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Abstract
Numerous unprecedented changes have taken place in the whole energy system over the last years,
such as the transformation of the power generation mix and the increased interactions among
different energy systems, which have introduced both opportunities and challenges. The electricity
system is transitioning towards a renewable-based system mainly due to worldwide environmental
concerns and natural gas is expected to play an important role in the future development of the
electricity system. This is due to the fact that Gas-fired Power Plants (GFPPs) are one of the least
polluting conventional technologies, as well as efficient and flexible. The co-existence of these
two types of power production technologies serves as a promising combination for a smooth
transition to a sustainable energy system that is flexible enough to accommodate high shares of
renewables. As a consequence, the interactions between the electricity and natural gas systems
will be strengthened, while the uncertainty and variability of renewables will eventually affect
the operation of both systems. Moreover, electricity and natural gas are traded in markets, which
eventually need to adapt to these recent and forthcoming changes. In this context, the objective
of this thesis is to propose market-based coordination frameworks to support the operation of
electricity and natural gas systems under the uncertainty introduced by the power production
from renewable energy sources, such as wind and solar.

An increasing need for flexibility has occurred due to the inherent characteristics, i.e. uncertainty
and variability, of renewable energy sources that can be covered by various sources, such as
electricity storage, demand response and GFPPs. On top of the ability of GFPPs to provide
operational flexibility, these plants are the link between the two energy systems and thus give the
opportunity to exploit the flexibility in the natural gas system. More specifically, the natural gas
system can act as a storage buffer thanks to the ability of storing natural gas in the pipelines and in
the seasonal storage facilities. A special focus in this thesis is placed on developing operational
models for the optimal use of the different assets and components of the whole energy system,
while simultaneously integrating them in the market operations.

Currently, the electricity and natural gas markets are operated in a decoupled manned without
taking into account each system’s complexities and limitations. In addition, a common practice
is to adopt a deterministic view of uncertainties when operating the systems and markets, since
these were fairly limited when the operational models were first developed. Seeking for new
operational models, we analyze different levels of coordination in terms of coupling the systems,
as well as consider various approaches to obtain an uncertainty-aware scheduling of the system in
view of stochastic power production from renewables. We introduce a model that co-optimizes the
electricity and natural gas systems under uncertainty by using stochastic programming, while also
considering the flexibility of the natural gas system. Under this proposed approach, the importance
of proper natural gas system modeling in short-term operations is highlighted to reveal flexibility
and increase security of supply. Therefore, adopting a fully coupled view of the two systems and

xiii
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having a probabilistic description of uncertainty can provide ideal solutions for the system and
market operators.

Such stochastic dispatch models optimally use the available flexibility to provide an ideal dispatch
with the minimum expected cost. However, these models are usually incompatible with the
current market designs. System and market operators are highly challenged by the increasing
penetration of renewables, since the traditional market designs are based on a sequential clearing
of trading floors with deterministic view of uncertainties. As a result, these models become
highly inefficient and experience high operational costs as the penetration of stochastic power
production increases. Acknowledging the advantages of adopting a coupled view of the electricity
and natural gas systems, we propose two dispatch models that exploit the physical and economic
links established between the electricity and natural gas systems by GFPPs to improve the current
sequential clearing of trading floors. The proposed improved dispatch models anticipate the
real-time flexibility needs and optimally set flexibility volume and price signals to provide the
system dispatch that approximates the ideal stochastic solution in terms of expected cost, while
still clearing the day-ahead and real-time trading floors sequentially.

Taking advantage of the continuously increasing availability of renewable power production
data, recent developments on data-driven optimization can be employed to deal with uncertain
renewables. Two data-driven models are proposed for the operation of the electricity and natural
gas systems, which are able to efficiently capture the true characteristics of renewable power
production directly from the available data. That way, the proposed data-driven models inherently
incorporate valuable information regarding the spatial and temporal correlations. In the first
data-driven model, we solve the energy and reserve dispatch model with fuel constraints for
GFPPs in view of a strong interdependence between electricity and natural gas systems. The
focus is placed on developing approaches to solve distributionally robust joint chance constrained
programs, in which the sample data are directly utilized for the uncertainty characterization and a
systematic tuning of robustness allows to attain cost-effective solutions. The second data-driven
model is developed based on the estimation of the first- and second-order moments from the
historical data and provides an independent, yet coordinated dispatch of electricity and natural
gas systems in view of uncertain power supply. This distributed approach permits to share only a
limited amount of information between the two system or market operators and is performed in a
transparent manner.



Resumé
I de seneste år har energisystemet gennemgået en del bemærkelsesværdige forandringer, så som
ændringer i sammensætningen af el-produktionen og den øgede interaktion mellem forskellige
energisystemer. Dette har skabt både interessante muligheder og store udfordringer. El-systemet
er ved at overgå til et system baseret på vedvarende energi som hovedsageligt skyldes globale
bekymringer for miljøet. Naturgas forventes at spille en vigtig rolle i den fremtidige udvikling
af el systemet. Dette er fordi gasfyrede kraftværker (GFKV’er) er én af de mindst forurenende
konventionelle teknologier, og de er desuden meget effektive og fleksible. Koordinering af
gasfyrede- og vedvarende el-produktion er en lovende kombination for at overgå til et bæredygtigt
energisystem der er fleksibelt nok til at rumme en høj andel af vedvarende energi. Interaktionerne
mellem el- og naturgassystemerne vil derfor styrkes, mens usikkerhed og variabilitet af den
vedvarende energi i sidste ende vil påvirke driften af begge systemer. Derudover handles
el og naturgas på markeder som også bliver nød til at tilpasse sig til kommende ændringer.
Denne Afhandling foreslår markedsbaserede koordinering der kan understøtte driften af el- og
naturgassystemerne, ved samtidigt at tage højde for den usikkerhed som el-produktionen fra
vedvarende energikilder som vind og sol fører med sig.

Der er et stigende behov for fleksibilitet, på grund af de medfødte karakteristika ved vedvarende
energi (dvs. usikkerhed og variabilitet). Denne fleksibilitet kan dækkes af forskellige kilder, såsom
lagring af elektrisk energi, demand-response og GFKV’er. Ud over GFKV’ers evne til at yde
operationel fleksibilitet er disse kraftværker bindeled mellem de to energisystemer og åbner således
op for at udnytte fleksibiliteten i naturgassystemet. Mere konkret kan naturgassystemet agere
som energi-lager takket være muligheden for at lagre naturgas i rørledninger og sæsonlagre. Et
specielt fokus i denne afhandling lægges på at udvikle operationelle modeller til brug for optimal
udnyttelse af de forskellige aktiver og komponenter i hele energisystemet, samtidig med at disse
integreres i et marked.

I dag opereres el- og naturgasmarkeder afkoblet af hinanden, uden hensynstagen til de enkelte
systemers kompleksiteter eller begrænsninger. Desuden er det gængs praksis at anlægge et
deterministisk syn på usikkerheder i systemernes drift, fordi usikkerhederne var ret begrænsede
da de operationelle modeller oprindeligt blev udviklet. I søgen efter nye operationelle modeller
undersøger vi forskellige niveauer af koordination med henblik på at sammenkoble el- og gas-
systemer, og benytter forskellige måder for at planlægge driften, ved at tage usikkerheden af
systemerne med henblik på stokastisk el-produktion fra den vedvarende energi i betragtning.
Vi introducerer en model der co-optimerer el- og naturgassystemerne under usikkerhed ved at
benytte stokastisk programmering, mens vi tager hensyn til naturgassystemets fleksibilitet. Med
denne metode fremhæves vigtigheden af korrekt modellering af naturgassystemet for at synliggøre
fleksibilitet og øge forsyningssikkerheden. Således kan vi, ved at indføre et fuldt koblet syn på
de to systemer og have en probabilistisk beskrivelse af usikkerheden, tilbyde ideelle løsninger til
både systemet og markedsoperatørerne.
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xvi RESUMÉ

Sådanne stokastiske dispatch modeller kan på optimal vis udnytte den tilgængelige fleksibilitet og
opnå en ideel dispatch med minimale forventede omkostninger. Men disse modeller er normalt
inkompatible med det nuværende markeds designs. Desuden har system- og markedsoperatører
store udfordringer som følge af den forøgede penetration af vedvarende energi, idet de traditionelle
markeds designs er baseret på en sekventiel clearing af markederne med deterministisk beskrivelse
af usikkerhederne. Som et resultat af dette bliver disse modeller meget ineffektive og oplever høje
operationelle omkostninger når andelen af stokastisk el-produktion stiger. Idet vi anerkender
fordelene ved at anlægge et koblet syn på el- og naturgassystemerne, foreslår vi to dispatch
modeller der udnytter de fysiske og økonomiske bånd mellem el og naturgassystemerne, som
GFKV’er tilvejebringer, til at forbedre det nuværende markeder med sekventiel clearing. De
foreslåede forbedrede modeller forudser real-tids fleksibilitetsbehovet og sætter på optimal vis
fleksibilitetsmængde og prissignaler ved at tilbyde et system dispatch der tilnærmer den stokastiske
løsnings ideele forventede omkostninger, imens day-ahead- og real-tidsmarkederne stadig cleares
sekventielt.

Ved at drage fordel af den stødt stigende tilgængelighed af data fra vedvarende el-produktions
kilder, kan den seneste tids fremskridt indenfor datadrevet optimering anvendes til at håndtere
usikkerheden ved vedvarende energikilder. Der foreslås to datadrevne modeller til driften af el-og
naturgassystemerne, som effektivt fanger den vedvarende el-produktions sande egenskaber direkte
fra observationerne af de tilgængelige data. På den måde inkorporerer de foreslåede datadrevne
modeller selv de fulde oplysninger om rum- og tids korrelationer. I den første datadrevne model
løser vi energi- og reserve dispatch modellen med brændstof bi-betingelser for GFKV’er med
antagelsen af stærke indbyrdes afhængigheder mellem el-og naturgassystemerne. Fokus er at
udvikle metoder til at løse distribuerede robuste "joint chance constrained" programmer, hvor det
tilgængelige data direkte udnyttes til at karakterisere usikkerhed og hvor en systematisk tuning af
robusthed gør det muligt at opnå omkostningseffektive løsninger. Den anden datadrevne model er
udviklet på grundlag af en estimering af første- og andenordensmomenter fra de observerede data
og giver en uafhængig, men koordineret dispatch af el-og naturgassystemerne under hensyntagen
til en usikker elforsyning. Denne distribuerede metode tillader at kun en begrænset mængde
oplysninger deles mellem de to systemer eller markedsoperatører og metoden udføres på en
gennemsigtig måde.
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CHAPTER1
Introduction

1.1 Background and motivation

Over the last two decades, the previously independent electricity and natural gas sectors have
experienced a substantial transformation that has led to a gradual convergence of their operations.
This trend has been manifested in various ways highlighting the increased interdependencies
between the two industries [1, 2]. Firstly, both the electricity and natural gas sectors have
been liberalized, which resulted in the unbundling of vertically-integrated utilities and created
the conditions for the corresponding commodity markets to develop. Secondly, the increased
deployment of Gas-Fired Power Plants (GFPPs) has created tighter links between the electricity
and natural gas systems, both from an economic and a technical viewpoint. At the same time, the
presence of various utilities involved in the trading of both commodities has created the need for
developing decision-making tools that take into account the characteristics and limitations in both
energy systems.

In addition to the aforementioned reforms, the increased integration of renewables in the energy
systems has introduced significant challenges to be faced in terms of systems and markets
operations. This is due to the fact that electricity markets have been designed based on a generation
mix that was dominated by fully controllable thermal power plants, while the electricity and
natural gas systems had been initially developed and operated in a decoupled manner because
of the limited interactions between them. Nevertheless, the power production of renewables is
stochastic, i.e. it is weather-driven and thus hard to predict, and non-dispatchable, i.e. it can only be
partly controlled by their operators. The increased stochasticity and variability introduced in the
power system impacts also the natural gas system’s operations because the links between the two
energy systems are expected to be continuously strengthened.

Therefore, challenges can be identified in two dimensions; one with regards to the accommodation
of high shares of stochastic renewables in the whole energy system and another relative to the
interplay between the electricity and natural gas systems. In this context, there is an increasing
need to explore the redesign of the respective markets as well. Aiming to have an efficient and
cost-effective operation of the whole energy system under these rapid transformations, makes the
use of advanced decision-making tools that take uncertainty into account more and more essential
nowadays.

1.2 Research objectives

The objective of this thesis is to propose novel market-based coordination frameworks to facilitate
the operation of electricity and natural gas systems under high shares of stochastic power production
from renewables. The development of these tools is based on mathematical optimization with a
special focus on incorporating uncertainty in various modeling approaches.

1
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Owing to the extensive deployment of renewable energy sources, and to their special afore-
mentioned characteristics, a significant impact on short-term operations is expected. Hence,
the proposed models are developed focusing on short-term markets and particularly from the
day-ahead stage up to the real-time operation, where the physical delivery takes place. The
system/market operator viewpoint is taken in all studies presented in this thesis and the various
players are assumed to participate in the markets under perfect competition. It should be also
noticed that wind power is used as the uncertain power in-feed; however, the developed models
can be similarly extended to deal with uncertainties stemming from other renewable energy sources
with similar characteristics, such as solar power. Wind power is chosen since it has currently the
greatest installed capacity in Europe among all renewables, as well as has been widely developed
in Denmark [3]. In addition, wind power producers are the first to participate in the electricity
market, while having a stochastic and non-dispatchable nature.

The overall quest of this thesis can be summarized by the following three main research questions
that lead to the development of the respective research works:

I. How can the coordination of electricity and natural gas systems be enhanced in short-term
operations while accounting for uncertainties?

Among others, authors in [4–7] have dealt with the presence of uncertain power production in
coordinated electricity and natural gas systems highlighting the need for further elaborating on
this topic to facilitate the integration of renewables in a cost-effective manner. The benefits of
improving the coordination between the two energy systems under high intraday variability of
GFPPs are also indicated in [8]. Therefore, different coordination setups that aim to overcome the
aforementioned challenges are studied in this thesis to address this research question. As an initial
step, the inefficiencies stemming from the current independent operation between electricity and
natural gas systems that takes place under a deterministic view of uncertainties are identified.
Then, various operational models are developed to examine how different levels of coordination
both between the two systems and between the trading floors (i.e. day-ahead and real-time stages)
can enhance the current organizational setup.

II. Which are the benefits of modeling the energy networks in a market-compatible way with
regards to revealing flexibility and mitigating uncertain power supply?

Several works in the literature, such as [8–13], included natural gas network constraints in the
system modeling to reveal its inherent flexibility and ensure reliability in short-term operations.
Revealing additional flexibility plays an important role to facilitate the integration of renewables
in the whole energy system, while taking into account network constraints in the market-clearing
procedure not only increases the security of supply but also allows for a more efficient utilization
of the existing resources. This thesis seeks to develop models that efficiently incorporate system
components and network constraints in the market-clearing models to have a more realistic view of
the underlying physical characteristics of the systems. Accomplishing this goal can reveal various
benefits; for instance, the operation of GFPPs can be optimized and the inherent flexibility of the
natural gas system can be exploited resulting in a reduced operational cost of the integrated energy
system. Moreover, incorporating the network models in a market-compatible way allows to derive
meaningful prices for the traded commodities that can support the participation of various actors
in the markets. Similarly, the interplay with the heating sector can increase the overall system’s
flexibility [14, 15].
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III. How can the available data of renewable energy production be utilized efficiently to char-
acterize uncertainties in operational models?

Moving towards an era with an increased availability of data, it is becoming highly important
to use data analytics and develop data-driven models to deal with uncertainties. The utilization
of analytics can provide valuable insights to facilitate the process of making predictions and
characterize uncertainties. Two example approaches for the representation of uncertainties in
operational models are presented in [16] and [17], where probabilistic wind power forecasting and
definition of dynamic uncertainty sets are proposed respectively. Then, the acquired high quality
uncertainty characterizations can be combined with proper decision-making tools to develop
advanced operational models. Another approach that can be followed is to develop directly
data-driven models, as in [18, 19], which effectively extract valuable information from the available
data. The aforementioned approaches facilitate the handling of uncertainties from renewables and
are utilized in this thesis.

1.3 Scientific contributions

As an inspiration to this thesis, the current status and future trends in Denmark in the energy tran-
sition period are studied in [Paper A]. Denmark, which is considered a pioneer in the development
of wind energy, has successfully integrated high shares of renewable power production and has
ambitious goals to cover fully the energy supply by renewables by 2050 [20]. Another interesting
characteristic is the existence of the three main energy carriers in the Danish energy system (i.e.
electricity, natural gas and heat), which presents a great potential to study the coordination among
them in order to reveal additional existing flexibility. More importantly, the electricity and natural
gas systems are operated by a common system operator (i.e. Energinet.dk), which promotes the
establishment of efficient coordination mechanisms. These mechanisms are considered attractive
and inexpensive as opposed to solutions, such as building new interconnections or investing in
electrical energy storage options. Therefore, the case of Denmark provides valuable insights and
motivates a holistic view of the energy system to support renewable energy integration.

Sufficient levels of flexibility are of utmost importance as we move towards a renewable-based
power system and GFPPs are considered one of the most suitable conventional technologies
to accommodate the uncertainty and variability of stochastic power production. Due to their
favorable operational capabilities, such as high efficiency and flexibility along with reduced carbon
emissions, these units usually compensate for the variability caused by intermittent renewables.
Therefore, GFPPs are strengthening the link between electricity and natural gas systems, which
causes though higher variability in the natural gas system [8]. Accounting for the natural gas
network properties during decision making can be considered an effective approach to increase the
levels of security of supply and to reveal additional flexibility. The reason for that is the inherent
flexibility of the natural gas network, in which the pipelines can be used for short-term storage of
gas, the so called linepack flexibility, and the large storage facilities that can be utilized either as a
back-up option for short-term needs or as a seasonal storage option [13].

The benefits of incorporating a natural gas system model with linepack flexibility and storage
facilities in the dispatch procedure of the whole energy system are presented in [Paper B] under
three setups with various degrees of coordination both system-wise and between the trading floors.
In this work, a dispatch model for a coupled electricity and natural gas system is proposed, which
is formulated as a two-stage stochastic program [21]. The proposed model utilizes the flexibility of
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the natural gas system in a way that the minimum expected cost of the coupled energy system
is attained and increases security of supply. Moreover, the two deterministic models that are
developed, one of an integrated energy system and one that treats the two systems independently,
clear the subsequent trading floors in a sequential manner and demonstrate an inferior performance
than the proposed model. The coordination parameters, here considered to be the natural gas price
and volume availability for power production from GFPPs, are identified and their impact on the
dispatch of both energy systems is assessed.

Following an approach based on two-stage stochastic programming allows for an advanced setup
to dispatch the electricity and natural gas systems by accounting for uncertainties and anticipating
future balancing needs. The dispatch provided by this approach yields the minimum expected
cost but it is usually not compatible with the current market designs and regulations. In practice,
market participants and system/market operators may hesitate to adopt radical changes and prefer
to face only slight adjustments that guarantee a sufficient level of efficiency to handle uncertainties.
Following this rationale, two systematic approaches to optimally define the aforementioned
coordination parameters in a coupled electricity and natural gas system are given in [Paper C]
and [Paper D], while maintaining the sequential arrangement between the trading floors. In
particular, [Paper C] presents a price-based model to generate proper flexibility price signals that
adjust the natural gas price perceived by GFPPs, while [Paper D] proposes a volume-based model
to determine the optimal value of natural gas availability for power production. Both models
improve the temporal coordination between day-ahead and real-time stages by communicating
the currently missing information regarding the stochastic power production at the day-ahead
stage. The price-based and volume-based models are formulated as stochastic bilevel programs
and then reformulated to Mathematical Programs with Equilibrium Constraints (MPECs) [22].
The two-stage stochastic programming approach serves as an ideal benchmark to quantify the
efficiency improvement in terms of expected cost obtained by the proposed models with regards
to the deterministic and sequential approach. Therefore, [Paper C] and [Paper D] develop models
that enhance the temporal coordination between the trading floors via accounting for uncertainties
in power production, while taking advantage of a fully coordinated setup between the two energy
systems to exploit operational flexibility.

The development of well-designed decision-making tools that describe with the highest possible
detail the problem in question is an important aspect to accomplish an efficient and secure operation
of energy systems. These tools are formally formulated as mathematical programs and their
solutions highly depend on the input data. More specifically, the quality and accuracy of the input
data to characterize uncertainties play an important role and may significantly alter the decisions
in a suboptimal way. The proper representation of uncertain power production from renewables is
essential and highly challenging. A usual approach to describe the stochastic processes related to
wind power is the utilization of modern forecasting techniques to generate scenarios that capture
the spatial and temporal dependencies [23]. This approach has been widely used in relation to
stochastic programming and has demonstrated attractive results by using high quality inputs. In
an attempt to sidestep potential low quality inputs and inaccurate estimates in the decision-making
process, various data-driven optimization techniques can be employed. We address this task in
[Paper E] and [Paper F] by developing data-driven models that utilize the available data from
stochastic power production to provide knowledgeable decisions for the problem in question.

In a data-driven framework, the mathematical models utilized by the system/market operator
are fed with the available data without involving any additional processes, such as scenario
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or uncertainty set generation. The input data can then directly provide valuable information
regarding the spatial and temporal correlations in the models. In this respect, [Paper E] and
[Paper F] consider such data-driven approaches based on distributionally robust optimization
[18, 19]. More specifically, in [Paper E], the co-optimization of energy and reserve dispatch with
fuel constraints for GFPPs is studied in view of the increased interdependencies between the two
systems and high reliance on GFPPs for operational flexibility. In this case, the data samples
are used to approximate the true probability distribution of renewable power production by an
empirical distribution. Then, we are able to optimize over a family of distributions that contains
the distributions close to the empirical one based on a probability metric selected. In this work,
we choose the Wasserstein metric [24] to build the family of distributions and we are able to
systematically tune the robustness of the model to attain cost-effective solutions. An important
characteristic of the proposed model is that it provides solutions to distributionally robust joint
chance constrained programs. Thus, we make no assumption for the probability distribution of
the uncertain parameter and handle multiple constraints simultaneously, as opposed to individual
chance constrained programs. Furthermore, in [Paper F], an independent but coordinated dispatch
of the electricity and natural gas systems is considered, motivated by the fact that the two systems
are commonly operated by different entities that may not wish to share their private information,
such as system topology and market participant’s data. Aiming to have the minimum information
exchange between them, a distributed approach based on the Alternating Direction Method of
Multipliers (ADMM) [25] is developed. In a similar vein, a data-driven approach is followed for the
description of uncertainties through estimated quantitative measures that summarize the sample
data from the true probability distribution. In particular, the first- and second-order moments
(i.e. mean and covariance) are used to build the corresponding family of distributions that we
take into account. This approach is in agreement with the requirement of having a minimum
amount of information to be shared between the electricity and natural gas systems operators as
well as is performed in a transparent manner since it is based on publicly available historical data
of stochastic production.

1.4 Thesis outline

This thesis is structured as follows. Part I is a report introducing the fundamental concepts that
comprise the focus of this thesis and summarizing the contributions of the papers that have been
developed during this Ph.D. project. Within this part, Chapter 2 presents a brief introduction of
the electricity and natural gas markets along with the position of Denmark in the energy transition
period. Chapter 3 provides an overview of the electricity and natural gas network modeling
methods and the coordination framework between them under the uncertainty introduced by
renewables. The main methodologies that have been developed and a summary of the results
obtained in the papers are given in Chapters 4-6. More specifically, Chapter 4 outlines the
basic coordination frameworks and presents an advanced model for the natural gas system that
approximates efficiently the dynamics involved and reveal its inherent flexibility. A fine-tuning
of the key coordination parameters (i.e. natural gas price and volume availability for power
production) to improve the coordination between the trading floors in short-term scheduling is
presented in Chapter 5. Chapter 6 focuses on the two data-driven optimization methods, as well as
on the distributed approach to dispatch electricity and natural gas systems independently but in a
coordinated manner. Finally, conclusions and suggestions for future work are given in Chapter 7.
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Part II contains all the publications that contribute to this thesis:

• [Paper A] is a journal article published in the CSEE Journal of Power and Energy Systems.
This paper provides a review of the recent and current trends in Denmark towards a fully
renewable energy system. A holistic view of the energy system, which includes the interplay
of power, natural gas and heat systems is discussed.

• [Paper B] is a journal article published in the European Journal of Operational Research. This
paper introduces an integrated operational model for electricity and natural gas systems
under uncertain power supply, where a tractable model that approximates the dynamics of
the natural gas system is proposed to reveal its inherent flexibility. The proposed model is
developed in a market-compatible way.

• [Paper C] is peer-reviewed article published in the Proceedings of the IEEE PowerTech Conference
(2017). The topic of this paper is the optimal adjustment of the natural gas price that is
perceived by GFPPs in order to increase the efficiency of current sequential clearing of
day-ahead and real-time markets in terms of expected system cost. The corresponding
appendix, which includes some mathematical extensions and additional results, is provided
just after the manuscript.

• [Paper D] is a journal article submitted to IEEE Transactions on Control of Network Systems.
This paper deals with the optimal definition of the available natural gas volume for power
production scheduling at the day-ahead stage, anticipating the flexibility needs in the real-
time stage. Results of [Paper C] are included in [Paper D] for an extended comparison,
since both papers share the goal of enhancing the temporal coordination of day-ahead and
real-time stages via the optimal definition of specified coordination parameters (i.e. natural
gas price and volume availability). The corresponding appendix, which includes some
mathematical extensions, proofs, a detailed nomenclature and additional results, is provided
just after the manuscript.

• [Paper E] is a working paper (to be submitted to IEEE Transactions on Power Systems). This
paper proposes a novel approach to conservatively approximate distributionally robust joint
chance constraints, where the ambiguity set is defined as a Wasserstein ball in the space
of probability distributions. This approach is applied to the energy and reserve dispatch
problem with fuel constraints for GFPPs to examine its performance under stochastic power
supply. The corresponding appendix, which includes the mathematical proofs, system data,
a detailed nomenclature and additional results, is provided just after the manuscript.

• [Paper F] is a working paper (to be submitted for a journal publication). This paper presents
a distributed algorithm based on ADMM to optimally dispatch the electricity and natural
gas systems in an independent, yet coordinated manner with the minimum amount of
information shared between the two system operators. A distributionally robust chance
constrained approach is followed to deal with uncertainty, where the ambiguity set is defined
by the first- and second-order moments of the underlying probability distribution. In
particular, the mean and covariance are estimated from the available historical data, which
promotes transparency, and the operators can be more easily persuaded to treat them as
common knowledge.



CHAPTER2
Electricity and Natural Gas

Markets
Over the last decades, the electricity and natural gas sectors have been undergoing substantial
changes especially through their liberalization and the establishment of energy markets. Although
the two markets have been operated in an independent manner for decades, a tighter economical
and physical coordination is currently needed to maximize the efficiency of the entire energy
system. This necessary coordination improvement can be attained by well-functioning market
mechanisms.

We outline the transition towards a renewable-based energy system with increased interactions
between the electricity and natural gas systems in Section 2.1 by presenting facts and examples from
countries around the world. Moreover, we provide an overview of the electricity and natural gas
market organizations along with the foreseen challenges stemming from the increased penetration
of renewable power production and the potential necessary reforms on their designs. In particular,
Section 2.2 presents the current structure of electricity markets and discusses the corresponding
emerging challenges, while an analogous presentation for the natural gas markets is given in
Section 2.3.

The interested reader is referred to [26], [27] and [28] for a detailed overview of electricity markets
and power system economics, while a comprehensive overview of natural gas markets can be
found in [29] and [30].

2.1 Transitioning towards higher interdependencies between electricity and
natural gas sectors

Most of the countries around the world are experiencing a transition in their energy sector
nowadays. This stems from the fact that the generation mix is changing gradually. Renewables
have been the fastest growing energy source with the fossil fuels demonstrating a decreasing trend.
However, natural gas consumption is expected to have an increase due to the large reserves and its
robust production. A special focus has been placed over the last years on the coordination between
the energy systems with the goal of transforming the whole energy system to a more sustainable
one in Europe, as well as in the United States [31]. Among other European countries, Denmark
has been a pioneer in investing and developing wind power. Denmark has also set ambitious
goals towards a green energy system and is at the right path to accomplish them. Thus, mainly
paradigms and facts from Denmark are presented in the remaining part.

More specifically, Denmark’s energy strategy aims at achieving a complete independence of fossil
fuels by 2050, while reaching 100% electricity production from renewables by putting a great focus
on wind energy together with biogas and biomass [20]. Figure 2.1 illustrates the steady course
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towards the accomplishment of strategic goals since one can observe the continuous increase of
both installed capacities and share of wind production in the total electricity supply, which was
equal to 43.4% in 2017.
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Figure 2.1: Evolution of installed wind power capacities and wind power penetration in Denmark
(Figure from [32]).

Integrating high shares of renewables in energy systems, such as wind and solar power, results
in significant challenges that have to be faced mainly due to their variable and stochastic power
production that highly depends on meteorological factors. The penetration of renewable and
green power production in the total energy system will be mainly realized via the electricity
sector. However, there is a high potential for interaction among the electricity, natural gas and
district heating systems in Denmark that can facilitate the integration of renewables. These three
energy systems interact through various actors, such as Combined Heat and Power (CHP) plants,
Gas-Fired Power Plants (GFPPs) and heat pumps, but in an uncoordinated manner until recently.
It has been only lately that an increased awareness for potential possibilities has been noticed.

Denmark serves as an ideal case, where electricity, natural gas and heating networks are well
interconnected. The coordination of energy services is considered an inexpensive solution to
increase system’s flexibility compared to other approaches, such as grid reinforcement, further
interconnections and investing in electricity storage options. Additionally, an important charac-
teristic of the Danish case is the existence of a single operator for the electricity and natural gas
systems, i.e. Energinet.dk, that readily permits a coordinated and cost-effective operation of the
two energy systems, while a similar setup can be also found in other European countries, e.g.
Estonia, Luxembourg and Portugal. Moreover, Energinet.dk [33] owns two storage facilities with a
capacity of 11 TWh and additionally 15-20 GWh in the network in the form of linepack, which may
be seen as additional seasonal or short-term storage capability for the whole energy system.

On the market side, the day-ahead electricity market in Denmark is operated by Nord Pool [34],
which is the single market operator for the whole Scandinavia; also covering other countries,
such as the Baltic countries and United Kingdom. Electricity markets around the world have
been extensively developed over the years of deregulation by taking into account the impact
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of renewable energy sources. However, natural gas markets are only recently moving towards
short-term trading mainly due to the increased interaction with the electricity sector. A similar
trend has been observed also in Denmark, where substantial changes have been taking place over
the last years. Initially, the Danish natural gas exchange, Gaspoint Nordic [35], was established in
2007 and became increasingly important every year. More specifically, a significant shift of the
traded volume from the bilateral trades to Gaspoint Nordic has been noticed, since the traded
volume in Gaspoint Nordic was 8.3% of the total volume in 2010, while in 2016, this number
increased to 70%, showing a transformation towards a more competitive market model [36].
Gaspoint Nordic was owned until 2016 by Energinet.dk and European Energy Exchange (EEX)
[37], when EEX took over full ownership through its subsidiary company Powernext [38]. All
the natural gas products of Gaspoint Nordic are now available at the European trading platform
PEGAS [39].

Denmark is also putting a lot of focus on the transformation of natural gas system to a greener
one by investing to biogas. This can be accomplished by producing biogas from renewable
energy sources, such as from biomass by thermal gasification or wind power by electrolysis.
Biogas production is expected to reach 15 PJ in 2020, which is more than triple of the total annual
production in 2012. In order to inject biogas in the natural gas network, it has first to be upgraded
to biomethane. Then, it can be directly consumed and traded in the market. The historical and
expected production of biogas and its use in Denmark from 2012 to 2020 is illustrated in Figure 2.2.
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Figure 2.2: Historical and expected future biogas production and its use in Denmark 2012-2020
(Figure reproduced from [40]).

A detailed overview of the Danish transition towards a fully renewable energy system is provided
in [Paper A], along with more insights of the interactions with the heat sector. In the following, we
focus on the electricity and natural gas markets organization.

2.2 Electricity markets

Electricity is considered a vital commodity for the everyday life of consumers and plays an
important role in the economical evolution in most of the countries around the world, since the
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operation of many sectors relies on the sufficient and continuous electrical power supply. The
interface of the physical and economical aspects of electricity is organized via electricity markets
that provide proper trading mechanisms to ensure security of supply and competitiveness.

Until 35 years ago, the operation of power systems was organized in a centralized manner by
vertically-integrated utilities, which were usually owned by states. In other words, the whole chain
from production to retail was operated and managed by monopolies. However, such a centralized
and monopolistic organization was not able to transmit proper incentives for new investments, as
well as to promote innovation and competition that would eventually reduce costs and electricity
prices. In 1982, the first separation of generation, transmission and distribution took place in Chile
that introduced the liberalization of electricity markets. Then, many countries in Europe and
America, as well as Australia and New Zealand, moved towards this direction in 1990s [41].

The liberalization process has not been implemented under the same rules in all countries, the
basic characteristics, though, are common due to the unique features of electricity. Firstly, the
electricity demand is highly inelastic because there is no other commodity able to substitute it
equivalently. In addition, electricity is a homogeneous product since consumers do not distinguish
its characteristics with respect to the source of production. The fact that electricity cannot be
stored economically as of today in large scales results in the requirement for a continuous balance
between its production and consumption. Therefore, the market designs have to take into account
all these special characteristics and respect the physical network that electricity is transfered, which
is imposing constraints relative to the power flow and capacity of the system.

2.2.1 Basic structures of electricity markets

In modern electricity markets that operate after the liberalization, the trading between different
participants takes place in various time spans, ranging from long-term financial contracts to the
real-time operation of the power system. The long-term financial products are traded in forward
and futures markets allowing market participants to hedge against uncertainties and volatile prices.
The focus of the thesis is on short-term electricity markets and thus the description of long-term
financial markets is disregarded.

In short-term markets, it does not exist a single organizational model for electricity trading; however,
two main structures are identified by analyzing various electricity markets around the world,
namely power pools and power exchanges. More specifically, a power pool represents a centrally
organized market, where all producers and consumers submit their offers/bids to the market
operator. A centralized market-clearing algorithm is utilized to schedule the power producers that
take into account all the techno-economical characteristics of the power plants, such as start-up
and no-load costs, ramping capabilities, minimum capacity limits and minimum up/down times.
Moreover, various services are simultaneously optimized like energy and reserves. The marginal
clearing price resulting from the market-clearing algorithm is the same for all participants and
is utilized for all settlements and payments. However, if the transmission network constraints
are considered, a locational marginal price is calculated for each node of the electricity network.
In power pools, there exists also make-whole side payments to producers in case they are not
able to recover their total operating cost by the resulting market price. On the other hand, power
exchanges are trading platforms that clear the market based on the merit-order principle that
ranks the energy sources based on an ascending order of prices, without an explicit description of
either technical characteristic of power plants or transmission constraints. In power exchanges,
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the market participants are able to submit simple hourly price-quantity bids but also and more
complex bids (e.g. block orders) that mimic some of the power plants’ technical characteristics,
such as minimum capacity limits. The market price is derived by the matching of the aggregated
supply and demand curves for each trading period in the case that transmission constraints are
not binding. In the presence of transmission congestions, a zonal pricing scheme is used where
different market prices are calculated for the areas linked by the congested line [34].

One would notice that the market designs in United States are closer to a centralized organization
with unit commitment and transmission constraints that result in the calculation of nodal prices,
as in power pools. On the other hand, most of the European countries have followed an approach
that is based on power exchanges with zonal pricing. Short-term trading in electricity markets
takes place from 36 hours to several minutes before the actual delivery in three main trading floors,
i.e. day-ahead, intra-day and real-time markets, in a sequential order. Figure 2.3 illustrates the
main trading floors according to the European market structure.
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Figure 2.3: Main trading floors in the European market design.

