Challenges in using allylthiourea and chlorate as specific nitrification inhibitors

Tatari, Karolina; Gülay, Arda; Thamdrup, B.; Albrechtsen, Hans-Jørgen; Smets, Barth F.

Published in:
Chemosphere

Link to article, DOI:
10.1016/j.chemosphere.2017.05.005

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Challenges in using allylthiourea and chlorate as specific nitrification inhibitors

K. Tataria, A. Gülaya, B. Thamdrupb, H.-J. Albrechtsena, B. F. Smetsa,*

aDepartment of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lynby, Denmark
bNordic Center for Earth Evolution, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

Abstract

Allylthiourea (ATU) and chlorate (ClO$_3^-$) are often used to selectively inhibit nitrification and nitratation. In this work we identified challenges with use of these compounds in inhibitory assays with filter material from a biological rapid sand filter for groundwater treatment. Inhibition was investigated in continuous-flow lab-scale columns, packed with filter material from a full-scale filter and supplied with NH$_4^+$ or NO$_2^-$. ATU concentrations of 0.1-0.5 mM interfered with the indophenol blue method for NH$_4^+$ quantification leading to underestimation of the measured NH$_4^+$ concentration. Interference was stronger at higher ATU levels and resulted in no NH$_4^+$ detection at 0.5 mM ATU. ClO$_3^-$ at typical concentrations for inhibition assays (1-10 mM) inhibited nitratation by less than 6%, while nitritation was instead inhibited by 91% when NH$_4^+$ was supplied. On the other hand, nitratation was inhibited by 67-71% at 10-20 mM ClO$_3^-$ when NO$_2^-$ was supplied, suggesting significant nitratation inhibition at higher NO$_2^-$ concentrations. No chlorite (ClO$_2^-$) was detected in the effluent, and thus we could not confirm that nitritation inhibition was caused by ClO$_3^-$ reduction to ClO$_2^-$. In conclusion, ATU and ClO$_3^-$ should be used with caution in inhibition assays, because analytical interference

*Corresponding author: bfsm@env.dtu.dk
and poor selectivity for the targeted process may affect the experimental outcome
and compromise result interpretation.

Keywords:
drinking water, ammonium, nitrite, ATU, chlorate, inhibition

1. Introduction

Aerobic nitrification is a two-step process consisting of the oxidation of am-monium to nitrite (nitritation) and of nitrite to nitrate (nitratation). Ammonium
oxidizing bacteria (AOB) and ammonium oxidizing archaea (AOA) are respon-sible for nitritation (Martens-Habbena et al., 2009; Martens-Habbena and Stahl,
2011; Prosser, 1989; Prosser and Nicol, 2008), whereas nitrite oxidizing bacteria
(NOB) oxidize nitrite to nitrate (Lees and Simpson, 1957). The two nitrification
steps are linked and take place simultaneously as nitratation uses the product of
nitritation, but can be uncoupled and investigated individually using compounds
that inhibit one of the two steps. Inhibition is the result of blockage or inactivation
of the normal catalytic cycle of the enzyme responsible for a specific function, i.e.
nitritation or nitratation (McCarty, 1999).

Allylthiourea (ATU) is commonly used to inhibit nitritation, by targeting the
ammonia monooxygenase action and chelating the copper in the active site, ulti-mately hindering its function (Bedard and Knowles, 1989). Nitritation inhibition
has been used in micropollutant biodegradability studies (Batt et al., 2006; Falas
et al., 2012; Shi et al., 2004; Zhou and Oleszkiewicz, 2010; Rattier et al., 2014)
and in studies investigating nitritation kinetics (Munz et al., 2010) and activity
(Dapena-Mora et al., 2007).

Chlorate (ClO$_3^-$) has been used to inhibit nitrite oxidation and inhibition is
presumably a result of chlorate reduction to chlorite (ClO$_2^-$) (Hynes and Knowles, 1983). This reduction is catalyzed by nitrate reductase, which is actually the same enzyme that is responsible for nitrite oxidation, operating in the reverse direction (Hynes and Knowles, 1983). As a result, chlorate inhibition is assumed to be specific for nitrification. Chlorate inhibition has also been widely used when quantifying the ammonium oxidation potential of biomass (Belser and Mays, 1980; ISO, 2012).

