Downloaded from orbit.dtu.dk on: Mar 27, 2023

DTU Library

=
=
—

i

Deep Learning for Power System Security Assessment

Arteaga, José-Maria Hidalgo; Hancharou, Fiodar; Thams, Florian; Chatzivasileiadis, Spyros

Published in:
Proceedings of IEEE Powertech 2019

Link to article, DOI:
10.1109/PTC.2019.8810906

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Arteaga, J-M. H., Hancharou, F., Thams, F., & Chatzivasileiadis, S. (2019). Deep Learning for Power System
Security Assessment. In Proceedings of IEEE Powertech 2019 IEEE. https://doi.org/10.1109/PTC.2019.8810906

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1109/PTC.2019.8810906
https://orbit.dtu.dk/en/publications/11ef60d7-461e-4aba-8365-fdc952955363
https://doi.org/10.1109/PTC.2019.8810906

Deep Learning for Power System Security
Assessment

José-Maria Hidalgo Arteaga

Technical University of Denmark
s171800 @student.dtu.dk

Abstract—Security assessment is among the most fundamental
functions of power system operator. The sheer complexity of
power systems exceeding a few buses, however, makes it an
extremely computationally demanding task. The emergence of
deep learning methods that are able to handle immense amounts
of data, and infer valuable information appears as a promising
alternative. This paper has two main contributions. First, inspired
by the remarkable performance of convolutional neural networks
for image processing, we represent for the first time power system
snapshots as 2-dimensional images, thus taking advantage of
the wide range of deep learning methods available for image
processing. Second, we train deep neural networks on a large
database for the NESTA 162-bus system to assess both N-1
security and small-signal stability. We find that our approach
is over 255 times faster than a standard small-signal stability
assessment, and it can correctly determine unsafe points with
over 99% accuracy.

I. INTRODUCTION

Power system security assessment belongs to the most
fundamental functions of every system operator. Its aim is to
screen a wide range of possible operating points in order to
identify a safe operating region and eliminate the possibility
of a blackout. Power system operators run different types of
security assessment at regular time intervals, ranging from
intra-day to every year, checking each operating point against a
defined set of instability types, including steady-state stability
(e.g. N-1 security criterion), transient stability, small-signal
stability, and voltage stability [1].

Assessing power system security for every possible oper-
ating point is an extremely computationally demanding task.
For systems exceeding the size of a few buses, the problem
becomes intractable due to the millions of possible operating
points. Several approaches have been proposed in the litera-
ture, and some of them have also been applied in real power
systems, to address this challenge, either through the definition
of stability indices that are fast to calculate, through analytical
reformulations and approximations (e.g. Lyapunov function
[2]) or different computationally efficient methods [3], [4].

Machine learning for transient stability assessment has been
applied for the first time in Ref. [5], in the form of decision
trees. Since then, different approaches have been proposed
for different problems, e.g. security assessment [6], controlled
islanding [7], and others. With the recent very successful
application of deep convolutional neural networks for image
and speech recognition, and extremely difficult combinatorial
problems (e.g. Go game), deep learning methods appear to
offer a promising toolbox with significant potential for power

This paper has been accepted at IEEE Powertech 2019.

Fiodar Hancharou

Center of Electric Power and Energy Skolkovo Institute of Technology
Skolkovo, Russia

fiodar.hancharou @skoltech.ru

Florian Thams and Spyros Chatzivasileiadis
Center of Electric Power and Energy
Technical University of Denmark
{fitha, spchatz} @elektro.dtu.dk

system applications. Assessing power system security by deep
learning, however, remains highly unexplored. Ref. [8] uses
machine learning to assess power system security and devise
remedial actions. Ref. [9] uses deep learning for extracting
valuable features in order to build security rules that can
distinguish between safe and unsafe points.

This paper has two main contributions. First, taking advan-
tage of the wide range of deep learning methods for image
processing, we introduce for the first time appropriate 2-D
representations of power system snapshots as images. Second,
using a large database of operating points for the NESTA 162-
bus system, we train different deep neural networks for N-1
security and small-signal stability assessment, and investigate
their performance. Finally, we also briefly discuss ways to
integrate such deep neural networks in a security-constrained
optimal power flow framework.

This paper is structured as follows. Section II presents
the methodology we developed to represent power system
snapshots and the structure of the neural network we created.
Section III presents the results of our case studies on the
NESTA 162-bus test system. Section IV discusses possible
extensions. Section V concludes.

II. METHODOLOGY

The deep learning algorithm we introduce is based on
convolutional neural networks (CNN), which have been suc-
cessful for applications in image recognition. Inspired by
that, in this paper we develop a representation of power
system snapshots by images, which we can then feed directly
to the convolutional neural network. Considering the rapid
development of powerful deep learning algorithms for image
processing, an appropriate representation of power system
snapshots as images can take advantage of all the state-of-the-
art methods developed in the artificial intelligence community.
In the following sections, we first present the input data that
we used for the training and testing of the neural network,
and then we continue with the methodology to create the
appropriate images, and the structure of the CNN.

A. Training and Testing Database

Our input data are generated for the NESTA 162-bus system
[10]. In our previous work, we have introduced an efficient
database generation method, which manages to generate hun-
dreds of thousands of datapoints around the security boundary
of the system about 10-20 times faster than other state-of-
the-art methods [11]. Using this algorithm, we assess the
N-1 security and small signal stability of a large dataset of

operating points (about 1,000,000) for the NESTA 162-bus
test system [10].

Each operating point in the database is represented by bus
voltages, angles, net active and reactive power demand at each
node and active and reactive power in each line. The security
assessment is based on small-signal stability analysis for a sub-
set of the possible N-1 contingencies C = [Cy, Cy, ..., Cy] in
the NESTA 162-bus system. An operating point is considered
safe if the damping ratio ¢ for all contingencies C' is higher

than 3%, i.e. if min(¢(C)) > 0.03.

B. Image Generation

The images we generate shall (uniquely) represent the state
of a power system. To do that, we need to associate the
variables extracted from power flows with specific locations
in multidimensional arrays. In image recognition algorithms,
the images are turned into 2D arrays filled with numerical
values that the convolutional neural network can understand.
Each colour image is usually converted to three arrays or
channels, typically RGB, that represent the intensity of red,
green and blue colour in each pixel. Following this method,
the images created from power system data are also divided in
three channels PQV that represent the active power, reactive
power, and voltage in each snapshot of the power system.

The 2D arrays associated with channels P and Q will be
N x N matrices, where N is the number of buses in the 162-
bus case. The diagonal of each matrix has the net active P;
and reactive); power demands at each bus i respectively. If
bus 7 and bus j are connected by a line, the active P;; and
reactive ();; power flows are placed in the position (,5) of
the matrix while P;; and @);; are placed in (j, 7). Since power
losses in the lines are also taken into account, these matrices
are not symmetrical. The data from each channel is previously
normalised by calculating the absolute value of each element
and then dividing by the maximum value of P or Q in the
whole database. All normalised values are between O and 1.

The 2D array associated with channel V has also size N x N,
and its diagonal is filled with the voltages V; in each bus.
The off-diagonal elements, ¢ # j, are filled with the absolute
values of the voltage drops V;; along each line. Unlike the
other two channels, matrices in channel V' are symmetrical.
The data in this channel (bus voltage and line voltage drop)
are normalised as well, similarly to the other channels. In the
three channels PQV, the matrices are sparse because the power
system has only 284 lines for the 162 buses. An example of an
image can be seen on Figure 1, where the three channels PQV
are superimposed and plotted as if they were RGB, creating
a coloured picture. The coloured pixels are always placed in
the same spots but with different intensities. Even though all
snapshots are different, two different snapshots are usually
visually similar with a naked eye — but not for a computer.
In his Nobel lecture in 2011 [12], Saul Perlmutter explained
that an early way of searching supernovae was to take images
from distant galaxies periodically and subtract the negative
from an older image to the latest image. Both images would
look the same but when there is a supernova, the subtraction
leaves a single white point over a dark background. If this
same procedure is followed with our created images, it will
be possible to spot the differences in all snapshots. An image
X, € RN:N:¢ created from a snapshot s of the power system

100

120

140

160
0 20 40 60 80 100 120 140 160

Fig. 1. Example of image representing a snapshot of NESTA 162-bus power
system

is a 3D tensor' with size [V, IV, c], and ¢ being the number
of channels. The total input data set X € R>N:N:¢ with
all snapshots turned into images becomes a 4D tensor with
[S, N, N,] size, where S is the number of snapshots that the
database contains. Due to the large size of X (104.8 GB), only
small batches, X, € R>N:N:¢ where b is the batch-size and
b << §, are generated when needed in the training process.