Day-ahead market

The day-ahead markets are cleared 12-36 before the physical delivery of electricity. They are usually
referred to as spot market in Europe and forward market in United States. The market is organized as
a two-sided auction, where producers, retailers and large consumers are able to submit their bids.
Each participant submits an offer/bid for each trading period (typically, one hour) that consists of a
price-quantity pair. On the one hand, producers are submitting selling offers, while consumers are
submitting purchasing bids of buying energy. More inputs may be required before clearing the
market based on the specific market design, such as technical characteristics of power plants, unit
commitment decisions and transmission constraints.

Intra-day market

After the day-ahead market is cleared, market participants are able to adjust their day-ahead
schedules until one hour before delivery. This trading floor permits the participants to deal with
possible deviations in production or consumption and modify their position based on updated
information (e.g. forecast of renewable energy production). Intra-day markets can be efficiently
utilized by participants to reduce their exposure to potential penalties and risks stemming from a
mismatch of production and consumption in real-time. The liquidity of intra-day markets varies
among different countries in Europe, while it highly depends on the organization of trading in this
specific floor and the prices of the subsequent markets [42]. For example, the intra-day market
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of Nord Pool [34], namely Elbas, has relatively low liquidity, while Iberian MIBEL market [43] is
characterized as highly liquid.

Real-time market

The real-time market permits the compensation of any possible deviation resulting after the
day-ahead and intra-day markets in order to ensure the simultaneous balancing of production and
consumption at any time period and region of the power system.

In the European context, two different settlements comprise the real-time markets, for the regulating
and balancing power. Bids for the regulating power are submitted by the Balance Responsible
Parties (BRPs) either for up-regulation or down-regulation and are activated by the system operator
in case they are needed. Then, unwanted deviations are settled ex-post in the balancing market
according to the actual production of each market participant. Real-time markets are also organized
in United States to cover potential imbalances from the initial schedules. Similarly to the day-ahead
trading floor, a centralized algorithm is utilized to optimally re-dispatch the power system that
takes into account technical characteristics of power plants and transmission constraints.

Reserve capacity market

Apart from the energy markets, i.e. day-ahead, intra-day and real-time markets, there exist also
reserve capacity markets to guarantee the availability of sufficient regulation services. Energy
markets are related to the transactions for the energy that is injected to or withdrawn from the
system, while reserve capacity markets refer to the capacity that can be reserved to be utilized
in real-time in order to provide the required balancing and are managed by the Transmission
System Operator (TSO). Reserve capacity markets are organized either as an independent market
or via a simultaneous auction that co-optimizes the procurement of energy and reserves. The first
approach is commonly used in the European context, while the latter is usually employed in the
United States.

2.2.2 Challenges in electricity market designs

Electricity markets have always been an organizational framework with continuously reshaping
rules. Recently, electricity markets have been mainly challenged by the high integration of variable
renewable power supply. This calls for a revision of current market structures that have been
developed on a power system operating with a limited level of uncertainties, in which the majority
of the generation capacity has being controllable. In the current paradigm, the generators are
scheduled based on a deterministic view of all uncertain parameters at the day-ahead stage, while
the deviations from forecast errors are balanced in real time. Such a sequential clearing of the
trading floors is thus performed with a point forecast describing the uncertainties and is myopic
to balancing costs stemming from forecast errors. For example, Figure 2.4 illustrates the effect of
renewable power production on the shape of aggregated supply and demand curves that affects
the market-clearing price.

Acknowledging the need to schedule the systems with more information regarding uncertain
parameters, various approaches have been proposed in the literature to provide an uncertainty-aware
schedule at the day-ahead stage. For instance, a two-stage stochastic programming approach is
proposed in [44, 45], while robust optimization [46, 47] has been also utilized extensively. Recently,
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Figure 2.4: Aggregated supply and demand curves in an electricity exchange along with the impact
of renewables on the market-clearing price.

chance constrained programming [48, 49] and distributionally robust optimization [50, 51] have also
come into play. Market participants’ payments are similarly affected by the increased penetration
of renewables, which results in higher financial risks to be faced.

Moreover, distribution grids, which have traditionally represented a large portion of the total
demand, are changing over the last years. Distributed energy sources are largely deployed
transforming consumers to prosumers, who may also have a stochastic nature (e.g. solar panels).
In this case, the main question to be answered is how the new markets can better exploit the
services provided by the distribution level that will play a more active role in the future power
system. Another challenge is related to the non-convexities that may arise in the optimization
problems used to clear the market. For example, non-convexities are introduced from the unit
commitment decisions in the United States, while the incorporation of AC power flow constraints
raises similar issues. The issues raised by unit commitment decisions have been well-known and
various ways such as uplift payments have been used to deal with them [52]. Similar ways to
deal with non-convexities coming from AC power flow constraints can be adopted. Finally, an
interesting topic is the development of tools to analyze strategic behavior of market participants
to inform regulators and update market design. An extensive analysis of the aforementioned
challenges is given in [53] and references therein.

2.3 Natural gas markets

Natural gas is a commodity that is widely used in various sectors, with the main ones being
the power generation, transportation and domestic use for heating and cooking. In contrast to
other fossil fuels, such as coal and oil, but similarly to electricity it is transfered via a physical
network, which does not allow for a fully open trade. More specifically, the transport is performed
mainly through the natural gas network consisting of pipelines, while in the operation of natural
gas markets both the physical and economical aspects are considered. An alternative solution
of natural gas transport in between regions where pipelines do not exist is in form of Liquefied
Natural Gas (LNG) that has highly developed over the last two decades [29].

Prior to the natural gas market liberalization, there were only a few companies that were involved
in the business sectors of the natural gas value chain comprising exploitation, imports, exports,
transport, storage and trading. Thus, the most common organizational structure was characterized
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by a vertically-integrated national utility controlling the whole chain. The liberalization started
firstly in United States, where important steps are considered the issue of Orders 436, 500 and
636 by the Federal Energy Regulatory Commission (FERC) [54]. FERC Order 436 was issued in
1985 and unbundled natural gas commodity from transport sales, which gave the opportunity
to producers and consumers to trade gas and only pay the pipeline operator the required fees.
Then, FERC Order 500 basically revised some rules related to the long-term contracts and allowed
pipeline operators to charge specific fees to the customers in order to support the already signed
contracts. Finally, FERC Order 636, issued in 1992, was able to finalize the unbundling process
by requiring the pipeline operators to separate transportation and sales giving to the customers
the opportunity to select the gas provider, transportation and storage services. The liberalization
came at a later stage in Europe, starting in 1990s [29]. The starting point is considered the First
Gas Derivative, which opened the market and allowed network access to many participants.
In order to speed up the process of liberalization, a Second Gas Derivative was issued in 2003
enabling non-household buyers to acquire natural gas from a supplier of their choice. Finally,
stricter rules for unbundling were introduced by the Third Energy Package in 2009, which required
the implementation of the entry-exit market model and decoupled the physical system from the
market.

2.3.1 Basic structures of natural gas markets

Natural gas markets are undergoing a continuous development, since the sector has only recently
been liberalized; especially, in Europe. Even though the natural gas market was mainly based on
long-term contracts, an increase of short-term trading is observed lately [54].

There exist four basic market players in the natural gas market, namely the natural gas suppliers
and consumers, as well as the TSO and flexibility providers [55]. The natural gas supplier acquires
gas from either foreign or domestic producers through long-term contracts or the spot market
and sells it to natural gas consumers. Natural gas consumers are retail suppliers that provide
natural gas to residential customers and large natural gas consumers like GFPPs or industries. The
TSO operates the network, guarantees security of supply and provides the transportation services.
Finally, providers of flexibility own storage facilities and participate in the market to help keeping
the system in balance.

At this point, the definition of the shipper is provided since it constitutes an important entity in the
natural gas market. More specifically, the shipper refers to any player that has signed a contract
with the TSO to transport natural gas in the network resulting in having both supply and sales
contracts, as well as access to flexibility services [30]. Thus, the shipper possesses a variety of
contracts along the whole value chain. On the supply side, the shippers have long-term bilateral
contracts with the producers but they can also rely on short-term options, such as the spot market
or shorter-term contracts. On the demand side, the shippers have to sign selling contracts with
the customers, which vary depending on the load profile of each one. Moreover, the shipper
has two options for flexibility services; one that can be bought ex-ante, such as access to storage,
interruptible customers and flexibility from the suppliers and one that is related to the balancing
mechanism provided by the TSO.

In Europe, the TSOs typically operate the natural gas transportation services under variants of the
entry-exit model, which gives the ability to shippers to book capacity contracts for injection and
withdrawal rights in the network within certain limits [29]. Most of the contracts are booked on a
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long-term basis (i.e. weeks to years) before the actual delivery. On the day before delivery, the
shippers have to nominate the amount of the booked capacity that they would like to transport so
that the TSO is able to schedule the system flows. A renomination process also exists that permits
adjustments of nominations up to 2 hours before the actual delivery. Moreover, the capacities
that are not nominated are released to be auctioned as day-ahead capacities. There are two types
of capacity, namely firm and interruptible, which are made available [30]. For the firm capacity,
the TSO has to ensure that the nominated natural gas flows will be always transported if the
network is at a well-functioning state. Firm capacities may not be interrupted except in severe
cases that failures, which cannot be anticipated, affect the operation of the network. Regarding
interruptible capacity, the TSO is obliged to transport only partially or not at all, if needed for
technical feasibility, the nominated natural gas flows.

In the entry-exit model, the trading of the natural gas takes place by ignoring the network and
the transportation path. The shippers are allowed to inject natural gas at every entry point and
withdraw at every exit point of the network. Moreover, the entry and exit capacities can be booked
independently in different quantities and durations. The entry-exit model that realizes in a specific
geographical area defines a market area in which a virtual trading point belongs to [30]. Then, in
the specific market area an entry contract allows for transport from the entry point to the virtual
trading point, while the exit contract from the virtual trading point to the exit point that may be a
consumer, an interconnection to another market area or a storage facility. It is very important to
highlight that the amount of natural gas injected in the network has to be equal to the amount
withdrawn at least in the long run in order to ensure the secure operation of the system. The
shippers are gathered in balancing groups and each of these groups has to be maintained in balance.
In the balancing process, there are hourly and daily imbalance tolerances and in case of exceeding
them fees have to be paid.

Figure 2.5 illustrates the entry-exit model in Denmark, where shippers are commercially moving
natural gas in and out of the Danish gas transmission system. Natural gas enters and exits Denmark
from three points, namely Nybro, Ellund and Dragør. Additionally, one entry point for biogas
(BNG) exists, where the shippers can inject biomethane in the system. The Exit Zone Denmark
allows the natural gas suppliers to provide gas to all Danish customers via the distribution networks
but also feeds natural gas to the three GFPPs that are directly connected to the transmission system.
Moreover, the storage points are depicted at which the corresponding customers can inject or
withdraw natural gas. The virtual transfer point offers two different options to shippers to acquire
or sell natural gas; the Exchange Transfer Facility (ETF) for trades at the Danish exchange (Gaspoint
Nordic) and the Gas Transfer Facility (GTF) which is related to the bilateral trades.

The firm and interruptible capacities are determined by the TSO based on natural gas flow
simulations, as well as by taking into account historical and forecast demand profiles and flows.
Then, the capacities are sold by auctioning in standardized forms for various durations, including
yearly to daily products. In the process of calculating the capacities, the TSO needs to consider
the ability of the shippers to transfer natural gas from an entry point to any exit point and
reserve the necessary capacities along the various network paths. Consequently, there might exist
combinations of injection and withdrawal rights that create the so called contractual congestion,
where the TSO cannot offer more firm capacity to the shipper even though the system is not
actually congested. A direct consequence of contractual congestion is the inefficient utilization of
natural gas system’s capacity due to the simplified view of the network in the marketplace. Note
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Figure 2.5: Natural gas entry-exit model in Denmark (Figure from [56]).

that based on the Third Energy Package, contractual congestion is defined as a situation where the
level of firm capacity demand exceeds the technical capacity, while the physical congestion as a
situation where the level of demand for actual deliveries exceeds the technical capacity at some
point in time [29].

A different organization of the network services exists in the United States and in some Australian
markets that is based on a point-to-point definition of the entry and exit rights [29]. In this
setup, the shipper specifies the points of injection and withdrawal and thus a specific path in the
network is defined. Compared to the European approach, the point-to-point trades comprise
more characteristics of the physical network representation and the markets are organized for
independent pipelines.

2.3.2 Challenges in natural gas market designs

Choosing either the entry-exit or point-to-point model results in different implications in the
temporal and spatial flexibility [57]. The entry-exit model allows for a high spatial flexibility since
the shippers are able to inject and withdraw natural gas from any point of the network, while
the point-to-point model is a less simplified version since the actual path assigned with the trade
needs to be defined. Regarding time flexibility, most of the natural gas markets around the world
rely on up to a specific level of time flexibility, since the storage ability is not as limited as the
electricity system. For example, daily products are traded in some natural gas markets, which
implies that the injections and withdrawals have the same price throughout the day.

Ensuring security of supply involves a tighter coordination between network services and
commodity trading [57]. On the other hand, network simplification increases liquidity but at



2.3. NATURAL GAS MARKETS 17

the same time implies that some of the services related to the network use are not priced. More
specifically, an important consequence of following the entry-exit model is that the cost associated
with the network is not allocated based on the actual use of the network, as it would be if a nodal
price model similar to the context of electricity markets in United States, was utilized. Hence, the
entry-exit model requires some additional elements to transform the market decisions to feasible
physical network flows. Usually these elements come via the balancing services that result in the
relevant costs to be socialized among the network users.

Furthermore, the lack of a detailed network representation in the majority of natural gas markets
does not promote the definition of additional network services, such the allocation of linepack, to
fully exploit natural gas network’s flexibility [55]. Linepack is the ability of utilizing the natural
gas network as a storage facility by adjusting the pressure differences between the various nodes.
Moreover, the pressure differentials impact the flow in the pipelines and affect their transport
capacity. Therefore, linepack and transport capacities are substitute services and both of them
important in short-term operations to have an efficient communication between the network
services and commodity trading. A fully decoupled approach of gas trading and transportation
services results in solutions with a reduced welfare because of the suboptimal utilization of the
actual available capacities. A tighter coupling with the electricity system increases the need
for using the natural gas network services efficiently because of the variability and uncertainty
introduced to the withdrawals from GFPPs. Similarly to the electricity system, various non-
convexities may arise in the market-clearing optimization problems for the natural gas market if
network constraints are considered. To overcome such an issue either market-compatible network
models that allow the development of pricing schemes would need to be incorporated in the
market-clearing algorithms or similar approaches to uplift payments would have to be adopted.

These issues are addressed in [Paper B] of this thesis, where the benefits of utilizing the actual
value of natural gas both in the temporal and spatial dimension to dispatch the coupled electricity
and natural gas systems are discussed, along with the flexibility provided by linepack in the
transportation services.





CHAPTER3
Electricity and Natural Gas

Systems Coordination
The worldwide environmental concerns, the increased availability of natural gas supply and
the prominent role of Gas-Fired Power Plants (GFPPs) as one of the main flexible and efficient
generation technologies in the whole energy system are increasing the interdependence between
the electricity and natural gas systems. Therefore, the design and coordination of the electricity
and natural gas markets needs to be reconsidered by taking into account the interactions between
the energy systems, in order to reveal the full operational flexibility and facilitate the integration
of more variable and uncertain renewable energy sources. Several studies, such as [1, 10, 13, 54],
exist in the literature indicating the need for further elaborating on this topic.

This chapter reviews the market-based interactions between the electricity and natural gas systems
highlighting the need for an increased coordination, which can be enabled via proper modeling
of the energy networks and system components. The interactions between the energy sectors
are presented in Section 3.1. In Section 3.2, we present the modeling approaches to incorporate
network constraints in the market-clearing mechanisms. Finally, the developed coordination
frameworks in short-term operations are presented in Section 3.3.

3.1 Interactions between electricity and natural gas systems in a market
environment

Historically, the withdrawals from the natural gas network were characterized by limited variability
and uncertainty as the majority of consumers had relatively stable and predictable demands profiles.
For this reason, the transactions of natural gas were mainly based on fixed delivery contracts at
the day-ahead stage that required the portfolio of the shippers to be balanced at the end of the
day. However, fundamental changes have been observed lately by the increasing share of demand
related to power production by the GFPPs [29].

The increased natural gas demand of GFPPs results in a tighter interaction between the electricity
and natural gas systems and eventually of the corresponding markets. Moreover, the deployment
of intermittent renewable energy sources, such as solar and wind power, is highly increasing in
the power system. The GFPPs are characterized by high efficiency and flexibility, which makes
them one of the main conventional technologies to provide power and guarantee the security of
supply as a controllable generating unit. Therefore, the uncertainty and variability of renewables
is transfered to the natural gas systems via the fuel demand of GFPPs, which brings numerous
challenges on the operation of both systems [54].

In the electricity sector, both the market’s and system’s operations are faster than in the natural gas
sector. Moreover, more and more uncertainties are introduced in the natural gas system operation.

19
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These changes on the operation of the natural gas system increase the uncertainty of natural gas
availability and prices, which in turn affects the power system dispatch via the GFPPs. In order to
address these challenges, a better synchronization and harmonization of the markets is needed
to improve intra-day market coordination and communication. Currently the two markets are
operated under different designs as explained in the Chapter 2, where on the electricity side the
production and consumption have to be in continuous balance because of the limited storage
capability, while on the natural gas side there is a higher flexibility regarding the matching of
supply and demand.

The electricity and natural gas systems interact via physical and economic links established
by GFPPs. From a physical perspective, these two systems interact through the natural gas
consumption of GFPPs, while from an economic viewpoint they are implicitly coordinated through
the natural gas price the GFPPs buy their fuel. Figure 3.1 illustrates the interdependency of
electricity and natural gas markets via such coordination parameters, i.e. the price of natural
gas and the consumption of GFPPs, as well as the available quantity of natural gas for power
production.
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Figure 3.1: Electricity and natural gas markets coordination (GFPPs: gas-fired power plants, NGP:
natural gas producers or shippers with natural gas sales contracts, E: electricity market, G: natural
gas market).

In the natural gas market, GFPPs act as buyers to acquire their fuel for power production and
mainly purchase natural gas via short-term interruptible contracts or in the gas spot market. The
natural gas supply contracts are signed at a predefined price, while in the gas spot market the
GFPPs buy their fuel at the spot price. The natural gas spot price usually remains the same
throughout the gas day and may be unknown for a period of the following day at the time of
bidding in the electricity market due to the asynchronous setup between the two markets. The
asynchronous timing of electricity and natural gas markets is considered an additional source
of inefficiency on their operation, which becomes highly essential under the increased system
interaction with fluctuating renewables in place [1, 2]. Figure 3.2 shows the time shift of the
electricity market with the corresponding natural gas market in the European context, where it can
be observed that the GFPPs acquire their fuel from two different natural gas trading days in order
to participate in an electricity trading day. More specifically, the GFPPs are bidding for electricity
day "D" at 12 PM of electricity day "D-1" by knowing only their fuel nominations of natural gas
day "D-1" and by having to make their decisions for natural gas day "D" after the outcomes for
electricity day "D". Therefore, GFPPs have to use an estimation of the natural gas price and in turn
face uncertainty about the price and natural gas availability, when participating in both markets.
In such an independent setup, the fuel price utilized by GFPPs to bid in the electricity market is



3.2. MODELING FRAMEWORK OF ENERGY NETWORKS TO ENABLE COORDINATION 21

considered fixed, regardless of the procurement procedure (i.e. supply contract or spot market)
and may not reflect the actual price of natural gas at the specific region of the system and point in
time.

12 AM 6 AM 12 PM 12 AM 6 AM 12 PM 12 AM 6 AM

Electricity D-1 Electricity D

Natural gas D-1 Natural gas D

Figure 3.2: Electricity and natural gas trading days.

The price-quantity offers in the electricity market are placed depending on the natural gas price,
fuel the availability and the technical characteristics of GFPPs. Then, the electricity market is
cleared and the natural gas demand of GFPPs is given as a fixed input to the natural gas market.
In a similar fashion, the natural gas market is cleared based on the price-quantity offers of the
natural gas producers or the respective shippers to meet the demand of natural gas consumers,
such as industrial and residential customers as well as GFPPs. Note that the fuel demand of GFPPs
is usually assigned with a lower priority than industrial and residential gas loads, which may
constrain the operation of GFPPs in systems where natural gas is widely used both for power
production and heating.

Furthermore, a technology that can transform the interaction of the electricity and natural gas
systems to be bi-directional is the power-to-gas facilities that consume electricity to produce
hydrogen or synthetic natural gas. This technology has a considerable potential to facilitate the
integration of renewables in the energy system, as excess production is converted in compatible
natural gas to be stored or utilized in the natural gas infrastructure. This technology is not in
the scope of this thesis and the reader is referred to [58] and [59] for a detailed description of its
characteristics. Moreover, since the interdependence between electricity and natural gas systems
is expected to tighten in the future, coordinated decisions also for planning problems need to be
taken, as discussed in [60, 61].

Advanced modeling and optimization techniques with modern market designs can increase the
efficiency of operating the whole energy system under high shares of renewables in a cost-effective
manner and decrease the need for costly investments to ensure security of supply. However,
regulatory changes are still needed and market designs have to be improved. It has only been
recently that some regulatory changes have promoted the coordination between the energy sectors
and markets. For instance, the Federal Energy Regulatory Commission (FERC) Order 787 that was
finalized in November 2013 endorsed the voluntary sharing of information between the electricity
and natural gas operators to promote reliable service and operation. Finally, FERC Order 809 that
was issued in April 2015 aimed at synchronizing the electricity and natural gas markets.

3.2 Modeling framework of energy networks to enable coordination
The transportation of electricity and natural gas from the production to consumption points takes
place through complex networks and is characterized by specific physics laws. In short-term
clearing of the energy markets and operation of the energy systems, the flows in the networks need
to be taken into account to guarantee that production always meets demand. Moreover, additional
inherent flexibility of the natural gas network can be exploited by an advanced modeling of its
physical characteristics.
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3.2.1 Electricity system

The power flow in the electricity network is characterized by a set of the so-called AC power
flow equations that determine the active and reactive power, the losses on each line and the
voltages at the nodes of the network. These equations are non-convex and non-linear resulting in
computational and optimality challenges in an optimization framework. Recent developments
in the area of convex optimization, see [62–64], have provided tight convex relaxations of these
equations. However, a linearized lossless DC approximation is utilized in this thesis that has been
widely used in the literature [65], since the focus is placed on the natural gas system modeling
and the integration of electricity and natural gas systems under uncertainty. We provide briefly
the basic assumptions and formulas, while we refer the reader to [66] and [67] for an extensive
analysis on power flows studies.

The linearized lossless DC approximation of AC power flow considers only the active power
flows and neglects reactive power flows. The AC representation of the active power flow f in a
transmission line is expressed by

fn,r = |Vn|2Gn,r − |Vn||Vr|Gn,r cos(θn − θr)− |Vn||Vr|Bn,r sin(θn − θr), (3.1)

where Bn,r is the susceptance matrix and Gn,r is the conductance matrix. Moreover, V is the
voltage amplitude and θ the voltage angle at each node n.

The formulation of the DC power flow is based on three assumptions:

1. The line resistances R are negligible compared to line reactances X and thus the line
parameters are simplified and losses are neglected (i.e. Rn,r � Xn,r for all lines; thus, we
have Gn,r = Rn,r

R2
n,r+X 2

n,r
≈ 0 and Bn,r = −Xn,r

R2
n,r+X 2

n,r
≈ − 1

Xn,r
).

2. All nodes have the same voltage amplitude (i.e. |Vn| ≈ 1 p.u.).

3. Voltage angle differences between adjacent nodes are small, which allows for the linearization
of sinusoidal terms (i.e. sin(θn − θr) ≈ θn − θr and cos(θn − θr) ≈ 1).

Following these assumptions, the active power flow equation between nodes n and r simplifies to

fn,r = Bn,r(θn − θr). (3.2)

An alternative representation of the DC power flow is given via the PTDF matrix Ql,n [65], which
describes in a linear manner the relationships between power injections and active power flows
through the transmission lines l, as in

fl = Ql,nPn, (3.3)

where Pn is the nodal injections at node n. The DC power flow model can be formulated as a set of
linear constraints and thus results in a Linear Program (LP).
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3.2.2 Natural gas system

The dynamics of the natural gas flow in the pipelines are modeled by a set of non-linear Partial
Differential Equations (PDEs) that are able to describe the actual temporal and spatial dimensions
of the flow [68, 69]. This approach provides the most accurate modeling but it involves a high
computational burden and may lead to possible market design issues related to natural gas pricing.
An application of such model to the power and natural gas coordination problem can be found
in [8], while its incorporation in a market framework is discussed in [54]. In this thesis, some
simplifying assumptions are made in order to partly, but yet efficiently, capture the dynamics of
the natural gas flow and take them into account in the market-clearing procedure and optimal
dispatch of the systems. More specifically, a stationary model, i.e. the natural gas is in steady state,
with an isothermal gas flow in horizontal pipelines is assumed that allows the utilization of the
Weymouth equation [30], which has been widely used in the literature as in [70–73]. The natural
gas flow from node m to node u is described by

qm,u = Kf
m,u

√
pr2
m − pr2

u, (3.4)

where Kf
m,u is the Weymouth constant that depends on the characteristics of the pipeline and prm

is the pressure of node m. Figure 3.3 illustrates the natural gas flow from node m to node u as a
function of the pressures of the adjacent nodes.
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Figure 3.3: Three dimensional illustration of Weymouth equation showing the flow as a function
of pressures at inlet and outlet nodes.

The sign function that needs to be modeled for the bi-directional flows along with the quadratic
terms makes the Weymouth equation non-linear and non-convex. In this thesis, the natural gas
system is taken into account by the three following models that utilize the Weymouth equation in
different ways.

Contract and fuel capacity constraints

In this approach, the natural gas system is simplified to a linear model that neglects the physical
characteristics of the flow and provides capacity constraints to one or a set of GFPPs in an area of
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the system by

0 ≤ Dp
t ≤ Gt (3.5)

for each time period t, where Dp is the natural gas consumption of a specific GFPP or a set of
GFPPs and G the hourly natural gas available capacity of the system. Moreover, contract capacity
constraints can be used as

0 ≤
∑
t∈T

D
p
t ≤ G

D
, (3.6)

where G is daily natural gas available capacity of the system. The capacities G and G
D

can be
estimated via an ex-ante calculation from the Weymouth equation along with the natural gas
injections and withdrawals in the system. More specifically, G is calculated by subtracting the
natural gas demand of residential/industrial loads from the maximum transportation capacity
of the network to the specific area and G

D
as the total injected natural gas minus the total

residential/industrial demand throughout the whole day. The total maximum transportation
capacity is equal to the maximum capacity of the pipelines transporting gas in the specific area.
The Weymouth equation is utilized to compute the maximum capacity by using the maximum
pressure difference for the adjacent nodes of each pipeline. This set of linear constraints is utilized
in [Paper C], [Paper D] and [Paper E]. The final model is an LP.

Controllable flow model

In this model, there is a representation of the natural gas network with its nodes and pipelines.
The natural gas flow is fully controllable up to a maximum flow limit that is calculated ex-ante via
the Weymouth equation by taking the maximum pressure difference of the adjacent nodes. The
nodal natural gas balance is enforced, while the injections and withdrawals are also controllable
variables. The model is formulated as an LP and utilized in [Paper F].

Flow model with approximated dynamics

The introduction of nodal pressures as control variables permits the definition of the natural gas
flow by the Weymouth equation. The nodal pressures are constrained by

PRminm ≤ prm ≤ PRmaxm (3.7)

for each node m by the minimum PRminm and maximum PRmaxm pressure limits. In order to
overcome the non-linear and non-convex nature of the Weymouth equation, an outer approximation
based on Taylor series expansion around fixed pressured points is used to linearize it. Therefore,
the Weymouth equation can be replaced by a set of linear inequalities

qm,u≤Kf
m,u

(
PRm,v√

PR2
m,v−PR2

u,v

prm−
PRu,v√

PR2
m,v −PR2

u,v

pru

)
, (3.8)

where v ∈ V is the set of fixed pressure points (PRm,v, PRu,v). Using a significant number of fixed
points (e.g. around 20 pairs as stated in [71]) ensures a sufficient approximation of the Weymouth
equation. The outer approximation is given by a number of tangent planes to the cone defined
by the Weymouth equation. Figure 3.4 depicts in two dimensions the outer approximation of the
Weymouth equation.
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Figure 3.4: Outer approximation based on Taylor series expansion (∆π = pr2
m − pr2

u, green line:
Weymouth equation, orange lines: tangent planes).

The natural gas flow in each pipeline is approximated by the linear constraint to be binding [74].
These linear constraints are calculated based on fixed pressure points generated by choosing
multiple pressure values of the adjacent nodes between the pressure limits. The acquired fixed
pressure points are used to describe the flow for one direction in the pipeline and may differ from
the ones used to describe the opposite direction, since the pressure limits of the adjacent nodes are
not the same. Therefore, the set of linear inequalities may be different in the opposite direction and
a binary variable needs to be introduced in order to pick the proper set of inequalities to formulate
the model with bi-directional flows. A detailed description of the equations is given in [Paper B].

The dynamics of the natural gas system are incorporated by allowing each pipeline to act as a
storage facility providing an economic way of storing energy, which is referred to as linepack.
Linepack h̃m,u,t in the pipeline between nodes m and u in time t is modeled by

h̃m,u,t = Kh
m,u

prm,t + pru,t
2 (3.9)

h̃m,u,t = h̃m,u,t−1 + qinm,u,t − qoutm,u,t, (3.10)

where Kh
m,u is a constant describing the pipeline characteristics. The average mass of natural gas

in the pipeline is proportional to the average pressure of adjacent nodes and the mass conservation
in time is calculated by the inflow qinm,u,t and outflow qoutm,u,t of the pipeline. Figure 3.5 illustrates
the dependence of linepack and natural gas flow in a pipeline, where the linepack acts as a buffer
absorbing the differences between the inflow and outflow.
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Figure 3.5: Natural gas flow and linepack interdependence in a pipeline.

Finally, the branches of the network with compressors are modeled via a simplified approach that
uses a compressor factor Γz for branch z to define the relation of pressure at the two adjacent nodes
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as follows

pru ≤ Γzprm. (3.11)

The natural gas flow model with approximated dynamics that yields a Mixed-Integer Linear
Program (MILP) is described in detail in [Paper B] and utilized in [Paper D].

3.3 Coordination framework for electricity and natural gas systems

Based on the presentation of the two systems interplay in Section 3.1, one can formulate two
different approaches for the coordination of electricity and natural gas systems, namely the
decoupled and the coupled one. In the decoupled operation of the two energy systems, the system
dispatch takes place independently and only a limited amount of information is shared between
the operators. More specifically, the natural gas consumption of GFPPs needs to be shared and the
GFPPs have to use an estimation of their fuel price when participating in the electricity market.
In the coupled operation, the electricity and natural gas systems are dispatched and operated in
a centralized manner, where the power production cost of GFPPs is defined endogenously and
emerges from the actual value of natural gas. Moreover, the fuel demand of GFPPs can be altered
in view of a cost-effective operation of both energy systems. The decoupled approach models
a setup that is closer to the current practice, while the coupled one yields the optimal solution
for the whole integrated energy system and can give relevant insights towards the future tighter
coordination of electricity and natural gas systems.

Focusing on the temporal dimension, the different market floors are currently cleared in a sequential
and deterministic fashion. Therefore, any uncertain parameter is characterized by a point forecast
(e.g. expected value of wind power) that is utilized as input to the operational model. Before
the extensive introduction of renewables, such approaches were considered adequate since the
uncertainties related to electricity and natural gas systems operations were relatively limited.
However, the conditions under which systems are operated today are becoming increasingly
challenging due to the stochasticity introduced by renewables. This effect is more profound under
high shares of wind and solar power production, which is characterized by limited predictability
and high variability due to its dependency on the weather conditions. Hence, current market
designs need to be coupled with modern optimization techniques and advanced modeling of
uncertainties to facilitate the accommodation of renewables and the coordination of electricity and
natural gas systems. In view of the stochastic nature of renewables, an uncertainty-aware schedule
at the day-ahead stage that adopts a probabilistic characterization of uncertainties would ensure
sufficient operational flexibility close to real-time operation and reduce the operating cost of the
systems. Figure 3.6 sketches the sequential and uncertainty-aware scheduling, where all future
uncertainties are either characterized in a single-valued forecast or a greater range of potential
outcomes is considered.

Towards an uncertainty-aware energy system dispatch, one can utilize various approaches proposed
in the literature to deal with uncertainties, such as stochastic programming, robust optimization,
chance constraints and distributionally robust optimization. In stochastic programming [21], it is
common to make assumptions regarding the probability distribution of the random parameter
within the process of generating scenarios in order to obtain a discrete distribution of the random
parameter. In the stochastic programming framework, the focus is placed on optimizing for the
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Figure 3.6: Temporal dimension of scheduling the systems under the sequential (left) and
uncertainty-aware (right) approaches.

expectation of potential outcomes (e.g. expected operational cost), while in robust optimization
the decisions are optimized for the worst-case realization in the uncertainty set [75]. Therefore,
robust optimization may yield overly conservative solutions; this conservativeness though can be
controlled by a proper definition of the uncertainty (e.g. by considering some spatial dependence
for the random parameters). Alternatively, chance constrained programming [21] can be utilized
to obtain less conservative solutions by ensuring that constraints including random parameters are
only satisfied for a predefined probability. Analytical reformulations can be attained by assuming
the distribution of the uncertain parameter (e.g. Gaussian distribution) or by sampling a finite
number of constraints, where the number of samples depends on the predefined probability and
structure of the problem, in order to create an approximate problem to be solved. Finally, novel
data-driven approaches that fill the gap between stochastic programming and robust optimization
can be employed. More specifically, distributionally robust optimization that optimizes over a
family of distributions (i.e. ambiguity set) without requiring the exact knowledge of the underlying
distribution has been utilized recently. Two types of ambiguity sets are more commonly used in
the literature: the moment-based [18] and the metric-based ones [19]. Moment-based ambiguity
sets are defined by the distributions satisfying moment constraints (e.g. having the same mean and
covariance matrix), while in the latter approach the ambiguity set contains the distributions that are
close to the empirical one based on the probability metric selected. In this context, the worst-case
expected value over the ambiguity set is optimized, while chance constraints are reformulated
to ambiguous chance constraints that are defined over the ambiguity set. Following each of the
aforementioned approaches, the decision maker has an uncertainty-aware attitude, as opposed to
a deterministic one.

Depending on the level of coordination between the electricity and natural gas systems and the
temporal coordination of various trading floors, four different approaches can be followed to
study all potential setups as illustrated in Figure 3.7. The sequential and decoupled arrangement
resembles current markets designs that only have limited coordination, while the fully coordinated
approach of uncertainty-aware coupled scheduling treats the system in with holistic view that
accounts for future uncertainties. The two models in between gradually enhance the coordination
and allow to identify inefficiencies that arise when following a sequential or decoupled approach.

Except for presenting the detailed modeling of the natural gas flow with approximated dynamics,
[Paper B] studies Seq-Dec, Seq-Coup and UA-Coup models by utilizing two-stage stochastic
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Figure 3.7: Coordination of electricity and natural gas markets in short-term operations (DA:
day-ahead stage, RT: real-time stage, E: electricity, G: natural gas, Seq: sequential, UA: uncertainty
aware, Dec: decoupled, Coup: coupled).

programming to account for stochastic power production from renewables. The importance of
proper natural gas system modeling in short-term operations to reveal the inherent flexibility of the
natural gas system is demonstrated, along with the effectiveness of accommodating high shares of
renewables. Moreover, the coordination parameters between electricity and natural gas system are
identified, as also discussed in Section 3.1, and their impact on the operation of the systems and on
the dispatch is presented.

