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ABSTRACT

Context. We present the first high-cadence multiwavelength radial-velocity observations of the Sun-as-a-star, carried out during 57
consecutive days using the stellar échelle spectrograph at the Hertzsprung SONG Telescope operating at the Teide Observatory.
Aims. Our aim was to produce a high-quality data set and reference values for the global helioseismic parameters ... and of
the solar p-modes using the SONG instrument. The obtained data set or the inferred values should then be used when the scaling
relations are applied to other stars showing solar-like oscillations observed with SONG or similar instruments.

Methods. We used di erent approaches to analyse the power spectrum of the time series to determine max. : Simple Gaussian fitting
and heavy smoothing of the power spectrum. We determined using the method of autocorrelation of the power spectrum. The
amplitude per radial mode was determined using the method described in Kjeldsen et al. (2008, ApJ, 682, 1370).

Results. We found the following values for the solar oscillations using the SONG spectrograph: ma. = 3141 12 Hz, =
134:98 0:04 Hz, and an average amplitude of the strongest radial modes of 16:6 0:4cms . These values are consistent with

previous measurements with other techniques.

Key words. Sun: oscillations — asteroseismology

1. Introduction

The Stellar Observations Network Group, SONG, aims to build a
network of 1m telescopes spread in longitude, in both the north-
ern and the southern hemispheres. Each node in the network is
designed to be fully automatic; no human interactions are needed
on site (Andersen et al. 2014, 2019). One of the primary goals of
SONG is to target individual stars intensively for asteroseismic
studies using high-precision radial-velocity measurements (e.g.
Grundahl et al. 2006, 2014, 2017). Furthermore, with the com-
plementary satellite missions such as the Transiting Exoplanet
Survey Satellite, TESS (Ricker et al. 2015), simultaneous obser-
vations combining space-based photometry and radial velocities
from SONG provide new and valuable insight in our understand-
ing of stars.

Global seismic parameters obtained from observations yield
fundamental global properties of stars, such as mass and radius,
using well-established scaling relations (Brownetal. 1991;

? Based on observations made at the Hertzsprung SONG telescope
operated at the Spanish Observatorio del Teide on the island of Tenerife
by the Aarhus and Copenhagen Universities and by the Instituto de
Astrofisica de Canarias.
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Kjeldsen & Bedding 1995; Stello etal. 2009; Kallinger et al.
2010). These relations are based on scaling two key properties
of pressure mode (p-mode) oscillations from the Sun to other
stars, namely the large frequency separation () and the fre-
quency of maximum power ( max). While  should be largely
independent of the instrument used, the value of . is sensi-
tive to the depth of the sounded layers, which depends on the
observational technique. A number of radial-velocity observa-
tions have been carried out for the Sun using several ground-
based networks (BiSON, GONG, and now SONG) and space
missions (GOLF/SoHO and HMI/SDO), which are summarized
in Pallé et al. (2018). Each instrument is looking at a specific part
of the solar spectrum to determine the radial velocities, and so is
sensitive to di erent depths in the solar atmosphere; the profile
of the p-mode power envelope depends on the response function
of every spectral line as a function of the height in the atmo-
sphere. Hence di erent profiles of the envelope are observed
when using di erent monochromatic instruments where single
spectral lines are used (e.g. K-7699 A for BiSON, Ni-6768 A
for GONG). This will translate into di erences in the measured
properties of the oscillations. Using the SONG spectrograph
and the iodine technique where many spectral lines are used

L9, page 1 of 4


https://doi.org/10.1051/0004-6361/201935175
https://www.aanda.org
http://www.edpsciences.org

A&A 623, L9 (2019)

Fig. 1. Solar tracker with the attached optical fibre assembly used to
feed sunlight to the SONG spectrograph. The SONG dome and con-
tainer are seen in the background.

to extract the velocities will result in an average measurement
insensitive to e ects originating at specific heights in the solar
atmosphere. Therefore, the observations of the Sun presented
here are very important for applying the scaling relations when
oscillations are observed in other stars using the same (or a sim-
ilar) instrument in order to minimize systematic e ects.

