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Current market demands require an increasingly 
agile production environment throughout many 
manufacturing branches. Traditional automation 
systems and industrial robots, on the other hand, 
are often too inflexible to provide an economically 

viable business case for companies with rapidly changing 
products. The introduction of cognitive abilities into robotic 
and automation systems is, therefore, a necessary step toward 
lean changeover and seamless human–robot collaboration. 

In this article, we introduce the European Union (EU)-
funded research project SMErobotics (http://www.smerobotics 
.org/), which focuses on facilitating the use of robot systems 
in small and medium-sized enterprises (SMEs). We analyze 
open challenges for this target audience and develop multiple 
efficient technologies to address related issues. Real-world 
demonstrators of several end users and from multiple applica-
tion domains show the impact these smart robots can have on 
SMEs. This article intends to give a broad overview of the 
research conducted in SMErobotics. Specific details of indi-
vidual topics are provided through references to our previous 
publications.

Robots in SMEs
SMEs, i.e., companies with fewer than 250 employees, form 
the backbone of European industries, with over 1 million 
SME-level enterprises in the manufacturing domain [1]. They 
represent more than 99% of all businesses in the EU. In the 
past five years, they have created approximately 85% of all 
new jobs and provided two-thirds of total private-sector 
employment. The European Commission considers SMEs 
and entrepreneurship as key factors for ensuring economic 
growth, innovation, job creation, and social integration in the 
EU. It promotes entrepreneurship and supports SMEs 
through the Programme for the Competitiveness of Small 
and Medium-Sized Enterprises, which started in 2014 and 
will run until 2020, with a planned budget of €2.3 billion.

The International Federation of Robotics estimates that, 
for the major robot markets (apart from China), i.e., Japan, 
the United States, South Korea, and Germany [2], there are, 
on average, six robots per 10,000 employees in manufactur-
ing SMEs. The average for all manufacturing industries is 
246, with an average of 1,225 for the automotive sector [3]. 
These numbers indicate the huge market potential for 
industrial robots in manufacturing SMEs, which has not yet 
been adequately addressed. The products of manufacturing 
SMEs typically are very diverse. They employ a multitude of 
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different technologies (e.g., welding) and different kinds of 
shape forming (milling, grinding, bending, and so on) and 
industrial assembly. But they share a common secret: the 
success of SMEs in Europe is  based significantly on versatile 
production, close customer relationships, and the resulting 
ability to quickly react to changing demands in the market, 
as well as the ability to adapt to individual customer 
requests. 

SMEs in contract manufacturing are characterized by fre-
quent product changes and a broad range of product variants. 
Today’s industrial robots have been designed for a different 
scenario: large-scale, high-throughput manufacturing systems 
that produce one specific product (or a small set of quite simi-
lar variants) at very high quantities and with constant quality.

This discrepancy in manufacturing requirements hinders 
the introduction of industrial robots into manufacturing 
SMEs. Matters are complicated by the fact that SME produc-
tion, due to the need for flexibility and versatility, is less struc-
tured than, e.g., a fully automated car manufacturing line. 
Another complication is that small enterprises (with fewer 
than 30 employees) often lack a dedicated IT department that 
is able to maintain robotic workcells. Instead, they have a very 
lean business administration and a workforce almost exclu-
sively composed of highly skilled craftsmen and product 
engineers. Therefore, SMEs require highly versatile robots 
that are able to work symbiotically with skilled human work-
ers. Robots must learn from their own experiences and bene-
fit from their human coworker’s domain knowledge. They 
must be manageable without profound expertise in robotics 
(Figure 1).

Challenges and Requirements
The Danish Technological Institute, a 
member of the SMErobotics consor-
tium, interviewed 825 chief executive 
officers (CEOs) of manufacturing 
SMEs during 2015 and found that 89% 
of Danish companies with fewer than 
34 employees have basically no auto-
mation at all [5]. This is despite Den-
mark having the world’s fifth-highest 
robot density in the manufacturing 
domain [2]. Fifty-six percent of the 
CEOs felt that robots could not be used 
in their context, and 41% felt that their 
production volume was too low to war-
rant automation.

In another study of 846 manufactur-
ing companies, the Danish Society of 
Engineers revealed that the major rea-
sons for investing in automation were 
lower production costs (84%), fewer 
errors in the product (76%), and less 
waste (68%) [6]. The main barriers to 
automation were considered to be lack 
of time to obtain investment finance 

and implement changes in production processes and lack of 
knowledge and technical expertise among both managers and 
employees. A more considerate analysis of the study suggests 
that the main challenges preventing the use of industrial 
robots in SME manufacturing include the following:
1)	�Current robot programming techniques are not suitable for 

frequent changes of often highly customized products 
manufactured in small batches.

2)	�Tool-centered manufacturing processes require investment 
in robot-suitable tool replacements.

3)	�Classical robot cells with fences take up more space than 
comparable manual workspaces.

4)	�Formalizing implicit production knowledge into engineer-
ing specifications or robot programs is a difficult task.

5)	�Operating industrial robots is complex and requires expert 
knowledge in robotics.

6)	�Decision makers in SMEs lack expertise in robotics: they 
cannot properly assess the capabilities of robot systems or 
predict associated costs.
These findings are echoed in the euRobotics Multi-

Annual Roadmap (MAR) [7]. The euRobotics MAR is a joint 
document created and continuously updated by the European 
robotics industry and various research organizations. It states 
that the main requirements of SMEs include the need to 
design systems that are intuitive to use and cost-effective at 
low lot sizes. This means that robot systems must be easily 
adaptable to changes in products or processes without the 
need to rely on extensively trained employees. As the total 
cost of ownership for an industrial robot is dominated by 
operational costs, e.g., for training of employees or for 

Figure 1. Automating complex manufacturing tasks necessitates managing the required 
technologies and associated costs. Uncertainties, e.g., deviations in the geometries of the 
work pieces or a drift in process parameters, counteract these management efforts. To cope 
with such issues, cognition and learning strategies are required on the robot side and the 
human side. Human operators need support through suitable software tools and wizards.
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external programmers (Figure 2), such robot systems can help 
to effectively reduce overall costs.

SMErobotics Solutions
Overcoming the economic and technological challenges 
requires a new set of enhanced robot technologies that focus on 
intuitive human–robot interaction (HRI) and robust automatic 
operation. In the SMErobotics initiative’s approach, HRI and 
robustness complement each other to form a cognitive robot 
system that addresses the main challenges described in the pre-
vious section. Intuitive HRI interfaces can improve the reliabili-
ty of the system through human-in-the-loop decision making. 
The developed methods for uncertainty-aware robust automa-
tion not only enable the robot to perform more challenging 
tasks; they also increase the level of abstraction of decision 
making, further improving intuitive HRI.

These concepts are built on top of a set of underlying prin-
ciples, i.e., awareness of the environment and manufacturing 
context, knowledge- and sensor-based uncertainty handling, 
and efficient communication. The combination of these tech-
nologies within an integrated tool chain results in a cognitive 
system that complies with the needs of SMEs.

The following sections give a brief summary of the key 
approaches taken by the SMErobotics consortium and the 
technologies that have been developed by its members.

Investment Decision Support Tool
As observed during our user studies (see the “Challenges and 
Requirements” section), a major barrier that keeps SMEs 
from applying robotics technology is the uncertainty about 
costs. To mitigate this obstacle, we developed the web-based 
Robot Investment Tool (https://www.robotinvestment.eu/; 
Figure 3), which assumes that users do not know much about 
robots but do know their product: how much it weighs, how 
far it needs to be moved, and its overall shape and composi-
tion. Users know what kind of task they want to automate, 
e.g., arc welding, spot welding, grinding/finishing, painting, 
assembly, handling, packaging, or palletizing. They are aware 
of how many employees are required for the current manual 
process and the associated costs. Given an educated guess 
about how many employees will be needed to manage the 
automated workstation and the expected change in produc-
tivity, the SME receives an assessment of its business case. The 
minimum, maximum, and most likely payback times are 
automatically calculated to estimate the range of investment 
depending on the exact system chosen. The calculation is 
based on figures from a number of system integrators, who 
have entered prices for software, hardware, installation, and 
person hours. Additionally, system integrators provide infor-
mation about the robot type they recommend for various 
processes, reach, and payload.