Having identified the natural gas price perceived by GFPPs and the natural gas volume availability
for power production made available to GFPPs as the coordination parameters, their optimal
control by the operator in view of future balancing needs due to forecast errors from uncertain
power supply allows to bridge the efficiency gap in terms of expected system cost between Seq-Coup
and UA-Coup. [Paper C] and [Paper D] propose a price-based and a volume-based approach
to achieve a better temporal coordination in coupled electricity and natural gas systems, while
keeping the sequential clearing of day-ahead and real-time stages, respectively. These approaches
can be highly attractive in cases that electricity and natural gas systems are operated by the same
entity, as Energinet.dk in Denmark.

On the other hand, various challenges may arise in cases where the systems are operated
independently and the system operators are not willing to follow a fully coupled setup due to
different strategies or privacy issues with regards to the system and market data. To overcome
such issues, distributed algorithms that optimally dispatch each system independently with the
minimum information sharing can be employed. This is the topic of [Paper F], which proposes a
systematic data-driven distributed algorithm to solve UA-Dec by utilizing distributionally robust
optimization with a moment-based ambiguity set to deal with uncertainty in an efficient and
transparent way. An important element of this approach is that the ambiguity set is built based on
the first- and second-order moments of the random parameter that are inferred from historical data.
Moreover, the algorithm converges to the same solution of UA-Coup model that accomplishes an
enhanced coordination both system-wise and in the temporal dimension. The proposed approach is
additionally compared with Seq-Dec and with a case that utilizes chance constrained programming
under the assumption of Gaussian uncertainty resulting in an improved performance.

Moving towards a renewable-based power system, the system dispatch needs to take place via ad-
vanced models that account for the variability and uncertainty of renewable generation. Stochastic
production from renewables does not follow any specific distribution in reality. Therefore, assum-
ing the existence of the true probability distribution in any parametric family or approximating it
by a discrete empirical distribution may yield to poor performance of the system dispatch when
the actual stochastic power production realizes. This effect is more profound in cases when only a
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limited number of samples is available. A distributionally robust approach based on a metric-based
ambiguity set permits to mitigate the inaccurate estimates of the true underlying distribution via
tuning the size of ambiguity set depending on the number of available samples. Additionally,
a problem reformulation with joint chance constraints gives the freedom to the decision-maker
to impose system-wide risk parameters regarding the violation of the corresponding constraints
instead of imposing specific risk parameters for individual ones. These topics are presented in
[Paper E], which proposes a novel approach to conservatively approximate distributionally robust
joint chance constraints on the UA-Coup model.

The terms scheduling and dispatch refer to the outcome of a market design, that resembles the
centralized operation of vertically integrated structures, in which all assets are owned and operated
by a single entity that aims to minimize the system cost, while ensuring technical feasibility. On
the other hand, the term market-clearing refers to the equilibrium of several market participants
seeking to maximize their profits, usually internalizing their technical constraints and their degrees
of risk aversion. In this thesis, the aim is to define models that can serve as benchmarks in terms
of minimum system cost and contribute towards the design of efficient market architectures.
Therefore, these terms are often used interchangeably in the context of this thesis.





CHAPTER4
Market Design Alternatives for

Electricity and Natural Gas
Systems

In this chapter, we present three market-clearing models with various degrees of coordination
between the electricity and natural gas systems, as well as between the trading floors. We
identify the key coordination parameters, which are the natural gas price and fuel availability
for Gas-Fired Power Plants (GFPPs), and demonstrate their effect on the dispatch of the whole
energy system. The proposed models incorporate the description of the natural gas system into the
market-clearing models in a market-compatible way, which provides the opportunity to study the
benefits of the natural gas system’s inherent flexibility. Further insights with regards to improving
the coordination between the two trading floors via a fine-tuning of the two key coordination
parameters are provided in Chapter 5.

The methodologies developed in this chapter focus on short-term operations of electricity and
natural gas markets with the stochastic power supply being wind power. The uncertainty-aware
dispatch is built by utilizing two-stage stochastic programming, while the natural gas flow model
with approximated dynamics (see Section 3.2.2) is used to highlight the benefits of network
modeling in facilitating the integration of renewables. This natural gas flow model permits to
explore the benefits of linepack flexibility. The models and results outlined in this chapter are
presented in [Paper B] in detail. A series of recent studies has dealt with the presence of uncertain
power production in electricity and natural gas systems as in [4, 76]. Moreover, the importance of
taking into account the natural gas system for flexibility and reliability is highlighted in [13, 54].
For a more detailed literature survey, see the introduction of [Paper B].

In Section 4.1, we provide an overview of the market-clearing models and highlight the impact of the
coordination parameters on the operation of electricity and natural gas systems. The mathematical
formulation of the market-clearing models is presented in Section 4.2. A comparison among the
proposed models is performed in Section 4.3, where the impact of coordination parameters is
further investigated. Finally, the benefits of incorporating the natural gas network constraints in a
market-compatible way are demonstrated in Section 4.4.

4.1 Description of market-clearing models for electricity and natural gas
systems

This section presents and describes the market-clearing models for electricity and natural gas
systems with a focus on the key coordination parameters (i.e. natural gas price and fuel availability
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for power production from GFPPs). The interactions between electricity and natural gas markets are
mainly based on the communication interface provided by GFPPs via the coordination parameters,
such as the fuel consumption, which depends on the dispatch in the electricity market, and the
natural gas price [77]. Under an imperfect and limited coordination between the two systems,
these parameters are defined in a static way that does not permit an efficient coordination of the
two systems. However, several schemes to improve the coordination and define the parameters in
a more sophisticated manner have been considered in practice in various regions around the world
which are highly dependent on GFPPs for electricity production. For instance, ISO New England
has faced a lot of challenges to ensure adequate fuel supply for GFPPs during winter periods
when the heating demand is high, which made it necessary to consider an increased coordination
with the natural gas sector to reduce the fuel-security risk and guarantee a secure operation of the
power system [78]. In particular, hourly natural gas consumptions of GFPPs are calculated and
it is verified whether they can be accommodated by the corresponding pipelines that the GFPPs
are connected to. Then, it may be chosen to revise the next-day operating plan in case needed.
Following these observations, we consider different levels of coordination between the electricity
and natural gas systems through a static or endogenous definition of these parameters.

In the temporal dimension, we focus on short-term markets to study the effect of stochastic power
production from renewables. Electricity has been widely traded in short-term markets, while
natural gas markets have been historically based on long-term contracts with limited short-term
variability. However, recent trends show a transition towards short-term trading, which is further
strengthened by the needs of GFPPs that have an increased intraday fuel variability. This is due
to the fact that they serve as a back-up technology to compensate for the fluctuating renewable
power production [8]. Participation in the natural gas spot market, even when supplemented with
some natural gas forward purchases for hedging, is also preferred by GFPPs as discussed in [79].

The main focus is placed on two trading floors, namely the day-ahead and real-time stages.
Depending on the level of coordination between the two energy systems and between the trading
floors, the following three market-clearing models are considered.

4.1.1 Sequential dispatch of decoupled electricity and natural gas systems

This model aims to mimic the existing setup where the two energy systems are operated in a
decoupled manner with a deterministic view of uncertain power supply, as shown in Figure 4.1.
Initially, the electricity system is scheduled by having as an input a single-valued forecast of the
stochastic power production, which results in determining the fuel consumption of GFPPs. Then,
the fuel consumption of GFPPs is submitted as a fixed demand to the natural gas market. In the
electricity market, the GFPPs submit the price-quantity offers based on an estimation of the natural
gas price or on the price of the natural gas supply contract. Thus, both the natural gas price and
fuel demand of GFPPs are treated as predefined parameters and may not be the optimal values
that would yield the most cost-effective system dispatch. In the natural gas system, the residential
and industrial natural gas loads are assigned with a higher priority than the demand of GFPPs,
which results in GFPPs being the first to be curtailed in case it is not feasible to cover the total
natural gas demand needs. An iterative approach to dispatch the two energy systems is followed
that identifies possible infeasible fuel consumption schedules of GFPPs and generate proper fuel
constrains for the GFPPs [76]. This approach does not guarantee an optimal operation of the two
energy systems compared to an approach that co-optimizes them simultaneously. Getting closer
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to the actual operation, when the realization of stochastic power production ω′ is known, the
balancing actions to compensate potential forecast errors are optimized by following the same
iterative approach.

Figure 4.1: Sequential dispatch of decoupled electricity and natural gas systems (GFPPs: gas-fired
power plants, DA: day-ahead, E: electricity, G: natural gas, ∆E: electricity adjustment, ∆G: natural
gas adjustment).

4.1.2 Sequential dispatch of coupled electricity and natural gas systems
To improve the coordination between the two energy systems, a coupled operational model is
constructed. In this case, we model a perfect inter-systems coordination, while a deterministic view
of stochastic power production is used that results in clearing the day-ahead and real-time trading
floors independently, as illustrated in Figure 4.2. The coupled dispatch of the two systems via a
single optimization model allows for a non-static (i.e. endogenous) definition of the coordination
parameters. That way the demand of GFPPs is treated as a variable and the power production
cost of GFPPs is endogenously defined based on the actual value of natural gas at the specific time
period and location. This model allows to identify potential inefficiencies that arise by following a
decoupled dispatch of electricity and natural gas systems, as well as to assess the value of temporal
coordination between the day-ahead and balancing markets by providing a basis for comparison
with the following stochastic dispatch model.

Figure 4.2: Sequential dispatch of coupled electricity and natural gas systems (E: electricity, G:
natural gas, ∆E: electricity adjustment, ∆G: natural gas adjustment).

4.1.3 Stochastic dispatch of coupled electricity and natural gas systems
An uncertainty-aware dispatch is followed in this case, where the dispatch of the coupled energy
system is co-optimized based on a probabilistic description of uncertain supply. More specifically,
we develop a two-stage stochastic programming model that accounts for future balancing costs
in real-time operation and minimizes the total expected system cost, as presented schematically
in Figure 4.3. Such probabilistic description is based on the available forecast at the day-ahead
stage and may not cover the exact realization in real-time. However, given that the uncertainty
modeling adequately captures the true characteristics of the stochastic processes involved, the
potential realizations will be represented via a set of scenarios Ω. This model achieves an enhanced
inter-systems and inter-temporal coordination, assuming that a realistic range and probability
distribution of scenarios is considered.
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Figure 4.3: Stochastic dispatch of coupled electricity and natural gas systems (E: electricity, G:
natural gas, ∆E: electricity adjustment, ∆G: natural gas adjustment).

4.2 Mathematical formulation of market-clearing models

In this section, the three aforementioned market-clearing models are formulated as compact
mathematical programs to demonstrate the underlying interactions between the systems and
markets. The link between the two systems is provided by GFPPs, which consume natural gas as
fuel and produce electrical power. Assuming inelastic electricity and natural gas demands, we
equivalently write the social welfare maximization problem as a cost minimization problem for
the system operation. In the electricity system, we adopt a DC power flow model. In the natural
gas system, the natural gas flow model with approximated dynamics is used, as presented in
Section 3.2.2. Considering that the natural gas flow direction in the pipelines is controlled by a
set of binary variables, this natural gas flow problem is formulated as a Mixed-Integer Linear
Program (MILP). Following the common practice, we derive the electricity and natural gas prices
as the dual variables of the corresponding balance constraints of the Linear Program (LP) obtained
by fixing the binary variables of the initial MILP to their optimal values. A potential caveat of
this approach, due to the non-convexity of the original MILP, is that the resulting prices may
not adequately support the economic dispatch. In that case, corrective out-of-market payments
may be considered, e.g. similar to uplift payments in the unit commitment problem, to provide
the right incentives to follow the dispatch instructions. In all three market-clearing models, we
consider a network representation for electricity and natural gas systems both at the day-ahead
and real-time stages. More specifically, we consider a combined electricity and natural gas system
with N electricity nodes, G conventional power plants, W stochastic producers, D electricity
demands,M natural gas nodes, E pipelines, U natural gas producers, S natural gas storage facilities
andH natural gas demands. The following mathematical programs are suited for multi-period
problems, we omit though the time dimension T from the variables and parameters for clarity. A
full formulation of the market-clearing models is given in [Paper B].

4.2.1 Sequential dispatch of decoupled electricity and natural gas systems

The sequential dispatch of decoupled electricity and natural gas systems consists of the following
four individual mathematical programs. Let pD ∈ RG+ and wD ∈ RW+ be the day-ahead schedule
of conventional and stochastic producers. The optimal schedule

(
pD*, wD*

)
that minimizes the

day-ahead electricity cost CD
E (pD) is determined by model (4.1) as follows:

min
pD,wD,θD

CD
E (pD) (4.1a)

s. t. hD
E (pD, wD, θD)−AeDe = 0 : λD

E (4.1b)

fD
E (pD, θD) ≤ 0 (4.1c)

0 ≤ wD ≤ Ŵ , (4.1d)
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where Ŵ ∈ RW+ is the forecast of stochastic power production. The objective function in (4.1a)
reflects the operating cost of the electricity system where an estimation of the natural gas spot price
or of the price of the natural gas contract is used to calculate the marginal cost of GFPPs. Equality
constraints (4.1b) enforce the power balance for each node of the power system by stating that the
power production plus the net power flow is equal to the demand De ∈ RD+ at each node. The
electricity demand De is mapped to the nodes of the electricity network by the incidence matrix
Ae ∈ RN×D+ . Note that the power flows are determined by the nodal voltage angles θD ∈ RN .
The day-ahead locational marginal prices are defined as the dual variables of (4.1b) by λD

E ∈ RN .
The inequalities (4.1c) include all the constraints relative to upper and lower bounds of power
production and power flows. The day-ahead schedule of stochastic producers is constrained by
(4.1d). Model (4.2) minimizes the day-ahead natural gas cost CD

G (gD, sD) as follows:

min
gD,sD,prD,qD,yD

CD
G (gD, sD) (4.2a)

s. t. hD
G(gD, sD, qD)−AgDg −ApDp = 0 : λD

G (4.2b)

fD
G (gD, sD, prD, qD, yD) ≤ 0 (4.2c)

yD ∈ {0, 1}, (4.2d)

where Dp ∈ RG+ is the fuel consumption of GFPPs and is calculated by multiplying the power
conversion factor Φ ∈ RG×G+ with the schedule pD* of GFPPs. Diagonal matrix Φ contains the power
conversion factor of GFPPs, while the entries for non-GFPPs are zero. In model (4.2), Dp is treated
as a fixed parameter. The operating cost of the natural gas system is represented by the objective
function (4.2a) as the cost of natural gas injected in the network by producers gD ∈ RU+ and storage
facilities sD ∈ RS . We denote by sD the inflow and outflow of the natural gas storage facilities. The
natural gas balance at each node of the natural gas system is determined by equality (4.2b) where
the natural gas injections plus the net natural gas flows qD ∈ RE and the net inflow/outflow from
the storage facilities are equal to the residential/industrial demand Dg ∈ RH+ and fuel demand
Dp of GFPPs. The natural gas demand Dg and fuel consumption of GFPPs Dp are mapped to
the nodes of the natural gas network by the incidence matrices Ag ∈ RM×H+ and Ap ∈ RM×G+ ,
respectively. The inequalities (4.2c) describe the natural gas capacity, natural gas flow, linepack
and system operational constraints. Notice that the natural gas flows are determined by the nodal
pressures prD ∈ RM+ . The direction of natural gas flow is determined by binary variable yD that is
defined in (4.2d). The dual variables λD

G ∈ RM of the balancing constraints define the day-ahead
natural gas locational marginal prices when fixing the natural gas flow direction. In real-time
operation, wind power production Wω′ ∈ RW+ is realized and the respective balancing markets
are cleared. The day-ahead decisions

(
pD*, wD*, θD*

)
are treated as parameters in the electricity

balancing market (4.3) that deals with the energy imbalance caused by stochastic production as
follows:

min
pR

ω′ ,pl
R
ω′ ,w

R
ω′ ,θ

R
ω′

CR
E (pR

ω′ , plRω′) (4.3a)

s. t. hD
E (pR

ω′ , plRω′ , wR
ω′ , θR

ω′ , θD*) +Aw(Wω′ − wD*) = 0 : λR
E(ω′) (4.3b)

fD
E (pR

ω′ , plRω′ , wR
ω′ , θR

ω′ , pD*;Wω′) ≤ 0, (4.3c)

where pR
ω′ ∈ RG denotes the power adjustments of power plants. Moreover, plRω′ ∈ RD+ and

wR
ω′ ∈ RW+ are the load shedding and wind spilling actions, respectively. The cost of balancing

actions CR
E (pR

ω′ , plRω′) is minimized in (4.3a). Equality constraints (4.3b) ensure that the power system
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is re-dispatched to keep the system balanced. Incidence matrix Aw ∈ RN×W+ maps the stochastic
producers to the electricity network. The dual variables λR

E(ω′) ∈ RN define the locational marginal
prices in the electricity balancing market. Inequalities (4.3c) consist of the upper and lower bounds
of power adjustments, load shedding, wind spillage and power flows. The real-time power flow
is defined by voltage angles θR

ω′ ∈ RN . Similarly to the day-ahead stage, the fuel consumption
deviation ∆Dp ∈ RG of GFPPs can be calculated by the multiplication of power conversion factor
Φ and power adjustments pR

ω′ . The natural gas balancing market (4.4) is formulated as follows:

min
gR

ω′ ,s
R
ω′ ,pr

R
ω′ ,q

R
ω′ ,

glR
ω′ ,y

R
ω′

CR
G(gR

ω′ , sR
ω′ , glRω′) (4.4a)

s. t. hR
G(gR

ω′ , sR
ω′ , qR

ω′ , glRω′ , qD*)−Ap∆DP = 0 : λR
G(ω′) (4.4b)

fR
G(gR

ω′ , sR
ω′ , prR

ω′ , qR
ω′ , glRω′ , yR

ω′ , gD*) ≤ 0 (4.4c)

yR
ω′ ∈ {0, 1}, (4.4d)

where ∆DP and the day-ahead decisions are treated as fixed parameters. The balancing actions
to be activated comprise adjustments by natural gas producers gR

ω′ ∈ RU and natural gas storage
facilities sR

ω′ ∈ RS , as well as load shedding glRω′ ∈ RH+ . The cost of these actions are captured
in the objective function (4.4a) to be minimized by CR

G(gR
ω′ , sR

ω′ , glRω′). Equality constraints (4.4b)
guarantee the nodal natural gas balance of the system where the real-time natural gas net flows
are given in qR

ω′ ∈ RE and defined by pressures prR
ω′ ∈ RM+ . The dual variables λR

G(ω′) ∈ RM define
the locational marginal prices in the natural gas balancing market. Similarly to (4.2c), inequalities
(4.4c) capture the constraints of natural system operation in real-time. Binary variable yR

ω′ , which is
defined in (4.4d), determines the direction of the real-time natural gas flows.

4.2.2 Sequential dispatch of coupled electricity and natural gas systems

The sequential dispatch of coupled electricity and natural gas systems is formulated by two
independent mathematical programs, one for the day-ahead and one for the balancing stage. The
optimal schedule

(
pD*, wD*, gD*, sD*

)
that minimizes the day-ahead cost CD

E (pD) + CD
G (gD, sD) of the

coupled energy system is determined by model (4.5) as follows:

min
pD,wD,θD,gD,

sD,prD,qD,yD

CD
E (pD) + CD

G (gD, sD) (4.5a)

s. t. hD
E (pD, wD, θD)−AeDe = 0 : λD

E (4.5b)

fD
E (pD, θD) ≤ 0 (4.5c)

0 ≤ wD ≤ Ŵ (4.5d)

hD
G(gD, sD, qD,ΦpD)−AgDg = 0 : λD

G (4.5e)

fD
G (gD, sD, prD, qD, yD) ≤ 0 (4.5f)

yD ∈ {0, 1}, (4.5g)

where Ŵ is the forecast of stochastic power production. In the objective function (4.5a), the total
day-ahead cost of electricity and natural gas systems is minimized. In this case, the system cost
stems from the power production cost of non-GFPPs and the natural gas system cost. Note that
the power production cost of GFPPs is not included because it would result in double counting
it. The cost of GFPPs is explicitly associated with the natural gas system cost via equality (4.5e),
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which enforces the natural gas balancing for each node of the system. The fuel consumption
ΦpD of GFPPs is treated as a variable under the coupled optimization of the two energy systems.
Constraints (4.5b)-(4.5d) and (4.5f)-(4.5g) are the same as those described in Section 4.2.1. The
day-ahead decisions are determined by model (4.5) and passed as fixed parameters to the balancing
model (4.6). Model (4.6) is solved for each wind power realization Wω′ and writes as follows:

min
pR

ω′ ,pl
R
ω′ ,w

R
ω′ ,θ

R
ω′ ,g

R
ω′ ,

sR
ω′ ,pr

R
ω′ ,q

R
ω′ ,gl

R
ω′ ,y

R
ω′

CR
E (pR

ω′ , plRω′) + CR
G(gR

ω′ , sR
ω′ , glRω′) (4.6a)

s. t. hD
E (pR

ω′ , plRω′ , wR
ω′ , θR

ω′ , θD*) +Aw(Wω′ − wD*) = 0 : λR
E(ω′) (4.6b)

fD
E (pR

ω′ , plRω′ , wR
ω′ , θR

ω′ , pD*;Wω′) ≤ 0 (4.6c)

hR
G(gR

ω′ , sR
ω′ , qR

ω′ , glRω′ ,ΦpR
ω′ , qD*) = 0 : λR

G(ω′) (4.6d)

fR
G(gR

ω′ , sR
ω′ , prR

ω′ , qR
ω′ , glRω′ , yR

ω′ , gD*) ≤ 0 (4.6e)

yR
ω′ ∈ {0, 1}, (4.6f)

where ΦpR
ω′ determines the fuel consumption of GFPPs and treated as variable in the natural gas

balancing equality (4.6d). Similarly, the power production cost of GFPPs is not included since it
stems from the natural gas system. Constraints (4.6b)-(4.6c) and (4.6e)-(4.6f) are the same as those
described in Section 4.2.1.

4.2.3 Stochastic dispatch of coupled electricity and natural gas systems

The stochastic dispatch of coupled electricity and natural gas systems is formulated by a single
optimization problem. Model (4.7) is formulated as a two-stage stochastic program as follows:

min
pD,wD,θD,gD,sD,prD,qD,pR

ω,pl
R
ω,

wR
ω,θ

R
ω,g

R
ω,s

R
ω,pr

R
ω,q

R
ω,gl

R
ω,y

D,yR
ω

CD
E (pD) + CD

G (gD, sD) + Eω
[
CR

E (pR
ω, pl

R
ω) + CR

G(gR
ω, s

R
ω, gl

R
ω)
]

(4.7a)

s. t. hD
E (pD, wD, θD)−AeDe = 0 : λD

E (4.7b)

fD
E (pD, θD) ≤ 0 (4.7c)

0 ≤ wD ≤W (4.7d)

hD
G(gD, sD, prD, qD,ΦpD)−AgDg = 0 : λD

G (4.7e)

fD
E (gD, sD, prD, qD, yD) ≤ 0 (4.7f)

yD ∈ {0, 1} (4.7g)

hD
E (pR

ω, pl
R
ω, w

R
ω, θ

R
ω, θ

D) +Aw(Wω − wD) = 0 : λR
E(ω), ∀ω ∈ Ω (4.7h)

fD
E (pR

ω, pl
R
ω, w

R
ω, θ

R
ω, p

D;Wω) ≤ 0, ∀ω ∈ Ω (4.7i)

hR
G(gR

ω, s
R
ω, q

R
ω, gl

R
ω,ΦpR

ω, q
D) = 0 : λR

G(ω), ∀ω ∈ Ω (4.7j)

fR
G(gR

ω, s
R
ω, pr

R
ω, q

R
ω, gl

R
ω, y

R
ω, g

D) ≤ 0, ∀ω ∈ Ω (4.7k)

yR
ω ∈ {0, 1}, ∀ω ∈ Ω, (4.7l)

whereW ∈ RW+ is the capacity of stochastic producers. The total expected system cost is minimized
in (4.7a). Model (4.7) permits an implicit temporal coordination of the day-ahead and real-time
stages by anticipating balancing costs in (4.7a) and writing constraints (4.7h)-(4.7l) for all scenarios
ω ∈ Ω. Note that day-ahead decisions are treated as variables and that stochastic power schedule
wD is constrained by the capacity W in (4.7d). Constraints (4.7b)-(4.7c) and (4.7e)-(4.7l) are the
same as those described in Section 4.2.2.
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4.2.4 Characteristics of the market-clearing models

Before presenting a comparison among the market-clearing models and the effect of coordination
parameters on systems operation, we provide an overview of the features of the models in Table 4.1.
The sequential model of decoupled (Seq-Dec) electricity and natural gas systems results in an
imperfect coordination between the energy systems and trading floors, where the definition of
coordination parameters is accomplished in a static manner. The sequential model of coupled
(Seq-Coup) electricity and natural gas systems attains a perfect inter-systems coordination, while
clearing the day-ahead and balancing markets sequentially. Following a coupled approach for
the systems coordination allows for an endogenous definition of the coordination parameters
since they are treated as variables in the optimization problems. The stochastic dispatch model
of coupled (Stoch-Coup) electricity and natural gas systems achieves a perfect coordination both
regarding the energy systems and trading floors. The inter-temporal coordination is assumed to
be perfect in a sense that uncertainty modeling captures the true characteristics of the stochastic
processes involved and the potential realizations are represented by scenario set Ω. The three
examined market-clearing models are also illustrated in Figure 3.7, which provides a general
overview of the different models examined in this thesis. Note that UA-Coup in Figure 3.7 is
referred to as Stoch-Coup in this chapter due to the use of two-stage stochastic programming to
have an uncertainty-aware approach.

Table 4.1: Characteristics of market-clearing models.

Model Seq-Dec Seq-Coup Stoch-Coup
Temporal coordination Imperfect Imperfect Perfect
Systems coordination Imperfect Perfect Perfect

Definition of coordination parameters Static Endogenous Endogenous

4.3 Comparison of market-clearing models and the effect of coordination
parameters on the operation of electricity and natural gas systems

In this section, the three market-clearing models are compared in terms of expected system cost
and the share of the total power production scheduled at the day-ahead stage that is allocated
between GFPPs and non-GFPPs. Moreover, the effect of coordination parameters on the dispatch
of the two energy systems is analyzed. That way, potential inefficiencies that may arise in the
decoupled approach along with the benefits of having a probabilistic description of uncertainties
are highlighted. A modified case study is built upon the IEEE 24-bus Reliability Test System (RTS)
[80] and a 12-node natural gas system based on [81]. Wind power production is described via 25
equiprobable scenarios [82]. The scheduling horizon is 24 hours. The data and network topology
are provided in the online appendix, which is available in [83].

4.3.1 Degrees of coordination and their effect on a cost-effective operation

In coupled operation of electricity and natural gas systems, the power production cost of GFPPs
is defined endogenously by the actual value of natural gas, which is defined as the locational
marginal price λD

G for each time period of the day. In the decoupled approach, the GFPPs have to
utilize fixed natural gas prices that represent an estimation of the spot price or the price of fuel
supply contracts. We solve Seq-Coup to estimate this fixed price. Then in Seq-Dec, the day-ahead
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offer price of GFPPs in the electricity market can be calculated as the multiplication of the natural
gas price λD

G obtained by Seq-Coup with the power conversion factor of each GFPP. At the balancing
stage, the upward and downward regulation offer prices are equal to 1.1 and 0.91 of the day-ahead
offer price.

Tables 4.2 and 4.3 present the total expected system cost, as the sum of the day-ahead and balancing
costs, along with the share of day-ahead power production scheduling of GFPPs and non-GFPPs
for 40% and 50% wind power penetration levels. The expected system cost is calculated based
on scenario set Ω and the wind power penetration level is defined as the share of installed wind
capacity on total system’s electricity demand. Model Stoch-Coup attains the solution with the
lowest expected system cost in both cases, since it manages to efficiently dispatch the coupled
energy system in view of uncertain power supply. Comparing the two sequential models, it can be
observed that Seq-Coup has a better performance than Seq-Dec in terms of expected system cost,
highlighting the benefit of co-optimizing the energy systems instead of following a decoupled
approach. Utilizing a probabilistic description of uncertainties at the day-ahead stage to schedule
the system permits the anticipation of balancing costs. This results in Stoch-Coup having an
increased day-ahead cost compared to Seq-Coup and Seq-Dec, as the power plants are scheduled
out of the merit order, which is then offset by the highly reduced balancing costs. Moreover, GFPPs,
which are considered flexible power producers, are having a higher share of power production
under Stoch-Coup. The coupled optimization of electricity and natural gas systems schedules the
GFPPs based on the actual value of natural gas, as well as optimizes the natural gas flows, linepack
flexibility and natural gas levels at storage facilities in view of uncertain power supply. The
spatial and temporal allocation of natural gas in the system plays an important role for short-term
adequacy and available operational flexibility due to the limitations in the speed of transporting
natural gas. For these reasons, Seq-Dec results in a higher expected system cost than Seq-Coup.

Table 4.2: Expected system cost and share of the total power production scheduled at the day-ahead
stage allocated between GFPPs and non-GFPPs when the wind power penetration is 40%.

Total (M$) Day-ahead (M$) Balancing (M$) GFPPs (%) non-GFPPs (%)
Stoch-Coup 1.747 1.755 -0.008 10.8 89.2
Seq-Coup 1.817 1.731 0.086 9.1 90.9
Seq-Dec 1.819 1.731 0.088 9.2 90.8

Seq-Dec ↑ 1.821 1.732 0.089 6.8 93.2
Seq-Dec ↓ 1.866 1.741 0.125 14.5 85.5

Table 4.3: Expected system cost and share of the total power production scheduled at the day-ahead
stage allocated between GFPPs and non-GFPPs when the wind power penetration is 50%.

Total (M$) Day-ahead (M$) Balancing (M$) GFPPs (%) non-GFPPs (%)
Stoch-Coup 1.684 1.686 -0.002 11.7 88.3
Seq-Coup 1.812 1.663 0.149 7.4 92.6
Seq-Dec 1.814 1.664 0.150 7.2 92.8

Seq-Dec ↑ 1.813 1.665 0.148 6.1 93.9
Seq-Dec ↓ 1.874 1.674 0.200 14.3 85.7

Therefore, a decrease in expected system cost, can be noticed as we move from the deterministic
and decoupled approach to the stochastic and coupled one. This happens due to the enhanced
coordination between the two trading floors as well as between the systems.
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4.3.2 The effect of coordination parameters on the operation of electricity and

natural gas systems

To simulate the case that GFPPs are mis-estimating the actual natural gas price, a 10% overestimation
and underestimation is used. Such deviation is considered adequate due to the relative stable
natural gas prices in short-term operations. This case is examined by introducing two additional
models for the overestimation and underestimation, which are Seq-Dec ↑ and Seq-Dec ↓, respectively.
The impact of coordination parameters on the dispatch of both energy systems are analyzed by
comparing the solutions of Seq-Dec ↑ and Seq-Dec ↓with Seq-Dec. Model Seq-Dec utilizes the actual
natural gas price stemming from Seq-Coup, while the Seq-Dec ↑ and Seq-Dec ↓ overestimate or
underestimate this price. A fuel price mis-estimation affects the price-quantity bids of GFPPs,
which in turn results in building a different aggregated supply curve than Seq-Dec to clear the
market. For instance, an overestimation of the natural gas price would result in placing the GFPPs
higher in the merit-order ranking and thus having less of them scheduled at the day-ahead stage.
On the contrary, more GFPPs would be scheduled at the day-ahead stage when the natural gas
price is underestimated since they bid in the market with a lower marginal cost than the one related
to the actual natural gas value. As shown in Table 4.3 for the case of 50% wind power penetration,
model Seq-Dec ↑ obtains a reduced total expected system cost compared to Seq-Dec because flexible
GFPPs are scheduled less at the day-ahead stage which makes them available to provide upward
regulation services in real-time operation. In the underestimation case both in Tables 4.2 and 4.3,
the GFPPs are scheduled more at the day-ahead stage, which results in the opposite effect and
yields an increased total expected system cost. Therefore, an adjustment of the natural gas price
perceived by GFPPs is possible to affect the total expected system cost in both a positive and a
negative manner.

Apart from the natural gas price, the available quantity of natural gas for power production also
affects the scheduling of the GFPPs. This is examined by simulating a case with 30% increased
residential/industrial natural gas demand. Table 4.4 presents the total expected system costs
and the share of the total power production scheduled at the day-ahead stage allocated between
the different technologies. The share of power production from GFPPs is reduced from 9.1%
to 6.6% and 9.2% to 6.7% for Seq-Coup and Seq-Dec, respectively. Therefore, a higher portion of
the electricity demand is covered by non-GFPPs. Additionally, the expected unsatisfied natural
gas demand of a specific GFPP (i.e. GFPP 11) is illustrated in Figure 4.4. This undesired event
takes place during the hours of peak residential/industrial natural gas demand and is more severe
when the natural gas price is underestimated because GFPPs are scheduled with a comparatively
higher share at the day-ahead stage. This phenomenon does not occur when the systems are
simultaneously operated under Seq-Coup, which also yields a lower expected system cost compared
to Seq-Dec. The importance of co-optimizing the energy systems along with the natural gas flows
and allocation of linepack is highlighted in this case due to the effect of natural gas volume
availability for power production on the operation of the systems.

It has been identified that both coordination parameters have an impact on the operation of both
energy systems and the total expected system cost. This paves the way for exploring how a
sophisticated definition of these parameters can enhance the coordination between the two energy
systems and between the two trading floors in view of high shares of stochastic power production.
This topic is further discussed in Chapter 5.
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Table 4.4: Expected system cost and share of the total power production scheduled at the day-ahead
stage allocated between GFPPs and non-GFPPs when the natural gas demand is increased by 30%
and the wind power penetration is 40%.

Total (M$) GFPPs (%) non-GFPPs (%)
Seq-Coup 1.949 6.6 93.4
Seq-Dec 2.018 6.7 93.3
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Figure 4.4: Expected unsatisfied demand of GFPP 11 under Seq-Dec.

4.4 Benefits of linepack flexibility and its effect on the operation of
electricity and natural gas systems

An essential flexible component included in the market-clearing models is the natural gas network
with approximated dynamics of the natural gas flow, which allows to store natural gas in the
pipelines (i.e. linepack). In this section, the effects of modeling linepack are identified by comparing
with a steady-state operation of the natural gas system where no linepack is considered. In the
steady-state operation, the same equations of the natural gas network modeling with approximate
dynamics are used but the inflow and outflow of each pipeline are set to be equal for each time
period (qinm,u,t = qoutm,u,t,∀(m,u) ∈ Z, t ∈ T ). Hence, there is no storage ability in the natural gas
network. In the steady-state operation, linepack is neglected both at the day-ahead and at the
real-time stages. A performance ratio is utilized to quantify the flexibility revealed by modeling
linepack flexibility. To compare on a fair basis, the level of natural gas stored in the network and
in the storage facilities between the beginning and the end of the 24-hour scheduling horizon is
assumed to be the same. The analysis is performed using the same case study as in Section 4.3.
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To examine the effects of linepack flexibility on the operation of electricity and natural gas systems,
the total expected system cost is compared for the cases that linepack is considered or neglected
under Seq-Coup and Seq-Dec. The results are presented in Table 4.5. In the steady-state models,
the natural gas demand has to be instantly covered at each time period by the producers as it is
not possible to store natural gas in the network for utilization in subsequent time periods. For
this reason, the most expensive natural gas supplier needs to be scheduled to meet the demand,
which results in an increased day-ahead cost for the steady-state models. The deployment of
the expensive natural gas supplier increases the natural gas price but makes available more
cost-effective capacity for down-regulation in the natural gas system. This increased availability of
cheaper down-regulation resources is also reflected in the electricity market via the GFPPs and
eventually results in a lower expected balancing cost. On the other hand, only the two cheaper
natural gas suppliers are scheduled when linepack is considered since there is a possibility to store
natural gas in the network and use it during the hours of the peak demand. This results in a lower
day-ahead cost; however, a higher total expected system cost is attained due to the more expensive
balancing actions required. This effect depends on the structure of scenarios in set Ω and type of
regulation needed in the real-time operation. Nevertheless, it indicates possible inefficiencies that
may arise when a flexible component of the system, such as linepack, is myopically operated with
regards to future balancing needs.