As shown in Pallé et al. (2013), simultaneous observations of
the Sun using di erent instruments (including the SONG spec-
trograph) result in di erent profiles of the oscillation envelope,
and hence in di erent values of .. In addition, the stellar
background from granulation is less dominant in velocity than
in intensity (e.g. Pallé et al. 1999; Kjeldsen & Bedding 2011).
In this Letter we emphasize the importance of comparing stellar
values determined from SONG data to our observations of the
Sun using SONG. The obtained time series and power spectrum
are available from the SONG Data Archive? for future use.

2. Observations and data reduction

The Hertzsprung SONG telescope at the Teide Observatory on
the island of Tenerife has been operating in scientific mode since
March 2014 (Andersen et al. 2016). It has observed many aster-
oseismic targets using the high-resolution échelle spectrograph
for radial-velocity measurements (e.g. Grundahl etal. 2017;
Stello et al. 2017; Frandsen et al. 2018; Arentoft et al. 2019).

In 2017, the complementary initiative known as Solar-SONG
was funded, and a solar tracker was installed next to the SONG
telescope. This allows light from the Sun to be fed directly into
the SONG spectrograph using an optical fibre assembly with
complementary optics to scramble the sunlight (Halverson et al.
2015). The optical fibre is mounted on a dedicated Alt/Az solar
tracker and pointed directly towards the Sun (see Fig. 1). The
fibre is mounted on one side of the tracker, and a pyrheliome-
ter and an active guide unit on the other. With this instrument
we were able to simultaneously collect the total solar irradiance
(TSI) and the solar spectra. The TSI was used to clean bad points
from the data, primarily those caused by clouds. A di user was
placed at the fibre entrance and, together with ball lenses at the
interface between the octagonal and circular fibres, was intended
to ensure that the solar disk was not resolved, even if the tracker
does not point accurately to the same point on the Sun at all
times. The active guide unit was not functioning for the obser-
vations presented in this paper and, as discussed below, some
e ects of the solar disk being resolved were seen in the data.

! http://soda.phys.au.dk
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Fig. 2. Upper panel: full 57-day solar time series after applying correc-
tions and filtering. Lower left panel: barycentric velocity corrected time
series from one day of solar observations. Some trends in the residual
RV curve are clearly visible. The red line is the local regression smooth-
ing filter. Lower right panel: zoom-in showing the filtered and corrected
time series, in which the 5 min oscillations are clearly seen.

The observations were carried out from May 27 to July 22,
2018, corresponding to an extremely deep minimum of the solar
activity cycle. Activity will a ect the solar oscillations by low-
ering the p-mode amplitudes and therefore observing during an
activity minimum is highly favourable. Each day more than 10 h
of data were collected; each spectrum had an exposure time of
0.5sand areadouttime of 3.5, resulting in approximately 12 000
spectra (about 100 GB) per day and a total of more than 500 000
measurements of radial velocities after removing bad points. The
extraction of the 2D spectrum into the flux-wavelength spectrum
was set to work in real time. The 1 SONG pipeline was used to pro-
duce the radial-velocity values (Corsaro et al. 2012; Antoci et al.
2013) and was set up on a computer cluster at the Instituto de
Astrofisica de Canarias on Tenerife, where the reduction tasks
were handled by a HTCondor distributor.

