielsen, Tim</td>
<td>P147</td>
</tr>
<tr>
<td>Torrens, Eduard</td>
<td>P18</td>
</tr>
<tr>
<td>Torresi, Elena</td>
<td>O21</td>
</tr>
<tr>
<td>Trampe, Erik</td>
<td>P77, O40</td>
</tr>
<tr>
<td>Tran, Kelly</td>
<td>P96</td>
</tr>
<tr>
<td>Travnickova, Eva</td>
<td>P140</td>
</tr>
<tr>
<td>Triebeskorn, Rita</td>
<td>P55</td>
</tr>
<tr>
<td>Trivedi, Urvish</td>
<td>O29</td>
</tr>
<tr>
<td>Tuchscherr, Lorenza</td>
<td>P141</td>
</tr>
<tr>
<td>Tükel, Çağla</td>
<td>P12, O33</td>
</tr>
<tr>
<td>Tulloch, Pamela</td>
<td>P160</td>
</tr>
<tr>
<td>Tuomas, Waltimo</td>
<td>P34</td>
</tr>
<tr>
<td>Turner, Caroline</td>
<td>P79</td>
</tr>
<tr>
<td>Tursi, Sarah</td>
<td>O33</td>
</tr>
<tr>
<td>Uhlmann, Eckart</td>
<td>P58</td>
</tr>
<tr>
<td>Ulber, Roland</td>
<td>P136, P137</td>
</tr>
<tr>
<td>Vackier, Thijs</td>
<td>P69</td>
</tr>
<tr>
<td>Vad, Brian Stougard</td>
<td>P105, P24</td>
</tr>
<tr>
<td>Valentijn, Jules</td>
<td>P161</td>
</tr>
<tr>
<td>Van Bambeke, Francoise</td>
<td>P125, P88</td>
</tr>
<tr>
<td>Van de Velde, Miet</td>
<td>P69</td>
</tr>
<tr>
<td>Van de Voorde, Ilse</td>
<td>P69</td>
</tr>
<tr>
<td>van der Hoek, Jan Peter</td>
<td>P63</td>
</tr>
<tr>
<td>Van der Mei, Henny C.</td>
<td>P33, P51, P161, O11</td>
</tr>
<tr>
<td>Van Impe, Jan</td>
<td>P175</td>
</tr>
<tr>
<td>van Loosdrecht, Mark</td>
<td>O2</td>
</tr>
<tr>
<td>Van Zele, Aurelie</td>
<td>P69</td>
</tr>
<tr>
<td>Vance, Tyler</td>
<td>P19</td>
</tr>
<tr>
<td>Vanderleyden, Jos</td>
<td>P92</td>
</tr>
<tr>
<td>Vanha-aho, Leena-Maija</td>
<td>P171</td>
</tr>
<tr>
<td>Vanzieleghem, Thomas</td>
<td>P125, P88</td>
</tr>
<tr>
<td>Varmanen, Pekka</td>
<td>P23</td>
</tr>
<tr>
<td>Veiga, Ana Salomé</td>
<td>P138</td>
</tr>
<tr>
<td>Velard, Frédéric</td>
<td>O13</td>
</tr>
<tr>
<td>Vendrely, Charlotte</td>
<td>P3</td>
</tr>
<tr>
<td>Veres, Adrienn Mercédès</td>
<td>P172</td>
</tr>
<tr>
<td>Verplaetse, Alex</td>
<td>P69</td>
</tr>
<tr>
<td>Vidaillac, Celine</td>
<td>P156</td>
</tr>
<tr>
<td>Vidakovkovic, Lucia</td>
<td>P18</td>
</tr>
<tr>
<td>Vignaroli, Carla</td>
<td>P95</td>
</tr>
<tr>
<td>Villeneuve, Christina</td>
<td>P37</td>
</tr>
<tr>
<td>Visnapuu, Annegrete</td>
<td>P129</td>
</tr>
<tr>
<td>Vitale, Stefania</td>
<td>P6</td>
</tr>
<tr>
<td>Vitaliaiou, Eirini</td>
<td>P164</td>
</tr>
<tr>
<td>Voets, Ilja</td>
<td>P86</td>
</tr>
<tr>
<td>Volke, Daniel</td>
<td>P159</td>
</tr>
<tr>
<td>Vollstedt, Christel</td>
<td>P25, P167</td>
</tr>
<tr>
<td>Vreugdè, Sarah</td>
<td>P117</td>
</tr>
<tr>
<td>Vuorela, Pia</td>
<td>P23</td>
</tr>
<tr>
<td>Wagemans, Jeroen</td>
<td>P129</td>
</tr>
<tr>
<td>Wagner, Eva</td>
<td>P17</td>
</tr>
<tr>
<td>Wagner, Martin</td>
<td>P17</td>
</tr>
<tr>
<td>Wagner, Michael</td>
<td>P153, O25, O39</td>
</tr>
<tr>
<td>Walker, Wolf</td>
<td>P174</td>
</tr>
<tr>
<td>Walsh, Martin</td>
<td>P27</td>
</tr>
<tr>
<td>Walter, Raoul</td>