Table 4.5: Effect of linepack on expected system cost under Seq-Coup and Seq-Dec when the wind
power penetration is 50%.

Total (M$) Day-ahead (M$) Balancing (M$)
Seq-Coup 1.812 1.663 0.149

Steady-state Seq-Coup 1.809 1.669 0.140
Seq-Dec 1.814 1.664 0.150

Steady-state Seq-Dec 1.813 1.671 0.142

To overcome the aforementioned drawback of deterministic approaches that are myopic to future
uncertainties, the Stoch-Coup is examined and the results are given in Table 4.6. The steady-state
model results in a higher expected system cost and schedules GFPPs less than Stoch-Coup, since
it cannot take advantage of the natural gas network’s storage capability. Stoch-Coup exploits the
inherent flexibility of the natural gas network by taking into account the balancing needs due to
stochastic power production from renewables. Additionally, the effect of utilizing different levels
of linepack at the beginning of the scheduling horizon on total expected system cost is examined by
considering 5% more or less linepack in relation to the value at the end of the day. In all cases, the
same target value for the last time period of the scheduling horizon is required. The total expected
system cost is lower when there is a higher level of linepack at the beginning of the scheduling
horizon. Moreover, GFPPs are scheduled more by taking advantage of the free energy stored in
the network. The opposite observations are noticed for the case of having a 5% less linepack level
at the beginning of the scheduling horizon.

Figure 4.5 depicts the total level of linepack in the system and the total level at the storage facilities.
It can be observed that the linepack level decreases throughout the scheduling horizon and the
storage facilities are not utilized in the case of having a 5% higher initial linepack level. On the
contrary, the linepack level increases when its initial value is 5% lower at the beginning of the
scheduling horizon. In addition, the storage facilities are utilized to support the operation of the
system during the first hour of the day. In both cases, the linepack level is decreased below the final
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Table 4.6: Effect of linepack on expected system cost and share of the total power production
scheduled at the day-ahead stage allocated between GFPPs and non-GFPPs under Stoch-Coup
when the wind power penetration is 50%.

Total (M$) GFPPs (%) non-GFPPs (%)
Steady-state Stoch-Coup 1.692 9.9 90.1

Stoch-Coup 1.684 11.7 88.3
Stoch-Coup (+5% initial linepack) 1.631 12 88
Stoch-Coup (-5% initial linepack) 1.739 10.8 89.2

hour threshold during the evening hours, where there is a peak of residential/industrial natural
gas demand.
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Figure 4.5: Total system linepack and storage level (lp: linepack).

The benefits of incorporating a flexible component that is capable to provide energy storage in the
system stem from its ability to flatten the demand profile by filling the "valleys" and shaving the
"peaks" in order to utilize cheap energy production, as sketched in Figure 4.6. Linepack is also
considered a storage option for the coupled energy system that is offered by the pipelines of the
natural gas network.

The flexibility revealed by modeling linepack in Stoch-Coup can be quantified by a performance
ratio that takes into account two extreme cases and the case where linepack is modeled. The
steady-state model, which does not have the ability to store natural gas in the network, provides the
solution (ECss) with the highest expected system cost. The lowest expected system cost (ECideal)
is attained in the case where an ideal storage facility with infinite capacity and charging/discharging
rates at each node of the system is introduced. Even though this approach is able to shift the
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TimeTime

Figure 4.6: Peak-shaving and load-shifting from an ideal storage facility.

demand in every possible way to reduce the expected system cost, it cannot be considered in
practice and is only used to provide a lower bound for the performance ratio, which is equal to
M$1.629. The performance ratio is calculated as follows:

ECss − EC
ECss − ECideal

= 1.692− 1.684
1.692− 1.629 ≈ 12.4%,

showing that modeling the natural gas network with linepack flexibility reveals 12.4% of an ideal
storage facility in terms of expected system cost. This result indicates the benefit of modeling
the natural gas network with approximated dynamics in a market-compatible way to exploit the
available operational flexibility. For brevity, the M$ units have been used for the expected system
cost in this chapter, which results in a slightly different value for the performance ratio than the
one presented in [Paper C] where results are presented in $. Hence the "approximately equal"
symbol (≈) is used in the equation.

Figure 4.7 shows the total natural gas supply and fuel demand of GFPPs. The natural gas
production is significantly higher when there is a 5% lower level of linepack at the beginning of
the scheduling horizon since the natural gas network needs to be charged for the subsequent time
periods to meet the requirement of the final hour. On the contrary, the utilization of the free energy
in the natural gas network in the case of having a 5% higher initial level of linepack results in a
reduced natural gas production over the first half of the day. The GFPPs are scheduled more in this
case due to the excess of natural gas in the system. It can be observed that GFPPs are scheduled
according to the natural gas availability in the system when following a coupled operation of
both systems. Therefore, the GFPPs can be utilized as flexible demand components for the natural
gas system by either increasing or decreasing their fuel consumption in favor of a cost-effective
operation of the integrated energy system.

A fully coupled model with a probabilistic description of uncertain power supply manages to
exploit linepack flexibility in a cost-effective manner as opposed to deterministic models. Moreover,
introducing an additional source of flexibility requires proper models to efficiently operate it and
integrate it in the market-clearing process in view of high shares of stochastic renewables. Finally,
the coupled operation of electricity and natural gas systems increases security of supply and allows
to fully exploit the system components towards an efficient operation of the whole energy system.
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Figure 4.7: Total natural gas production and total natural gas demand of GFPPs (NG: natural gas,
lp: linepack).





CHAPTER5
Market-based Coordination of

Electricity and Natural Gas
Systems

The benefits of dispatching the energy system with a fully coupled approach by taking into account
the stochasticity and variability of renewables are highlighted in Chapter 4. Building upon this
observation, this chapter studies the electricity and natural gas systems in a coupled manner that
allows to optimally define the coordination parameters, identified in Chapter 4, for a cost-effective
operation of both energy systems.

Current market designs that are based on a sequential clearing of successive market floors are
highly challenged as the penetration of renewables increases. Recently proposed stochastic
market-clearing approaches attain an enhanced temporal coupling between the market floors and
minimize the total expected system cost. However, these stochastic models are incompatible with
current sequential market designs. In this chapter, we propose two stochastic bilevel programs that
improve the temporal coordination of the scheduling and balancing operations, while remaining
compatible with the sequential clearing of day-ahead and balancing markets. This is achieved by
the optimal definition of two flexibility signals in view of future balancing needs due to forecast
errors from uncertain power supply. These flexibility signals are determined by controlling the
two key coordination parameters. More specifically, a volume-based and a price-based model are
developed. In the volume-based model, the volume of natural gas made available for power
production at the day-ahead stage is considered as a control parameter that can be optimally
tuned in the favor of minimizing expected system cost. Similarly, the price-based model is able to
adjust the natural gas price perceived by Gas-Fired Power Plants (GFPPs). Both models improve
the inter-temporal coordination between the day-ahead and real-time stages by communicating
missing information with regards to uncertain renewable production at the day-ahead stage. The
improved temporal coordination between the trading floors is achieved in an analogous manner
as in [84, 85], whereas we further develop the approach to account for both electricity and natural
gas systems as well as different control parameters. For a more detailed literature survey, see the
introductions of [Paper C] and [Paper D].

In this chapter, we follow a holistic view of the energy systems, where the short-term operation
of electricity and natural gas systems is organized in a coupled market setup associated with
the day-ahead and balancing stages. Two-stage stochastic programming is used to build the
uncertainty-aware dispatch. Initially, the natural gas system is modeled with the contract and
fuel capacity constraints (see Section 3.2.2) that permits a comparison between the volume-based
and price-based models. Then, the natural gas flow model with approximated dynamics (see

47
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Section 3.2.2) is utilized to examine the performance of the volume-based approach with network
constraints. The latter model approximates the dynamics of the natural gas flow and reveals
the benefits of linepack flexibility for the whole energy system. A detailed description of the
formulation of the proposed models is provided in [Paper C] and [Paper D].

In Section 5.1, we outline the characteristics of the dispatch models for the coupled energy system,
as well as comment on their advantages and limitations. Moreover, the effect of controlling
the coordination parameters on the day-ahead scheduling is schematically illustrated also in
Section 5.1. The mathematical formulation of the dispatch models is presented in Section 5.2 to
provide additional insights into their characteristics. A comparison between the volume-based
and price-based approaches is performed in Section 5.3. Finally, Section 5.4 elaborates on the
performance of different variants of the volume-based model in terms of expected system cost,
presents the benefits of linepack flexibility and discusses the cost recovery of flexible producers.

5.1 Description of dispatch models

This section provides a description of the proposed volume-based and price-based models to
improve the sequential dispatch of coupled electricity and natural gas system by approximating
the solution of the stochastic dispatch model.

In the current sequential arrangement of the day-ahead and balancing stages, the day-ahead
market is cleared 12-36 hours ahead of the actual system operation and the necessary adjustments
to keep the system balanced are determined in the balancing market. A deterministic view of
uncertain power production is used to clear the day-ahead market in this setup, which may become
highly inefficient in accommodating high shares of renewable power production by yielding a
high expected system cost. The sequential dispatch model is presented in Section 5.1.1. In an
attempt to improve the temporal coordination between the two trading floors, two-stage stochastic
programming with probabilistic description of uncertain power supply has been extensively
utilized as in [44, 45]. This approach attains the lowest expected cost but is incompatible with the
current market design and suffers from some design flaws related to the violation of the least-cost
merit-order principle [84, 86]. The solution obtained by the stochastic dispatch model, presented
in Section 5.1.2, serves as an ideal benchmark in terms of expected system cost. The proposed
models manage to provide an improved dispatch which minimizes the total expected cost and
simultaneously respects the merit-order principle. The improved dispatch models are presented
in Sections 5.1.3 and 5.1.4, where the two ways of improving the sequential dispatch model to
anticipate future balancing needs stemming from stochastic renewables are discussed. Section
5.1.5 provides additional insights for the improved dispatch models via illustrating schematically
the effect of control parameters on the day-ahead scheduling.

The sequential and stochastic dispatch models follow the same setups with the ones presented
in Sections 4.1.2 and 4.1.3, respectively. However, these two models serve as benchmarks in this
chapter and the focus is placed on their economic properties. The four dispatch models presented
in this chapter attain different levels of temporal coordination between the trading floors for the
coupled electricity and natural gas system.
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5.1.1 Sequential dispatch of coupled electricity and natural gas systems

The sequential dispatch of the coupled electricity and natural gas systems achieves a perfect
coordination between the two energy systems for the day-ahead and balancing stages, as shown in
Figure 5.1. The electricity and natural gas systems are co-optimized under a single market setup
and the coordination parameters are endogenously defined. The successive trading floors are
cleared in a sequential manner with a singe-valued forecast of stochastic power production as
an input at the day-ahead stage. After the realization ω′ of stochastic production, the necessary
re-dispatch actions to cover potential imbalances are determined in the balancing market. Such a
deterministic approach may be highly inefficient to describe the highly uncertain and variable
power production from renewables nowadays. However, this setup preserves an important
economic property: it is guaranteed that the revenue of flexible producers is greater or equal to
their operating cost (i.e. cost recovery) for any realization of stochastic power production [84].

Figure 5.1: Sequential dispatch of coupled electricity and natural gas systems (DA: day-ahead, E:
electricity, G: natural gas, ∆E: electricity adjustment, ∆G: natural gas adjustment).

5.1.2 Stochastic dispatch of coupled electricity and natural gas systems

An enhanced temporal coordination between the two trading floors is accomplished via utilizing a
probabilistic description of uncertainties at the day-ahead stage. A two-stage stochastic program
is developed to schedule the coupled energy system at the day-ahead stage, while anticipating
future balancing costs, as shown in Figure 5.2. The uncertainty modeling is performed via a set of
scenarios Ω that will cover potential realizations if the true characteristics of the stochastic process
are sufficiently captured. The practical implementation of this approach is prevented because
cost recovery for flexible producers and revenue adequacy for the system/market operator hold
only in expectation and not for any realization in scenario set Ω [45]. Revenue adequacy indicates
that the payments made to and received from market participants do not incur financial deficit to
the operator. The reason is that some producers may be scheduled out of the merit order at the
day-ahead stage and the resulting prices will not be sufficient to ensure these two properties [84].

Figure 5.2: Stochastic dispatch of coupled electricity and natural gas systems (E: electricity, G:
natural gas, ∆E: electricity adjustment, ∆G: natural gas adjustment).
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5.1.3 Volume-based coordination in sequential dispatch of coupled electricity and

natural gas systems

The sequential dispatch of the coupled electricity and natural gas system can be improved by the
development of a systematic method to determine the available natural gas volume for power
production at the day-ahead stage. Through this process, an implicit coordination of the day-ahead
and balancing stages is accomplished, yielding a solution in between the sequential and stochastic
ones in terms of expected system cost. The systematic definition of the amount χv of natural gas
volume that is made available to GFPPs at the day-ahead stage is mathematically formulated as a
stochastic bilevel model illustrated in Figure 5.3. Volume χv affects only the fuel demand of GFPPs
at the day-ahead stage, while the full capacity of the natural gas network is released during the
real-time stage. Moreover, the residential/industrial natural gas loads are not affected.

Figure 5.3: Volume-based coordination in sequential dispatch of coupled electricity and natural
gas systems (DA: day-ahead, E: electricity, G: natural gas, ∆E: electricity adjustment, ∆G: natural
gas adjustment).

The upper-level problem minimizes the total expected cost of operating the integrated energy
system by deciding the optimal value of non-negative variable χv. The lower-level problem
reproduces the day-ahead coupled electricity and natural gas market for a given value of χv that
is treated as a parameter in the lower level. This framework practically emulates the sequential
clearing of the day-ahead and balancing stages, since the day-ahead schedule that is enforced
by the lower-level problem has the exact same properties as its counterpart in the sequential
dispatch model presented in Figure 5.1. The re-dispatch actions are optimized for each realization
in the upper-level problem. Consequently, the value χv is determined at the day-ahead market by
anticipating future balancing costs.

This coordination framework resembles the "maximum gas burn" constraint recently introduced by
the California Independent System Operator (CAISO) to provide a better communication between
the electricity and natural gas systems due to the limited operability of the Aliso Canyon natural
gas storage facility [87]. This constraint is able to limit the fuel consumption of GFPPs in a specific
area to address reliability risks. Similarly, the coordination signal χv can be determined for the
whole control zone or a tailored group of GFPPs. The proposed mechanism extends CAISO’s
approach to consider primarily issues pertaining to forecast errors of stochastic power producers.
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5.1.4 Price-based coordination in sequential dispatch of coupled electricity and

natural gas systems

A model that exploits the economic link between the electricity and natural gas systems through the
natural gas price perceived by GFPPs is analogously developed in the price-based approach. The
coordination signal χp is defined by a stochastic bilevel optimization model depicted schematically
in Figure 5.4. Similarly to the volume-based model, the sequential clearing of day-ahead and
real-time stages which results in enforcing the merit-order principle is also preserved by the
structure of this model.

Figure 5.4: Price-based coordination in sequential dispatch of coupled electricity and natural gas
systems (DA: day-ahead, RT: real-time, E: electricity, G: natural gas, ∆E: electricity adjustment,
∆G: natural gas adjustment).

This price-based approach allows the system/market operator to optimally adjust the natural gas
price perceived by the GFPPs via the free variable χp. Such an operation is performed by either
increasing (χp is positive) or decreasing (χp is negative) the short-term marginal costs of GFPPs
and consequently their price offered on the electricity side of the integrated energy market in both
trading floors. This action can be interpreted as "rewarding" or "penalizing" the power production
of GFPPs for specific time periods. However, fairness for all counter-parties is ensured over the
scheduling horizon since this mechanisms is designed on a cost-neutral basis by keeping the
system/market operator financially balanced at the day-ahead stage. Potential real-time financial
imbalance can be compensated by out-of-the-market payments to support flexibility providers
similarly to the capacity renumeration mechanisms discussed in the European electricity market
context [88].

5.1.5 Redefining the merit order of the day-ahead market via the dispatch models: a

schematic representation

The day-ahead scheduling that can be obtained by the four different dispatch models presented
in Sections 5.1.1-5.1.4 is illustrated in Figures 5.5-5.7. More specifically, the merit-order curve is
presented in a simple setup with one stochastic producer, two non-GFPPs and two GFPPs for
a single time period. The aim is to illustrate the way that the volume-based and price-based
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models approximate the stochastic dispatch solution. The different effects are also presented in the
comparison performed in Section 5.3.

Figure 5.5 presents the merit-order curve under the sequential dispatch and the stochastic dispatch
models. The stochastic producer (e.g. wind power) is dispatched first due to the very low or
zero marginal cost. It can be observed the power plants are scheduled based on an ascending
order of marginal costs (i.e. merit-order principle) until the demand is covered in the sequential
model. On the other hand, the stochastic dispatch model may schedule some power plants out
of merit order. This decision depends on the structure of scenario set Ω that is available at the
day-ahead stage. The power plants are scheduled in a way that cost-effective capacity is revealed
for the real-time operation. However, the resulting prices guarantee cost recovery for flexible
producers and revenue adequacy for the system/market operator only in expectation as discussed
in Section 5.1.2.
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Figure 5.5: Merit-order curve when scheduling the day-ahead stage via the sequential dispatch
model (left) and via the stochastic dispatch model (right), where GFPPs are indicated with the red
line.

The effect of χv, which is defined by two variants of the volume-based dispatch model, on the
merit order is depicted in Figure 5.6. When natural gas volume availability χv is defined for the
whole natural gas system, a decrease of χv affects the most expensive GFPP. In this example, it can
be noticed that the single GFPP is scheduled less and the marginal power producer is scheduled
more by still respecting the merit-order principle. Defining χv individually for each GFPP permits
to alter the schedule of both GFPPs by decreasing the volume made available for the cheap GFPP
and in turn increasing the availability for the expensive GFPP. In both cases, the volume-based
models are able to reveal cost-effective flexibility for balancing but simultaneously follow the
merit-order principle that guarantees cost recovery for each scenario in Ω.

A similar effect is noticed in Figure 5.7, where the solution of the stochastic model is approximated
by the price-based dispatch model that schedules the power plants based on the ascending order of
marginal costs. In this case, the system/market operator decreases the natural gas price perceived
by GFPPs which results in decreasing their marginal cost and scheduling the most expensive
GFPP. Note that natural gas price adjustment is the same for all GFPPs; we illustrate though the
effect only for the most expensive GFPP for clarity. A similar outcome may be accomplished by
increasing the natural gas perceived by GFPPs. In this case, the schedule of the cheap GFPP would
be affected.
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Figure 5.6: Merit-order curve when scheduling the day-ahead stage via the volume-based dispatch
model (left) and via the plant-specific volume-based dispatch model (right), where GFPPs are
indicated with the red line.
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Figure 5.7: Merit-order curve when scheduling the day-ahead stage via the price-based dispatch
model, where GFPPs are indicated with the red line.

5.2 Mathematical formulation of dispatch models

In this section, the dispatch models are formulated as compact mathematical optimization problems
to demonstrate the effect of coordination parameters χv and χp. The physical and economical link
is provided by GFPPs to couple the electricity and natural gas systems. In all dispatch models,
the perspective of the system/market operator is taken to minimize the total system cost. The
day-ahead market is cleared with a pool-based approach, i.e. without network capacity constraints,
while the balancing market is formulated under two different variants. The first setup is formulated
as a Linear Program (LP) under the assumption that the balancing market is cleared as a pool
with additional contact and fuel constraints for GFPPs. These constraints are calculated based on
an ex-ante analysis as presented in Section 3.2.2. In the second setup, network constraints are
introduced for both energy systems. In the electricity system, we adopt a DC power flow model
and the natural gas flow model with approximated dynamics is utilized for the natural gas system
as introduced in Section 3.2.2. Under the first setup, the balancing market is formulated as an
LP which allows the comparison of volume-based and price-based models. For this reason, the
mathematical formulation is provided under the first setup in this chapter. The extension to the
second setup with network constraints for the volume-based model is similar to the one provided
in Section 4.2. In the second setup, the natural gas flow problem is formulated as a Mixed-Integer
Linear Program (MILP). As described in Section 4.2, electricity and natural gas prices are derived
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from the LP obtained by fixing the binary variables of the initial MILP to their optimal values.
More specifically, we consider a combined electricity and natural gas system with G conventional
power plants, W stochastic producers, D electricity demands, E pipelines, U natural gas producers
andH natural gas demands. The following mathematical programs are suited for multi-period
problems, we omit though the time dimension T from the variables and parameters for clarity. A
detailed mathematical description of the models is provided in [Paper C] and [Paper D].

5.2.1 Sequential dispatch of coupled electricity and natural gas systems

The sequential dispatch of coupled electricity and natural gas systems clears independently the
day-ahead and balancing stages. Denoting by pD ∈ RG+ and wD ∈ RW+ the day-ahead scheduling of
conventional and stochastic power producers, as well as by gD ∈ RU+ the natural gas production,
the optimal day-ahead schedule

(
pD*, wD*, gD*

)
minimizes the day-ahead cost CD

E (pD) + CD
G (gD) of

the coupled energy system by solving model (5.1) which writes as follows:

min
pD,wD,gD

CD
E (pD) + CD

G (gD) (5.1a)

s. t. hD
E (pD, wD)− e>De = 0 : λD

E (5.1b)

fD
E (pD) ≤ 0 (5.1c)

0 ≤ wD ≤ Ŵ (5.1d)

hD
G(gD,ΦpD)− e>Dg = 0 : λD

G (5.1e)

fD
G1(gD) ≤ 0 (5.1f)

0 ≤ fD
G2(ΦpD) ≤ GD

, (5.1g)

where Ŵ ∈ RW+ is the forecast of stochastic power production. The objective function minimized
in (5.1a) determines the electricity and natural gas cost, where we have excluded the electricity
cost of GFPPs since this is already taken into account through the cost of natural gas consumption.
The balance in the electricity system is enforced by equality (5.1b) by stating that the power
production is equal to the total electricity demand De ∈ RD+ . We denote with e a vector of ones
with appropriate dimensions. Upper and lower bounds of power production are included in
inequalities (5.1c), while stochastic production is constrained by (5.1d). The natural gas system
is balanced via equality (5.1e), which enforces the natural gas production to be equal to the total
natural gas demand Dg ∈ RH+ and fuel consumption ΦpD of GFPPs. The fuel consumption ΦpD is
treated as a variable in the coupled optimization of energy systems. The natural gas consumption
of GFPPs is calculated as the multiplication of power production pD with the power conversion
factor Φ ∈ RG×G+ . Diagonal matrix Φ contains the power conversion factor of GFPPs, while the
entries for non-GFPPs are zero. Similarly to (5.1c), inequalities (5.1f) describe the upper and
lower bounds for natural gas producers. Inequalities (5.1g) limit natural gas fuel consumption
of GFPPs by the quantity G

D ∈ RF+ made available at the day-ahead stage. This quantity G
D

can
be defined for different groups F of GFPPs, which may comprise GFPPs in a specific area of the
natural gas system or even a single GFPP. The dual variables λD

E ∈ R and λD
G ∈ R of balancing

constraints (5.1b) and (5.1e) reflect the market price for electricity and natural gas, respectively.
The optimal day-ahead schedule

(
pD*, wD*, gD*

)
is given as a fixed input to the balancing market.

The balancing market is represented by model (5.2) and compensates for potential imbalances due
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to the stochastic power realization Wω′ ∈ RW+ :

min
pR

ω′ ,pl
R
ω′ ,w

R
ω′ ,g

R
ω′ ,gl

R
ω′

CR
E (pR

ω′ , plRω′) + CR
G(gR

ω′ , glRω′) (5.2a)

s. t. hR
E(pR

ω′ , plRω′ , wR
ω′) + e>(Wω′ − wD*) = 0 : λR

E(ω′) (5.2b)

fR
E (pR

ω′ , plRω′ , wR
ω′ , pD*;Wω′) ≤ 0 (5.2c)

hR
G(gR

ω′ , glRω′ ,ΦpR
ω′) = 0 : λR

G(ω′) (5.2d)

fR
G1(gR

ω′ , glRω′ , gD*) ≤ 0 (5.2e)

0 ≤ fR
G2(ΦpR

ω′ ,ΦpD*) ≤ GR
, (5.2f)

where pR
ω′ ∈ RG and gR

ω′ ∈ RU denote the power and natural gas adjustments, respectively.
Moreover, plRω′ ∈ RD+ and glRω′ ∈ RH+ are the electricity and natural gas load shedding, while wind
spilling is denoted by wR

ω′ ∈ RW+ . The cost of balancing actions is minimized in (5.2a) to deal
with the energy imbalance caused by stochastic production. Equality constraints (5.2b) enforce
the power system balancing in real-time operation. Inequalities (5.2c) collect all the constraints
relative to the upper and lower bounds of power adjustments, load shedding and wind spillage.
The natural gas system is balanced via (5.2d). Dual variables λR

E(ω′) ∈ R and λR
G(ω′) ∈ R reflect

the respective market prices prices at the balancing stage. Capacity constraints for natural gas
production adjustments and load shedding are enforced by inequalities (5.2e). The real-time
physical capacity G

R ∈ RE+ made available to GFPPs is imposed by (5.2f). The value of G
R

is
calculated by an ex-ante analysis, where the residential/industrial natural gas demand is subtracted
by the maximum physical capacity of the pipeline.

5.2.2 Stochastic dispatch of coupled electricity and natural gas systems

The stochastic dispatch model of coupled electricity and natural gas systems is formulated as
a single mathematical program. In model (5.3), the day-ahead and balancing stages are jointly
optimized for the coupled energy system via a two-stage stochastic program that writes as follows:

min
pD,wD,gD,pR

ω,

plRω,w
R
ω,g

R
ω,gl

R
ω

CD
E (pD) + CD

G (gD) + Eω
[
CR

E (pR
ω, pl

R
ω) + CR

G(gR
ω, gl

R
ω)
]

(5.3a)

s. t. hD
E (pD, wD)− e>De = 0 : λD

E (5.3b)

fD
E (pD) ≤ 0 (5.3c)

0 ≤ wD ≤W (5.3d)

hD
G(gD,ΦpD)− e>Dg = 0 : λD

G (5.3e)

fD
G1(gD) ≤ 0 (5.3f)

0 ≤ fD
G2(ΦpD) ≤ GD

(5.3g)

hR
E(pR

ω, pl
R
ω, w

R
ω) +Aw(Wω − wD) = 0 : λR

E(ω), ∀ω ∈ Ω (5.3h)

fR
E (pR

ω, pl
R
ω, w

R
ω, p

D;Wω) ≤ 0, ∀ω ∈ Ω (5.3i)

hR
G(gR

ω, gl
R
ω,ΦpR

ω) = 0 : λR
G(ω), ∀ω ∈ Ω (5.3j)

fR
G1(gR

ω, gl
R
ω, g

D) ≤ 0, ∀ω ∈ Ω (5.3k)

0 ≤ fR
G2(ΦpR

ω,ΦpD) ≤ GR
, ∀ω ∈ Ω, (5.3l)
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where W ∈ RW+ is the capacity of stochastic producers. The aim is to minimize the total expected
cost in (5.3a), where future balancing costs are anticipated via the scenarios ω ∈ Ω. Moreover, the
temporal coordination in enhanced via writing constraints (5.3h)-(5.3l) for all scenarios ω ∈ Ω.
Note that the day-ahead schedule of stochastic producers is restricted by the installed capacity
W , according to (5.3d), instead of the forecast value Ŵ and day-ahead decisions are treated as
variables. Constraints (5.3b)-(5.3c) and (5.3e)-(5.3l) are the same as ones described in Section 5.2.1.

5.2.3 Volume-based coordination in sequential dispatch of coupled electricity and

natural gas systems

The volume-based model minimizes the total expected cost of the coupled energy system and
defines the optimal natural gas volume availability for power production χv ∈ RF+ is formulated
as a stochastic bilevel program. Model (5.4) writes as follows:

min
χv,pD,wD,gD,

pR
ω,pl

R
ω,w

R
ω,g

R
ω,gl

R
ω

CD
E (pD) + CD

G (gD) + Eω
[
CR

E (pR
ω, pl

R
ω) + CR

G(gR
ω, gl

R
ω)
]

(5.4a)

s. t. hR
E(pR

ω, pl
R
ω, w

R
ω) + e>(Wω − wD) = 0 : λR

E(ω), ∀ω ∈ Ω (5.4b)

fR
E (pR

ω, pl
R
ω, w

R
ω, p

D;Wω) ≤ 0, ∀ω ∈ Ω (5.4c)

hR
G(gR

ω, gl
R
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where the objective function (5.4a) is the same as (5.3a). The upper-level minimizes the total
expected cost and defines the optimal value of χv which is constrained by inequality (5.4g). The
upper bound in (5.4g) is equal to the natural gas quantity G

D
made available for power production

at the day-ahead stage. Variable χv limits the scheduled natural gas consumption of GFPPs at the
day-ahead in (5.4n). The lower-level problem reproduces the day-ahead coupled electricity and
natural gas market. Under this setup the sequential clearing of day-ahead and balancing markets
is practically simulated since the day-ahead decisions are fixed to the sequential dispatch through
(5.4h)-(5.4n) and the balancing market is simulated for each independent scenario by imposing
constraints (5.4b)-(5.4f) for all ω ∈ Ω. Notice that the upper-level variable χv has an impact on the
lower-level decision variables as the total fuel availability for GFPPs affect the day-ahead schedule
of the integrated energy system. The lower-level variables are also affecting the total expected
cost of operating the system. Consequently, the structure of model (5.4) permits the minimization
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of expected system cost by revealing the flexibility of GFPPs and ensures that the merit-order
principle is respected, as in the model presented in Section 5.2.1.

5.2.4 Price-based coordination in sequential dispatch of coupled electricity and

natural gas systems

The price-based model minimizes the total expected cost of the coupled energy system and defines
the optimal natural gas price adjustment χp ∈ R. Model (5.5) is formulated as a stochastic bilevel
program and writes as follows:

min
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where the objective function (5.5a) is the same as (5.3a). Similarly to model (5.4), the upper-level
problem minimizes the total expected cost and optimally decides the value of natural gas price
adjustment χp. The lower-level problems practically simulate the sequential dispatch of day-ahead
and balancing stages, since the day-ahead decisions are fixed to the sequential dispatch via
(5.5d)-(5.5j) and the balancing stage is simulated for each scenario by imposing (5.5k)-(5.5o) for all
ω ∈ Ω. Variable χp is bounded by constraint (5.5b) indicating the limits X ∈ R+ that the operator
may vary the natural gas price perceived by GFPPs. Equality (5.5c) enforces cost-neutrality at the
day-ahead stage guaranteeing that there is no financial deficit or surplus to the system/market
operator throughout the scheduling horizon (i.e. one day). This property is enforced by stating
that the sum of quantity e>χpΦpD over the time periods is equal to zero. Potential deficit or surplus
at the balancing stage is expected to be fairly limited and can be addressed via proper regulation.
The upper-level variable χp affects the decisions of lower-level problems by the day-ahead and
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balancing offer prices of GFPPs, which in turn influences the objective functions (5.5d) and (5.5k)
in the lower-level problems. The dispatch of GFPPs affects the lower-level decision variables
which have an impact on the total expected cost of the coupled energy system. Hence, model (5.5)
provides the optimal system schedule that anticipates future balancing costs and simultaneously
respects the merit-order principle, as the model presented in Section 5.2.1.

5.2.5 On the features of volume-based and price-based models towards tractable

reformulations

Formulating the volume-based and price-based models as stochastic bilevel programs permits
to maintain the actual sequential structure of the day-ahead and balancing markets, which at
the same time guarantees cost recovery for flexible producers for each realization of stochastic
production in scenario set Ω. In the volume-based model, the lower level problem contains only
the day-ahead stage because the natural gas volume availability χv affects the day-ahead fuel
consumption of GFPPs and then the physical capacity of the natural gas network is made available
in the balancing stage. On the other hand, the price-based model exploits the economic link
between the two systems and requires both day-ahead and balancing stages to be included in the
lower-level problem. The reason is that χp has to adjust the natural gas price perceived by GFPPs
in both trading floors in a consistent manner. This price adjustment χp affects the marginal cost
of GFPPs at the day-ahead stage and the real-time price offers have to be altered accordingly to
preserve the incentive of provisioning balancing services.

The stochastic bilevel programs can admit a single-level reformulation if the lower-level problems
are convex [22]. In this case, the bilevel problems can be reformulated as a Mathematical
Program with Equilibrium Constraints (MPEC) by replacing the convex lower-level problems
by their Karush-Kuhn-Tucker (KKT) conditions and eventually recast a tractable MILP. These
reformulations are given in detain in [Paper C] and [Paper D]. The balancing market is modeled
under two setups. In the first one, the balancing market is formulated as an LP which allows
the comparison of the volume-based and price-based models. The second variant approximates
the dynamics of the natural gas flows in the real-time stage, which requires the introduction of
binary variables that make the problem non-convex. Therefore, we are able to apply the second
variant only to the volume-based model. As far as computational tractability is concerned, the
volume-based model results in fewer binary variables than the price-based one since the balancing
market is not included in the lower level. Sidestepping the inclusion of the balancing market in the
lower-level problem of the volume-based model results in having independent binary variables
from the number of scenarios and thus in a formulation that is less computationally expensive.

5.2.6 Characteristics of the dispatch models

Before proceeding to the experimental comparison of dispatch models, we provide an overview of
their features in Table 5.1. In this chapter, all dispatch models are related to the coupled electricity
and natural gas system so we have dropped "-Coup" from the names presented in Figure 3.7
for clarity. Moreover, the uncertainty-aware dispatch is performed via two-stage stochastic
programming in this chapter and referred to as Stoch. The models with network constraints in the
balancing market are indicated with "N", while the price-based model does not have this variant
as aforementioned. The sequential (Seq) dispatch of coupled electricity and natural gas systems
achieves an imperfect temporal coordination via a single-valued forecast. On the other hand, an
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ideal benchmark solution for the integrated energy system is attained by the stochastic (Stoch)
dispatch model when utilizing a proper probabilistic description of uncertainties (i.e. scenario set Ω
adequately represents potential realizations), which provides the dispatch with the minimum total
expected cost. The volume-based (V-B) and price-based (P-B) models provide a partial temporal
coordination implicitly via the fine-tuning of the corresponding control parameters. Hence, these
two improved dispatch models bridge the gap between the Seq and Stoch.

Table 5.1: Characteristics of dispatch models.

Fuel / Network
constraints Seq / Seq-N Stoch / Stoch-N V-B / V-B-N P-B / –

Temporal coordination Imperfect Perfect Partial Partial
Coordination mechanism Non-existing Explicit Implicit via χv * Implicit via χp

* The value of χv can be defined for the whole market, specific areas or GFPPs.

5.3 Improving the sequential market arrangement with optimal flexibility
signals

The sequential dispatch of coupled electricity and natural gas systems is improved by the optimal
definition of the flexibility volume and price signals. In this section, we study the impact of
controlling parameters χv and χp on the dispatch of the coupled energy system. A detailed analysis
is provided via an illustrative 1-hour example, while a more thorough comparison is provided for
the dispatch models over a 24-hour period based on a tailored case study.

A system which comprises three thermal power plants (G1, G2 and G5), two GFPPs (G3 and G4)
that acquire their fuel from the natural gas market, one wind farm (WP) and two natural gas
producers (U1 and U2) is utilized in this section as presented in Table 5.2. Wind power production
is characterized via a set of 2 equiprobable scenarios ω1 (166 MW) and ω2 (86 MW). The offer prices
in the balancing market are calculated as 1.1 and 0.9 of the day-ahead offer prices for upward
and downward regulation, respectively. The natural gas price adjustment is limited to $1.35/kcf.
The peak electricity and natural gas demand for residential/industrial loads are equal to 430 MW
and 3,600 kcf/h, respectively. The two GFPPs are connected to a single pipeline with a capacity of
6,000 kcf.

Table 5.2: Electricity and natural gas system data for the tailored case study.

Unit G G1 G2 G3 G4 G5 Unit U U1 U2
Maximum capacity (MW) 80 110 50 100 100 Maximum capacity (kcf) 10,000 6,000
Maximum up regulation (MW) 10 0 30 25 20 Maximum up regulation (kcf) 2,500 1,000
Maximum down regulation (MW) 10 0 30 25 20 Maximum down regulation (kcf) 2,500 1,000
Day-ahead offer price ($/MWh) 30 10 - - 60 Day-ahead offer price ($/kcf) 2 3
Power conversion factor (kcf/MWh) - - 12 18 -

The detailed results are given for a specific time period after solving all dispatch models for
24-hours. Two variants of the volume-based model, where natural gas volume availability is
determined for the whole market (V-B) and for each individual GFPP (V-B gen), are studied. In
this instance, natural gas is produced only by unit U1, hence the natural gas price is $2/kcf and the
marginal costs of GFPPs G3 and G4 are $24/MWh and $36/MWh. The marginal costs are calculated
by multiplying the power conversion factor with the natural gas price.
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Initially, the performance of all dispatch models is quantified in terms of expected system cost,
which is illustrated with its breakdown in Table 5.3. Model Stoch returns the solution with the
minimum expected system cost, while Seq the solution with the highest one. Models P-B, V-B and
V-B gen yield an expected system cost in between the ideal solution of Stoch and the one of Seq.

Table 5.3: Expected system cost and its breakdown when total electricity load is 387 MW.

Total Day-ahead ($) Balancing ($) Up regulation ($) Down regulation ($)
Seq 10,400 9,982 418 990 -572

Stoch 10,234 10,222 12 660 -648
P-B 10,273 10,042 231 825 -594
V-B 10,400 9,982 418 990 -572

V-B gen 10,261 10,162 99 693 -594

Table 5.4 provides the detailed system dispatch to demonstrate the effect of the operator-defined
parameters χv and χp. Model Seq dispatches the system based on an ascending order of marginal
costs where the wind power is dispatched to its expected value which is equal to 126 MW. Then,
the power plants need to adjust their production to meet the demand in each wind power scenario
ω1 and ω2. Having wind power dispatched with its expected value, models P-B, V-B and V-B gen
provide alternative solutions. In P-B, the price adjustment signal is χp = −$0.333/kcf, which results
in decreasing the natural gas price to $1.666/kcf. This price decrease affects the marginal cost of
GFPP G4 and makes it equal to $30/MWh, which is the same as the one of unit G1. For this specific
time period, the operator is able to dispatch unit G1 to 70 MW and GFPP G4 to 31 MW without
breaking the merit order. This action increases the day-ahead cost compared to model Seq but
reveals more cost-effective capacity in real-time that results in a lower total expected system cost.
In the case of V-B, the same dispatch as Seq is acquired because a change in the total natural gas
volume would not decrease the total expected cost. On the contrary, model V-B gen has a better
performance due to its ability to influence the dispatch of both GFPPs G3 and G4. Note that GFPPs
G3 and G4 produce a total of 71 MW in both Seq and V-B gen at the day-ahead stage. However,
the allocation between the two GFPPs is different and more efficient under V-B gen. In particular,
the total natural gas consumption by GFPPs in Seq is 987 kcf, where 600 kcf are used by GFPP G3

and the remaining 387 kcf by GFPP G4. In V-B gen, the natural gas volume made available for
GFPP G3 is 420 kcf, while GFPP G4 consumes 648 kcf. Similarly to P-B, the adjustment of natural
gas volume availability for each individual GFPP has a direct impact on the day-ahead dispatch
which in turn reduces the total expected cost compared to Seq. In this case, there is a decrease of
the up-regulation cost because the cheaper GFPP G3 replaces unit G5. Moreover, a greater portion
of the total 40 MW needed for down-regulation is provided by GFPP G4 that is more cost-effective
than GFPP G3.

Therefore, the benefit from altering the natural gas price or volume availability emerges when the
day-ahead dispatch is modified in relation to Seq so as more cost-effective capacity for regulation is
made available in the balancing stage. It is illustrated that the solutions of P-B, V-B and V-B gen
yield an expected system cost in between the two extreme solutions provided by models Seq and
Stoch. In particular, models Seq and Stoch provide a lower and an upper bound of the expected
system cost with respect to scenario set Ω.

The following results are provided for a 24-hour scheduling horizon. Figure 5.8 presents the
total expected system cost as a function of the wind power penetration level, where wind power
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Table 5.4: Electricity system schedule in MW when total electricity load is 387 MW (variation from
Seq day-ahead (DA) schedule in bold).

Seq P-B V-B V-B gen
Unit DA ω1 ω2 DA ω1 ω2 DA ω1 ω2 DA ω1 ω2
G1 80 -10 0 70 -10 +10 80 -10 0 80 -10 0
G2 110 0 0 110 0 0 110 0 0 110 0 0
G3 50 -9 0 50 -5 0 50 -9 0 35 -5 +15
G4 21 -21 +25 31 -25 +25 21 -21 +25 36 -25 +25
G5 0 0 +15 0 0 +5 0 0 +15 0 0 0
WP 126 +40 -40 126 +40 -40 126 +40 -40 126 +40 -40

production is characterized by 20 equiprobable scenarios (available at [82]). The wind power
penetration level is defined as the share of installed wind capacity on total system’s electricity
demand. The upper and lower bounds provided by Seq and Stoch are depicted in Figure 5.8 with
Stoch being the more efficient in accommodating high shares of renewables. The inefficiency of
Seq is more profound for a wind power penetration level above 25%, which results even in an
expected cost increase when having a penetration level greater than 40%. The improved dispatch
models provide an efficient approximation of the stochastic ideal solution up to a 40% wind power
penetration level and only slightly diverge for higher values of penetration. The expected cost
of V-B gen is lower than V-B, confirming its higher flexibility to provide an improved day-ahead
dispatch, and P-B similarly attains an expected cost close to Stoch.
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Figure 5.8: Impact of wind power penetration level on the expected system cost (tailored case
study).

Additionally, Table 5.5 presents the expected payment/charge to adjust the price of natural gas at
the balancing stage and the overall savings in expected cost between Seq and P-B. We present the
results only for wind power penetration levels that models Seq and P-B provide a different solution.
The payment/charge at the day-ahead stage is zero due to constraint (5.5c) but at the balancing stage
the system operator could have either a deficit or a surplus under different conditions. However,
this financial imbalance is significantly lower than the benefit of reducing the total expected cost
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and can be either socialized or utilized for future investments. We observe larger expected savings
as wind power penetration increases, while the expected payment/charge remains at the same
level that is relatively small. For the case of 50% wind power penetration, P-B reduces the expected
cost by $19,601.6 compared to Seq and the system operator is expected to receive $302.3.

Table 5.5: Expected payment/charge at the balancing stage due to flexibility price signal.

Wind power
penetration level (%) 25 30 35 40 45 50

Expected savings ($) 971.5 4,663 8,035.6 12,251.8 14,562.4 19,601.6
Expected payment/charge ($) -352.1 -177.1 -21.4 133.5 2.2 302.3

Based on the preceding analysis, the main features of the three proposed dispatch models can be
highlighted. First, all three proposed dispatch models bridge the gap between Seq and Stoch. More
importantly, they efficiently approximate the expected cost of Stoch and at the same time dispatch
the system based on the merit-order principle, which preserves the desired economic principles of
the sequential arrangement of trading floors. Another important aspect of the proposed dispatch
models is that they are able to alter the system dispatch regardless of the type of the marginal
producer, i.e. the last producer scheduled based on the merit-order principle can be a GFPP or a
non-GFPP (i.e. power plant consuming another fuel). Regarding the volume-based approaches, at
least one GFPP would have to be dispatched in order to attained an improved dispatch solution,
while this restriction does not apply to P-B. In the case of V-B, the natural gas volume availability
explicitly affects the scheduling of the GFPP with the greatest power conversion factor. When
the control variable χv is defined for a specific group of GFPPs, the one with the greatest power
conversion factor in this group is affected. Model V-B gen is able to change the dispatch of each
individual GFPP and thus exhibiting higher adaptability on adjusting the system dispatch in
a cost-effective manner. It can be noticed that the allocated power production of GFPPs at the
day-ahead stage can be split under different shares to accomplish a decreased balancing cost in
real-time operation.

Regarding computational performance, the average solution time for each dispatch model is
presented in Table 5.6. Model P-B has significantly higher solution time due to the greater
number of binary variables required for the linearization of complementarity constraints in the
KKT conditions, since the balancing market is also included in the lower-level problem of the
bilevel formulation. Moreover, the constraint ensuring cost-neutrality for the system operator
at the day-ahead stage comes at a cost of coupling the time periods of the optimization horizon,
which also increases the complexity of the problem. Models V-B and V-B gen are only slightly
computationally more expensive than Seq and Stoch in the tailored case study.

Table 5.6: Average solution time for the tailored case study.

Model Seq Stoch V-B V-B gen P-B
Solution time (sec) 0.3 0.6 1.5 1.5 520

5.4 Performance of the volume-based dispatch model with linepack
flexibility and cost recovery of flexible producers

In this section, we focus on the performance of three variants of the volume-based model which
permits the incorporation of network constraints in the balancing stage to exploit linepack flexibility.
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In addition, cost recovery, which is a favorable economic property preserved by the sequential
dispatch model, is discussed via presenting the daily profits of a flexible producer. The analysis is
performed on a realistic case study using the IEEE 24-bus Reliability Test System (RTS) [80] and a
12-node natural gas system based on [81]. Wind power production is described via 25 equiprobable
scenarios [82]. The data and network topology are provided in the online appendix available
in [89]. In addition to V-B-N and V-B-N gen, a volume-based model that defines the natural gas
volume availability for specific areas of the natural gas system is introduced, namely V-B-N area.
We define two areas which include two GFPPs each. Area I contains GFPP 1 and GFPP 5, while
GFPP 7 and GFPP 11 are included in area II . The scheduling horizon is 24 hours.

The total expected cost as a function of the wind power penetration level is illustrated in Figure 5.9.
A similar trend to the one in Figure 5.8 is observed. Model Seq-N attains the highest expected
system cost in all cases. Meanwhile, it can be noticed that allowing more degrees of freedom to
define natural gas availability manages to capture more efficiently the benefits of Stoch-N.
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Figure 5.9: Impact of wind power penetration level on the expected system cost (realistic case
study).

To quantify the benefit of modeling linepack flexibility, the outcome of dispatch models is
calculated also under a purely steady-state operation where natural gas cannot be stored in the
pipelines. In this case, the inflow and outflow of each pipeline is equal for each time period
(qinm,u,t = qoutm,u,t,∀(m,u) ∈ Z, t ∈ T ). The relative increase in expected cost when neglecting linepack
in comparison with the expected cost presented in Figure 5.9 is plotted in Figure 5.10 to compare
the two approaches. In the case of not modeling the linepack flexibility, the expected system cost
appears to be increasing in all dispatch models. Model Seq-N shows the largest increase in expected
system cost, having an increase of 3.5% when the wind power penetration level is 50%. Model
Stoch-N, which is the most efficient, results in a constant decrease of system cost even when the
linepack flexibility is not included and is, therefore, affected very little by the increase of the wind
power penetration. As far as the three proposed models are concerned, two trends are observed.
The first one is that the more the degrees of freedom to define the natural gas volume availability,
the smaller is the increase in expected system cost until reaching 30% wind power penetration.
When the wind power penetration exceeds 30%, a second trend is observed: model V-B-N gen
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exhibits the largest increase in expected cost. This difference stems from the fact that V-B-N gen can
take advantage of the linepack flexibility and achieve a significant decrease in the expected system
cost, while performing still adequately when linepack is neglected. Therefore, linepack flexibility
turns out to be an important element of the integrated energy system in reducing the total expected
system cost and can be efficiently exploited by the proposed volume-based dispatch models.
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Figure 5.10: Impact of wind power penetration level on the expected system cost increase when
neglecting linepack flexibility (realistic case study).

To explore whether flexible producers recover their costs under each dispatch model, Table 5.7
illustrates the daily profits of flexible power plant G3 when the wind power penetration is 50%.
In model Stoch-N, the cost recovery for flexible producers is guaranteed only in expectation and
not for each wind power scenario. In this case, the flexible producer G3 exhibits losses in some
scenarios, which is shown by the average losses and the probability to have negative profits. On
the contrary, models Seq-N, V-B-N, V-B-N area and V-B-N gen respect the merit-order principle and
thus, the cost recovery is ensured for each wind power scenario. In particular, model Seq-N exhibits
much larger profits due to the payments to flexible producerG3 when very costly balancing actions
(e.g. load shedding) take place. Such balancing actions are not that frequent in models V-B-N,
V-B-N area and V-B-N gen. For this reason, the expected profits of flexible power plantG3 are lower.

Table 5.7: Daily profits of thermal unit G3 when the wind power penetration is 50%.

Seq-N Stoch-N V-B-N V-B-N area V-B-N gen
Expected profit ($) 239,062 4,618 73,895 52,649 47,487

Probability of
negative profits*(%) 0 4 0 0 0

Average losses ($) 0 −46.7 0 0 0
* Based on the available scenario set Ω.

The computational performance on the realistic case study is presented in Table 5.8. The determin-
istic dispatch model Seq-N is able to provide a solution in 48 seconds, while models Stoch-N, V-B-N,
V-B-N area and V-B-N gen that use a probabilistic description of stochastic production are more
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computationally expensive. Except for V-B-N that has a significantly higher solution time, the
V-B-N area and V-B-N gen models dispatch the energy system in a similar solution time to Stoch-N.

Table 5.8: Average solution time for the realistic case study.

Model Seq-N Stoch-N V-B-N V-B-N area V-B-N gen
Solution time (sec) 48 1,100 2,920 1,409 1,034





CHAPTER6
Data-driven Coordination of
Electricity and Natural Gas

Systems
Useful information regarding renewable power production can be obtained from the available
historical data. To cope with the the uncertainty introduced by renewable energy sources, various
approaches have been used such as stochastic programming [21], chance constrained programming
[90] and robust optimization [75]. However, such approaches usually make assumptions for
the probability distribution of the uncertain parameter or result in overly conservative solutions
(see also Section 3.3). In both cases, there is an additional process involved such as scenario or
uncertainty set generation. In this chapter, we present two data-driven approaches based on
distributionally robust optimization that allow the direct utilization of the available data to exploit
underlying temporal and spatial dependencies and provide optimal decisions for the operation of
the electricity and natural gas systems under uncertainty.

In distributionally robust optimization, the optimization takes place over a family of probability
distributions (i.e. ambiguity set) without having an exact knowledge of the true underlying
distribution that characterizes the uncertain parameter. We develop the first data-driven model
based on a metric-based ambiguity set to solve the energy and reserve dispatch problem with fuel
capacity constraints for Gas-Fired Power Plants (GFPPs). In this model, we make no assumption
regarding the existence of the true probability distribution in any parametric family of distributions
and handle multiple constraints simultaneously (i.e. joint chance constraints). The ambiguity set is
represented as a Wasserstein ball centered at the nominal distribution estimated from the available
data. Allowing the definition of a joint violation probability would be of great importance for the
system operators, since they can define system-wide risk parameters for the overall system security.
The second data-driven model is developed for the independent but coordinated operation of
electricity and natural gas systems, where a moment-based ambiguity set is utilized. In this case,
only the mean and covariance characterize the family of distributions that is taken into account.
This choice of ambiguity set is in line with the desire of having a minimum information exchange
between the two system operators when operating the systems independently.

Distributionally robust optimization has been adopted by various works in the field of power
systems, such as [50, 51, 91–94], acknowledging the benefits to follow a data-driven approach that
utilizes the available renewable power production data. Moreover, distributed approaches to
study the coordination of electricity and natural gas systems have been studied in [95–97]. For a
more detailed literature survey, see the introductions of [Paper E] and [Paper F].

67
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Section 6.1 provides the framework on which the data-driven models are developed. The
performance of the data-driven models is evaluated based on the setup presented in Section 6.2. In
Section 6.3, the data-driven model for the coupled operation of electricity and natural gas systems
is presented, where the fuel capacity constraints for GFPPs are used to describe the natural gas
network (see Section 3.2.2). In Section 6.4, the data-driven and distributed operation of electricity
and natural gas systems is coordinated via a distributed algorithm based on the Alternating
Direction Method of Multipliers (ADMM). In the second data-driven model, the natural gas
system is incorporated with the controllable flow model (see Section 3.2.2).

6.1 Modeling framework

An uncertainty-aware dispatch of electricity and natural gas systems is considered in this chapter
to deal with the stochasticity introduced by renewables. The power output of the wind farms
is modeled as W (Ŵ + ξ), where W ∈ RW×W+ is the diagonal matrix of the wind farm capacities,
Ŵ ∈ RW , 0 ≤ Ŵ ≤ e, is the relative power output predicted at the first-stage, and ξ ∈ RW ,
−Ŵ ≤ ξ ≤ e− Ŵ , is the uncertain deviation from Ŵ , which is revealed at the second-stage. We
assume that ξ follows a distribution P. Note that e is a vector of ones with appropriate dimension.
We denote with x ∈ RZ the first-stage decisions, while the recourse actions are restricted to linear
decision rules of the form Y ξ with Y ∈ RZ×W a finite-dimensional coefficient matrix. Using this
notation, a distributionally robust optimization problem can be represented compactly as

min
(x,Y )∈Θ

max
P∈P

EP[CD(x, Y, ξ)] (6.1a)

s. t. min
P∈P

P
[
Aj(Y )ξ ≤ bj(x)

]
≥ 1− εj ∀j ∈ J , (6.1b)

which minimizes the worst-case expected cost and requires that the joint chance constraints are
satisfied for all distributions in the ambiguity set P . Note that there are different sets of joint chance
constraints indexed by j ∈ J . Each matrix A(Y ) and vector b(x) contains a linear expression of Y
and x, respectively. Alternatively, a distributionally robust optimization problem with individual
chance constraints can be formulated as

min
(x,Y )∈Θ

max
P∈P

EP[CD(x, Y, ξ)] (6.2a)

s. t. min
P∈P

P
[
ak(Y )>ξ ≤ bk(x)

]
≥ 1− εk ∀k ≤ K, (6.2b)

by decomposing the matrix A(Y ) and the vector b(x) as

A(Y ) =


a1(Y )>

...
aK(Y )>

 , b(x) =


b1(x)

...
bK(x)

 .

Depending on the choice of ambiguity set P and of the objective function CD(x, Y, ξ), we can
provide different tractable reformulations of problems (6.1) and (6.2) as described in [Paper E] and
[Paper F].

In [Paper E], problem (6.1) with a linear objective function is solved. In this case, we assume that
distribution P is concentrated around 0. Moreover, we suppose that the decision maker has a
dataset Ξ̂N = {ξ̂τ}τ≤N consisting of N finitely many training samples drawn independently by P.
Initially, the discrete empirical distribution P̂N , which is the uniform distribution on the (known)
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training samples, is defined to approximate P. Then, the distributionally robust optimization
problem (6.1) can be formulated to hedge against all distributions in a neighborhood of P̂N with
respect to the Wasserstein metric. The type-1 Wasserstein distance between two distributions P1

and P2 on RW is defined as

W(P1,P2) ,


min

Π

∫
RW×RW

‖ξ1 − ξ2‖Π(d ξ1,d ξ2)

s. t. Π is a distribution on RW × RW

with marginals P1 and P2, respectively.

(6.3)

The Wasserstein distance between P1 and P2 can be viewed as the cost of an optimal mass
transportation plan Π that minimizes the cost of moving P1 to P2, where ‖ξ1 − ξ2‖ is the cost of
moving a unit mass from ξ1 to ξ2. We denote byM(Ξ) the set of all distributions on the polyhedron
Ξ = {ξ ∈ RW : Hξ ≤ h} for H ∈ RL×W and h ∈ RL, and we define

P ,
{
P ∈M(Ξ) : W(P, P̂N ) ≤ ρ

}
(6.4)

as the family of all distributions on Ξ that have a Wasserstein distance of at most ρ ≥ 0 from
the empirical distribution P̂N . The hope is that, for a judiciously chosen radius ρ, the ambiguity
set P contains the unknown true distribution with high confidence. This ambiguity set can be
seen as a Wasserstein ball centered at the empirical distribution P̂N with a radius ρ, as illustrated
in Figure 6.1. We refer the reader to [19] for a detailed presentation of the reformulations of
distributionally robust optimization problems based on the Wasserstein ambiguity set.

Figure 6.1: Wasserstein ambiguity set.

In [Paper F], we solve problem (6.2) with a quadratic objective function. In this case, the ambiguity
set is defined by the first- and second-order moments as follows

P ,
{
P ∈M(RW ) : E[ξ] = µ̂0,E[ξξ>] = Σ̂0

}
, (6.5)

whereM(RW ) denotes the set of all probability measures on RW and Σ̂0 ∈ RW×W is a positive
semi-definite matrix. In this case, we assume that µ̂0 ∈ RW is the mean of ξ. In particular, the
empirical mean µ̂0 = 1

N

∑N
τ=1 ξ̂τ and covariance matrix Σ̂0 = 1

N

∑N
τ=1(ξ̂τ − µ̂0)(ξ̂τ − µ̂0)> are

estimated from the training dataset Ξ̂N . The reformulation that we follow is presented in [93],
while an extensive analysis of moment-based ambiguity sets in distributionally robust optimization
problems can be found in [18, 98, 99].

6.2 Performance assessment of data-driven models

To assess the performance of the proposed data-driven models, we use 100 coupled datasets
{Ξ̂iN , Ψ̂i

N ′}i=1,...,100, where Ξ̂iN is a training dataset containing N Independent and Identically
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Figure 6.2: Projected operation (DRO: distributionally robust optimization).

Distributed (i.i.d.) sample data, and Ψ̂i
N ′ is a testing dataset containing N ′ i.i.d. realizations. The

100 different coupled datasets are used in order increase the statistical robustness of the empirical
out-of-sample estimations calculated in the following. We keep the number of i.i.d. realizations in
Ψ̂i
N ′ fixed withN ′ = 100. The data consists of wind power forecast errors that is generated with the

same method as in [23, Equation (2)] and from the historical data given in [23]. An out-of-sample
analysis is carried out on the basis of a projected and of a realistic operation.

The goal of the projected operation is to assess how the optimal solution of problems (6.1) and (6.2)
solved using the (in-sample) training dataset Ξ̂N will perform subject to the (out-of-sample) testing
dataset Ψ̂N ′ . As illustrated in Figure 6.2, the respective ambiguity set P is built and problems (6.1)
or (6.2) are solved to obtain the optimal x̂i and Ŷ i solutions for each training dataset Ξ̂iN . Then, the
out-of-sample cost is calculated for each realization in the testing dataset Ψ̂i

N ′ = {ψ̂`}`≤N ′ by

Ĉi = CD(x̂i, Ŷ i, ψ̂`), (6.6)

which is utilized to estimate the expected cost by taking the average over the 100 datasets

Ĉ = 1
100

100∑
i=1
Ĉi. (6.7)

Moreover, we calculate three different metrics for the violation probability, two for individual
chance constraints and one for joint chance constraints. The first two metrics provide insights
regarding the violation of each individual chance constraint. The following indicator function is
used

Ĩik` =
{

1 if ak(Ŷ i)>ψ̂i` ≤ bk(x̂i),
0 otherwise

, (6.8)

where k indicates each individual chance constraint from (6.2b). Thus, each constraint is evaluated
individually and we can calculate the average number of violations for each out-of-sample
simulation by

Ṽi` = 1
K

K∑
k=1

(
1− Ĩik`

)
. (6.9)

Then, the empirical violation probability is calculated by

Ṽemp = 1
N ′

1
100

N ′∑
`=1

100∑
i=1
Ṽi` (6.10)

and the maximum average violation probability for each chance constraint by

Ṽmax = max
`,i
{Ṽi`}. (6.11)

For each type j of joint chance constraint, we use the following indicator function,

Ii` =
{

1 if A(Ŷ i)ψ̂i` ≤ b(x̂i),
0 otherwise

. (6.12)
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Figure 6.3: Realistic operation (DRO: distributionally robust optimization, RT: real-time dispatch).

Therefore, we can evaluate the violation probability for the testing dataset Ψ̂i
N ′ with

V̂i = 1
N ′

N ′∑
`=1

(
1− Ii`

)
(6.13)

and the average violation probability for each type j of joint chance constraint is

V̂ = 1
100

100∑
i=1
V̂i. (6.14)

The goal of the realistic operation is to provide a better estimation of the true cost that occurs when
removing the assumption of strictly following a linear decision rule Ŷ and allowing the system
operator a higher flexibility to adapt the real-time production according to the realization of the
stochastic power supply, as depicted in Figure 6.3. In this case, the operator keeps the first-stage
decisions x̂ fixed, and after observing the testing dataset, resolves an optimal power and natural
gas flow problem. In realistic conditions, the system operator will take some actions to ensure that
the constraints are not violated and with the proposed procedure we estimate a realistic cost to
operate the system. Subsequently, a real-time optimal power and natural gas flow that minimizes
the cost of re-dispatch actions is solved for each ψ̂i` ∈ Ψ̂i

N ′ . The re-dispatch actions may include
power adjustments pR ∈ RG from conventional generators, natural gas adjustments gR ∈ RU from
natural gas producers, electricity load shedding plR ∈ RD+ , natural gas load shedding glR ∈ RH+
and wind spilling wR ∈ RW+ The chance constraints are replaced by hard constraints, and there is
no out-of-sample violation. The analysis focuses on the cost calculated using the optimal solutions

x̂i, p̂R
`

i

, ĝR
`

i

, p̂lR`
i

, ĝlR`
i

and ŵR
`

i

of the real-time dispatch problem by

R̂i = 1
N ′

N ′∑
`=1
CR(x̂i, p̂R

`

i

, ĝR
`

i

, p̂lR`
i

, ĝlR`
i

), (6.15)

where CR denotes the function of the real-time cost to operate the system including electricity and
natural gas system dispatch costs, as well as load shedding costs. The realistic cost is estimated
over the 100 datasets by taking the average

R̂ = 1
100

100∑
i=1
R̂i. (6.16)

6.3 Data-driven energy and reserve dispatch with fuel constraints for
gas-fired power plants

The energy and reserve dispatch problem with fuel constraints for GFPPs is developed to ensure the
safe operation of a power system with high penetration of renewables and a strong interdependence
with the natural gas system. The problem is formulated in the form of distributionally robust
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joint chance constrained program (6.1) and the Wasserstein ambiguity set P as defined in (6.4) is
utilized. The cost function CD(x, Y, ξ) is assumed to be linear. The first-stage decisions x comprise
the energy and reserve dispatch of the system and are taken before the realization of uncertainty.
The recourse actions Y ξ correspond to the real-time dispatch of the system, where the imbalances
due to forecast errors have to be covered. A detailed model formulation is provided in [Paper E].

Leveraging results from [19], an exact reformulation of the objective function (6.1a) and two
conservative approximations for the feasible set

ΩCC,
{

(x, Y ) : min
P∈P

P [A(Y )ξ≤b(x)] ≥ 1−ε
}

(6.17)

of a generic joint chance constraint of the form (6.1b) are provided. Both approaches utilize the
worst-case Conditional Value-at-Risk (CVaR) [100] to approximate individual worst-case chance
constraints, which constitutes the tighter convex inner approximation as described in [90]. The
fundamental difference of the two approximation schemes stems from the process of converting
the joint chance constraint to a single or multiple individual chance constraints before deploying
the CVaR approximation, which can then admit a conic reformulation.

In the first approach, we exploit Bonferroni’s inequality to separate each joint chance constraint into
a collection of K individual chance constraints with the corresponding εk ≥ 0,∀k = 1, . . . ,K, and∑
k εk=ε. This amounts to approximate ΩCC by the following more conservative set of individual

chance constraints

ΩB,
{

(x, Y ) :min
P∈P

P
[
ak(Y )>ξ ≤ bk(x)

]
≥ 1− εk,∀k ≤ K

}
. (6.18)

that permits the application of CVaR approximation. Therefore, this approach is named Combined
Bonferroni and CVaR Approximation.

The Bonferroni approximation is inadequate when the violations of different individual chance
constraints in (6.18) are significantly correlated [98]. An alternative approach to convert the joint
chance constraint to an individual chance constraint can be constructed using the same approach
as in [98]. For any vector of scaling parameters δ ∈ ∆++ , {δ ∈ RK++ : e>δ = 1} the joint chance
constraint (6.1b) is equivalent to

min
P∈P

P
[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}
≤ 0
]
≥ 1− ε, (6.19)

which constitutes a distributionally robust individual chance constraint and the CVaR approxi-
mation can be applied. Note that the overall scale of δ is immaterial, and thus the normalization
e>δ = 1 does not restrict generality. Optimizing jointly over the space of (x, Y ) and δ ∈ ∆++

results in a non-convex problem. However, for any fixed δ ∈ ∆++, optimizing over (x, Y ) is a
convex problem, and vice versa. Following this observation, we use an iterative approach which
sequentially optimizes over (x, Y ) and δ, which is inspired by [98]. This motivates to name this
approach Optimized CVaR Approximation.

We highlight that both approaches admit a conic representation, which reduces to simple Linear
Programs (LPs) under specific settings of the Wasserstein metric. Note that the choice of εk highly
affects the performance of the combined Bonferroni and CVaR approximation. Nevertheless,
choosing the optimal value for εk is intractable [90, Remark 2.1]. Developing a sequential algorithm
in a similar manner to the optimized CVaR unfortunately introduces bilinear terms and is thus
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not applicable for large instances. As a consequence, we will fix εk = ε/K, ∀k as proposed by [90]
despite its conservativeness when ε is small or when the constraints are positively correlated [98,
Example 3.1]. A comprehensive presentation of the tractable reformulations for the combined
Bonferroni and CVaR as well as the optimized CVaR approximations, along with a discussion on
computational tractability is given in [Paper E].

The two tractable approximations for the distributionally robust joint chance constrained programs
are compared using the IEEE 24-bus Reliability Test System (RTS) [80], where the only source of
uncertainty is the wind power produced by 6 wind farms. The total wind power capacity is equal
to 55% of the whole system demand. In total, there are 12 conventional generators, 6 of which are
GFPPs. We introduce 3 natural gas pipelines that serve a pair each. Wind power data consists
of wind power forecast errors that is generated with the same method as in [23, Equation (2)]
and from the historical data given in [23]. The complete input data and topology of the system is
provided in [101]. In all simulations, we use the Wasserstein metric defined by the 1-norm, hence
all arising optimization problems are equivalent to tractable LPs. Moreover, we set Ξ = RW and
thus omit H and h. The same value of εj is utilized for all joint chance constraints.

The subsequent analysis of the projected and realistic operation is performed for different Wasser-
stein radius ρ ∈ R+ (the specific values used are given in [Paper E]). We note that ρ = 0 corresponds
to the ambiguity-free attitude that takes into account only the empirical distribution P̂N to approxi-
mate the true data generating distribution P. The results related to combined Bonferroni and CVaR
and optimized CVaR approaches are denoted with subscript B and O.

6.3.1 Performance assessment based on the projected operation

The procedure of the projected operation is applied for the energy and reserve dispatch problem
with fuel constraints for GFPPs, which consists of three joint chance constraints in the form of
(6.1b) that are related to the power capacity (gen), line capacity (grid) and pipeline capacity
(gas) constraints. For each value of ρ ∈ R+, we collect the pairs {Ĉ(ρ), V̂j(ρ)} for each one of
the joint chance constraints. A Pareto frontier is computed based on the non-dominated points
from the collected pairs for the combined Bonferroni and CVaR as well as the optimized CVaR
approximations. The Pareto frontier illustrates the trade-off between the expected cost Ĉ and
violation probability V̂ of each constraint, as shown in Figures 6.4 and 6.5. The results are given for
εj = 5% and when each training dataset Ξ̂iN contains N = 50 or N = 200 samples.

Figure 6.4: Pareto frontier of combined Bonferroni and CVaR (left) and optimized CVaR (right)
approximations (εj = 5% and N = 50).
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Figure 6.5: Pareto frontier of combined Bonferroni and CVaR (left) and optimized CVaR (right)
approximations (εj = 5% and N = 200).

In all frontiers, ρ = 0 is always a non-dominated point: it has the lowest expected cost but at
the downside of the highest violation probability. For a high value of Wasserstein radius ρ, both
approaches provide solutions which can satisfy the violation probability of 5% even when N = 50.
We observe three main experimental trends. First, for a fixed N , increasing ρ results in a decrease
of the violation probability V̂ for each type of joint chance constraint. This fact can be explained by
the bigger size of the ambiguity set, which leads to more conservative solutions when the radius is
increased. A more conservative solution directly translates to a lower violation probability in the
out-of-sample dataset. Second, as N increases, the violation probability tends to decrease when
comparing solutions with the same value of ρ. In this case, the empirical distribution P̂N better
approximates P, which again makes it more probable that P belongs to the Wasserstein ball for a
fixed value of ρ. In all cases, there is a trade-off between V̂ and Ĉ: the decrease in V̂ is followed by
an increase in Ĉ as more costly generators are dispatched. Finally, we can search for a wider range
and pick larger values of ρ in the optimized CVaR approximation because it is less conservative
than the combined Bonferroni and CVaR approximation.

6.3.2 Performance assessment based on the realistic operation

The realistic operation is utilized to evaluate solutions (x̂, Ŷ ) when only the first-stage decision x̂
is implemented and the real-time adjustments are acquired by a deterministic real-time optimal
power flow problem with fuel constraints for GFPPs. This procedure is repeated for all ρ ∈ R+ for
both approximations of joint chance constraints.

For the optimized CVaR approximation, Figure 6.6 illustrates R̂O(ρ) as a function of ρ for εj = 5%
and different values of N . It can be noticed that for each level of sample size N , there exists
an optimal radius ρ̂? which minimizes the realistic cost R̂O. Comparing to the ambiguity-free
approach with the Wasserstein radius ρ = 0, solving the problem with ρ̂? yields a lower realistic
cost. Moreover, this reduction is more significant for the cases of lower sample sizeN . For instance,
R̂O(ρ̂?) is 7.9% lower than the ambiguity-free cost R̂O(0) when N = 25, while this reduction is
1.9% atN = 200. To examine the effect of ρ on the variability of R̂iO, we plot the interquantile range
between the 10th- and 90th-quantile of R̂iO in Figure 6.7, which demonstrates a similar pattern with
the average realistic cost R̂O. Similar plots for the combined Bonferroni and CVaR approximation
are included in [Paper E]. These results show the advantages of employing the distributionally
robust attitude compared to the ambiguity-free one with ρ = 0. In all cases, solving the energy and
reserve dispatch problem with fuel constraints for GFPPs with ρ > 0 reduces both the average and
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the variability of the out-of-sample cost in the realistic operation. The results of the distributionally
robust attitude with ρ > 0 are more profound under the low sample size N .
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Figure 6.6: Average realistic cost R̂O as a function of Wasserstein radius ρ (logarithmic scale is
used in the x-axis to improve readability).
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Figure 6.7: Interquantile range of realistic cost R̂iO between the 10th and 90th quantile as a function
of Wasserstein radius ρ (logarithmic scale is used in the x-axis to improve readability).