Figure 2 (upper panel) shows the full radial-velocity time
series after corrections and filtering have been applied. Only
two of the 57days in this campaign had significant interrup-
tions resulting in a duty cycle of 40%. On June 2 the tracker
failed after two hours of observations due to a software glitch,
and on June 29 clouds were covering the observatory. The raw
radial-velocity measurements for each day were first corrected
for the barycentric motion of the Earth around the Sun (code
from Piskunov & Valenti 2002, exported to Python). The resid-
ual time series of one full day is shown in Fig. 2 (lower left
panel) where some instrumental e ects are still present. The
trend near noon originates from the tracker not pointing perfectly
to the same point on the Sun at all times. This is also where
the largest e ects are expected when using an Alt/Az mount.
The observations are consistent with the solar disk being par-
tially resolved, which means that the set-up does not completely
observe the Sun as a star. The downward slope in the residu-
als at the beginning and end of the series is a well-known e ect
(Belmonte et al. 1988) and is caused by di erential extinction in
the Earth’s atmosphere. The low-frequency trends were removed
using local weighted linear regression smoothing (LOWESS;
Cleveland 1978), which is seen as the red curve in Fig. 2 (lower
left panel). Each data point was smoothed using a weighted
linear regression on a subset of the radial-velocity measure-
ments. The subset used around the individual points was spec-
ified as a fraction of the total number of data points, and in our
case we chose a fraction value of 0.05. With roughly 12.000 data
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Fig. 3. Upper panel: power spectrum from the full 57-day filtered and
corrected time series. The inset (black) shows the spectral window
(' 40% duty cycle) and (grey) a zoom-in showing the individual aliases.
Lower panel: power spectrum of one single day (black). The red curve is
a Gaussian fit to the power excess, the cyan curveisa8  smoothed ver-
sion of the power spectrum, and the blue isthe 4~ smoothed curve. For
this day, the 4 smoothing results in a double hump, giving a poorly
determined max. TO better distinguish the three coloured curves in the
lower panel,the8 andthe4 smoothed versions were multiplied by
a factor of 2 and 2.5, respectively.

points per day, this corresponds to a high-pass filter with cut-o
frequency close to 450 Hz. A number of di erent filters were
tested in order to choose one that had no e ect on our main
results on the p-mode oscillations. Each filter was checked, after
being applied to the barycentric velocity corrected time series,
by determining nax Of the p-mode power excess, and the dif-
ferences between the filters were within a few Hz. Finally, the
filter that minimized the morning, noon, and evening trends was
chosen. Figure 2 (lower right panel) shows a zoom-in of the cor-
rected and filtered time series for one day where the solar oscil-
lations are clearly visible.

3. Analysis of oscillations

To determine the global helioseismic parameters, power spectra
of the corrected and filtered time series were calculated using
unweighted iterative least-squares sine-wave fitting. The power
spectrum from the full 57 days is shown in Fig. 3 (upper panel).

3.1. Determination of max

To estimate uncertainties on the helioseismic parameters, the
time series were split into chunks of one day each. In one day,
the 5-minute oscillations still produces a significant signal in
the power spectrum (S=N  40), which can be seen in Fig. 3
(lower panel). Di erent methods were applied to determine the
frequency of maximum power ( max) from the individual power
spectra. One was to fit a simple Gaussian to the power excess.
The other method was to apply the procedure of Kjeldsen et al.
(2008), where the power spectrum is smoothed by a Gaussian
witha FWHM of 4  and . determined as the maximum of
the smoothed curve. The smoothing factor when using the sec-
ond method proved to be too low, and so the value was increased
toa FWHM of 8 . The lower value would in some cases result
in multiple humps which would lead to a badly determined max
(see lower panel of Fig. 3).

Fig. 4. max time series showing the values determined on the single-
day power spectra using a Gaussian fit. The large variations are due
to the stochastic nature of the modes where excitation, damping, and
interactions causes the heights of individual modes to vary with time.
The red line is the mean value and the dashed cyan lines show 1 .

Sometestsusingdi erentbackground models, when applying
the Gaussian fit, were tried withe ects well below the uncertainty
and we therefore decided to omit a background term. With these
two methods we obtained a series of independent measurements
of max each day for the Sun (see Fig. 4). Calculating the stan-
darg)deviation () of these values gives a standard mean error of

=" n,wheren = 55is the number of independent determinations
(days used). The two days with only a few data points were omit-
ted. The determined uncertaintieswere 12 Hz for the Gaussian
methodand 11 Hzusingthe8 smoothing method. We adopt
the value from the Gaussian method from now on.

We then measured nax. by fitting a Gaussian to the power
excess of the full power spectrum and the value was

=3141 12 Hz 1)

max;

The mean values from the 55 independent measurements of 5«
results in similar values for the two methods: max. = 3139
12 Hz (Gaussian; shown in Fig. 4) and max. = 3140 11 Hz
(8  smoothing). We also used two widely used pipelines
to extract max and  : the SYD Pipeline (Huber et al. 2009)
max = 3141 18 Hz, and the A2Z Pipeline (Mathur et al.
2010) max. = 3151 147 Hz, which agree within the uncer-
tainties.