<td>O36</td>
</tr>
<tr>
<td>Wang, Tianyu</td>
<td>P168</td>
</tr>
<tr>
<td>Wang, Xiaoling</td>
<td>P90</td>
</tr>
<tr>
<td>Wallmann, Marco</td>
<td>P121</td>
</tr>
<tr>
<td>Webb, Jeremy</td>
<td>P29, P76, P22, P27, O31</td>
</tr>
<tr>
<td>Wechsler, Tobias</td>
<td>P56</td>
</tr>
<tr>
<td>Wegrzyn, Grzegorz</td>
<td>P144</td>
</tr>
<tr>
<td>Weiss, Siegfried</td>
<td>P87</td>
</tr>
<tr>
<td>Weitz, David A</td>
<td>P90</td>
</tr>
<tr>
<td>Welker, Anton</td>
<td>P13</td>
</tr>
<tr>
<td>Wenzel Kragstrup, Tue</td>
<td>P8</td>
</tr>
<tr>
<td>Wijnands, Sjors PW</td>
<td>P155</td>
</tr>
<tr>
<td>Wilke, Thomas</td>
<td>P78</td>
</tr>
<tr>
<td>Williams, Paul</td>
<td>P16, P127</td>
</tr>
<tr>
<td>Winkel, Andreas</td>
<td>P121</td>
</tr>
<tr>
<td>Winstone, Tara</td>
<td>O8</td>
</tr>
<tr>
<td>Wirsen, Andreas</td>
<td>P137</td>
</tr>
<tr>
<td>Wittmer, Annette</td>
<td>P115</td>
</tr>
<tr>
<td>Wood, Kevin</td>
<td>P109</td>
</tr>
<tr>
<td>Wright, Kevin</td>
<td>P163</td>
</tr>
<tr>
<td>Wu, Armaty Siva</td>
<td>O5</td>
</tr>
<tr>
<td>Wuerz, Stefan</td>
<td>O16</td>
</tr>
<tr>
<td>Xiaochu, , Ma</td>
<td>P20</td>
</tr>
<tr>
<td>Xu, Yijuan</td>
<td>P100, P165</td>
</tr>
<tr>
<td>Yang, Katherine</td>
<td>P94</td>
</tr>
<tr>
<td>Yang, Liang</td>
<td>P156</td>
</tr>
<tr>
<td>Ye, Sai</td>
<td>P4</td>
</tr>
<tr>
<td>Yeon Ming, Chew</td>
<td>P162</td>
</tr>
<tr>
<td>Yipp, Bryan</td>
<td>O8</td>
</tr>
<tr>
<td>Yli-Kaahuoluma, Jari</td>
<td>P123</td>
</tr>
<tr>
<td>Young, Ellen Rebecca</td>
<td>P83</td>
</tr>
<tr>
<td>Yu, Wen</td>
<td>P109</td>
</tr>
<tr>
<td>Yung, Yeni P</td>
<td>P54</td>
</tr>
<tr>
<td>Zaccaria, Sabrina</td>
<td>P155</td>
</tr>
<tr>
<td>Zaiser, Andreas</td>
<td>P17</td>
</tr>
<tr>
<td>Zanardi, Emanuela</td>
<td>P173</td>
</tr>
<tr>
<td>Zatorska, Beata</td>
<td>P164</td>
</tr>
<tr>
<td>Zea, Luis</td>
<td>P114</td>
</tr>
<tr>
<td>Zecchin, Sarah</td>
<td>P158</td>
</tr>
<tr>
<td>Zehner, Susanne</td>
<td>P21</td>
</tr>
<tr>
<td>Zelikin, Alexander N</td>
<td>P132, O36</td>
</tr>
<tr>
<td>Zeng, Guanghong</td>
<td>P2, P132</td>
</tr>
<tr>
<td>Zobeck, Natalia</td>
<td>P2</td>
</tr>
<tr>
<td>Zöllner, Robert</td>
<td>P13</td>
</tr>
<tr>
<td>Zuber, Flavia</td>
<td>P157</td>
</tr>
<tr>
<td>Zumstein, Valentin</td>
<td>P85</td>
</tr>
</tbody>
</table>
THE DANISH MICROBIOLOGICAL SOCIETY

DMS Annual Congress

12 NOVEMBER 2018
EIGTVEDS PAKHUS
COPENHAGEN · DENMARK

Keynotes

Microbial adaptive responses to the environment and their biotechnological applications
Gemma Reguera, Michigan State University

The medieval plagues: ecology, transmission modalities and routes of the infections
Nils Christian Stenseth, University of Oslo

The history of Danish microbiology
Søren Molin, Technical University of Denmark
Jan Sørensen, University of Copenhagen

SPONSORS

Platinum sponsor

Gold sponsor

Silver sponsors

Bronze sponsor

Supporters