Table 6.1 presents the optimal radius ρ̂? and the corresponding R̂? for various εj and different
number of samples N for both approximations. The cost for the combined Bonferroni and CVaR
approximation R̂?B is reported as the percentage difference from R̂?O. The realistic cost R̂?O is
lower than R̂?B in all cases with the greatest difference takes place at εj = 1%. For a fixed value
of εj , it can be observed that an increase of the number of samples N results in a decrease of the
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optimal realistic cost R̂? and radius ρ̂?. More specifically, radius ρ̂? tends to zero with an increase
in N , which is coherent with the observations in [19, Section 7]. Moreover, for a fixed number
of samples N , decreasing εj yields a lower optimal radius ρ̂? as the feasible space of probability
constraints becomes more stringent. This effect is more profound for the combined Bonferroni and
CVaR approximation since it is more conservative than the optimized CVaR approximation due
to setting εk = εj/K, ∀k. On the upside, decreasing εj also decreases R̂?O since less costly real-time
adjustments are activated due to increased robustness.

Table 6.1: Optimal realistic expected cost R̂? and Wasserstein radius ρ̂? for combined Bonferroni
and CVaR and optimized CVaR approximations.

N = 25 N = 50
εj R̂?O ($) ρ̂?O R̂?B ρ̂?B R̂?O ($) ρ̂?O R̂?B ρ̂?B

1% 22,269 0.0030 +4.00% 0.0001 22,105 0.0026 +1.71% 0.0001
5% 22,392 0.0168 +1.43% 0.0008 22,154 0.0143 +1.49% 0.0005

10% 22,414 0.0400 +1.31% 0.0018 22,275 0.0300 +0.94% 0.0009
N = 100 N = 200

εj R̂?O ($) ρ̂?O R̂?B ρ̂?B R̂?O ($) ρ̂?O R̂?B ρ̂?B
1% 22,032 0.0008 +0.53% 0 21,932 0.0005 +0.89% 0
5% 22,039 0.0118 +0.50% 0 21,944 0.0103 +0.48% 0

10% 22,135 0.0250 +0.35% 0.0003 22,042 0.0230 +0.80% 0

Additionally, we compare the performance of the distributionally robust optimization models with
a robust optimization approach that minimizes the worst-case cost and risk constraints are satisfied
for any realization of the uncertain parameter in the support Ξ [75]. The robust optimization model
is presented in [Paper E]. Table 6.2 presents the realistic cost R̂RO and the interquantile range
of R̂iRO between 10th and 90th quantile for different number of samples N . In all cases, R̂RO is
significantly higher than R̂?O and R̂O(0) acquired by the distributionally robust and ambiguity-free
approaches. This result demonstrates the fact that the first-stage decisions x̂i obtained from the
robust optimization model are overly conservative. The robust solution varies with N as we
estimate mean Ŵ from the training sample.

Table 6.2: Realistic cost R̂RO and interquantile range of realistic cost R̂iRO between 10th and 90th

quantile for the robust optimization model.

N = 25 N = 50 N = 100 N = 200
R̂RO ($) 29,690 29,644 29,673 29,687

Interquantile range of R̂iRO ($) 1,466 1,246 895 687

Computational performance is reported for the setting with εj = 5% and N = 200. Solving
problem (6.1) under the combined Bonferroni and CVaR approach takes on average 20 seconds,
while for the optimized CVaR approach the average time is 38 seconds. Note that the reported
time for optimized CVaR approximation is until the convergence of the algorithm, where in the
experiment we consistently observe convergence in less than 3 iterations. The average time to
solve the robust optimization model was 0.75 seconds. The real-time optimal power flow is solved
in 0.12 seconds on average.

The proposed optimized CVaR approach outperforms the combined Bonferroni and CVaR
approximation in terms of realistic expected system cost for each fixed N and εj . Moreover, it
has a satisfactory computational performance that allows to consider its application in practice
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by system operators. Both approximation schemes for the distributionally robust joint chance
constraints result in LPs to be solved under specific norms of the Wasserstein metric, which
further permits the utilization of parallel computing in case needed to tackle computational issues.
Moreover, following the proposed approach based on the Wasserstein ambiguity set does not raise
any limitations with respect to the choice of the Wasserstein radius ρ since the radius ρ is calibrated
through an estimation practice. Therefore, the choice of ρ depends on the available data and the
problem in question, in a sense that the estimation practice will yield the optimal radius ρ for the
specific case. The value of ρ would then determine if the decision maker would need to take an
ambiguity-free with ρ = 0 or a distributionally robust with ρ > 0 attitude. It has been observed
that the value of εj has also an impact on the realistic expected system cost, which motivates to
consider εj combined with ρ in the calibration procedure.

6.4 Data-driven distributed operation of electricity and natural gas systems

In many countries, electricity and natural gas systems are operated independently by different
entities that prefer to keep their information private and only share the minimum amount of
information needed to guarantee the secure operation of the two energy systems. Initially,
we present the coupled dispatch model (6.20) for electricity and natural gas systems, where a
distributionally robust individual chance constrained program in the form of problem (6.2) is
written and the moment-based ambiguity set P as defined in (6.5) is used. The model writes as

min
xE,YE,xG,YG

max
P∈P

EP[CD
E (xE, YE, ξ) + CD

G (xG, YG, ξ)] (6.20a)

s. t. xE, YE ∈ ΘE (6.20b)

xG, YG ∈ ΘG (6.20c)

hC(ΦxE,ΦYE, xG, YG) = 0, (6.20d)

where ΘE and ΘG capture the feasible sets for the electricity and natural gas systems, respectively.
The feasible set ΘE in (6.20b) contains the equality and inequality constraints as well as the
distributionally robust individual chance constraints for the operation of the electricity system,
such as power capacity, power flow and balance constraints. In a similar manner, feasible set ΘG in
(6.20c) contains the same set of constraints for the natural gas system operation. The electricity
and natural gas cost functions CE(xE, YE, ξ) and CG(xG, YG, ξ) are assumed to be quadratic. The
first-stage decisions xE ∈ RG+ and xG ∈ RU+ comprise the day-ahead schedule of the electricity and
natural gas systems, respectively. The recourse actions YE ∈ RG×W and YG ∈ RU×W correspond to
the real-time dispatch actions to cover the imbalances from forecast errors. Equality constraint
(6.20d) links the natural gas consumption of GFPPs to their power production. Diagonal matrix
Φ ∈ RG×G+ contains the power conversion factor of GFPPs, while the entries for non-GFPPs are
zero. Under the moment-based ambiguity set, the objective function (6.20a) results in a convex
quadratic function and the distributionally robust individual chance constraints of the form (6.2b)
in ΘE and ΘG are reformulated as second-order cone constraints based on [102]. Therefore, we
have a Second-Order Cone Program (SOCP) at hand to be solved. A detailed model formulation is
provided in [Paper F].

As illustrated in Figure 6.8, a purely data-driven approach is developed where the mean µ̂0 and
covariance Σ̂0 are estimated from the historical data to build the moment-based ambiguity set.
This approach promotes transparency since the historical data are considered common knowledge
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and only two values need to be shared between the electricity and natural gas system operators
regarding uncertainty characterization. On the contrary, the system operators would need to reach
an agreement for the probability distribution of the uncertain parameter, the scenario generation
technique and the number of scenarios in the case of using stochastic programming, while the
uncertainty sets would also need to be defined and agreed in case robust optimization is applied.
Such assumptions and their limitations are also discussed in [103–105].

An independent operation of the electricity and natural gas systems can be achieved by utilizing
a distributed algorithm based on the ADMM [25] to decompose problem (6.20) by relaxing the
coupling constraint (6.20d). A detailed presentation of the algorithm is presented in [Paper F]. As
shown in Figure 6.8, the electricity and natural gas system operators are solving independently the
corresponding electricity and natural gas problem. Then, a system coordinator is introduced to
facilitate the communication between the two system operators that only need to communicate the
fuel consumption of GFPPs between each other. The proposed algorithm converges efficiently to
the same solution of the centralized model (6.20) since its reformulation is a convex problem.

Figure 6.8: Data-driven distributed operation of electricity and natural gas systems via a system
coordinator (E: electricity, G: natural gas, SC: system coordinator).

We evaluate the performance of the distributed algorithm and perform the analysis of the projected
and realistic operation on an integrated energy system that consists of the IEEE 24-bus Reliability
Test System (RTS) [80] and a 12-node natural gas system based on [81]. Wind power is produced
by 6 wind farms with an aggregated installed capacity equal to 55% of the peak electricity demand.
In all simulations, we schedule wind to the conditional expectation Ŵ at the day-ahead stage
and thus the mean µ̂0 of forecast errors is equal to zero. The wind schedule Ŵ and covariance
Σ̂0 are inferred from the wind power data, which are generated with the same method as in [23,
Equation (2)] and are based on the historical data given in [23]. The complete input data and
topology of the system is provided in [106].

6.4.1 Performance of the ADMM-based distributed approach

To assess the performance of the distributed algorithm based on ADMM, a comparison with a fully
centralized dispatch model and a sequential dispatch model is performed. The sequential model
is built based on [76] that resembles the current operational practice in Great Britain. In [76], an
iterative approach is followed that first dispatches the electricity system independently and then
the natural gas system is dispatched with the fuel demand of GFPPs as a fixed input. In the event
of infeasible fuel schedules of GFPPs in the natural gas dispatch problem, the power production of
GFPPs is further constrained in the electricity dispatch problem. This procedure is performed in an
iterative manner until the natural gas consumption can be covered by the natural gas system. Note
that the residential/industrial natural gas demands have higher priority than the fuel consumption
of GFPPs. The cost functions of GFPPs in the sequential dispatch model are calculated based on an
estimation of the natural gas price, similarly to Chapter 4. We set the natural gas price estimation
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to the mean value of the linear cost coefficient of all natural gas producers. The maximum number
of iterations is set to 104 for the distributed algorithm and sequential model. For the distributed
algorithm, we set the value of penalty parameter in ADMM equal to 0.0001 and the convergence
tolerance is set to 10−2.

Table 6.3 presents the value of the objective function for the fully centralized model, distributed
algorithm and sequential model when setting εk = 0.1 for each individual chance constraint in
problem (6.20). The information exchange in the distributed algorithm and sequential model is
the same, that is the fuel consumption of GFPPs, while the centralized model allows for a full
coordination between the electricity and natural gas systems. For this reason, the centralized
model attains the solution with the minimum cost. The distributed algorithm returns the same
solution as the centralized model, while simulating the two systems independently and allowing
only limited information to be shared. The sequential model yields a solution with a 5.2% higher
operational cost due to the unsophisticated updates of natural gas consumption of GFPPs over the
iterations.

Table 6.3: Value of objective function for centralized model, distributed algorithm and sequential
model.

Model Centralized Distributed Sequential
Value of objective function ($) 63,500 63,500 66,821

To gain additional insights into the convergence of the distributed algorithm, we plot the converge
of the objective functions and the dispatch of the systems for each iteration η of the algorithm
in Figures 6.9 and 6.10. More specifically, Figure 6.9 illustrates the convergence of the objective
function (OF) via the ratio:

γη =
OFηdistributed −OFcentralized

OFcentralized
× 100. (6.21)

Similar ratios are calculated for the individual objective functions of the electricity γE and natural
gas γG systems. The convergence of dispatch in the electricity (ED) and natural gas (GD) systems
is presented in Figure 6.10 by plotting for each iteration the following norms

χη = ‖EDη
distributed − EDcentralized‖2 (6.22a)

υη = ‖GDη
distributed −GDcentralized‖2. (6.22b)

Under this setup, the distributed algorithm converges in 39 iterations and in 65 seconds, i.e.
1.66 seconds per iteration. It can also be observed that the objective function sufficiently approxi-
mates the solution of the centralized model already after the 10th iteration. The sequential model
converges in 20 seconds but with a lower quality solution in terms of operating cost.

Moreover, Figure 6.10 shows that the distributed algorithm provides a dispatch for both electricity
and natural gas producers in a similar manner as the centralized model. The dispatch sufficiently
converges already at the 10th iteration. This indicates that the implementation of the distributed
algorithm would not have an impact on the profits of the producers and would not alter the market
outcomes if the electricity and natural gas systems are dispatched in a distributed manner.

Table 6.4 presents the computational performance of the distributed algorithm in relation to the
penalty parameter of ADMM. The penalty parameter has an impact on the number of iterations
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Figure 6.9: Convergence of the objective functions over the iterations (logarithmic scale is used for
the x-axis to improve readability).
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Figure 6.10: Convergence of the system dispatch over the iterations (logarithmic scale is used in
the x-axis to improve readability).

and eventually on the solution time, while the time per iteration does not vary much under each
case. Therefore, one should carefully choose the value of penalty parameter to achieve an efficient
utilization of the distributed algorithm in terms of computational performance.

6.4.2 Performance assessment based on the projected operation

The solution of the distributionally robust chance constrained (DRCC) program (6.20) with the
moment-based ambiguity set, either solved via the centralized model or the distributed algorithm,
is compared with a chance constrained program that assumes a Gaussian distribution of forecast
errors (GCC) as presented in [48], as well as with a deterministic model that assumes no uncertainty
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Table 6.4: Number of iterations and solution time for the distributed algorithm as a function of
penalty parameter.

Penalty parameter Iterations Time (sec) Time per iteration (sec)
0.0001 289 475 1.64
0.001 39 65 1.66
0.01 131 223 1.70
0.1 839 1448 1.72

as the one used in [50]. We consider εk as a design parameter that can be decided by the operators
based on the trade-off between the operational cost and the risk of violating the constraints. The
same value of εk is used for all individual chance constraints ranging from 0.05 to 0.5 with a step of
0.05.

Figure 6.11 presents the empirical violation probability Ṽemp for the DRCC model and the GCC
model, while Figure 6.12 the maximum average violation probability Ṽmax. We report the solutions
for different values of εk. It can be observed that an increase in εk results in an increase of both
Ṽemp and Ṽmax. Comparing DRCC and GCC models, model DRCC returns always a lower Ṽemp

and Ṽmax than the GCC model. More importantly, DRCC model yields a very low Ṽemp for all
values of εk and Ṽmax is always below 10%. The increase of εk results in a greater increase of Ṽemp

and Ṽmax in model GCC and this phenomenon is more profound for values of εk greater than 0.4.
The accepted violation probability imposed by the system operators is satisfied for all values of εk,
except for the instance of εk = 0.05 in the GCC model where Ṽmax is greater than 0.05.
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Figure 6.11: Empirical violation probability for DRCC and GCC.

Figure 6.13 shows the cost difference between the DRCC and GCC models for the range of εk
values. An increase of εk results in a reduction of the cost difference between the two models. More
specifically, the cost difference is at most 7.11% and it drops close to 0.3% for an εk greater than
0.35. For small values of εk, the cost obtained by DRCC is higher because it is more conservative
compared to GCC. Based on these observations for the projected operation, it can be noticed that
the system operators are able to choose an appropriate value of εk to reduce the total cost at the
expense of a higher chance of violating the constraints. Model DRCC outperforms GCC since the
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Figure 6.12: Maximum average violation probability for DRCC and GCC.

system operators are able to pick the value of εk under DRCC in such a way that a system cost very
close to the one obtained by GCC is achieved but with lower violation probabilities.
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Figure 6.13: Percentage of total cost difference between the DRCC and GCC.

Table 6.5 presents the projected cost Ĉ as well as the violation probability metrics Ṽemp and Ṽmax

for all three models. For DRCC and GCC, the results are reported for εk = 0.35. It can be noticed
that the attained Ĉ is similar for all three models. In particular, the projected cost Ĉ of DRCC is
0.3% and 0.46% greater than the cost obtained by the GCC and deterministic models, respectively.
However, the violation probabilities Ṽemp and Ṽmax are lower in the case of DRCC. Moreover, the
deterministic model attains significantly higher Ṽemp and Ṽmax for the majority of the values of εk
both for DRCC and GCC. Therefore, the need to utilize probabilistic approaches for the operational
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limits and account for uncertainty is highlighted.

Table 6.5: Projected cost Ĉ and violation probabilities Ṽemp and Ṽmax for εk = 0.35.

Model DRCC GCC Deterministic
Ĉ ($) 61,163 60,957 60,881
Ṽemp 0.01 0.03 0.22
Ṽmax 0.08 0.12 0.49

6.4.3 Performance assessment based on the realistic operation

The realistic operation is utilized to evaluate solutions (x̂E, ŶE, x̂G, ŶG) when only the first-stage
decisions x̂E and x̂G are implemented and the real-time adjustments are acquired by a deterministic
real-time optimal electricity and natural gas dispatch problem with network constraints. We
compare the solutions obtained by DRCC, GCC and deterministic models. This procedure is
repeated for the different values of εk ∈ [0.05, 0.5].

Figure 6.14 illustrates the realistic cost R̂ as a function of εk. It can be observed that DRCC
outperforms GCC for all values of εk, which indicates that DRCC provides more efficient first-stage
solutions in terms of realistic cost R̂. Moreover, the reported R̂ decreases with a decrease of εk since
there are less costly re-dispatch actions activated when solving the real-time dispatch problem due
to increased robustness. The solution obtained from the deterministic model is the same as the one
of GCC for εk = 0.5, which is the case with the higher R̂.
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Figure 6.14: Average realistic cost R̂ as a function of safety factor εk for DRCC and GCC.

We report the computational performance for the case with εk = 0.1, while the solution times
obtained for other values of εk are similar. Model DRCC is solved in 35 seconds on average
and for GCC the average solution time is 1.5 seconds. Finally, the deterministic model is solved
in 0.3 seconds on average. Thus, model DRCC has a better performance than both GCC and
deterministic models in terms of realistic cost R̂ and is solved in a computationally acceptable
time.





CHAPTER7
Conclusions and Perspectives

In this thesis, we addressed the three main research questions regarding the coordination of
electricity and natural gas markets under the increased uncertainty introduced by renewables.
The first research question pertained to examining various degrees of coordination in terms
of coupling the electricity and natural gas systems to identify potential inefficiencies and to
propose improvements towards a cost-effective operation. Moreover, electricity and natural gas are
commodities traded in markets via complex networks. This motivated us to focus on modeling the
energy networks in a market-compatible way that sufficiently describes their underlying physical
characteristics in order to address the second research question. Finally, the operational models
which were developed in this thesis, considered advanced methods to deal with uncertainty in
order to support the operation of energy markets and systems under the unprecedented challenges
faced by the transition towards a renewable-based energy system.

7.1 Overview of contributions

A number of novel contributions to the state of the art were presented in this thesis relative to
improving the coordination of electricity and natural gas markets as well as revealing available
flexibility to accommodate the uncertainty of renewable power production.

A holistic view of the electricity and natural gas systems was adopted in order to take advantage
of the different flexible components and utilize them in the most efficient manner for the operation
of both energy systems. This was found to be a cost-effective way to reveal existing flexibility from
the natural gas system. Apart from operating the Gas-Fired Power Plants (GFPPs) in an economic
and secure manner, such an approach provided the opportunity to exploit the inherent flexibility
of the natural gas system. The natural gas system provides storage options in the network (i.e.
linepack) and in the large storage facilities. To utilize linepack as storage flexibility, the dynamics
of the natural gas flows needed to be taken into account. These dynamics would normally be
modeled by Partial Differential Equations (PDEs), which are able to fully capture both the temporal
and spatial dimensions of natural gas transport. However, such a detailed modeling of natural gas
dynamics would highly increase computational complexity and raise market design issues related
to pricing electricity and natural gas. To overcome such issues, we proposed a model to efficiently
approximate natural gas system dynamics that was formulated as a tractable Mixed-Integer Linear
Program (MILP). This model enabled the utilization of the linepack as additional storage flexibility,
captured the dynamics of the natural gas transport as well as allowed to derive prices for electricity
and natural gas. Security of supply was also increased since the natural gas resources were properly
allocated across the network. Such solutions can be readily adopted by system operators to take
advantage of the revealed flexibility when operating the systems and by market operators since
they are market-compatible is a sense that no limitations regarding the market operations are
raised.

85
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The introduction of additional sources of flexibility, such as GFPPs, storage facilities and linepack,
requires the proper models to operate them efficiently in a market environment. Studying electricity
and natural gas markets under different coordination setups, we were able to identify potential
inefficiencies regarding the dispatch of the two systems. More specifically, we examined different
levels of coordination between the electricity and natural gas systems and the temporal coordination
of the day-ahead and real-time trading floors. These setups range from the current decoupled
and deterministic approaches to coupled and uncertainty-aware ones. Initially, the impact of
coordination parameters, such as the natural gas consumption of GFPPs and natural gas price, on
the operations of both systems and in turn on operational costs was examined. Choosing these
parameters in a naive and arbitrary manner when optimizing the two systems independently
led to scheduling outcomes with a higher expected cost compared to the cost obtained by a fully
coupled approach that utilizes a probabilistic description of uncertainties. The latter model was
able to exploit the inherent flexibility of the natural gas system and provide a schedule for the
system that accounts for future balancing costs in view of uncertain power supply.

The current market designs are based on a sequential clearing of trading floors with deterministic
description of uncertainties. Such designs are highly challenged by the increased uncertainty
introduced by renewables and usually lead to solutions that yield a high expected cost. On the
other hand, scheduling the systems with a model based on two-stage stochastic programming
provides the solution with the least expected system cost. However, this scheduling is not fully
compatible with the current sequential market designs. To improve the sequential clearing of
trading floors, we followed a coupled model for the electricity and natural gas markets that allowed
to define two flexibility signals based on the natural gas volume availability for power production
and on the natural gas price perceived by GFPPs. These flexibility signals were optimally set by
a volume-based and a price-based model that recast Mathematical Programs with Equilibrium
Constraints (MPECs). The advantage of these models is that they can be utilized by market
operators as decision-support tools in a sense that their outcomes can be directly incorporated in
the existing market structure, where the day-ahead and real-time stages are cleared independently.

The stochastic nature of power production from renewables calls for changes in both system
operations due to the immerse uncertainty introduced. Various approaches have been proposed to
cope with this challenge including stochastic programming, chance constrained programming
and robust optimization. Despite the attractive results of following such approaches, recent
developments on data-driven optimization give the possibility to alleviate the barrier of using
inaccurate estimates from the uncertain parameters and avoid involving additional processes
to characterize uncertainty. In this thesis, we developed two data-driven models based on
distributionally robust optimization, where the optimization takes over a family of distributions
(i.e. ambiguity set). In these models, the available renewable power production data were directly
utilized to build the corresponding ambiguity sets.

In the first data-driven model, we solved the energy and reserve dispatch problem with fuel
constraints for GFPPs formulated as a distributionally robust joint chance constrained program. We
proposed a convex conservative approximation for distributionally robust joint chance constraints,
where the data generating distribution is not assumed to be a member of a parametric family and
the ambiguity set is built based on the Wasserstein metric. The obtained approximation is tractable
in high dimensional problems and demonstrates superior performance compared to widely used
in the literature Bonferroni approximation for joint chance constraints in terms of expected system
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cost. Moreover, we provided a systematic way to calibrate the Wasserstein radius (i.e. size of
ambiguity set) by an estimation practice depending on the available data. We showed that a
distributionally robust attitude is of great significance when few samples are available, while less
robustness is needed as more information regarding the distribution of the uncertain parameter
becomes available. Utilizing such an approach allows system operators to develop models that
incorporate uncertainty from renewable energy sources and additionally give the possibility to
properly tune their models in order to attain the required level of robustness that yields the lowest
expected costs.

In the second data-driven model, we defined the ambiguity set based on the first- and second-order
moments of the uncertain parameter. This distributionally robust optimization model was built
with individual chance constraints to obtain an analytical reformulation that results in a tractable
Second-Order Cone Program (SOCP). Apart from the appealing benefits of the coupled electricity
and natural gas systems operation, distributed approaches can also be efficiently employed to
provide practical solutions when the two systems are operated independently. To this end, we
proposed a data-driven and distributed approach to dispatch the electricity and natural gas systems
with high shares of stochastic power production. The distributed algorithm was developed based
on the Alternating Direction Method of Multipliers (ADMM) where only the fuel consumption of
GFPPs was shared between the operators. The proposed algorithm is able to systematically update
the coordination parameter related to the fuel consumption of GFPPs and converge to the same
solution of a centralized approach that co-optimizes the operation of the two energy systems. As
far as the uncertainty characterization is concerned, only the mean and covariance matrix needs
to be shared between the system operators, which can be inferred from the available historical
data. We demonstrated that the proposed model outperforms a classic stochastic approach that
assumes normally distributed uncertainty and a deterministic model in terms of expected system
cost and violation of constraints. This solution can readily be implemented in practice since it is
highly transparent in describing uncertain power supply and returns the solution of the coupled
approach with the minimum amount of information shared between the operators. In addition,
the proposed algorithm is scalable to large scale problems, since the number of random parameters
does not affect the size of the problem, and can be solved for a variety of risk preferences, which
can be decided by the decision maker.

7.2 Perspectives for future research

During the course of the research conducted in this thesis, we identified several research questions
to be addressed in the future. Future research directions range from dealing with technology-related
aspects of the systems to redesigning the energy markets towards accommodating larger shares of
renewables in the whole energy system.

A realistic view of the underlying physics of the electricity and natural gas systems can be
achieved by the development of mathematical models that involve non-convex constraints. Such a
detailed network and component representation would entirely reveal the benefits with regards to
exploiting flexibility and increasing security of supply. This becomes highly important especially
at the balancing stage, when all the technical constraints need to be satisfied. Taking advantage
of the recent developments on convex relaxation techniques for non-convex problems, a more
accurate modeling of the electricity and natural gas systems can be achieved which also allows
price derivation by preserving convexity of the problems. More specifically, such approaches can
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be adopted for the AC optimal power flow problem, as well as the transient natural gas modeling.
An interesting future direction would be to develop operational models based on these approaches
that overcome limitations with regards to pricing various traded products and reveal opportunities
towards defining multi-commodity products for players that participate in both energy markets.

Towards exploiting possibilities to bring operational flexibility in the energy markets, bi-directional
energy flows between the electricity and natural gas systems can be considered, as well as the
interactions with other energy networks. In particular, the introduction of power-to-gas facilities
in the modeling framework can further highlight the benefits of using the natural gas system as an
energy storage solution. In a similar direction, the interaction with the heat market and system,
via Combined Heat and Power (CHP) plants and heat pumps, can pave the way for optimally
operating the three energy systems and revealing additional flexibility. This solution is highly
promising in regions where all three energy systems co-exist, as in the case of Denmark, since
a proper design of energy markets is considered an inexpensive way to take advantage of the
existing infrastructure and have a cost-effective operation of the whole energy system.

The natural gas and heat networks, can be seen as energy storage facilities. The nodes of these
networks are connected with pipelines which also offer the possibility to store energy. Therefore,
both the temporal and spatial dimensions can be identified in these two networks with regards to
storing energy. Mechanisms similar to financial transmission and storage rights that hedge prices
in space and time, respectively, can be developed. An interesting future direction would be to
propose a mechanism that combines the features of financial transmission and storage rights to
hedge both temporal and spatial price variations.

The optimal definition and control of specified coordination parameters results in attaining an
improved day-ahead scheduling of the coupled electricity and natural gas system in view of future
uncertainties. This proposed mechanism can be generalized in a sense that alternative signals
can be generated or different parameters can be tuned in view of other types or combinations of
uncertainties. Moreover, different objectives such as addressing reliability risks or setting long term
planning goals can be taken into account. To provide more sophisticated decisions, the inclusion
of additional market floors, e.g. intra-day market, would be highly relevant.

In a market environment, the proposed dispatch models based on the flexibility signals retain most
of the gains of utilizing a stochastic programming approach to dispatch the energy systems and at
the same time, are able to keep the current sequential arrangement of trading floors. Therefore, a
more cost-effective system dispatch is attained with only slightly altering the current market setup.
To accomplish a similar effect, various alternative approaches, such as flexible ramping products,
have been considered in practice. In this case, flexible ramping products are defined to address
operational challenges of maintaining the system balanced and to increase market efficiency. Using
the flexible ramping product as an inspiration, an interesting direction for future research would
be to define analogous products on the natural gas side by valuing the flexibility of the natural
gas network (i.e. linepack) and ensuring that there is enough linepack to manage the increasingly
variable fuel consumption of GFPPs. In a similar context, the introduction of virtual-bidders in the
electricity and natural gas markets as well as, allowing the GFPPs to self-schedule by adopting
a probabilistic description of uncertainties, are arbitrage-based options that can enhance market
efficiency both on the electricity and natural gas side. More specifically, an interesting case to
consider would be that each one of these energy arbitragers would have an imperfect view of
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uncertainties meaning that their beliefs are different from the actual distribution characterizing
uncertain parameters.

Building on the two proposed data-driven models, there are several interesting directions to be
further investigated. Extending the findings regarding the reformulation of joint chance constraints
with the Wasserstein ambiguity set, alternative ambiguity sets can be considered to provide
tractable reformulation of distributionally robust joint chance constrained programs. Tractable
reformulations of joint chance constraints are of great interest since they would allow the system
operators to define system-wide risk parameters to the constraints, instead of individual ones.
Another interesting direction is to solve a distributionally robust chance constrained problems
in a distributed manner but for a variety of agents that have a different belief on characterizing
uncertainty. That way, the agents would not need to agree on a common description for the
ambiguity sets. Moreover, the models utilized by system and market operators are often described
via mathematical programs. The continuously increasing deployment of renewable energy sources
will require to solve these problems in a high dimensional setting which raises computational
issues. To tackle such tractability issues, especially in practical applications, the utilization of
machine learning offers a great potential to predict the outcomes of the respective mathematical
programs.

Finally, the energy sector is becoming increasingly digitalized with large volumes of energy data
(e.g. renewable power production and smart meter data) being collected over the last years. To
closely follow this transformation, data-driven approaches in combination with machine learning
will be key tools to exploit the acquired information from the collected data towards enabling
new opportunities for the efficient operation of future energy systems and markets. Adopting
such novel approaches for the development of the operational models will eventually enable the
integration of higher shares of renewables, increase coordination among energy sectors, as well as
bring additional benefits to the society and end-users by decreasing operational costs.
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Towards Fully Renewable Energy Systems:
Experience and Trends in Denmark

Pierre Pinson, Senior Member, IEEE, Lesia Mitridati, Christos Ordoudis, Student Member, IEEE, and
Jacob Østergaard, Senior Member, IEEE

Abstract—Deployment of renewable energy generation capac-
ities and integration of their power production into existing
power systems has become a global trend, with a common set
of operational challenges stemming from variability and limited
predictability of power generation from, e.g., wind and solar.
Denmark is a country that invested early in wind energy, rapidly
proposing very ambitious goals for the future of its energy
system and global energy usage. While the case of Denmark
is specific due to its limited size and good interconnections, there
may still be a lot to learn from the way operational practice
has evolved, also from shifting towards a liberalized electricity
market environment, and more generally from going along with
other technological and societal evolution. The aim of this paper is
to give an overview of recent and current initiatives in Denmark
that contributes towards a goal of reaching a fully renewable
energy system.

Index Terms—Coordination, energy markets, flexibility,
integrated energy systems, renewable energy integration.

I. INTRODUCTION

RENEWABLE energy deployment and integration is a
global phenomenon, with numerous countries investing

massive efforts to support this trend. Their motivations range
from abating climate change’s negative effects to ensuring
the security of the energy supply. Renewable energy is often
seen as a cornerstone in our move towards a more sustainable
future [1]. The literature on challenges related to the integra-
tion of renewable energy generation is vast, and growing at
a rapid pace. It covers a wide range of technical topics—
from power system operation and control to economical,
environmental, and societal topics in connection with the
economics of change, life cycle assessment of renewable
energy projects, and social acceptance of distributed energy
generation projects. A good starting point to have an overview
of challenges related to wind power in power systems is
available in [2]. In contrast, it might be more difficult to find
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literature that tells about how renewable energy integration
is seen in practice and supported by a number of initiatives,
from adaptation of electricity markets to deployment of new
components in the power system, but also of a regulatory
nature. A notable exception of an overview of wind power
integration studies is in [3] (and follow-up publications), which
aims to propose best practice guidelines when designing and
reporting on such complex system studies. In this context, we
place emphasis here on the case of Denmark, a Scandinavian
country with extensive experience in integrating wind power
generation into its energy system, and also with very ambitious
objectives of having its energy supply (for electricity, industry,
transport and heating) fully covered by renewable energy by
2050 [4]. Recently, the IDA Energy Vision 2050 was published
to provide an extensive coverage of scenarios and projections
for residential electricity, industry, heating and cooling, as well
as transport [5].

The Danish situation is often seen as propitious to the
integration of renewable energy generation in view of its
limited peak load (approximately 6.5 GW), substantial in-
stalled generation capacities (nearly 15 GW) and a strong
interconnection to neighboring countries (7.2 GW as of 2015),
with additional interconnection projects in the pipeline (e.g.,
with two new links to Germany and the UK, agreed upon in
Spring 2016). An overview of such interconnections is given in
Fig. 1 as of 2014, with the Skagerrak link to Norway upgraded
to 1.7 GW in 2015. A complete description of the current
electricity and gas systems in Denmark, as well as plans for
their future development, is available in [6]. This situation
contrasts with the opposite case of the Iberian peninsula, for
instance, with a substantial peak load to be satisfied (up to
49.3 GW) and limited connection to the remainder of the
European power system, through the 2.8 GW France-Spain
interconnector.

However, reaching a fully renewable energy system is not
only a matter of electric infrastructure, but also placing em-
phasis on other aspects that matter—from market mechanisms
that adequately support renewable energy integration to stim-
ulating and operating available flexibility (demand response,
electric vehicles and storage, synergies with gas and electricity
systems), and finally to having a more holistic view of energy
production and consumption in a smart city context. After
first giving a brief overview on history and current status
with deployment of renewable energy generation capacities in
Denmark in Section II, this paper describes in Section III the
electricity market and power system operational framework

2096-0042 c© 2017 CSEE



PINSON et al.: TOWARDS FULLY RENEWABLE ENERGY SYSTEMS: EXPERIENCE AND TRENDS IN DENMARK 27

allowing the Danish power system to run with high shares of
renewable power generation. Current challenges and foreseen
changes are discussed. Subsequently in Section IV, emphasis
is placed on the idea of getting the demand side to contribute
to the integration of renewables by motivating, operating, and
rewarding flexibility in consumption, or the so-called demand
response. Initiatives to promote demand response were natu-
rally generalized to smart cities considerations since having to
look more broadly varied types of electric consumption and
their specifics e.g., for transportation, as well as opportunities
provided by dense urban environments. Eventually, this leads
to the thinking of synergies between energy carriers or energy
systems, which we present in Section V. Here, a discussion of
the case of gas and heat in the Danish context is presented.
Other recent considerations relate to the case of hydrogen
and synthetic gas. We present our concluding remarks and
perspectives in Section VI.

Source: Energinet.dk

Fig. 1. Interconnection to the Danish power system as of 2014.