Specific inhibition by ATU and chlorate has been used for decades in a variety of environmental systems, ranging from soils to activated sludge, marine sediments and pure cultures. Although similar behavior with other oligotrophic systems was expected, we experienced challenges with the use of these compounds in inhibition assays with filter material from biological rapid sand filters for groundwater treatment. The aim of this work was therefore to investigate, address and report these challenges to avoid the potential occurrence of experimental artifacts in future work.

2. Materials & Methods

2.1. Investigated rapid sand filter and filter material sampling

A rapid sand filter at Islevbro waterworks (Copenhagen, Denmark operated by Hofor A/S) was used for the experimental investigations. The filter had been operating for 30 years prior to the experiments without filter material replacement. Filter influent contained on average 0.13 mg/L NH$_4^+$-N, which was completely nitrified to NO$_3^-$, 9.25 mg/L O$_2$, 1.93 mg/L NVOC, and 0.1 mg/L Fe$^{2+}$ (Tatari et al., 2013). Filter material was collected from the top 5 cm using a sterilized 1 L stainless steel container attached to an extendable aluminum rod. Three random
horizontal locations were sampled and the collected filter material was mixed to form a composite sample. After sampling, the sand was stored wet at 4 °C for less than 7 days before the inhibition assays.

2.2. Inhibition assays

The inhibitory effect of ATU and ClO$_3^-$ was investigated by monitoring the nitrification activity of the biomass on the collected filter material in a lab-scale assay. Due to the long operating time of the sampled full-scale filter, the filter material had an already established active nitrifying community, with AOB densities of 31 cells/m3 filter material and a nitrification capacity above 223 g NH$_4^+$-N/m3 filter material/d (Tatari et al., 2016). The experimental system employed small plexiglas columns (5 cm bed height, 2.6 cm inner diameter), packed with the collected filter material and operated continuously (Tatari et al., 2013). Effluent water from the waterworks was supplemented with 1-2 mg/L NH$_4^+$-N as NH$_4$Cl (Sigma-Aldrich, 254134) or 1 mg/L NO$_2^-$-N as NaNO$_2$ (Sigma-Aldrich, S2252) and the inhibitory compounds at concentrations described later, and was fed at the inlet of the columns. Alkalinity in the influent water was high (5.4 meq/L as HCO$_3^-$), so no additional alkalinity was added to the substrate water. The influent flowrate was constant at 39 mL/h giving a hydraulic retention time (HRT) of 2.3 h in the system, as determined experimentally by salt (NaCl) tracer tests. Column effluent was recirculated at a ratio of 50 to 1 to impose complete mixing in the bulk phase in the system (Tatari et al., 2013).

The columns were packed and started-up with only the N-substrate in the influent, running therefore as controls for a day. On the second day of operation, the column effluents were sampled twice (with 3-4 h in between) and were analyzed for the NH$_4^+$, NO$_2^-$ and NO$_3^-$ concentrations. After sampling of the con-
trols, ATU (N-Allylthiourea, Merck chemicals, 808158) or ClO$_3^-$ (KClO$_3$ \geq 99%, Sigma-Aldrich, 12634) were added in the influents and continuously supplied with the N-substrates. ATU was only added in columns supplied with NH$_4^+$. ClO$_3^-$ was added in columns supplied with NO$_2^-$ to verify nitratation inhibition, and in columns supplied with NH$_4^+$ to assess the selectivity of the nitratation inhibition. Concentrations of the two compounds and combinations with the N-substrates are reported in Table 1. The effluents were sampled twice (with 3-4 h in between), 18 h after the addition of the inhibiting compound (at least 8 HRT after onset of application) and were analyzed for NH$_4^+$, NO$_2^-$ and NO$_3^-$ concentrations. Columns were then emptied and cleaned by high water flow (390 mL/h) for 3-4 h before re-packing with new filter material for the next experiment, unless specified otherwise in Table 1.

Nitritation inhibition (%) was calculated as the difference in NH$_4^+$ removal during control and test column performance. NH$_4^+$ removal (%) was calculated by subtracting the effluent from the influent NH$_4^+$ concentration and normalizing for the influent NH$_4^+$ concentration. Similarly, nitratation inhibition (%) was calculated as the difference of NO$_2^-$ removal during control and test column performance. NO$_2^-$ removal (%) was calculated as the difference of effluent and produced NO$_2^-$ concentration, after correction for the NO$_2^-$ traces present in the influent water (0.016 mg/L NO$_2^-$-N) and normalization for the produced NO$_2^-$ concentration. The NO$_2^-$ produced by nitritation was calculated as the difference of influent and effluent NH$_4^+$ concentration.

