Developing theoretical beamlines for local, ultrafast and magnetic-field induced spectroscopic effects

Coriani, Sonia; Lopez Vidal, Marta; Faber, Rasmus

Publication date: 2018

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Developing theoretical beamlines for local, ultrafast and magnetic-field induced spectroscopic effects

Sonia Coriania, Marta Lopez-Vidalb, Rasmus Fabera

\textit{a) DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark}

E-mail: sco@kemi.dtu.dk

The last two decades have witnessed enormous advances in synchrotron and laser technology, allowing for the detection of increasingly sophisticated light-matter interactions. To fully capitalize on the opportunities offered by these experimental advances, new theories, concepts and computational tools are mandatory, as they are essential to be able to interpret the experimental results and to retrieve precise quantitative chemical information.

During the talk, I will review some of our more recent efforts to develop highly reliable quantum chemical methods and computational protocols to model the response of molecular systems when probed with electromagnetic fields in new and challenging combinations. Specific examples are advanced (time-resolved) core-level spectroscopies \cite{1,2,3,4,5,6,7}, photoionization/photoelectron phenomena \cite{8}, and sophisticated magneto-optical effects \cite{9,10,11}. Our ambition is to bridge experimental measurements and theory at a hitherto unprecedented level of detail and accuracy.

\begin{thebibliography}{99}
\bibitem{2} R. Faber, H. Koch, and S. Coriani, in preparation.
\bibitem{10} S. Karbalaei Khani, R. Faber, C. Hättig, and S. Coriani, submitted to \textit{J. Chem. Theory Comput.}
\bibitem{11} P. Stepanek and S. Coriani, submitted to \textit{Phys. Chem. Chem. Phys.}
\end{thebibliography}