The output data, a vector containing zeros and ones de-
pending on the security state of each snapshot, is turned into
labels by one-hot encoding having as a result an output data
set y € R%Ne where N, is the number of labels: in our case
two (safe/unsafe). In [13], one-hot encoding is explained as
a method to encode categorical variables having n categories
as n-dimensional feature vectors. For each category, one of
the positions of the vector is filled by a one and the rest
by zeros, resulting in a vector space where each category is
orthogonal and equidistant to the rest. Unsafe snapshots are
now represented as [1, 0] while safe snapshots as [0, 1].

Once the input X and output y sets are constructed, all
the data is split into training (Xi,qin and Yirqin), validation
(Xyar and yyqr) and test sets (Xiese and yiest). The training
set contains 70% of the total set while the validation and
test sets contain the remaining 10 % and 20% of the data
respectively. Initially, the dataset is shuffled to assure that all
subsets have the same share of safe cases (about 14.5%). As
X does not fit in the memory of the computers used to train
the CNN, it is impossible to create the full size tensor X
before training. Instead, we split the number of snapshots S in
training, validation and test sets, and generate smaller batches
X, that we use as input to the CNN.

C. Structure of the Deep Neural Network

Convolutional neural networks (CNN) have been designed
for processing data in the form of multiple arrays. As explained
above, our model has to process three 2D arrays that represent
P, @ and V in the studied power system. The structure of
a convolutional net has several stages. The initial stages are

IThe term “tensor” refers to multidimensional arrays or vectors, used in
TensorFlow (https://www.tensorflow.org/), the machine learning library we
use. We will use the terms “tensor” and “array” interchangeably.

composed by a series of convolutional and pooling layers. The
output of these initial stages is reshaped in a flattening layer
and then fed into fully-connected layers. The typical structure
of a CNN is shown in Fig. 2. The whole convolutional net

Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps units units
3@32x32 20@32x32 20@16x16 40@16x16 40@8x8 500 250

NN
NN

Fully
connected

Outputs
2

Convolution Aatten

5x5 kernel

Convolution
Tx7 kernel

Max-pooling
2x2 kernel

Max-pooling

Fully
2x2 kernel connected

Fig. 2. Structure of a typical CNN. For the exact structure of the CNN
developed for this paper see Table I.

works with the same principle as a multi-layer perceptron
(MLP). Equation (1), where g is the activation function and
Wi;; and b; are the weights and biases from node ¢ to node j
respectively, shows how the output of each node is calculated:

F
X; =) (Wi Xi +1b))))
i=1
The different layers that form the CNN, as well as its training
process, are explained in the following paragraphs.

1) Convolutional Layer: Convolutional layers take as input
2D arrays and train a series of 2D kernels or filters that aim to
recognise patterns in the input arrays giving the local weighted
sum as an output.

The input to any convolutional layer is a 4D batch X; with
[b, H,W, F;_1] size that is turned into a [b, H, W, F;] tensor
where H and W are the height and width of the 2D arrays
respectively and F; and F;_; are the number of filters or nodes
in layer ¢ and in the previous one respectively.

The weights in a convolutional layer are a 4D tensor with
a [K,K, F,_1, F;] size, with K being the kernel size, while
the biases are a 1D tensor of F; size. The kernel size and the
number of filters are tuning parameters chosen by the user.

The most commonly used activation function in convolu-
tional layers is the Rectified Linear Unit (ReLU) [14], whose
function is given by f(z) = max(0,z) [15].

2) Max-Pooling Layer: The pooling layers do not have
weights and biases associated and their aim is to reduce the
spatial size of the convolutional layers’ output. Max-pooling
is the most commonly used type of pooling, and also the one
used in our algorithm. Max-pooling layers apply a moving
window, in our case of size 2 x 2, over a 2D input and give the
maximum value from every sub-region covered by the window.

This type of layer is applied after each convolutional layer,
giving as an output a [b, %, %, F;] size tensor. The activation
function is applied after the max-pooling layer, instead of right
after the convolutional layer, because it is less costly due to
its smaller sized input.

3) Flattening Layer: Flattening layers connect convolu-
tional or pooling layers to fully-connected layers. This type
of layer reshapes the output of the last max-pooling layer
into a 1D array per snapshot in order to be able to feed the
first fully-connected layer. The size of the output of this layer
[b, M - N - Fy] is the result of compacting the three dimensions
from the previous layer [b, M, N, F;].

4) Fully-connected Layer: here, each node is connected to
all the nodes from the previous layer. The output of each layer
is a F;-size vector per snapshot. The first fully-connected layer
is fed by the flattening layer. The weights in these layers are a
2D tensor with a [F;_1, F;] size while the biases are a F;-size
vector. In all fully-connected layers except the last one, 20%
of the nodes are disconnected while training in order to avoid
over-fitting (i.e. 20% dropout rate).

All fully-connected layers except for the output layer are
activated by a ReLU function. The output layer, which is
the one that finally performs the classification, is activated
by a Softmax function or normalised exponential function
[16]. Softmax equations are shown in (2) and (3), where
o represents the output, IV, is the number of classes and
X, is the input vector. The Softmax function turns a N,-
dimensional vector of real values into a vector of the same
size with values between 0 and 1 where all elements sum 1.
This function is used in the output layer in order to get the
probability distribution over the different classes, in our case
safe and unsafe. The CNN chooses the class with the highest
probability to occur as the predicted security state.

N.
o: RN o {o e RN [0y >0, oy =1} 2)
=1
eXi
o(X)i = =% for 1=1,...,N, 3)

Dy e
D. Training the Neural Network

In order to measure the classification performance of our
neural network during training, we need to define a loss
function. The loss function is based on the cross entropy
between the estimated and real output probability distributions.
The cross entropy equation across m snapshots is shown in
(4) as the first term, where y; and ¢; are the real and predicted
probabilities of class ¢ respectively. The first term of the cross
entropy, which corresponds to the positive class predictions, is
multiplied by a class coefficient ¢ in order to penalise more
false positive predictions (® > 1) or false negative predictions
(® < 1). The coefficient ® is useful when the labels of the
data are unbalanced. Based on the loss function presented
inA [9], the estimateg recall Rec, specificity Spe, precision
Pre and Fl-score I'1, whose definitions are explained later,
are added multiplied by the negative costs .., a,, «;, and
oy respectively. These costs are negative because we aim to
maximise the algorithm’s performance on those metrics. The
total loss function includes also L2 regularisation at the end
in order to avoid over-fitting and also penalise large values of
weights.

m

1
Loss = —— Oy;log(9;) + (1 — y:)log(1 — 4;
08s - 21[yilog(9:) + (1 — yi)log(1 — 3;)]
= 4
Np
Re Sy P F1 AE w2
—a,Rec—agdpe—apPre—ay —&—5 j

j=1

We use the Adam optimiser [17], which is an algorithm
based on stochastic gradient descent, to minimise the loss
function while tuning the trainable parameters of the neural
network: weights and biases. The optimiser is initialised with

an initial learning rate chosen by the user. The CNN is trained
by applying a mini-batch gradient descent method, i.e. the
parameters are updated every time a batch, smaller than the
training set, goes through the optimiser. These small batches
are created and overwritten right after their use in order to
be able to fit this learning process in the available memory
space. The whole training set, and therefore all the batches,
go through the optimiser in every epoch. After every epoch,
the model is validated in the validation set. The final model
will be the one with the highest validation accuracy in all the
epochs. Before training, a large number of epochs is chosen
but in order to avoid over-fitting, early stopping is applied
with a patience parameter chosen by the user. This means
that if the validation loss is not decreasing over the epochs,
the training stops and the saved weights and biases are the
ones corresponding to the epoch with the highest validation
accuracy.

E. Proposed Model

The proposed CNN architecture initially has three consecu-
tive series of convolutional and max-pooling layers. The kernel
size of the layers is 9 x 9, 7 x 7 and 5 x 5 for the first, second
and third convolutional layers while the number of filters is
20, 40 and 80 respectively. The kernel size decreases from the
first layer because the input to the convolutional layers gets
smaller. This allows to increase the number of filters in the
next layers.

Figure 3 shows the weights corresponding to the first con-
volutional layer. This image has been created by normalising
the weights and superimposing the three input channels PQV
into one as if they represented RGB channels. There is twenty
9 x 9 images due to the number of filters and their size in the
first convolutional layer. Red, green and blue colours represent
large weights in channels P, Q and V respectively and small
in the rest. Black colour represents small weights in the three
channels while white colour shows large weights in all of
them. This colourful image can only be obtained for the first
layer since in the following ones, the inputs are more than the
initial three. The flattening layer is applied after the last max-

Fig. 3. Image representing the weights in Convl.

pooling layer. Then, the first fully-connected layer, with 250
nodes is fed. This layer feeds directly to the output layer which
has 2 nodes, one per label. Table I shows the size of each layer
as well as the shapes of the weights and biases. The number
of parameters to train in each layer is also represented. The
number and size of the filters as well as the number of nodes
have been chosen heuristically. The optimiser is fed with a

TABLE 1
REPRESENTATION OF CNN ARCHITECTURE.

Layer Shape Weights size | Bias size | # param

Input [b,162,162,3]

Convl [b,162,162,20] [9,9,3,20] [20] 4.880
Max-pooll [b,81,81,20]

Conv2 [b,81,81,40] [7.7,20,40] [40] 39.240
Max-pool2 [b,40,40,40]

Conv3 [b,40,40,80] [5.5,40,80] [80] 80.080
Max-pool3 [b,20,20,80]

Flatten [b,32000]

FC1 [b,250] [32000,250] [250] 8.000.250

FC2 (output) [b,2] [250,2] 2] 502
Total 8.124.952

batch-size of 128 snapshots, and a maximum of 200 epochs
with a patience of 30 epochs. The initial learning rate is set
to 0.001.

The model has been implemented using the Python open
source machine learning library TensorFlow for GPU and
trained in a single Tesla V100 GPU core from DTU’s HPC
cluster for 23 hours (DTU cluster limits the time use of each
job to a maximum of 24 hours). For our simulations, this time
was enough for the validation error to converge to a minimum,
even though there were always some small fluctuations in the
error during the training process. It is believed that training
the CNN in several GPU cores in parallel would speed up the
process and improve the results further.

III. RESULTS

In this section, the results obtained by the presented model
are shown. First, we describe the evaluation metrics used to
measure how good our model is. Subsequently, we present
the scores obtained by testing the model, and at the end we
show the substantial reduction of computation time by using
the presented model over traditional methods.

A. Evaluation Criteria and Model Performance

The evaluation criteria used are based on the confusion
matrix, shown in Table II. The confusion matrix is filled with
the True Positives (TP), referring to the number of snapshots
predicted as unsafe that are actually unsafe, True Negatives
(TN), i.e., the number of snapshots predicted as safe that are
actually safe, and False Positives (FP) and False Negatives
(FN) as the snapshots that have been predicted as the opposite
class from what they actually are. The following measures are

TABLE 11
CONFUSION MATRIX.

Predicted Unsafe | Predicted Safe
[Actual Unsafe TP FN
| Actual Safe FP TN

extracted from the different elements in the confusion matrix.

o Recall: Also named as Sensitivity or True Positive Rate
(TPR), it is the proportion of correct positive predictions
in all the positive cases. Calculated as Recall = TPTJF%.

o Specificity: Also called True Negative Rate (TNR), it is
the proportion of correct negative predictions in all the
negative cases. Calculated as Speci ficity = TNTiﬁvp'

o Precision: Also known as Positive Predictive Value
(PPV), is the proportion of correct positive predictions
in all positive predictions. Calculated as Precision =
TP LT

o F1-Score: The harmonic mean of Precision and Recall.
Calculated as F'1 = 2%’%.

e Accuracy: The proportion of correct predictions in all
data set. Calculated as Accuracy = mﬁ%.

o Matthews correlation coefficient: A measure of corre-
lation between predicted and actual values in a binary
classification. It yields a coefficient between -1 and 1,
with 1 being when the prediction is perfect, 0 when the
prediction is no better than random, and -1 when all

predicted values are mistaken. Calculated as MCC =
(TP-TN)—(FP-FN)

\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)"

The measure of accuracy is often enough to measure the
quality of the classification for a database with the same
number of safe and unsafe operating points. Since this is not
the case in our problem, where only 14.56% of the cases are
safe, other measures become also meaningful when evaluating
the classification. It also needs to be mentioned that it is
substantially more important to predict correctly unsafe cases
than safe cases. In our case, a FN would have a much higher
negative impact (and cost) for the power system than a FP. For
that reason, it is more important to have a high Recall than a
high Specificity.

As it has just been mentioned, the database labels are
unbalanced, containing a substantially higher number of unsafe
cases compared with safe cases. If we were looking for
balancing the cross entropy loss, the balanced class coefficient
®, would be &, = % = 0.17 where Ssqre and Sypsafe
are the number of safe and‘ unsafe snapshots respectively. Since
we aim to minimise the FNs because predicting correctly
the unsafe cases is more important, the class coefficient
has to be & > &p; in our studied cases, as shown in
Table III it was & > 1. The metric costs vector is defined as
a = [y, 0, ap,] (see (4)). The metrics directly related to
predicting unsafe cases correctly and therefore decreasing FNs
are Recall, Precision and F1-Score, while Specificity is related
to the safe cases prediction. Table III shows the different

TABLE III
CASES DEPENDING ON ¢ AND a.

Cases [@ | & = [or, s, 0p, O]
1 1 [0, 0, 0, 0]
2 [0, 0, 0, 0]
3 5 [0, 0, 0, 0]
4 1 [0.5, 0.5, 0.5, 0.5]
5 1 [0.5, 0, 0.5, 0.5]
6 2 [0.5, 0, 0.5, 0.5]
7 3 [0.5, 0, 0.5, 0.5]
8 2 [0, 0, 0.5, 0.5]

studied cases, with different values of ® and &, and Figure
4 shows the best scores of our model in the test set in each

case. The radar chart aims to demonstrate how the variation
of ® and & can influence the training outcome. Note that the
scale of each axis in this diagram is specified under each label.

Cases 1-3 show the variation of ® while & is filled with ze-
ros. It can be observed that a value close to the optimal & could
be around 2 since increasing it more is counterproductive. In
case 4, all the values from & are increased while ® stays 1
and the results are improved in comparison with case 1. The
addition of evaluation metrics in the loss function results in an
improvement of performance. Increasing ® and & too much
can result in worse scores due to the trade-off between the
importance of the different terms in the loss function. Since
having a high Specificity is less important than the rest, cases
5-7 have o5 as zero while the rest of elements in & stay 0.5. It
can be observed again that when ® equals 2, in case 6, there is
a peak of performance. In case 6 we obtain the highest score in
Recall with a 99.14% meaning that from all the combinations
tried, the one that predicts the best the unsafe states is case 6.
Investigating the confidence interval, we found that with 99%
likelihood the score in Recall in case 6 will belong to the
confidence interval 99.14% =+ 0.092%. On the other hand, in
case 8 where both «a,. and «a, are zero, the model scores the
best in FI-Score, MCC and accuracy with a 99.14%, 0.942
and 98.54% respectively. Again, the 99% confidence intervals
of these scores in case 8 are FI-Score: 99.14% =+ 0.092%,
MCC: 0.942 £+ 0.00097, and Accuracy: 98.54% =+ 0.12%. In
this case, the overall classification performs better than in the
rest of cases but the correct classification of unsafe classes
decreases in exchange of a rise in MCC and accuracy.

In order to identify a pattern in the miss-classified operating
points in case 8, the whole operating area covered by the
database is split in clusters by k-means clustering [18]. This
technique is applied several times for a number of 3, 5, 10 and
20 clusters. Once the operating space is divided in clusters, the
clusters where the miss-classified points belong are identified.
This gives as a result that at least the 99% of the miss-classified
points belong always to the same cluster. This means that most
of these points belong to a small specific region of the security
boundary that the CNN failed to model.

Precision Specificity

(98.6,100) po - o e mmmmmm 4 (91.5,100)
AY

==&== Max

Case 1l

Case 2

Case 3

’
Fl-Score ¢/
(98.75,99.2) \

Case 4

Case5

Case 6
Case 7

——2Case 8

(0.91,0.945)

(97.8,98.6)

Fig. 4. Radar chart of the scores in the different cases. Table III describes
the used parameters for each case. Note that each axis has a slightly different
range in order to enhance the readability of the figure.

B. Computation Time

The main goal of applying deep learning techniques to
power system security assessment is to devise algorithms that
provide results much faster than the standard small-signal
stability analysis methods for all possible contingencies. For
that reason, we measure the time needed to perform a security
assessment with the presented model and compare it to the
time spent in computing all necessary small-signal stability
analyses. To ensure a fair comparison, (i) both methods are
tested in the same machine: a single core from an Intel Xeon
Processor E5-2650 v4 of the DTU HPC cluster, and (ii) the
computation time reported is the average time after performing
the security assessment on a single snapshot for 1000 times.
Table IV reports the average time per test over these 1000
tests. As it can be observed in Table IV, the time spent to

TABLE IV
TIME TESTS: SMALL-SIGNAL STABILITY ANALYSIS VS. CONVNET MODEL.

Small-signal stability analysis | ConvNet model |
l

[Average Time | 21°950 ms 86 ms |

perform a security assessment for the studied power system
is reduced about 255 times, making the presented model way
more efficient for security assessment than traditional methods.

IV. DISCUSSION AND POSSIBLE EXTENSIONS

The used training database (online available, see [11]) con-
tains all possible N-1 contingencies for all possible operating
points for a given demand profile (over 1,000,000 points).
Topology changes in the form of N-1 investigations are already
considered. Future work shall consider a wider range of
topology changes and uncertainty in demand.

Inspired by our previous work, where we have reformulated
Decision Trees for stability assessment to a Mixed Integer
Linear Program [19] or Mixed Integer Second Order Cone
Program [20] in order to fully consider N-1 security and small
signal stability in Optimal Power Flow, in future work we
will also examine extensions of our deep learning algorithm
to AC-OPF formulations. Through an iterative framework, the
CNN can help determine the binding constraints that lead to
a N-1 secure and small-signal stable point, which can then
be inserted in the optimization problem. In our preliminary
investigations, the average computation time of such a setup
after carrying out 50 tests in an Intel Core 17-8550-U CPU is
19.99s. Future work will focus on computation efficiency and
convergence guarantees.

V. CONCLUSIONS

This paper has presented a method based on convolutional
neural networks and deep learning for power system secu-
rity assessment. There are two main contributions. First, we
represent for the first time power system snapshots as images
that can be easily processed by convolutional neural networks.
Acknowledging the fact that safe or unsafe operating points
exhibit similar patterns, we represent power flows between
buses as 2-dimensional images. Taking advantage of the wide
range of deep learning methods available for image processing,
we can achieve a remarkable performance of deep neural
networks for power system security assessment. Second, we
develop and extensively test different deep neural networks to

assess N-1 security and small-signal stability on the NESTA
162-bus system. We find that our approach is over 255 times
faster than a standard small-signal stability assessment for a
single operating point, while it achieves an accuracy of over
98% and a Recall of over 99.14% (i.e. classifying unsafe states
as unsafe). As discussed in the last section, future work will
focus on the integration of deep learning for power system
security assessment to an optimal power flow framework.

ACKNOWLEDGMENT

This work has been partially supported by the multiDC project, funded by
Innovation Fund Denmark, Grant Agreement No. 6154-00020B.

REFERENCES

[1] P. Kundur et al., “Definition and classification of power system stability
ieee/cigre joint task force on stability terms and definitions,” IEEE Trans.
on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug 2004.

[2] T. L. Vu, S. Chatzivasileiadis, H. Chiang, and K. Turitsyn, “Structural
emergency control paradigm,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 7, no. 3, pp. 371-382, Sept 2017.

[3] K. Morison, L. Wang, and P. Kundur, “Power system security assess-
ment,” IEEE Power and Energy Magazine, vol. 2, no. 5, pp. 30-39,
2004.

[4] T. Van Cutsem and C. Vournas, Voltage stability analysis of electric
power systems. Kluwer Academic Publishers, 1998.

[5] L. A. Wehenkel, Automatic Learning Techniques in Power Systems.
Boston/London/Dordrecht: Kluwer Academic Publishers, 1998.

[6] C. A. Jensen, M. A. El-Sharkawi, and R. J. Marks, “Power system
security assessment using neural networks: feature selection using fisher
discrimination,” IEEE Transactions on Power Systems, vol. 16, no. 4,
pp. 757-763, Nov 2001.

[71 S. Koch, S. Chatzivasileiadis, M. Vrakopoulou, and G. Andersson,
“Mitigation of cascading failures by real-time controlled islanding and
graceful load shedding,” in 2010 iREP Symposium - Bulk Power System
Dynamics and Control - VIII (iREP), Buzios, Brazil, Aug. 2010.

[8] B. Donnot, I. Guyon, M. Schoenauer, P. Panciatici, and A. Marot,
“Introducing machine learning for power system operation support,” in
2017 iREP Symposium - Bulk Power System Dynamics and Control - X
(iREP), Porto, Portugal, August 2017, pp. 1 —10.

[91 M. Sun, I. Konstantelos, and G. Strbac, “A deep learning-based feature
extraction framework for system security assessment,” IEEE Transac-
tions on Smart Grid, pp. 1-1, 2018.

[10] C. Coffrin, D. Gordon, and P. Scott, “NESTA, The NICTA
Energy System Test Case Archive,” 2014. [Online]. Available:
http://arxiv.org/abs/1411.0359

[11] E. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, “Efficient
database generation for data-driven security assessment of power sys-
tems,” IEEE Transactions on Power Systems, 2018, online avaiable:
https://arxiv.org/abs/1806.01074.

[12] S. Perlmutter, “Nobel lecture: Measuring the acceleration of the cosmic
expansion using supernovae,” Rev. Mod. Phys., vol. 84, August 2012.

[13] P. Cerda, G. Varoquaux, and B. Kégl, “Similarity encoding for
learning with dirty categorical variables,” Machine Learning, vol.
107, no. 8, pp. 1477-1494, Sep 2018. [Online]. Available: https:
//doi.org/10.1007/s10994-018-5724-2

[14] A.F. Agarap, “Deep learning using rectified linear units (relu),” online:
https://arxiv.org/abs/1803.08375, 03 2018.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov 1998.

[16] B. Gao and L. Pavel, “On the properties of the softmax function with
application in game theory and reinforcement learning,” online: https:
/farxiv.org/pdf/1704.00805.pdf, 2017.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[18] S. Na, L. Xumin, and G. Yong, “Research on k-means clustering
algorithm: An improved k-means clustering algorithm,” in 2010 Third
International Symposium on Intelligent Information Technology and
Security Informatics, April 2010, pp. 63-67.

[19] E. Thams, L. Halilbasic, P. Pinson, S. Chatzivasileiadis, and R. Eriksson,
“Data-driven security constrained opf,” in 2017 iREP Symposium - Bulk
Power System Dynamics and Control - X (iREP), Porto, Portugal, August
2017, pp. 1 -10.

[20] L. Halilbasic, F. Thams, A. Venzke, S. Chatzivasileiadis, and P. Pinson,
“Data-driven security-constrained ac-opf for operations and markets,” in
20th Power Systems Computation Conference (PSCC), June 2018.