2.3. Analytical methods

NH$_4^+$ was quantified colorimetrically with the indophenol blue method (Merk, Spectroquant test kit, 1.14752) and absorbance was measured at 690 nm with a
Table 1: Inhibitory effect of ATU and ClO$_3^-$ at different concentration levels on nitritation and nitratation

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Inhibitor Concentration (mM)</th>
<th>Substrate</th>
<th>Substrate Concentration (mg N/L)</th>
<th>Nitritation Inhibition</th>
<th>Nitratation Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATU</td>
<td>0.10</td>
<td>NH$_4^+$</td>
<td>1</td>
<td>87</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.50i</td>
<td>1</td>
<td>87</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>2</td>
<td>96</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>ClO$_3^-$</td>
<td>0.01</td>
<td>NH$_4^+$</td>
<td>1</td>
<td>11</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>1</td>
<td>15</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>1</td>
<td>28</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1</td>
<td>83</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>1</td>
<td>80</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>1</td>
<td>85</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>ClO$_3^-$</td>
<td>0.01</td>
<td>NO$_2^-$</td>
<td>1</td>
<td>-</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>10.0ii</td>
<td>1</td>
<td>-</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.0iii</td>
<td>1</td>
<td>-</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

i Same filter material as in the above experiment (0.1 mM ATU & 1 mg/L NH$_4^+$). ATU concentration was increased to 0.5 mM at day 3.

ii Same filter material as in the above experiment (0.01 mM ClO$_3^-$ & 1 mg/L NO$_2^-$). ClO$_3^-$ concentration was increased to 10 mM at day 3.

iii Same filter material as in the above experiment (10 mM ClO$_3^-$ & 1 mg/L NO$_2^-$). ClO$_3^-$ concentration was increased to 20 mM at day 4.
spectrophotometer (Merck, DR 2800). Detection limit of the method was 0.05 mg NH$_4^+$-N. Measured NH$_4^+$ concentrations in the influents containing ATU were lower than the nominal spiked levels, so NH$_4^+$ was re-quantified by flow injection adapting the method from Hall and Aller (1992). In brief, the carrier stream was 10 mM NaOH (Sigma-Aldrich, 30620) with 0.2 M Na-citrate (Sigma-Aldrich, 25116) and the receiving stream was 0.1 mM HCl (Sigma-Aldrich, 30721). Both streams were fed by a multi-channel pump (LabConco, Model 140250) at a rate of 6.2 mL/min. 100 µL of sample were manually injected in the carrier stream through an injection valve. NH$_4^+$ in the sample was converted to gaseous NH$_3$ due to the basic pH of the carrier stream. The carrier stream entered the gas exchange membrane (Teflon tape), through which NH$_3$ diffused to the receiving stream and was converted back to the ionic form (NH$_4^+$) due to the acidic pH. Conductivity of the receiving stream was measured by a conductivity meter (VWR Scientific, Model 1054) and was linearly correlated to the NH$_4^+$ content of the sample. Conductivity peaks were retrieved and processed with the Clarity software (Data Apex, Advanced Chromatography Data Station). Detection limit of the method was 0.07 mg NH$_4^+$-N.

NO$_3^-$, ClO$_3^-$ and ClO$_2^-$ were quantified by Ion Chromatography (Dionex, ICS 1500) using a guard column (Dionex, AG 22) and an analytical column (Dionex, ION PAC AS22). The eluent solution contained 4.5 mM Na$_2$CO$_3$ (Sigma-Aldrich, 31432) and 1.4 mM NaHCO$_3$ (Sigma-Aldrich, 71630), and detection was done by suppressed conductivity (Dionex Thermo Scientific, ASRS 300). Retention times were approximately 5.7 min for NO$_3^-$, 5 min for ClO$_3^-$ and 3.5 min for ClO$_2^-$. Detection limits were 0.2 mg NO$_3^-$-N/L, 0.01 mM ClO$_3^-$ and 0.01 mM ClO$_2^-$.