The Robot Investment Tool enables SMEs to quickly and 
easily access knowledge about relevant robot installations and 
their estimated costs, while system integrators benefit from a 
higher visibility.

Seamless Integration of Production Knowledge
A key factor for cognitive automation solutions for SMEs 
is the integrated access to relevant data, such as process 
and product knowledge, hardware/software components 
and their capabilities, and workcell layout. In today’s 
SMEs, production knowledge is often not formalized in a 
way that is suitable for interpretation by cognitive sys-
tems. In contrast to this, SMErobotics provides solutions 

for encoding and reusing knowledge 
to support the human operator in 
programming and handling robot 
systems.

Modeling Hardware/Software 
Components
Due to advances in sensor and tool 
technologies together with decreasing 
costs, more devices are constantly being 
added to robotic workcells, both to 
improve the manufacturing process 
through sensor-based adaptation and 
to facilitate easier programming of 
robots. To achieve this in an efficient 
way, an automatic or semiautomatic 
reconfiguration of the system is 
required.

Figure 2. The distribution of total cost of ownership for a 
human–robot cooperation workcell [4]. Typical of such workcells 
is the dominance of operational costs in the overall balance 
compared with the actual investment.

Operation
63.4%

Investment 27.7%

Initiation 4.3%
Quality 3.0%

Maintenance and Repair 1.1%
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Figure 3. An example calculation of the SMErobotics Robot Investment Tool for the assembly 
domain.
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Augmenting hardware and software components with 
semantic descriptions of their interfaces and functionalities 
enables self-describing systems. Connected devices can be 
automatically detected, and the resulting set of capabilities can 
be derived whenever a new component is added or removed. 
A model-based approach with a loose coupling of compo-
nents and a semantic description of these components 
increases interoperability; i.e., it minimizes the required effort 
when combining hardware and software components from 
different suppliers.

Product–Process–Resource Technology Model
We have developed a model-based architecture for SME-suit-
able production systems that extends the well-known product–
process–resource modeling approach [8] with a technology 
model [9] (Figure 4) that provides specific knowledge about 
manufacturing technologies, e.g., the optimal orientation of a 
welding torch relative to a work piece or parameters such as the 
typical voltage or wire feed speed for the given materials. In 
SMErobotics, these models are either serialized to Automation-
ML [9] for higher compatibility with existing automation solu-
tions or represented in a semantic description language (see the 
following section), which allows logical reasoning on the repre-
sented models to be conducted.

Explicit Semantics
Separating knowledge from program code is a key motivation 
and design principle in our work. We create detailed models 
with explicit semantics for common-sense knowledge as well 
as domain-specific knowledge via ontologies [10]. Our 
semantic description language is based on the Web Ontology 
Language (https://www.w3.org/TR/owl2-primer/). Generic 
ontologies about common-sense knowledge such as data 
types or units are already standardized, e.g., the QUDT ontol-
ogies (http://www.qudt.org/). Basic ontologies for the robotics 
domain have been defined [11], but they do not consider the 
specific requirements of SMEs and their individual domains. 
We augment our base ontologies with domain-specific 
knowledge to create cognitive robotic systems specialized for 
a domain. Our semantic object model captures information 
such as mass, dimensions, materials, and boundary represen-
tation as well as their polygon triangulation [12].