3.2. Determination of

To determine , we used the method of calculating the auto-
correlation of the full power spectrum. We smoothed the power
spectrum slightly before calculating the autocorrelation and
determined the value by fitting a Gaussian to the peak identi-
fied as originating from . The value with the standard error of
the Gaussian fit was

=134:98 0:04 Hz; 2

which is in agreement with the literature (e.g. Kiefer et al. 2015;
Kjeldsen et al. 2008). The results from the pipelines were =
135:02 0:09 Hz (SYD) and =134:81 3:11 Hz (A22),
which agree well within the uncertainties.

The determined value of  was evaluated further by creat-
ing an échelle diagram where the slightly smoothed power spec-
trum was cut into chunks with a length of ~ and placed on top
of each other. With the correct value of  vertical ridges origi-
nating from modes with di erent I-values and the corresponding
daily aliases will appear. The échelle diagram of the power spec-
trum is seen in Fig. 5.

3.3. Oscillation amplitude

The amplitude of the solar oscillations was determined with
the SYD pipeline, which uses the procedure described by
Kjeldsen et al. (2008). This involves first converting the power
spectrum of the full 57 days into power spectral density (PSD)
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Fig. 5. Upper panel: échelle diagram of a slightly smoothed version of
the power spectrum. The ridges from the p-modes with di erent I-value
are clearly visible, as are the alias peaks from the window function.
Lower panel: collapsed échelle diagram with labels centred above the
peaks marking the lig1.2.3 ridges and the 1 and 3 daily aliases (no
secondary alias present).

by multiplying by the e ective observing time (22.6 d), which
we calculated as the reciprocal of the area under the spectral
window. The PSD was then heavily smoothed by a Gaussian
with a FWHM of 4 and multiplied by  =c, where we took
¢ = 4:09, which represents the e ective number of modes in
each order (Kjeldsen et al. 2008). We then fitted and subtracted
the background using a two-component Harvey model (Harvey
1985). The combination of the components in the model were
equivalent to a linear fit. Finally, we converted to amplitude by
taking the square root, and found the amplitude measured in this
way (i.e. amplitude per radial mode) to be

A =166 04cms (3)

Using the same method but a di erent instrument (BiSON),
Kjeldsen et al. (2008) found the long-term (11 years) average
of the solar amplitude to be 18:7 0:7cms !, with significant
scatter over time due to the stochastic nature of the modes and
solar activity. With this in mind, our measurement appears to be
consistent with the previous result. The oscillation amplitudes
will generally be a ected by the window function which will
lower the amplitudes (Arentoft etal. 2019). Simulations were
performed to check the e ect on our data set and the e ect was
below the level of the stated uncertainty in Eq. (3).

4. Conclusion

We have presented the first multiwavelength high-cadence
radial-velocity observations of the Sun-as-a-star to date, using
the SONG spectrograph on Tenerife. We applied standard meth-
ods to determine the global helioseismic values max: and

The value of g = 3141 12 Hz determined here shows
one way of determining max When analysing SONG data. Our
value is an average over di erent depths in the solar atmosphere,
which makes it (data and method) a good reference for future
use in stellar scaling relations. The method of fitting a Gaus-
sian to the p-mode envelope of the daily power spectra and
to the full power spectrum to determine max and its associ-
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ated error can be directly applied to all other asteroseismic tar-
gets observed using SONG and will lead to a homogeneous and
robust way of determining max With a realistic uncertainty. We
determined a value of for the Sun using autocorrelation of
134:98 0:04 Hz. The value of ma and determined here
also confirms the instrument performance and pipeline for the
radial-velocity measurements of SONG. Finally, we found the
amplitude of the strongest radial modes to be 16:6 0:4cms 1,
which is consistent with previous measurements. These values,
especially max. , will be very important when the scaling rela-
tions are applied to other stars showing solar-like oscillations
observed with SONG or similar instruments. In the case that
other methods are applied to extract the global asteroseismic val-
ues of SONG targets, we have made the filtered and corrected
time series and corresponding power spectrum available on the
SONG Data Archive (SODA).
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