7
3. Results & Discussion

3.1. ATU interference in NH$_4^+$ quantification by the indophenol blue method

NH$_4^+$ quantification by the indophenol blue method resulted in lower NH$_4^+$ values compared to the concentrations measured by flow injection in all samples where ATU was present (Figure 1). NH$_4^+$ concentration measured by flow injection in the influent samples matched the nominal spiked concentrations and fitted the N-balance within the standard error of the analytical methods (data not shown).

To exclude a potential matrix effect, 7 standard solutions were prepared by spiking the effluent water from Islevbro waterworks with NH$_4^+$-N at 0.05-1 mg/L. The standard solutions were analyzed colorimetrically and NH$_4^+$ was retrieved in all standards within the standard deviation of the method (0.023 mg NH$_4^+$-N/L).

A second series of 4 standard solutions in the same water matrix contained 1 mg/L NH$_4^+$-N and 0.05-0.5 mM ATU, and was also quantified colorimetrically. Measured NH$_4^+$-N concentrations were between 0 and 0.80 mg/L, confirming the underestimation of NH$_4^+$ concentration by the indophenol blue method in the presence of ATU.

Interference by ATU in the flow injection method was excluded by analyzing a series of 6 standard solutions (0.07-1.12 mg/L NH$_4^+$-N) without or with 0.5 mM ATU, where all measured concentrations matched the nominal standard concentrations.

NH$_4^+$ analysis by the indophenol blue method did not detect any NH$_4^+$ in the influents spiked with 0.5 mM ATU, although their nominal NH$_4^+$ concentration was 1-2 mg/L NH$_4^+$-N (Figure 1). Interference of ATU with the colorimetric method was stronger at higher ATU concentrations. However, the NH$_4^+$ concentration from colorimetric determination was not correlated with the actual NH$_4^+$ concentration.
Figure caption

Figure 1: NH$_4^+$ concentration underestimation by the indophenol blue method when ATU was present in the samples.
for a given ATU level, so no correction factor could be calculated.

Although the indophenol blue method has been used in several works to quantify NH$_4^+$ in ATU inhibited samples (Law et al., 1992; Lehtovirta-Morley et al., 2013; Minzoni et al., 1988), this is the first study to identify and report the analytical interference of ATU with this method. These previous studies however, used ATU concentrations between 0.009 and 0.08 mM, which are lower than the range used in our study. Only Montuelle et al. (2003) using 1.7 mM ATU suggested a potential interference in the NH$_4^+$ quantification, although they did not not investigate nor specifically attribute the interference to the presence of ATU. ATU concentrations up to 0.08 mM are typically used to inhibit AOB activity, while higher concentrations up to 0.86 mM are relevant for archaeal (AOA) activity inhibition (Santoro and Casciotti, 2011; Hatzenpichler et al., 2008; Taylor et al., 2010). Therefore, when ATU is used to inhibit AOA activity at concentrations higher than 0.08 M the use of the indophenol blue method for NH$_4^+$ quantification should be discouraged. Erroneous conclusions can arise if only effluent NH$_4^+$ concentrations are measured as they would be underestimated due to interference, resulting in overestimation of the ATU inhibitory effect.

3.2. Selectivity of ClO$_3^-$ inhibition for nitratation

The efficiency and selectivity of ClO$_3^-$ in inhibiting nitratation was evaluated by experiments with NH$_4^+$ or NO$_2^-$ as the supplied substrate. During the initial operation as controls, NH$_4^+$ removal in the columns supplied with NH$_4^+$ was higher than 98%, and nitratation was complete since the effluent NO$_3^-$-N concentration was below 0.016 mg/L. NO$_2^-$ removal during the control operation of the columns supplied with NO$_3^-$ ranged between 88 and 97%.