II. BRIEF HISTORY AND STATUS OF RENEWABLE
ENERGY IN DENMARK

When thinking of renewable energy in Denmark, one clearly
has wind power in mind, particularly, since the country pi-
oneered the use of wind energy to meet its electric power
consumption. This originates from a choice in the 1970s to
invest in this solution to support abatement of CO2 emissions.
The Danish model is fairly unique, as it has historically been
one of the most successful countries in terms of supporting
deployment of wind power generation capacities. Starting from
1979, the capacity increased steadily, and only halted for a
little period in the early 2000s, see Fig. 2. Looking towards
the future, major wind power developments are planned mainly
in the form of medium to large offshore wind farms (several
hundreds of megawatts each) and through the repowering

of older onshore wind farms. As of today, wind power is
supplemented by non-negligible solar power capacities, nearly
reaching 800 MW at the end of 2015.
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Fig. 2. Evolution of installed wind power capacities as well as wind power
penetration in Denmark.

The successful deployment of capacities and subsequent
integration of renewable energy generation is part of a broader
evolution, from a centralized to a decentralized setup for power
generation in the country. This decentralization process means
that, while Denmark had a limited number of relatively large
power plants in the 1980s and 1990s, the power generation
landscape rapidly evolved with the deployment of distributed
generation capacities, obviously including wind turbines, more
recently solar panels, but also combined heat and power (CHP)
plants. The latter has the additional advantage of coupling
heat and electricity systems which, as will be discussed
later in this paper, also brings opportunities to accommodate
renewable energy generation, particularly in the context of the
fluctuations and limited predictability of CHPs.

For those interested in an exhaustive analysis of the Danish
energy system and its evolution over the last two decades,
the latest (i.e., for 2014) overall statistics on the Danish
energy system are available in [7], giving a broad overview
of generation mix, evolution of capacity by type, consumption
by sector, etc.

III. FROM ELECTRICITY MARKETS TO POWER
SYSTEM OPERATION

A. Liberalization Process and Current Market Conditions for
Renewable Energy Sources

Scandinavia was one of the first regions of the world to
liberalize its electricity sector (both generation and retail),
after The Energy Act of 1990 which laid the ground for the
deregulation process in the region. We mention Scandinavia
and not Denmark only because the electricity market is a
regional one. With the deregulation of electricity markets
also happening in other European countries, all those markets
are getting fully integrated, yielding a number of operational
and financial benefits, see e.g., [8]. The market operator for
Scandinavia, now also covering other countries, e.g., U.K. and
the Baltic countries, is Nord Pool1.

1nordpoolspot.com
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European electricity markets, such as the Scandinavian one,
are primarily composed of a forward allocation mechanism,
the day-ahead market, and of a balancing mechanism al-
lowing to settle deviations from day-ahead schedule. Day-
ahead markets are organized as zonal markets, hence only
considering transmission capacity limitations between market
zones. These are to be seen as financial markets anyway, while
the link to power system operations is made by communi-
cating energy production and consumption schedules to the
various system operators. When reaching the balancing stage
eventually, market-based operation is taken over by the system
operators over their respective balancing areas. Accommodat-
ing renewables in such a deregulated environment is known
to yield a number of operational problems (see, e.g., [9])
while support mechanisms and market designs should evolve
accordingly [10].

Wind power producers were originally remunerated based
on feed-in tariffs in the 1990s, i.e., a fixed price per MWh
generated. They eventually got to participate in the electricity
market as conventional power producers. This triggered a
number of studies on the impact of wind power generation
on market prices and market dynamics, see e.g., [11], [12].
Those concluded that, due to very low marginal costs and
inherent variability, wind power generation induces a down-
ward pressure on wholesale electricity prices. However, it is
not as much the energy actually produced that impact prices
than generation forecasts. This is since the day-ahead market
is cleared long before operations (12 to 36 hours), hence
requiring wind power offers to be based on predictions. An
extensive overview of the policy measures, as well as their
impact to support wind power in the Danish electricity market
can be found in [13]. While wind power is the dominant
renewable energy source in Denmark, solar power generation
is now becoming non-negligible. Support conditions, as well
as impact on electricity markets, are qualitatively similar to
the case of wind energy, though with a time delay.

If jointly looking at day-ahead and balancing market mech-
anisms, these penalize renewable energy producers since day-
ahead revenues are eventually decreased due to balancing
costs stemming from deviations from day-ahead schedule (in
connection with forecasting errors). However, this penalization
can also be seen as an incentive for renewable energy pro-
ducers to improve their forecasts, since intuitively a decrease
in forecast error should readily lead to higher revenues. In
practice, the situation is quite more complex as originally
hinted by [14].

In Denmark a two-price imbalance settlement is used, mean-
ing that only those that contribute to the system imbalance
are to be penalized. As an example, a wind power producer
who produces more than expected, while the overall system
requires extra power to get back to balance, will not be
penalized and receive the day-ahead price for each and every
MWh in surplus. This asymmetry in balancing penalties may
then work as incentives for renewable energy producers to
offer in a more strategic manner, even though understanding
and predicting system balance and related penalties naturally
is a difficult task. In addition, owing to the significant re-
newable energy penetration in Denmark, offering strategies

may definitely affect market outcomes, either since a single
producer is a price-maker, or through population effects as
actual production, information and its processing, are neces-
sarily dependent for those renewable energy producers. For a
discussion on these aspects, the interested reader is referred
to [15]. Finally, while these market mechanisms act as an
incentive to decrease energy imbalances on a per market
unit basis, i.e., hourly, these do not concern the sub-hourly
fluctuations in power delivery, which may eventually yield
increased needs for ancillary services to accommodate these
power fluctuations. Some have recently argued for mechanisms
that would allow for a transparent attribution of these ancillary
service costs to all actors of the power system, including re-
newable energy producers, hence laying the ground to support
new business cases for flexibility providers, e.g., storage and
demand response [16].

B. Links to Operational Aspects and Foreseen Challenges

Electricity markets, both day-ahead and balancing, function
based on energy blocks to be delivered or consumed over
hourly market time units. Since a constant balance between
generation and consumption is needed, schedules obtained
through electricity market clearing cannot give a complete
overview of power system operational schedules. In practice,
the hourly schedules from Nord Pool are translated into 5-
minute operational schedule to be transmitted to the TSO [17].
In addition, in order to insure reliable and economic operation,
the TSO is to purchase ancillary services, e.g., reserves, which
may then be activated to accommodate imbalances. These are
purchased before energy is traded through day-ahead market
to prevent conflicts between short-term capacity reservation
for system services and energy exchanges. With increased
renewable energy penetration, this approach to operation is
challenged. One may intuitively think of co-clearing reserve
and energy, and generalize market mechanisms in a stochastic
optimization framework so as to accommodate variability and
uncertainty in renewable power generation [9]. Already, the
Danish TSO, in concert with other Scandinavian TSOs, has
taken a proactive stance when it comes to balancing operation,
since power system reserves are deployed preventively and in
a regional coordination framework. In practice, provided that
transmission capacity is available, the Danish TSO may for
instance readily profit from flexible and relatively inexpensive
hydro capacities in Norway to balance the power system in
Denmark.

Still, as for the case of many system operators worldwide,
flexibility and consideration of a finer resolution in operation
is a key to accommodating high-frequency fluctuations from
both wind and solar power generation. Large Danish offshore
wind farms may have power swings in the order of 100
MW within a few minutes, hence requiring availability and
adequate operation of flexible balancing units. Flexibility in
power system operations is a general concern in relation to
renewable energy integration, see e.g., [18], [19].

Both in markets and in operations, forecasting of renewable
energy generation is of utmost importance. Denmark was one
of the first countries to invest heavily in developing forecasting
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methodologies and to integrate forecasts in operational prac-
tice since the early 1990s. While renewable energy forecasting
attracted little interest worldwide at that time, the literature
is expanding steadily, with many new proposals with novel
models and usage of new data types (remote sensing, weather
forecast information, etc.) being proposed every year. For
recent state-of-the-art in wind and solar power forecasting, the
reader is referred to [20], [21], and [22]. These developments
are generally directly translated to operational solutions made
available on a commercial basis by some of the numerous
forecast providers that flourish around the globe. Still today,
many challenges remain in renewable energy forecasting,
stemming from the increasing quantity of data being collected,
number of sites to be considered, variety of data to assimilate
in forecast methodologies (e.g., from lidars and weather radars
for wind energy, and from sky imagers for the case of solar
power). An overview of these challenges as well as proposals
for better integration of forecasts in power system operation
is given in [23]. Maybe the most relevant of these challenges
is to optimally estimate forecast uncertainty, in a dynamic and
conditional manner, and to then account for such uncertainty
information in operational problems.

IV. FLEXIBILITY IN ELECTRIC POWER CONSUMPTION

Higher shares of wind and solar energy in the energy mix
translate to increased needs for backup generation, or storage,
for those times with low power generation, as well as increased
flexibility to cope with variability in power generation, and re-
dispatch in case of forecast errors. Flexibility in power system
operation is high in Denmark, thanks to these interconnections,
but also thanks to the CHP plants, whose level of flexibility
was improved over the years through various technology
upgrades. Consequently, in principle, Denmark may not be
seen as a country where flexibility in electric power consump-
tion and hence demand response, is the most necessary and
most valuable to power system operation. However, flexibility
in electric power consumption is seen as a potentially new
degree of freedom in power system operation, being also
relatively cheap or at least competitive with other flexibility
options in terms of operational costs, while requiring limited
investment costs. In addition, integration of renewables has
supported a move towards electrification of, e.g., transportation
(electric vehicles) and heating sectors (heat pumps). Therefore,
it might be beneficial to optimize flexible operation of new
consumption patterns in a market environment. Deployment of
new electric consumption means embracing renewable energy
policy is an important component of a future fully-renewable
energy system, see e.g., [24], [25].

Demand response presents a large number of opportunities
and challenges, which would be too many to discuss here.
For an overview, the reader is referred to [26] and references
therein. In order to learn about the deployment process, market
design, operational aspects, as well as social aspects of demand
response, one of the world’s largest demand-response research
and demonstration experiments was initiated in 2011 on the
Danish island of Bornholm, located nearly 40 km off the

southern coast of Sweden. The EcoGrid EU2 project involved
nearly 2000 households and small businesses, to take part in a
market-based demand response experiment. The hypothesis of
the project was that electricity markets could evolve so as to
issue prices that would optimally support and control demand
response by taking advantage of the dynamic and conditional
elasticity of demand. In practice, this conditional dynamic
elasticity links to thermal inertia of buildings, flexibility in
charging patterns of electric vehicles, etc. An overview of the
EcoGrid EU market architecture is given in [27], while it is
illustrated in Fig. 3.

Fig. 3. Complete architecture of the EcoGrid EU experiment, combining
control aspects to emulate demand response, market concepts to operate it, as
well as metering and settlement aspects (taken from [28]).

The real-world experiment was organized in several phases.
The first one was seen as an open-loop experiment to ba-
sically assess if and how the control systems deployed (and
aggregators) were being responsive to modulation of electricity
prices. This revealed to be a difficult task, though allowing
to validate the price-responsiveness of most of electric loads
involved, while providing a first quantification of the balancing
that could be provided by demand response through such a
market [29]. Subsequently, the second phase consisted of a
closed loop experiment, where the market would be regularly
cleared based on forecasts of the conditional elasticity of the
electric loads, and then accounted for in the market clearing
algorithm. This second phase ran for a period of nearly nine
months and permitted to gain practical experience on market-
based demand response. An extensive analysis of the market
setup and results, also considering remaining challenges in

2eu-ecogrid.net



30 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 3, NO. 1, MARCH 2017

underlying concepts and implementation, is gathered in [30].
Some key figures include achieving a peak flexibility of
21.6%, as well as 8.6% increase in integration of wind power
generation. In parallel, the most important conclusions from
this analysis related to the need to improve forecasts to be
used as input to market clearing, as well as to the thorough
consideration of cross- elasticities (i.e., temporal dependence)
in demand response. Finally, a third phase of the experiment
concentrated on evaluating the possibility to support conges-
tion management with market-based demand response. This
part revealed that even though demand response could help,
difficulties to predict localized demand response potential for
small groups of electric loads, combined with the inherent
uncertainty in such response, was potentially tampering the
viability of demand response as a practical solution.

V. SMART ENERGY AND SMART CITIES

Beyond flexibility in electric power consumption, an ap-
proach accommodating further renewable energy relates to
a more holistic view of the energy system. This includes
interfacing with e.g., heat and gas, and its role in the more
general context of smart cities. This approach acknowledges
the fact that an increasing share of the population live in cities,
and that modern means of data collection, communication
and processing will allow for better control, operations, and
planning of energy, transportation, etc. in a more integrated
manner. For the specific case of Denmark, we first consider
synergies between electricity and gas, and then with the
heating system, while finally describing and discussing a
real-world smart city development in Copenhagen, Denmark’s
capital city.

A. Potential Synergies with Gas

Gas-fired power plants (GFPPs) comprise one of the main
power generation technologies nowadays and they are ex-
pected to have an even more prominent role in the future
energy system. One of the main reasons for this will be
the transition to an environmentally friendly energy system.
GFPPs are characterized by fast ramping ability, as well as
better efficiency and reduced emissions compared to other
thermal power plants. These characteristics make them an ideal
choice for the transition to a green energy system, especially
if we take into account the potential of using green gases
(e.g., biogas and synthetic gas) in the following years. For
this reason, the interaction among the energy systems and
especially between the electrical and gas networks is expected
to increase. On top of that, the utilization of power-to-gas
technologies will help this interaction to flourish.

Loose coupling among the electricity, gas and heat systems
already exist, as many players (e.g., GFPPs, CHP plants etc.)
interact with more than one of them. In countries and regions
where these interactions have been noticed, some initial steps
towards the coordination of the individual systems have been
made, but as the interaction increases, more issues have to
be solved. For example, ISO New England, which depends
heavily on GFPPs to cover heat and electricity demand,
faced significant difficulties in operating the power system

in days with high heat and electricity demand [31]. This
made it necessary to examine system and market dynamics
between natural gas and electricity. Additionally, the need for
coordinated operation of natural gas and electricity systems
with high shares of renewables, such as in the case of Spain,
is discussed in [32]. It is stated that market designs have to be
reformulated and that the interdependency of the networks has
to be studied under the uncertainty introduced by intermittent
renewable energy.

In that vein, Denmark is placing a significant focus on
the development and coordination of energy systems with
increased shares of renewable energy sources, with the gas
system playing an important role. As the shares of wind and
solar power are expected to dominate power production, the
GFPPs will mainly serve as peak-load generation, ensuring
security of supply. For this reason, operation of the gas system
has to be optimized and economically adapted under this new
setup.

Increasing the interaction among the energy systems will
also reveal the potential for energy storage in the gas (and heat,
at different temporal and spatial scales) systems. The Danish
system operator Energinet.dk owns two gas storage facilities
with a capacity of 11 TWh methane gas and an additional
capacity of 15–20 GWh in the gas network, which may be seen
as large storage capabilities. An important peculiarity of the
Danish case is the existence of a common system operator for
electricity and natural gas (Energinet.dk) that readily permits a
coordinated operation and cost-effective investment decisions
for both systems. Such a setup with a common system operator
can be also found in other European countries, e.g., Estonia,
Luxembourg, and Portugal.

The large-scale integration of renewables in the energy
systems can be facilitated by designing a coherent energy
system that will be operated optimally under new market
structures [33]. Electricity markets are the most mature and
already undergoing massive changes due to the increased
penetration of renewables in the power system [9]. Substantial
changes have also been made in the natural gas market. A gas
exchange, Gaspoint Nordic, has been established so that the
players have the necessary marketplace to trade natural gas.
Historically, the gas market was based on long-term contracts
and bilateral agreements. However, a significant shift of the
traded volume from the bilateral market to Gaspoint Nordic
has been noticed lately. Traded volume in Gaspoint Nordic was
8.3 % of the total traded volume in 2010, while in 2015, this
number increased to 58.2 %, showing a transformation of the
gas market towards a more liquid and competitive model [34].
These new market models are expected to facilitate the coor-
dination of the energy systems and raise new opportunities for
players participating in them.

There are various sources of flexibility that the system
operator can utilize to keep the system physically balanced.
In Denmark, flexibility services can be procured from the
available line pack in the pipeline network, as well as storage
facilities that are controlled by the system operator and that
can be operated by varying the production from the North Sea.
However, the combination of line pack and storage facilities
are the most commonly used ones due to their abundance. The
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interaction between electricity and gas systems has increased
dramatically in real-time operation, which strengthens the
need for changes in the design of the gas balancing model.
The limited speed with which gas travels when compared
to electricity makes the flexibility in the gas system to be
location and time dependent [35]. The usual balancing period
used for the gas system is one day, and it is common that
imbalances within predefined limits are not charged. In recent
years, though, the optimal definition of these limits is of high
importance as imbalance charges need to reflect the actual
balancing costs [36]. Denmark, like most European countries,
is putting a lot of focus on building an efficient balancing
model, described in [37], that will optimally adjust the trade-
off among exploiting the available flexibility of the gas system,
ensuring security of supply and reflecting the imbalance costs.

Denmark is also vigorously investing in transforming the
gas system to become greener. This can be accomplished by
producing biogas from renewable energy sources, such as from
biomass by thermal gasification or wind power by electrolysis.
Biogas production was 7 PJ in 2015 and is expected to increase
up to 14 PJ in 2020 [34]. Additionally, upgrading biogas
and injecting it into the natural gas network will set biogas
producers in a better and more competitive marketplace that
will help the development of this technology in the future. It
is foreseen that 10 % of the expected Danish gas consumption
will be covered by upgraded biogas in 2020 [34].

The focus placed by various countries, including Denmark,
on the coordination between electricity and natural gas systems
is highlighted in a number of research studies. The impact
of natural gas infrastructures on power systems is examined
in [38]. Although the study focuses on the inter- dependency
of the two networks in the U.S. setup, it demonstrates the
impact of natural gas infrastructure contingencies and nat-
ural gas prices on electric power generation scheduling. In
order to accomplish an efficient operation of an integrated
system, new operational models have to be developed. Within
this scope, the coupling model presented in [39] indicates a
strong interdependence between the two networks pointing
to a high potential in using a global model for operating
the two systems. The study was performed in a realistic
test case of the Greek electricity and gas systems showing
that applying such models in reality is feasible. Additionally,
different coordination scenarios between the two networks are
studied in [40] quantifying the economic and technical benefits
of coupling the electric power and natural gas infrastructures.
The increased integration of renewables in the energy system
has reinforced the link between the two systems close to real-
time operation. For this reason, the proposal of short-term
operational models is vital. For instance, a model of simulating
the integrated electricity and natural gas systems in short-term
operation is presented in [41]. In this work, the systems are
coupled by taking into account the dynamics of gas. It is shown
that gas travel velocity and the capacity of gas storage in the
network play an important role in short-term operation and
need to be modeled in order to get the maximum benefit from
the system coordination.

As previously mentioned, the gas balancing problem has
both a temporal and a spatial dimension making the develop-

ment of short-term models important. In the same direction,
an integrated model with wind power variability is proposed
and studied in [42], showing that GFPPs would facilitate the
integration of wind energy into power systems. Finally, the
effects of utilizing power-to-gas in Denmark are examined
in [43]. Test case results show a reduction in total system
cost and wind power curtailment highlighting the benefits
of investing in this new technology that will allow the bi-
directional interaction of the systems to prosper.

These innovative insights will enable and facilitate the
coordination of electricity and natural gas systems. Models
applied to realistic case studies show a great potential to
capture the existing synergies and build up new ones that will
assist the progress towards a sustainable energy system in the
future.

B. The Case of Heating in Denmark

The development of district heating in urban areas has been
identified by the Heat Roadmap Europe as a key recommen-
dation for a low-carbon heating sector in Europe [44]. DH
has a central role in Denmark’s energy strategy to meet the
ambitious target of reaching a fully renewable energy system
by 2050 [45], [46]. Indeed, 46% of Danish net heat demand
is currently covered by district heating, mainly produced by
combined heat and power (CHP) plants.

Interactions with the district heating system can provide
additional flexibility in electric power system operation by
generating heat from CHP plants during high electricity price
periods, or from heat pumps and electric boilers during low
electricity price periods. In addition, heat storage in the form
of water tanks, combined with relocation technologies, can
provide cost-effective energy storage capacity [33]. Exploiting
the existing synergies between these systems can improve the
efficiency and flexibility of the overall system, as well as
facilitate the penetration of renewable energy sources in the
power system.

Denmark has long been a leading country in the develop-
ment of DH and has developed many initiatives to introduce
competition and increase the efficiency of the DH system.
In the Greater Copenhagen area, the day-ahead heat dispatch
is prepared by Varmelast.dk, an independent market operator
owned by the three major heat distribution companies. Al-
though supply and retail heat prices are fixed, heat producers
compete on their heat production costs and are dispatched
based on a merit-order and a least cost principle. Fig. 4 shows
the sequence of decisions for heat and electricity dispatch.

For CHPs, heat production costs are calculated as total
production costs minus expected revenues from electricity
sales. This approach ensures that the most efficient units
are dispatched at each hour, and implicitly accounts for the
interactions with the power sector. However, research is still
needed to increase the flexibility in the heat system and model
interactions and uncertainties from other energy systems. In-
deed, as the heat dispatch is determined before the opening
of the electricity market, and due to the constraints on their
joint feasible operating regions, CHPs have a limited flexibility
when participating in the day-ahead electricity market. Hence,
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they are exposed to the risk of low prices and financial losses
when participating in the electricity market eventually. In
addition, the work in [48] showed that the inflexible heat-
driven dispatch of CHP plants can have a negative impact on
the power system and increase wind curtailment.

Additionally, over the last decades, due to the large penetra-
tion of wind power and the increasing number of hours with
low electricity prices, CHP plants have become less profitable
in the power market [49]. This has led to an increase in the
use of oil boilers. In that context, large-scale heat pumps,
electric boilers and heat storage have been investigated as
sustainable alternatives to CHPs. In particular, HOFOR (utility
in Copenhagen area) is currently installing in Copenhagen its
first large-scale heat pump that will participate in the heat and
electricity markets.

The literature on the integration and management of flexible
heat sources is profuse. Reference [50] showed that exploiting
existing heat storage capability of heat networks could provide
operational flexibility and allow higher wind penetration in
systems with insufficient ramping capacity. In parallel, Refer-
ence [51] showed the benefits of integrating electric boilers,
heat pumps, and heat storage in the Danish energy system. By
producing heat when electricity prices are low and decoupling
the strong linkage between heat and power outputs of CHPs,
these technologies can increase the flexibility of the overall
system, and again reduce wind curtailment. Additionally, by
lowering balancing costs and the number of hours with low
electricity prices, these technologies increase the value of
wind production. Fig. 5 (inspired by [48]) illustrates the
virtually relaxed feasible operating region of an extraction
CHP coupled with flexible heat sources. In addition, power-to-
heat technologies, such as residential heat pumps and electric
boilers, can provide additional flexibility to the system. In
order to harness this flexibility from end-users, novel retail
approaches are needed and are integrated in the scope of the
Energylab Nordhavn project.

However, major challenges remain for the large-scale de-
velopment of these technologies. Reference [52] showed that
current taxes on electricity-based heat producers in Denmark
reduced the profitability of electric boilers and heat pumps.
In Copenhagen and Odense (third largest city in Denmark),
flat heat tariffs for producers and consumers have also been
challenged as they do not reflect actual heat production costs.

In addition, the introduction of dynamic heat prices could be
an additional argument for the development of large-scale heat
pumps. In Aarhus (second largest city in Denmark), the heat
market operator, Varmeplan Aarhus, has already implemented
dynamic heat wholesale prices. Based on the experience in
Aarhus, the CITIES project is investigating alternative heat
supply tariffs [53].

Fig. 5. Joint feasible operating region of an extraction CHP (inspired by [48]).
(a) CHP only. (b) CHP and electric boiler. (c) CHP and heat storage. (d) CHP,
electric boiler and heat storage.

Additionally, due to the large penetration of stochastic
renewable energy sources, it is essential to model the growing
uncertainty from the power sector for optimal heat dispatch.
Reference [54] introduced uncertainties on heat demand and
electricity prices and recast the joint heat and electricity
dispatch of CHPs and heat storage in the Copenhagen area
using piece-wise linear decision rules. This approach showed
improvement in terms of robustness of the solution with mini-
mum financial losses. In [52] the heat and electricity dispatch
of CHPs is formulated as a two-stage stochastic optimization
problem. This approach showed that traditional deterministic
models tend to overestimate the benefits of installing heat
pumps and electric boilers.

The aforementioned studies propose a co-optimization ap-
proach for heat and electricity dispatch. These approaches
show improvements in terms of flexibility of the overall system
and wind penetration. However they are difficult to implement

Fig. 4. Procedure for preparing heat plans in the Copenhagen area (inspired by [47]).
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in the current Danish market framework. In [55], a novel
approach is proposed for heat dispatch that is constrained
by electricity dispatch. The day-ahead heat dispatch problem
is modeled as a hierarchical stochastic optimization problem,
where the lower-level problems represent electricity market
clearing scenarios. This method allows independent heat mar-
ket operators, such as Varmelast.dk, to dispatch optimal heat
sources while anticipating the impact of the participation of
CHPs in the day-ahead electricity market.

These studies hint at the fact that the development of flexible
heat sources and a better modeling of the interactions with
the power sector could increase the flexibility of the overall
system. While stochastic and robust optimization models have
shown improvements in flexibility, heat market operators in
Denmark seem reluctant to adopt such methods. In order
to better dispatch this potential flexibility in a deterministic
market framework, new trading mechanisms incorporating
flexible products for heat and electricity should be investigated.

C. EnergyLab Nordhavn Smart Living Lab

As for many other countries, there still remains a gap
between all the studies cited here in the literature and actual
deployment of operational and transparent solutions of practi-
cal value. These should also be supported by viable business
models for existing and new actors in the energy system to
engage in the proposed new operational practices. With that
objective in mind, many initiatives for large demonstration
projects have been started throughout Europe. These are most
often deployed in a smart city context, hence taking part in
a general momentum for improving infrastructures and their
usage in urban environments.

In Denmark, Copenhagen aims to be a frontrunner sus-
tainable city, an objective that was formulated in connection
with the 2009 United Nations Climate Change Conference.
It consists in becoming a carbon-neutral city by 2050. In
practice, a relevant initiative is the development of the Nord-
havn neighborhood in Copenhagen, to extend with housing and
office space for 40,000 inhabitants and 40,000 office spaces in
the long term. This extension of the neighborhood is to become
a smart living lab for energy and its connection with other
infrastructures. The EnergyLab Nordhavn3 project started in
2015, placing emphasis on energy system integration, interac-
tion with the transportation system, development of ICT- and
storage-based management solutions for increased flexibility in
power system operation, active distribution network planning
etc. It comprises an interesting and ambitious large-scale
public-private partnership to support relevant research and
transfer of relevant technologies to an urban environment. A
strong focus is also on new business models that help to
rethink the relationship of customers to energy usage and
its utility, e.g., by pricing indoor temperature and comfort
instead of the usage of primary energy carriers like electricity
and district heating. Such an initiative illustrates the strong
commitment of Denmark to new models for research and
initiative, seen as a cornerstone to the further integration of
renewables into the energy system.

3energylabnordhavn.dk

VI. CONCLUSION

Denmark, supported by a strong political will, is a country
that aims to fully meet its energy needs with renewable
energy, hence with substantial penetration of wind and solar
power generation means. While starting from a favorable
standpoint, with good interconnections and existing flexibility
on the supply side, it still faces a number of challenges to
reach these goals. With a strong commitment to research
and development, as well as a proactive attitude towards
demonstration and real-world implementation, the country has
invested in grand projects that will support renewable energy
integration, with a particular focus on gaining and steering new
flexibility in the system. Besides the role of interconnectors,
such flexibility originates from electric demand response and
more generally, coupling with transportation (through electric
vehicles), heating (through, e.g., heat pumps and CHP plants),
and with the gas system (also through generation means).
While most of these developments have focused on technology
and infrastructure, it is clear that future steps ought to focus
on the social and market components of the renewable energy
transition problem. The same way this transition has triggered
a number of important changes in the system itself, it may
also be an opportunity for changing the way people perceive
energy production, exchange and consumption.
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a b s t r a c t 

In energy systems with high shares of weather-driven renewable power sources, gas-fired power plants 

can serve as a back-up technology to ensure security of supply and provide short-term flexibility. There- 

fore, a tighter coordination between electricity and natural gas networks is foreseen. In this work, we 

examine different levels of coordination in terms of system integration and time coupling of trading 

floors. We propose an integrated operational model for electricity and natural gas systems under un- 

certain power supply by applying two-stage stochastic programming. This formulation co-optimizes day- 

ahead and real-time dispatch of both energy systems and aims at minimizing the total expected cost. 

Additionally, two deterministic models, one of an integrated energy system and one that treats the two 

systems independently, are presented. We utilize a formulation that considers the linepack of the natural 

gas system, while it results in a tractable mixed-integer linear programming (MILP) model. Our analy- 

sis demonstrates the effectiveness of the proposed model in accommodating high shares of renewables 

and the importance of proper natural gas system modeling in short-term operations to reveal valuable 

flexibility of the natural gas system. Moreover, we identify the coordination parameters between the two 

markets and show their impact on the system’s operation and dispatch. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Natural gas is considered an efficient and clean fuel that will 

have a key role in the future energy system. Older coal and nuclear 

power plants are gradually decommissioned and replaced by gas- 

fired power plants (GFPPs) and renewable sources of energy. The 

electric power sector is expected to be the main driver of natural 

gas consumption increase in the future ( U.S. Energy Information 

Administration, 2016 ), which will result in a tight coupling of both 

energy systems. In addition, the large-scale integration of uncertain 

and variable renewable energy production makes operational flex- 

ibility essential in energy systems. GFPPs are a well-suited flexible 

component for the energy system that can support other flexible 

sources in the power system (e.g., hydro power) but, most impor- 

tantly, enhance the link with the natural gas system and the op- 

portunity to exploit its available flexibility. In order to facilitate the 

operation of the future energy system, the structure of electricity 

and natural gas markets needs to be reconsidered. 

∗ Corresponding author. 

E-mail addresses: chror@elektro.dtu.dk (C. Ordoudis), ppin@elektro.dtu.dk (P. 

Pinson), juan.morales@uma.es (J.M. Morales). 

In the existing setup, the main inefficiencies stem from the im- 

perfect coordination between the trading floors, as well as between 

the markets for those two energy commodities, i.e., electricity and 

natural gas. Traditionally, the electricity and natural gas markets 

are cleared independently and their communication is based on 

the interface provided by GFPPs via predefined coordination pa- 

rameters, such as their fuel consumption, which depends on their 

dispatch in the electricity market and the price of natural gas 

( Duenas, Leung, Gil, & Reneses, 2015 ). These parameters are de- 

fined in a static way due to the imperfect coordination between 

the two markets. However, a static definition of these parameters 

does not permit the development of an efficient coordinated setup 

between the two markets that will allow the interaction of the two 

systems to flourish. In various regions around the world that highly 

depend on GFPPs for electricity production, several coordination 

schemes are considered in practice highlighting the need to further 

investigate this topic. For instance, ISO New England increased the 

coordination with the natural gas sector and studies the impact of 

fuel demand of GFPPs on the operation of both systems ( Babula & 

Petak, 2014 ). A limited market coordination would result in jeop- 

ardizing available flexibility and reliability, which encourages reg- 

ulators to define setups that support existing synergies. Addition- 

ally, current market designs are based on sequential independent 

https://doi.org/10.1016/j.ejor.2018.06.036 
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Nomenclature 

Parameters 

�z compressor factor located at natural gas network 

branch z [-]. 

W j capacity of stochastic power plant j [MW]. 

φi g power conversion factor of natural gas-fired 

power plant i g [kcf/MWh]. 

πω probability of scenario ω [-]. 
˜ M sufficiently large constant [-]. ̂ W j,t expected power production by stochastic power 

plant j in period t [MW]. 

B n , r absolute value of the susceptance of line (n,r) [per 

unit]. 

C + 
i 

, C −
i 

up/down regulation offer price of dispatchable 

power plant i [$/MWh]. 

C + 
k 

, C −
k 

up/down regulation offer price of natural gas pro- 

ducer k [$/kcf]. 

C + s , C 
−
s up/down regulation offer price of natural gas stor- 

age s [$/kcf]. 

C sh, E cost of electricity load shedding [$/MWh]. 

C sh, G cost of natural gas load shedding [$/kcf]. 

C i day-ahead offer price of dispatchable power plant 

i [$/MWh]. 

C k , C s day-ahead offer price of natural gas producer k 

and storage s [$/kcf]. 

D 

E 
n,t electricity demand at node n and in period t 

[MW]. 

D 

G 
m,t natural gas demand at node m and in period t 

[kcf/h]. 

E 
min/max 
s minimum and maximum level of storage s [kcf]. 

F max 
n,r transmission capacity of line (n,r) [MW]. 

G 

+ 
k 
, G 

−
k 

maximum up/down reserve offered by natural gas 

producer k [kcf/h]. 

G 

max 
k 

capacity of natural gas producer k [kcf/h]. 

IR s , WR s injection and withdrawal rates of storage s [kcf/h]. 

K 

h/f 
m,u linepack (h) and natural gas flow (f) constant of 

pipeline (m,u) [kcf/psig, kcf/(psig · h)]. 

P + 
i 

, P −
i 

maximum up/down reserve offered by dispatch- 

able power plant i [MW]. 

P max 
i 

capacity of dispatchable power plant i [MW]. 

P R 
min/max 
m 

minimum and maximum pressure at node m 

[psig]. 

W j , ω, t power production by stochastic power plant j in 

scenario ω, period t [MW]. 

Sets 

� set of stochastic power production scenarios ω. 

� set of primal optimization variables defined for each 

optimization model. 

A 

I g 
m 

set of natural gas-fired power plants i g located at 

natural gas network node m . 

A 

K 
m 

set of natural gas producers k located at natural gas 

network node m . 

A 

S 
m 

set of natural gas storages s located at natural gas 

network node m . 

A 

I 
n set of dispatchable power plants i located at elec- 

tricity network node n . 

A 

J 
n set of stochastic power plants j located at electricity 

network node n . 

I set of dispatchable power plants i . 

I c set of thermal power plants i c ( I c ⊂ I ). 

I g set of natural gas-fired power plants i g ( I g ⊂ I ). 

J set of stochastic power plants j . 

K set of natural gas producers k . 

L set of electricity transmission lines l . 

M set of natural gas network nodes m . 

N set of electricity network nodes n . 

S set of natural gas storages s . 

T set of time periods t . 

V set of fixed pressure points v for the linearization of 

Weymouth equation. 

Z set of natural gas network branches z . 