Uncertainty-Aware Skills
In fully automated production lines, a major effort is required  
to minimize the location uncertainties of robots, tools, and 
workpieces. Robots are calibrated with an accuracy that is less 
than 1 mm and are typically rigidly fixed to the ground. The 
engineering costs required to achieve this are quite high.

Inaccuracies stem from inaccurate fixtures, the localiza-
tion inaccuracy of active or passive mobile robot systems, or 
even inaccurate work pieces, e.g., bars that are manually cut 
to length. Robot programmers have to envisage the resulting 
uncertainties and their implications. The costs are then 
shifted from engineering to programming but still remain 
high.

The SMErobotics initiative’s approach is to encapsulate the 
uncertainty handling within so-called skills, which can be 
parametrized and reused in different applications [13]. This 
reduces the programming effort for such tasks and relaxes 
accuracy requirements of part positions in the workcell.

Skills are basic operations that can be combined to form 
complex tasks. Depending on their reusability, skills can gen-
erally be divided into the following groups:
1)	universally applicable skills
2)	common skills for a certain application domain
3)	specific skills for a range of products/single product.

Universal skills such as handling, picking, or placing 
objects (Figure 5) are relevant not only for assembly but for 
most other domains as well. A challenging and well-known 
problem is the peg-in-hole assembly operation, where a peg 
has to be inserted into a narrow hole via force control [14]. 
After implementing the skill once, it can be reused for a range 
of pegs and holes by adapting the parameters of the skill.

Learning-Based Cycle-Time Minimization
For automated machining processes, expenses can be greatly 
reduced by decreasing the cycle time of desired tasks. This can 
be achieved by adapting the machining feed rate in combina-
tion with intelligent path planning of the machining task. Path 
planning is a complex task, especially for woodworking opera-
tions, due to the nonisotropic properties of the material. We 
developed a learning-based approach for milling to effectively 
minimize the cycle time independent of a priori knowledge of 
the machining process [15]. Different coverages of the milling 
tool in different directions result in varying behavior because of 
the nonsymmetry of the tool’s teeth and the material’s proper-
ties. The milling strategy is determined such that it minimizes 
the time to mill and return to the starting side of the milling 
operation. It considers the effects of tool coverage and feed rate 
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Product
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Technology
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Figure 4. The extended product–process–resource modeling 
approach. Various types of models are created and (re)used for 
integration in an industrial automation solution. Process models 
reuse technology models to reduce the effort in parameterizing 
process steps. Process models refer to product properties and 
resources used in manufacturing the product.
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as well as the cutting direction of the tool. Figure 6 shows the 
learned path for a pocket milling task.

Anomaly Detection and Error Handling
A human-friendly robot system must be designed keeping in 
mind the possibility of faults and mistakes caused by either 
the robot or the user. From an operator’s perspective, clear 
indications of (suspected) faults, their causes, and possible 
responses are crucial.

We combined Bayesian networks and extended Markov 
chains to automatically learn the nominal execution of a given 
process based on related sensor data and to detect deviations 
thereof [16], as shown in Figure 7. On detection of a fault, the 
system may use one or multiple modes of communication to 
indicate the problem, depending on the available hardware 
and the type of fault.

Fault indications give general information like “Failed to 
grasp object X” and explanations of the faults’ causes, e.g., 
“Object is out of reach” or “Gripper has failed to actuate.” The 
user’s responses are automatically learned by the system and 
stored in the form of updated probabilities and/or structural 
changes in the Bayesian networks. If previously learned, the 
system may suggest suitable recovery actions.

Product-Centric Instruction of Robots
Classical robot-centric programs define a sequence of functions 
that achieve a specific purpose, in the form of either text-based 
programs or graphical function blocks. Programming environ-
ments may combine this with CAD models of the workcell to 
use geometrical information in path definitions. In these 
approaches, the semantic context of the process is not encoded.

In service robotics, on the other hand, users specify the 
desired goal rather than manually program individual steps. 
In a similar fashion, we enable shop floor workers to 
instruct a robot in their domain language. The product-cen-
tric paradigm focuses on an abstract process definition that 
can be deployed on different workcells with matching capa-
bilities without the need to adjust the process specification. 
Using our system’s knowledge representation (see the 
“Seamless Integration of Production Knowledge” section), 
the process is structured into a sequence of tasks that are 
mapped to a set of workcell-specific skills (see the “Uncer-
tainty-Aware Skills” section) [13]. The system is provided 
with common knowledge, e.g., colors, units, and locations, 
as well as domain-specific knowledge, e.g., the types of tasks 
in a particular domain such as assembly or welding and 
their relevant task parameters.

We provide end users with domain-specific interfaces [17] 
that enable them to design their manufacturing process [10] 
with a direct connection to the semantic models of involved 
objects (Figure 8). To some extent, task parameters are auto-
matically inferred from the selected object and the current 
context. Based on the requirements of the process and the 
capabilities of the workcell, the system uses logical inference 
and planning to generate a feasible task sequence for a partic-
ular workcell. In case of errors, the high-level task taxonomy 
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Figure 5. A graphical skill specification tool developed within the 
SMErobotics project. The displayed pick skill consists of a sequence of 
individual steps with conditional branches.

Figure 6. The learned milling path for pocket milling using an 
auto-training algorithm. Dashed black lines represent transitions 
between pockets. Each color represents a different milling path 
for an individual pocket.
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is exploited to generate human-understandable feedback for 
the user (see the “Anomaly Detection and Error Handling” 
section).

Product-Driven Program Generation for Assembly
In contrast to large-scale automation with no variations, 
manual specification of robot programs or process instruc-
tions is no longer viable with a shift in market demand (e.g., 
individualized goods and other variants) leading to mass 
customization, thus affecting the manufacturing company 
itself and its production facilities, system architecture, and 
programming. paradigm.

For the domain of mechanical assembly, we developed an 
automatic assembly planner capable of exploiting product 
knowledge, i.e., using the 3D model of the desired assembly 
(Figure 9) as an alternative to a manual process specification 
[18]. The planner automatically generates multiple pairwise 
disassembly relations that, combined with information about  
forces and connectivity, lead to the creation of an AND/OR 
graph describing possible assembly sequences. A tight integra-
tion between the grasp and motion planner ensures that the 
subassemblies can be grasped and executed in the robot work-
cell. The grasp planner considers information concerning con-
straints and possible collisions with the environment as well as 

the assembly process and the joining action itself, while mini-
mizing a desired objective function, e.g., the torque exerted on 
the gripper. Based on this process, appropriate nodes of the 
AND/OR graph are pruned, resulting in a sequence of valid 
steps to produce the desired assembly [19].

To efficiently analyze the reachable workspace for a given 
robot, we further developed a motion capability representa-
tion. Feasible goal locations are precomputed offline and 
efficiently stored in a capability map [20]. As a result, the map 
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Figure 7. Given detected anomalies, the Bayesian network can infer the most likely causes. If response strategies have been modeled, 
these can be automatically executed with or without the involvement of the user.

Figure 8. The intuitive web interface for industrial assembly tasks. 
The depicted example shows the first steps of a gearbox assembly 
process [Figures 10(a) and 11] on a virtual assembly table.
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can be efficiently queried online to determine the reachability 
of end-effector poses.

Evaluation in Real-World Demonstrators
A major objective of the SMErobotics initiative is to push its 
scientific and technological advances into actual production 
companies within a variety of industries.

To ensure this transfer toward real applications, four core 
demonstration partners tied to four major European robot 
manufacturers have been involved since the early stages when 
the core technological and scientific objectives were specified. 
Supplemental demonstration partners joined the project at a 
later stage via open calls [21] to evaluate the adaptability and 
versatility of the developed technologies in applications that 
were not precisely known during the specification phase.

SMErobotics results have been validated in real industrial 
settings through eight demonstrators covering three applica-
tion domains: mechanical assembly [Figure 10(a)–(f)], weld-
ing [Figure 10(g) and (h)], and woodworking [Figure 10(i)].

Mechanical Assembly Domain

Dual-Arm Assembly With Product-Centric Instruction
In this demonstrator, a dual-arm Comau RML robot with two 
parallel grippers was used to perform a high-precision assem-
bly of a mechanical gearbox [Figure 10(a)]. The workcell was 
equipped with a camera for object recognition and a projector 
for highlighting detected parts on the work table. A high-level 
description of the assembly steps is shown in Figure 11.

For use in our product-centric instruction approach, we 
modeled a constraint-based assembly task based on a seman-
tic description language (see the “Product-Centric Instruction 
of Robots” and “Explicit Semantics” sections). In this repre-
sentation, valid assembly poses are represented by a set of 

geometric constraints between individual vertices, edges, or 
faces in the CAD models of two objects. Using an intuitive 
touch interface, the operator can instantiate the task for a par-
ticular pair of objects and input the required constraints (Fig-
ure 8). This approach is easier for workers to understand, 
compared with raw coordinates and Euler angles. The final 
process description consists of a sequence of tasks that is 
independent of a particular hardware setup. In a second 
phase, the process is deployed into a specific workcell. As our 
workcells are semantically described as well, we can use auto-
matic reasoning techniques to check the compatibility of the 
process and workcell and infer additional tasks required for 
establishing this compatibility.

To evaluate our approach, we conducted a preliminary 
user study (https://youtu.be/B1Qu8Mt3WtQ) [10] that com-
pared the time required to implement the assembly of the 
gearbox using our intuitive interface and using a teach pen-
dant. The results are summarized in Table 1. Using our prod-
uct-centric approach, we were able to achieve an 80% 
reduction in programming time.

Compliant Assembly of Loosely Supplied Parts
Our target application in this demonstrator is the assembly 
of 228 variant hydraulic valve sections consisting of the 
main body, spool, positioner, spring, O rings, and other 
parts [Figure 10(e)]. Due to the small tolerances allowed in 
this application, assembly strategies must rely on contact-
based motions and the robot’s programmable virtual stiff-
ness. To handle the high number of variants, we 
implemented reusable skills, e.g., a force-enabled peg-in-
hole skill that, in combination with the robot’s compliance, 
enabled the system to successfully assemble the valve sec-
tions (https://youtu.be/IE9l0rAMOiY; see the “Uncertainty-
Aware Skills” section).

Figure 9. The desired assembly of aluminum profiles connected via brackets that are fixed by multiple screws and nuts. The CAD 
models serve as an input to the assembly planning component: (a) the exploded view of assembly and (b) the connectivity graph.

<profileT, nutslot3>

<profileM, nutslot1, nutslot2>

<angle-bracket2>

<screw3>

<screw2>
<screw1>

<angle-bracket1>
<profileB, nutslot4>

<screw4>

(a) (b)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9MARCH 2019  �t  IEEE ROBOTICS & AUTOMATION MAGAZINE  �t

Figure 10. Demonstrators used to evaluate new technologies in the SMErobotics project: the (a) assembly of a gearbox, (b) assembly 
of a latch valve, (c) riveting for the assembly of custom grippers, (d) assembly of aluminum profiles, (e) assembly of high variants 
of valves, (f) subassembly of energy converters including tightening screws, (g) smart welding with automatic sensor-based path 
correction, (h) intuitive teaching of welding tasks, and (i) construction of a wall for a wooden house. [Part (b) courtesy of Tecnalia, 
Spain; part (c) courtesy of Kuka, Germany; part (d) courtesy of DLR Oberpfaffenhofen, Germany; part (f) courtesy of DTI, Denmark; 
part (g) courtesy of Fraunhofer IPA, Germany; and part (h) courtesy of INESC-TEC, Portugal.] 
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