Inhibition observed due to ClO$_3^-$ addition is illustrated in Table 1 for the 9
combinations of N-substrates and ClO$_3^-$ concentrations. ClO$_3^-$ at 1-10 mM inhibited nitritation (80-85%), but not nitratation (< 6%) in the columns supplied with NH$_4^+$ (Table 1). On the other hand, nitratation was inhibited (67-71%) at 10-20 mM ClO$_3^-$ when NO$_2^-$ was the sole influent substrate (Table 1). This differential ClO$_3^-$ effect on nitratation can be possibly related to the different NO$_2^-$ concentration in the columns. At 10 mM ClO$_3^-$, the effluent NO$_2^-$-N concentration was 0.82 mg/L in the column supplied with NO$_2^-$ and 0.02 mg/L in the column supplied with NH$_4^+$. These effluent concentrations were equal to the NO$_2^-$ concentrations in the columns because of complete mixing in the system. Hence, this indicates that nitratation inhibition was higher at high vs. low NO$_2^-$ concentrations. Our results are in contrast with those of Belser and Mays (1980), who observed a stronger inhibitory effect at low NO$_2^-$ concentrations suggesting a competitive inhibition mechanism. Our results do not support such a mechanism, but indicate that different NOB communities may respond differently to ClO$_3^-$. Nitritation inhibition by ClO$_3^-$ has been observed previously and has been attributed to reduction of ClO$_3^-$ to ClO$_2^-$ by NOB (Hynes and Knowles, 1983). We did not detect ClO$_2^-$ in the column effluents (LOD 0.02 mM), while the ClO$_3^-$ added to the influents was retrieved in the effluents (data not shown). We therefore could not confirm the hypothesized reduction of ClO$_3^-$ to ClO$_2^-$ or the reduction to Cl$^-$ as suggested by Xu et al. (2011). This, however, does not exclude the possibility that ClO$_3^-$ was temporarily reduced and oxidized in a cyclic pattern, producing intermediates that inhibited nitritation. According to Hynes and Knowles (1983), AOB are presumably much more sensitive than NOB to ClO$_2^-$, meaning that even low concentrations may inhibit nitratation. These observations ultimately suggest that selectivity of ClO$_3^-$ inhibition towards nitratation may be compromised by specific
experimental factors, such as the NO$_2^-$ concentration and the type of active NOB. Therefore, the ClO$_3^-$ inhibition method to estimate nitrification potential should be tested before use to exclude an eventual significant nitritation inhibition during the assay that may lead to experimental artifacts.

4. Acknowledgements

This work was supported by the Danish Council for Strategic Research via project DW-Biofilters. The authors acknowledge the Urban Water Technology Research School and the waterworks involved in this study.

References

Addendum

Since the original submission of this article, we have discovered – using 16S rRNA targeted amplicon sequencing and qPCR - that the microbial community on the sand material from the examined rapid sand filters is highly enriched in members of the *Nitrospira* over the *Nitrosomonas* genus (ca 100/1, (Gülay et al., 2016; Tatari et al., 2016)) We subsequently discovered – via metagenomics – that the *Nitrospira* population was dominated by types with the genetic capacity for complete ammonium oxidation (comammox) (Palomo et al., 2016). Our recent work – using stable isotope probing – reveals that comammox *Nitrospira* drive ammonium oxidation in the RSF samples under the examined conditions (Gülay et al., unpublished). Hence, our observations on the behavior of ClO$_3^-$ as a strong inhibitor of nitritation can be explained: even though ClO$_3^-$ is only converted to the toxic ClO$_2^-$ in cells that have an active nitrite oxidoreductase enzyme (NXR, i.e. perform nitratation), the majority of these cells are likely comammox *Nitrospira*, and the toxic ClO$_2^-$ would then not only inhibit most cells in their nitrite oxidation capacity (nitratation) but also in their ammonium oxidation capacity (nitritation). The observed ‘lack of nitratation inhibition’ under ammonium-fed conditions can also be explained: as nitratation inhibition is not 100% complete, there are some cells that are not affected by ClO$_3^-$; those cells’ nitration capacity would then neither be affected, limited-to-no NO$_2^-$ accumulation would be observed, and absence of nitratation inhibition would be inferred. Yet, we note that ClO$_3^-$ causes strong nitratation inhibition when NO$_2^-$ is provided as sole substrate: this is consistent with the normal mode of action of ClO$_3^-$, either by inhibiting comammox *Nitrospira* or other NOBs that oxidize extracellular NO$_2^-$. Clearly, our further observations on the abundance of comammox *Nitrospira* strengthen and refine the conclusion: the selectivity of ClO$_3^-$ as inhibitor of nitratation may be compromised by the type of NOB and is abolished when comammox *Nitrospira* dominate ammonium oxidation in the system. These observations, furthermore, suggests that the response to ClO$_3^-$ may serve as an indicator of the contribution of comammox to nitrification.

Reference to be Added to the References:

Already in the list of references: