Graphene-Sulfite Oxidase Bioanodes for Enzymatic Biofuel Cells

Tang, Jing; Werchmeister, Rebecka Maria Larsen; Preda, Loredana; Huang, Wei; Zheng, Zhiyong; Leimkühler, Silke; Wollenberger, Ulla; Xiao, Xinxin; Ulstrup, Jens; Zhang, Jingdong

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Graphene-Sulfite Oxidase Bioanodes for Enzymatic Biofuel Cells

Jing Tang1, Rebecka Maria Larsen Werchmeister1, Loredana Preda2,3, Wei Huang1, Zhiyong Zheng1, Silke Leimkühler2, Ulla Wollenberger2, Xinxin Xiao1, Jens Ulstrup1 and Jingdong Zhang1,*

1Department of Chemistry, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
2Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Golm, Germany
3on leave from Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
*e-mail address: jz@kemi.dtu.dk

Enzymatic biofuel cells (EBFCs) are environmentally friendly electrochemical cells that produce electricity using enzyme catalysts. An EBFC consists of a bioanode in which enzymes catalyze the oxidation of fuels such as sugars, ethanol and sulfite, and/or a biocathode using dioxygen-reducing enzymes. Most EBFCs generate energy from abundant fuels without using noble metals. However, EBFCs are not sufficiently stable and hampered by limited power densities. Graphene possess high conductivity and surface area,[1] and thus the introduction of graphene offers a strategy to promote the performance of bioelectrode.

We have developed a bioanode based on human sulfite oxidase (HSO) electrostatically immobilized on a graphene-modified carbon paper using polyethyleneimine (PEI), Fig. 1a. HSO catalyzes the oxidation of sulfite to sulfate via direct electron exchange with the electrodes.[2] Electrocatalytic performance of the bioanode was further enhanced by electroreduction of graphene oxides in the graphene matrix. A stacked EBFC constructed by combining the HSO bioanode and a commercial platinum cathode is found to deliver an open circuit voltage of 0.64 ± 0.01 V, and a maximum power density of 61 ± 6 µW cm⁻² which is seven times higher than the earlier reported value,[2] Fig. 1b and c.

Fig. 1 Illustration of (a) the graphene-HSO bioanode and (b) the EBFC. (c) Polarization and power density curves of the EBFC fueled with Tris-acetate buffer (750 mM, pH 8.4) containing 25 mM Na₂SO₃ (2.0 mL min⁻¹) at the bioanode and O₂ (100 mL min⁻¹) at the cathode at 30 °C.

References