Variables 
ˆ δn,t voltage angle at node n and in period t [rad]. 
ˆ λE 

n,t electricity locational marginal price in day-ahead 

market at node n and period t [$/MWh]. 
ˆ λG 

m,t natural gas locational marginal price in day-ahead 

market at node m and period t [$/kcf]. 
ˆ f n,r,t power flow on line (n,r) and in period t [MW]. 
˜ δn,ω,t voltage angle at node n in scenario ω, period t 

[rad]. 
˜ λE 

n,ω,t electricity locational marginal price in balancing 

market at node n in scenario ω, period t [$/MWh]. 
˜ λG 

m,ω,t natural gas locational marginal price in balancing 

market at node m in scenario ω, period t [$/kcf]. 
˜ f n,r,ω,t power flow on line (n,r), in scenario ω, period t 

[MW]. 

e s , t natural gas volume in storage facility s and in pe- 

riod t [kcf]. 

g + / −
k,ω,t 

up/down regulation provided by natural gas pro- 

ducer k in scenario ω, period t [kcf/h]. 

g 
in/out 
s,t in- and outflow natural gas rates of storage s in pe- 

riod t [kcf/h]. 

g 
in/out,r 
s,ω,t in- and outflow natural gas rates of storage s in 

scenario ω, period t [kcf/h]. 

g k , t day-ahead dispatch of natural gas producer k in pe- 

riod t [kcf/h]. 

h m , u , t average mass of natural gas (linepack) in pipeline 

(m,u), period t [kcf]. 

h r m,u,ω,t average mass of natural gas (linepack) in pipeline 

(m,u), scenario ω, period t [kcf]. 

l 
sh,E/G 
n/m,ω,t electric power and natural gas load shedding at 

node n / m in scenario ω, period t [MW, kcf/h]. 

p + / −
i,ω,t 

up/down regulation provided by dispatchable 

power plant i in scenario ω, period t [MW]. 

p i,t , w j,t day-ahead dispatch of power plants i and j in pe- 

riod t [MW]. 

pr r m,ω,t pressure at node m in scenario ω, period t [psig]. 

pr m , t pressure at node m and in period t [psig]. 

q 
in/out,r 
m,u,ω,t in- and outflow natural gas rates of pipeline (m,u) 

in scenario ω, period t [kcf/h]. 

q m , u natural gas flow in pipeline (m,u) [kcf/h]. 

q 
in/out 
m,u,t In- and outflow natural gas rates of pipeline (m,u) 

in period t [kcf/h]. 

w 

sp 
j,ω,t 

power spilled by stochastic power plant j in sce- 

nario ω, period t [MW]. 

y r m,u,ω,t binary variable defining the direction of the natu- 

ral gas flow in pipeline (m,u), scenario ω, period t 

{0,1}. 

y m , u , t binary variable defining the direction of the natural 

gas flow in pipeline (m,u), period t {0,1}. 

auctions, with the day-ahead and the balancing markets as the 

main trading floors. This sequential approach prevents an inter- 

temporal coordination between these trading floors that could fa- 

cilitate the integration of variable and uncertain renewables. On 
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the other hand, a market design based on stochastic program- 

ming, as proposed in Pritchard, Zakeri, and Philpott (2010) and 

Morales, Conejo, Liu, and Zhong (2012) , co-optimizes the day- 

ahead and balancing stages and is able to provide a dispatch that 

anticipates future balancing needs. 

Over the last years, an increased interest in studying the in- 

teraction between the electricity and natural gas systems has 

been raised. Geidl and Andersson (2007) and An, Li, and Gedra 

(2003) incorporate natural gas network constraints in the opti- 

mal power flow problem, while the unit commitment problem 

with natural gas security constraints is solved in Liu, Shahideh- 

pour, Fu, and Li (2009) and Li, Eremia, and Shahidehpour (2008) . 

Biskas, Kanelakis, Papamatthaiou, and Alexandridis (2016) use an 

Augmented Lagrangian method to jointly optimize the electric- 

ity and natural gas systems including unit commitment decisions. 

The aforementioned contributions utilize a steady-state approach 

to model the natural gas system which may result in suboptimal 

solutions when considering short-term operations. In contrast to 

the electricity system, natural gas can be stored in the network 

and moves with a lower speed than electricity. These characteris- 

tics are important as they endow the natural gas system with flexi- 

bility that can be exploited to ensure reliability; especially in cases 

of highly variable withdrawals by the GFPPs. Liu, Shahidehpour, 

and Wang (2011) and Chaudry, Jenkins, and Strbac (2008) model 

the natural gas system with linepack (i.e., ability of storing natural 

gas in the pipelines) by solving a mixed-integer nonlinear and a 

nonlinear program, respectively. However, these approaches do not 

guarantee global optimal solutions, involve high computation times 

and are not suitable to be included in a market mechanism as 

it is hard to derive prices from them. Additionally, Correa-Posada 

and Sanchez-Martin (2014) propose a linearization approach based 

on mixed-integer linear programming to efficiently approximate 

a dynamic natural gas model that is easier to solve at global 

optimality. Liu et al. (2009) , Li et al. (2008) and Alabdulwahab, 

Abusorrah, Zhang, and Shahidehpour (2015) consider the natu- 

ral gas network constraints only to ensure feasibility and do not 

optimize the operational cost of the natural gas system. Hence, 

the optimal operation of the integrated energy system is not 

guaranteed. 

Several works have dealt with the presence of uncertain re- 

newable production in coordinated electricity and natural gas sys- 

tems. Alabdulwahab et al. (2015) present a stochastic program- 

ming approach, while Bai et al. (2016) utilize interval optimization. 

In both cases, a proper representation of the natural gas system 

with linepack is neglected. Qadrdan, Wu, Jenkins, and Ekanayake 

(2014) and He, Wu, tianqi Liu, and Shahidehpour (2016) take the 

linepack into account in a stochastic nonlinear program and a 

robust co-optimization model that utilizes the alternating direc- 

tion method of multipliers (ADMM) to separate electricity and 

natural gas systems, respectively. An alternative approach to im- 

prove the coordination between electricity and gas networks is 

proposed in Clegg and Mancarella (2016) , where a flexibility met- 

ric is calculated and included in the electricity system opera- 

tion to impose natural gas related constraints. Moreover, the im- 

pact of power-to-gas technology is studied in Clegg and Man- 

carella (2015) along with its potential to facilitate wind power 

integration. 

Acknowledging the necessity for an improved coordination be- 

tween electricity and natural gas short-term markets with high 

penetration of stochastic production, we propose a coupled clear- 

ing model that anticipates future balancing needs and optimally 

dispatches the integrated energy system. The proposed model is 

formulated as a two-stage stochastic programming problem in- 

spired by Morales et al. (2012) . Moreover, we include linepack in 

the natural gas system modeling, which is taken into account both 

in the day-ahead and balancing stages. Comparing the proposed 

Fig. 1. Electricity and natural gas markets coordination. GFPPs: Gas-fired power 

plants, NGP: Natural gas producers, EL: Electricity market and NG: Natural gas 

market. 

approach with a purely steady-state natural gas model, we high- 

light the significance of taking into account the linepack flexibility 

in real-time operation. The contributions of the paper are summa- 

rized as follows: 

1. Three market-clearing models are provided, ranging from the 

current decoupled and deterministic setups to the proposed 

coupled and stochastic approach. The aim is to identify and ad- 

dress the efficiency improvement by considering a coordinated 

framework between systems and trading floors. 

2. A market design that couples the electricity and natural gas 

markets in the day-ahead and balancing stages, while consider- 

ing the uncertainty introduced by stochastic power producers, 

is proposed. Moreover, an effective pricing scheme is developed 

and the relation of GFPPs’ operating cost with the outcomes of 

the natural gas market is taken into account. 

3. A tractable and linearized natural gas model with linepack is 

considered, while we show that this approach takes advantage 

of the flexibility of the natural gas network to facilitate the 

integration of renewables. Furthermore, we quantify and high- 

light the increased performance of the model in our analysis. 

The remainder of the paper is organized as follows. The coordi- 

nation framework on which the market-clearing designs are based 

is introduced in Section 2 . Section 3 presents the natural gas sys- 

tem modeling, while the mathematical formulation of the market- 

clearing models is described in Section 4 . Section 5 demonstrates 

the results in a realistic case study. Finally, Section 6 provides the 

conclusion with suggestions for future work. 

2. Coordination framework 

This section presents the coordination framework of electric- 

ity and natural gas markets along with the main trading floors in 

short-term operations. We first discuss the degrees of coordina- 

tion both system-wise and in time and then formulate the market- 

clearing models. 

2.1. Market designs 

Currently, the electricity and natural gas markets are cleared in- 

dependently and mainly interact through the operation of GFPPs. 

This interaction is based on the definition of appropriate coordi- 

nation parameters ( Sorokin, Rebennack, Pardalos, Iliadis, & Pereira, 

2012 ), such as the price of natural gas and the consumption of 

GFPPs, as well as the available quantity of natural gas for power 

production. Fig. 1 illustrates the market setup along with such co- 

ordination parameters. 

Natural gas markets were historically based on long-term 

contracts with limited short-term variability. However, recent 

trends show a transition towards short-term markets, which is 

further strengthened by the needs of GFPPs, which are expected 

to have an increased intraday variability due to stochastic renew- 

able production ( Zlotnik, Roald, Backhaus, Chertkov, & Andersson, 
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2017a ). In the natural gas market, GFPPs act as buyers to acquire 

their fuel for power production and mainly purchase natural gas 

via short-term interruptible contracts or in the gas spot market. 

The gas supply contracts are signed with natural gas producers at 

a predefined price, while in the gas spot market the GFPPs buy 

their fuel at the spot price. The gas spot price may be undefined 

for a period of the following day at the time of bidding in the 

electricity market due to the asynchronous setup between the two 

markets ( Hibbard & Schatzki, 2012 ). Consequently, GFPPs have to 

use an estimation of the natural gas price and face uncertainty 

about the price and natural gas availability, when buying from 

the gas spot market. The fuel price used by GFPPs to bid in the 

electricity market is considered fixed regardless of the procure- 

ment procedure and may not reflect the actual value of natural 

gas. The price-quantity offers in the electricity market are placed 

depending on the natural gas price, fuel availability and technical 

characteristics of GFPPs. Then, the electricity market is cleared and 

the natural gas demand of GFPPs is given as a fixed input to the 

natural gas market. Similarly, the natural gas market is cleared 

based on the price-quantity bids of natural gas producers. 

The fuel demand of GFPPs is usually assigned with a lower 

priority than residential natural gas loads, which may constrain 

the operation of GFPPs in systems where natural gas is widely 

used both for power production and heating, e.g., in New Eng- 

land ( Babula & Petak, 2014 ). An additional source of inefficiency on 

the system operation is introduced by the asynchronous timing of 

electricity and natural gas markets, which becomes highly essen- 

tial under an increased system interaction with fluctuating renew- 

ables. For this reason, the adoption of a concurrent market timing, 

as well as the consideration of the physical and economic interplay 

between the two markets will facilitate their coordination ( Hibbard 

& Schatzki, 2012; Tabors, Englander, & Stoddard, 2012 ). We capture 

the interaction between these markets by defining two approaches, 

namely the decoupled and coupled electricity and natural gas mar- 

kets. The decoupled approach mimics the current market setup, 

while the coupled one addresses the need for having a concur- 

rent and short-term integrated market. A coupled market design 

will profit from increased operational flexibility and provide the 

optimal dispatch for the whole energy system, instead of having 

a static and predefined communication between the two markets. 

A decoupled setup yields a partial coordination between markets, 

while a coupled approach optimizes the dispatch of GFPPs by tak- 

ing into account the conditions in the natural gas market such as 

the price and availability of natural gas. 

In this work, the main focus is placed on two trading floors, 

namely the day-ahead and balancing markets, in line with the re- 

cent trend in the natural gas market where short-term trading is 

significantly increasing. This way, we consider a design for the nat- 

ural gas market that is consistent with that of the electricity mar- 

ket. Current market mechanisms clear sequentially these two trad- 

ing floors. The day-ahead market is initially cleared 12–36 hours in 

advance of actual delivery, while the balancing market settles the 

imbalances in relation to the day-ahead schedule to keep the sys- 

tem balanced ( Morales, Zugno, Pineda, & Pinson, 2014 ). In such a 

sequential arrangement, the dispatch is based on the merit-order 

principle that maximizes the social welfare of each independent 

trading floor. However, this approach does not ensure an optimal 

dispatch in case more than one trading floors are evaluated. In 

the electricity market, flexible producers may not be scheduled 

or being fully dispatched, which could lead to scarcity of flexible 

sources in real-time operation. The aforementioned situation is ag- 

gravated with the large-scale integration of uncertain renewables. 

The power production cost of these sources is close to zero, which 

makes them the first to be dispatched according to the merit- 

order principle. Consequently, flexible producers may be left out 

of the market and higher balancing requirements will arise in real- 

time. Moreover, the impact of party predictable renewables on the 

electricity market is transferred to the natural gas market through 

GFPPs ( Keyaerts, Delarue, Rombauts, & William, 2014 ). In view of 

an energy system where GFPPs will provide a significant amount 

of balancing services to support renewable production, the fuel de- 

mand of GFPPs will have a more uncertain nature. To that end, a 

sequential setup can be inadequate also for the natural gas market 

under a tighter coupling with the electricity one. 

The interaction between trading floors is modeled by a sequen- 

tial and a stochastic approach. In the sequential setup, the day- 

ahead and balancing stages are optimized independently under a 

deterministic description of uncertainties, such as stochastic power 

production, which results in a lack of temporal coordination. How- 

ever, a market-clearing model based on stochastic programming 

is able to co-optimize the dispatch in both trading floors and re- 

duce the operating costs. The utilization of stochastic programming 

allows for a perfect temporal coordination between the trading 

floors, provided that the uncertain power production is properly 

described by a scenario set �. 

The coupling of electricity and natural gas markets, along with 

a coordination of the two trading floors would increase the effi- 

ciency of operating the whole energy system with high shares of 

renewables. However, regulatory changes are still needed and mar- 

ket designs have to advance. The use of two-stage stochastic pro- 

gramming for electricity market-clearing is extensively discussed 

in Morales et al. (2014) , highlighting its advantages and poten- 

tial challenges. On a different front, the electricity and natural gas 

systems have been essentially operated independently from each 

other over the years. It has only been recently that some regu- 

latory changes have promoted the coordination between the two 

energy sectors and markets. For example, the FERC (Federal Energy 

Regulatory Commission) Order 809 was issued in April 16, 2015 in 

U.S., which aims at harmonizing the gas market with the needs of 

the electricity industry ( Zlotnik et al., 2017b ). In order to accom- 

plish a better coordination, the information exchange needs to be 

improved, as well as the market structures to become more coher- 

ent. Based on this observation, we propose two coupled market- 

clearing models, while a decoupled one resembles current market 

designs that have only limited coordination. Such coordination se- 

tups have been discussed by various system operators, e.g., in New 

England ( Babula & Petak, 2014 ) and Denmark ( Pinson et al., 2017 ), 

showing that it is an approach to be considered also in practice. 

Currently, the main inefficiencies stem from the uncoordinated op- 

eration, while most of the infrastructure already exists in both en- 

ergy systems. Thus, the coupled operation of energy systems is 

considered inexpensive compared to solutions that involve further 

investments. Especially, cases like Denmark, where the two sys- 

tems are operated by the same entity (i.e., Energinet.dk), would 

provide an environment that enables cost-efficient and coordi- 

nated operations. For these reasons, we focus on studying the three 

market-clearing models presented in the following section. 

2.2. Market-clearing models 

Depending on the level of coordination between the electricity 

and natural gas systems and the temporal coordination of markets, 

we formulate three models to cover the spectrum of potential out- 

comes as shown in Fig. 2 . 

2.2.1. Model Seq-Dec – Sequential decoupled electricity and 

natural gas model 

A decoupled operation of electricity and natural gas systems is 

considered, while renewable energy production is described in a 

deterministic manner. The aim of this model is to demonstrate a 

setup similar to the current one, where the two systems are op- 

timized independently and the day-ahead and balancing trading 
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Fig. 2. Market-clearing models. DA: Day-ahead market, BA: Balancing market, EL: 

Electricity market and NG: Natural gas market. 

floors are cleared sequentially. Initially, the electricity system is 

scheduled and then the fuel consumption of GFPPs is submitted 

as a fixed demand to the natural gas system. GFPPs have to bid 

in the electricity market based on an estimation of the natural gas 

spot price or on the price of the natural gas supply contract. How- 

ever, this may not be the actual value of natural gas when operat- 

ing the system. In this work, we define the actual value of natural 

gas at each location of the system as its locational marginal price. 

Moreover, we give higher priority to residential gas loads than to 

the demand of GFPPs, which results in GFPPs being one of the first 

gas consumers to be curtailed in case it is not feasible to cover 

their demand. We follow an iterative approach that identifies in- 

feasible fuel consumption schedules and constraints the allowed 

fuel consumption (i.e., equivalent to power production of GFPPs) 

for the specific time periods of the scheduling horizon ( Qadrdan 

et al., 2014 ). This approach could lead to suboptimal solutions for 

the operation of the two systems or even infeasible schedules un- 

der cases of highly increased residential electricity and natural gas 

demands. 

2.2.2. Model Seq-Coup – Sequential coupled electricity and natural 

gas model 

A coupled operation of electricity and natural gas systems is 

taken into account and renewable energy production is again de- 

scribed in a deterministic fashion. In this model, we formulate a 

single optimization problem for the operation of electricity and 

natural gas systems, while the day-ahead and balancing markets 

are still cleared sequentially. In this model, the coordination pa- 

rameters are not defined in a static manner. The demand of GFPPs 

is treated as a variable, while the power production cost of GFPPs 

is defined endogenously and emerges from the cost of natural gas 

at the specific location. In other words, the power production cost 

of GFPPs is implicitly calculated through the actual value (i.e., lo- 

cational marginal price) of natural gas consumed. The goal of this 

model is to highlight the inefficiencies that arise by having an in- 

dependent scheduling of the two systems, like in Seq-Dec . 

2.2.3. Model Stoch-Coup – Stochastic coupled electricity and 

natural gas model 

The operation of electricity and natural gas systems is co- 

optimized and we consider a probabilistic description of uncertain 

renewable energy production. The proposed model is formulated 

as a two-stage stochastic programming problem that resembles a 

fully integrated system and attains perfect temporal coordination. 

This approach allows a pre-position of the energy system account- 

ing for the costs of future balancing actions, in contrast to the de- 

terministic models. 

In the case that a decoupled operation of the electricity and 

natural gas systems is considered under uncertain renewable en- 

ergy production, an additional model can be formulated. Such an 

approach would simulate the current decoupled setup between 

electricity and natural gas markets, while each operator utilizes 

two-stage stochastic programming to achieve a temporal coupling 

of trading floors. Our focus is on the integrated electricity and 

natural gas systems, hence the aforementioned approach is not 

modeled. We compare the coupled approaches with Seq-Dec , which 

reproduces current market setups. The goal is to evaluate the effi- 

ciency of each model and show how the level of coordination be- 

tween the electricity and natural gas systems, as well as the tem- 

poral coordination can affect the total expected cost and the dis- 

patch of the units. 

3. Natural gas network modeling 

In this section, the model of the natural gas system is pre- 

sented. Natural gas system dynamics are characterized in reality 

by partial differential equations that are able to describe both the 

temporal and spatial dimensions of natural gas transport in the 

network ( Borraz-Sanchez, Bent, Backhaus, Hijazi, & Van Henten- 

ryck, 2016 ). In this work, we make some simplifying assumptions 

that allow us to capture some dynamics of the natural gas sys- 

tem, such as, the gas flow characteristics, the operation of system 

branches that contain compressors, the linepack flexibility and the 

utilization of gas storage facilities. The proposed approach takes 

into account the aforementioned components and allows their in- 

corporation to the market-clearing models as day-ahead and real- 

time decisions. An analysis based on transient modeling of the nat- 

ural gas system dynamics would provide a more realistic view of 

the natural gas physical behavior in the pipelines but at the same 

time increase the computational complexity and raise market de- 

sign issues related to natural gas pricing. We refer the reader to 

the work of Zlotnik et al. (2017c) , who incorporate transient mod- 

eling in a market framework and discuss such pricing schemes. 

3.1. Nodal and natural gas flow constraints 

The pressure at each network node has to be within specified 

limits in order to guarantee a secure operation of the system, 

P R 

min 
m 

≤ pr m 

≤ P R 

max 
m 

, ∀ m ∈ M . (1) 

We assume the gas transport being isothermal and in horizon- 

tal pipelines ( Borraz-Sanchez et al., 2016 ). Moreover, the flow, pres- 

sure and linepack are defined for the middle of each pipeline as av- 

erage values ( Correa-Posada & Sanchez-Martin, 2014 ). The gas flow 

depends on the pressure at the adjacent nodes, the physical prop- 

erties of the pipeline, such as diameter and length, as well as the 

volumetric characteristics of the gas. We use the Weymouth equa- 

tion to describe the gas flow from node m to u , 

q m,u = K 

f 
m,u 

√ 

pr 2 m 

− pr 2 u , ∀ (m, u ) ∈ Z , (2) 

where K 

f 
m,u is the Weymouth constant for the specific pipeline. 

Eq. (2) is nonlinear and non-convex, thus we use an outer ap- 

proximation approach based on Taylor series expansion around 

fixed pressure points to linearize it ( Rømo et al., 2009; Tomasgard, 

Rømo, Fodstad, & Midthun, 2007 ) and provide solutions that are 

globally optimal. Each equality constraint (2) is then replaced by a 

set of linear inequalities, 

q m,u ≤K 

f 
m,u 

(
P R m, v √ 

P R 

2 
m, v −P R 

2 
u, v 

pr m 

− P R u, v √ 

P R 

2 
m, v −P R 

2 
u, v 

p r u 

)
, 

∀ (m, u ) ∈ Z, ∀ v ∈ V, 

(3) 

where V is the set of fixed pressure points ( P R m, v , P R u, v ). Using a 

significant number of fixed points (e.g., around 20 pairs as stated 

in Fodstad, Midthun, & Tomasgard, 2015 ) ensures a sufficient ap- 

proximation of the Weymouth equation. The outer approximation 

is given by a number of planes, defined as in (3) , that are tan- 

gent to the cone described by the Weymouth equation (2) . Thus, 

the gas flow through each of the pipelines will be approximated 

by the only constraint in (3) that is binding ( Tomasgard et al., 

2007 ). The linear expressions used in inequalities (3) are formu- 

lated based on the fixed pressure points, which in turn depend on 
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the pressure limits of the two adjacent nodes. We generate these 

points by choosing multiple pressure values of the adjacent nodes 

between the pressure limits. The resulting fixed pressure points 

are used to describe the flow for one direction in the pipeline 

and may differ from the ones used to describe the opposite di- 

rection as the pressure limits of the adjacent nodes are not the 

same. For this reason, the set of inequalities (3) describing the gas 

flow from node m to u may be different from the ones describing 

the gas flow from u to m . We introduce two non-negative vari- 

ables q + m,u , q 
−
m,u ≥ 0 , ∀ (m, u ) ∈ Z and the binary variable y m , u , ∀ ( m , 

u ) ∈ Z in order to formulate the following model with bidirectional 

flows, 

q m,u = q + m,u − q −m,u , ∀ (m, u ) ∈ Z, (4a) 

q + m,u ≤ ˜ M y m,u , ∀ (m, u ) ∈ Z, (4b) 

q −m,u ≤ ˜ M (1 − y m,u ) , ∀ (m, u ) ∈ Z, (4c) 

y m,u + y u,m 

= 1 , ∀ (m, u ) ∈ Z, (4d) 

y m,u ∈ { 0 , 1 } , ∀ (m, u ) ∈ Z, (4e) 

where variable q + m,u denotes the flow in the pipeline from node m 

to u , while q −m,u from node u to m . Parameter ˜ M is a sufficiently 

large constant. Eq. (4a) defines the unrestricted in sign gas flow 

in the pipeline, while constraints (4b) - (4e) ensure that only one 

of the two variables q + m,u and q −m,u will take a value different from 

zero. In addition, we need to define the following inequalities, {
q + m,u ≤KI + m,u, v pr m 

− KO 

+ 
m,u, v pr u + M(1 − y m,u ) , (5a) 

q −m,u ≤KI −m,u, v pr u − KO 

−
m,u, v pr m 

+ My m,u , (5b) 

q −u,m 

≤KI + m,u, v pr m 

− KO 

+ 
m,u, v pr u + My u,m 

, (5c) 

q + u,m 

≤KI −m,u, v pr u − KO 

−
m,u, v pr m 

+ M(1 − y u,m 

) 
}
, (5d) 

∀{ (m, u ) ∈ Z| m < u } , ∀ v ∈ V, 

in order to incorporate in the model the physical description of 

the gas flow derived by the linearization of the Weymouth equa- 

tion (3) . The coefficients of the linear expressions are defined as 

follows: {
K I + m,u, v = 

K 

f 
m,u P R m, v √ 

P R 

2 
m, v − P R 

2 
u, v 

, K O 

+ 
m,u, v = 

K 

f 
m,u P R u, v √ 

P R 

2 
m, v −P R 

2 
u, v 

, 

K I −m,u, v = 

K 

f 
m,u P R u, v √ 

P R 

2 
u, v −P R 

2 
m, v 

, K O 

−
m,u, v = 

K 

f 
m,u P R m, v √ 

P R 

2 
u, v −P R 

2 
m, v 

}
, 

∀{ (m, u ) ∈ Z| m < u } , ∀ v ∈ V. 

(6) 

It can be observed that the direction of the flow will be defined 

by the binary variable, which in turn will enable the appropriate 

linearization constraints from the set of (5a) - (5d) . For instance, a 

gas flow from node m to u is described by the linear inequalities 

that have the same coefficients, i.e., constraints (5a) and (5c) . It is 

ensured that the gas flow in the pipeline will have one direction 

and that q m,u =−q u,m 

, ∀ (m, u )∈Z will hold. We also introduce two 

non-negative variables q in m,u , q 
out 
m,u ≥0 , ∀ (m, u )∈Z for the inflow and 

outflow of each pipeline in order to account for linepack flexibility. 

The flow in each pipeline is defined as the average of inflow and 

outflow, 

q + m,u = 

q in m,u + q out 
m,u 

2 

, ∀ (m, u ) ∈ Z, (7a) 

q −m,u = 

q in u,m 

+ q out 
u,m 

2 

, ∀ (m, u ) ∈ Z. (7b) 

The branches of the network with compressors are modeled via 

a simplified approach that uses a compressor factor �z to define 

the relation of pressure at the two adjacent nodes as follows, 

pr u ≤ �z · pr m 

, ∀ (m, u ) ∈ Z. (8) 

The inlet pressure at node m can be lower than the outlet pres- 

sure at node u in case the gas flows from node m to u . The def- 

inition of gas pressures and flow through Eqs. (1) –(8) is given for 

each pipeline ( m , u ) ∈ Z of the network. However, the variables can 

be also indexed for each time period t and scenario ω accordingly. 

3.2. Natural gas storage constraints 

An essential property of the natural gas system is that it can 

act as a temporary storage and be an economical way of stor- 

ing energy. Linepack is very important for the short-term oper- 

ation of the system and denotes the ability of storing a certain 

amount of natural gas in the pipeline. It is modeled by the fol- 

lowing Eqs. (9a) and (9b) , 

h m,u,t = K 

h 
m,u (pr m,t + pr u,t ) / 2 , ∀ (m, u ) ∈ Z, ∀ t ∈ T , (9a) 

h m,u,t = h m,u,t−1 + q in m,u,t − q out 
m,u,t , ∀ (m, u ) ∈ Z, ∀ t ∈ T . (9b) 

Eq. (9a) defines the average mass of natural gas in the pipeline 

that is proportional to the average pressure of the adjacent nodes 

and a constant K 

h 
m,u describing the pipeline characteristics. The 

mass conservation of each pipeline is given by (9b) , where the in- 

flow and outflow of each pipeline may be different. Eqs. (9a) –(9b) 

are based on the analysis provided in Correa-Posada and Sanchez- 

Martin (2014) , which describes how the pressure and the velocity 

of natural gas affect the mass flow. Specific levels of linepack for 

the initial and last optimization period should be defined to link 

the current day with the previous and following ones. 

Additionally, gas storage facilities are also available and can be 

utilized as both short- and long-term options. In short-term opera- 

tion, they ensure security of supply, while they are also efficiently 

used as seasonal storage. The following equations model the short- 

term operation of gas storage facilities, 

E min 
s ≤ e s,t = e s,t−1 + g in s,t − g out 

s,t ≤ E max 
s , ∀ s ∈ S, ∀ t ∈ T , (10a) 

0 ≤ g in s,t ≤ IR s , ∀ s ∈ S, ∀ t ∈ T , (10b) 

0 ≤ g out 
s,t ≤ W R s , ∀ s ∈ S, ∀ t ∈ T . (10c) 

Eq. (10a) defines the temporal balance of the gas storage facility 

and imposes the upper and lower limits for the volume. These lim- 

its are defined by the storage capacity and the cushion gas, which 

is the minimum amount of gas needed to operate the storage unit 

( Tomasgard et al., 2007 ). Constraints (10b) - (10c) enforce the maxi- 

mum inflow and outflow rates. 

4. Market-clearing models 

The formulations of market-clearing models Seq-Dec , Seq-Coup 

and Stoch-Coup are based on the following assumptions. Regard- 

ing the stochastic power production, we take into account a single 

source, namely wind power, while additional uncertainties related 

to supply or demand side can be similarly modeled and incorpo- 

rated in the models. Its stochastic nature is described through a 

finite set of scenarios � that is available to the operator, who aims 

to maximize social welfare, and are properly modeled to account 
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for temporal and spatial correlations. The uncertainty in the nat- 

ural gas system stems from the random natural gas demands of 

GFPPs, which are the result of the stochastic wind power produc- 

tion. Moreover, electricity and natural gas demands are assumed to 

be inelastic, which allows for an equivalent formulation between 

the problems of social welfare maximization and cost minimiza- 

tion for the system operation. Thus, in this work, we take the op- 

erator’s point of view who aims to minimize the total expected 

cost. The extreme event of load shedding is penalized with a suf- 

ficiently large value in both markets. Additionally, we assume that 

production costs of electricity and natural gas are described via lin- 

ear functions, while the producers offer their full capacity in the 

market under perfect competition. More specifically, wind power 

producers bid in the market with zero marginal cost. The link be- 

tween the two systems is provided by the GFPPs, being consumers 

of natural gas and producers of electricity that is sold in the elec- 

tricity market. The proposed models consider network constraints 

in both systems. The power transmission network is modeled with 

DC power flow, while natural gas network modeling is also consid- 

ered, as described in Section 3 . Furthermore, the models are op- 

timized over a multi-period scheduling horizon to account for the 

inter-temporal constraints of the natural gas network. A concur- 

rent market timing for the electricity and natural gas markets is 

assumed in the coupled models, as the energy markets are cleared 

simultaneously. As far as the trading floors are concerned, we con- 

sider the day-ahead and balancing stages to clear the markets, 

while no intraday trading is taken into account. Although this is 

a common assumption for the electricity market, we extend it also 

to natural gas market. This way the integration of electricity and 

natural gas system is facilitated under a consistent market design. 

Note that trading natural gas in short-terms markets has drawn an 

increased interest recently and is expected to further evolve in the 

future. 

Following the aforementioned assumptions, the market-clearing 

models are recast as mixed-integer linear programming (MILP) 

problems. Fixing the binary variables related to the direction of 

the gas flow results in a linear programming (LP) problem that 

can properly provide day-ahead and balancing prices for electricity 

and natural gas as the dual variables of balancing constraints. The 

dual variables are indicated after a colon. A detailed mathematical 

description of the dispatch models is provided in the subsequent 

subsections. 

4.1. Sequential decoupled electricity and natural gas model 

The sequential and decoupled model simulates independently 

the operation of electricity and natural gas systems, as well as 

clears sequentially the day-ahead and balancing markets. Initially, 

the optimal day-ahead schedule that minimizes the cost of the 

power system is determined by model (11) as follows: 

Min. 
�ED 

∑ 

t∈ T 

(∑ 

i c ∈ I c 
C i c p i c ,t + 

∑ 

i g ∈ I g 
C i g p i g ,t 

)
(11a) 

subject to 

0 ≤ p i,t ≤ P max 
i , ∀ i ∈ I, ∀ t ∈ T , (11b) 

0 ≤ w j,t ≤ ̂ W j,t , ∀ j ∈ J, ∀ t ∈ T , (11c) 

∑ 

i ∈ A I n 
p i,t + 

∑ 

j∈ A J n 

w j,t −D 

E 
n,t −

∑ 

r :(n,r ) ∈ L 

ˆ f n,r,t = 0 : ˆ λE 
n,t , ∀ n ∈ N, ∀ t ∈ T , 

(11d) 

ˆ f n,r,t = B n,r ( ̂  δn,t − ˆ δr,t ) ≤ F max 
n,r , ∀ (n, r) ∈ L, ∀ t ∈ T , (11e) 

ˆ δn,t free , ∀ n/n : ref , ˆ δn,t = 0 , n : ref , ∀ t ∈ T , (11f) 

where �ED = { p i,t , ∀ i ∈ I, t ∈ T ; w j,t , ∀ j ∈ J, t ∈ T ; ˆ δn,t , ∀ n ∈ N, ∀ t ∈ 

T } is the set of primal optimization variables. The objective func- 

tion (11a) to be minimized is the operating cost of the power 

system, which originates from the energy production cost of the 

power plants. The GFPPs use an estimation of the natural gas 

spot price or the price of natural gas contract in order to calcu- 

late their price-quantity offers. Constraints (11b) set the bounds 

of power production for dispatchable power plants, while con- 

straints (11c) limit wind power by the expected wind power pro- 

duction. The power balance at each node of the power system is 

enforced by (11d) . The transmission capacity limits are imposed by 

(11e) and (11f) defines the voltage angle at each node of the sys- 

tem. Having determined the day-ahead dispatch of the electricity 

system, we calculate the fuel consumption of GFPPs which in turn 

translates into a time-varying demand for each node of the natural 

gas system through D 

P 
m,t = 

∑ 

i g ∈ A I g m 

φi g p i g ,t , ∀ m ∈ M, ∀ t ∈ T . Demand 

D 

P 
m,t is treated as a parameter in the following model (12) that de- 

fines the optimal day-ahead schedule of the natural gas system as 

follows: 

Min. 
�GD 

∑ 

t∈ T 

(∑ 

k ∈ K 
C k g k,t + 

∑ 

s ∈ S 
C s g 

out 
s,t 

)
(12a) 

subject to 

0 ≤ g k,t ≤ G 

max 
k , ∀ k ∈ K, ∀ t ∈ T , (12b) 

∑ 

k ∈ A K m 

g k,t + 

∑ 

s ∈ A S m 
(g out 

s,t − g in s,t ) − D 

G 
m,t − D 

P 
m,t 

−
∑ 

u :(m,u ) ∈ Z 
(q in m,u,t − q out 

u,m,t ) = 0 : ˆ λG 
m,t , ∀ m ∈ M, ∀ t ∈ T , (12c) 

NG flow constraints (1) , (4a) − (4e) , (5a) − (5d) , (7a) , (7b) , (8) , 

∀ t ∈ T , (12d) 

NG storage constraints (9a) , (9b) , (10a) −(10c) , (12e) 

where �GD = { g k,t , ∀ k ∈ K, ∀ t ∈ T ; e s,t , g 
in 
s,t , g 

out 
s,t , ∀ s ∈ S, ∀ t ∈ T ; h m,u,t , 

q in m,u,t , q out 
m,u,t , y m,u,t , ∀ ( m , u ) ∈ Z , ∀ t ∈ T ; pr m , t , ∀ m ∈ M , ∀ t ∈ T } is the 

set of primal optimization variables. The aim is to minimize 

the operating cost of the natural gas system that is represented 

in the objective function (12a) as the cost of natural gas produc- 

tion and withdrawal cost from the storage facilities. Constraints 

(12b) enforce the limits of natural gas production. The gas balance 

for each node of the system is given by (12c) . The operation of the 

natural gas system is described by the set of constraints (12d) and 

(12e) . In real-time operation, wind power production W j,ω ′ ,t is re- 

alized and the balancing markets of electricity and natural gas are 

cleared independently. The day-ahead schedule of electricity and 

natural gas systems is treated as fixed parameters (denoted with 

superscript ‘ ∗’) in the following formulations. The electricity bal- 

ancing market (13) writes as follows: 

Min. 
�ER 

∑ 

t∈ T 

(∑ 

i c ∈ I c 
(C + 

i c 
p + 

i c ,ω ′ ,t −C −
i c 

p −
i c ,ω ′ ,t )+ 

∑ 

n ∈ N 
C sh,E l sh,E 

n,ω ′ ,t 

+ 

∑ 

i g ∈ I g 
(C + 

i g 
p + 

i g ,ω ′ ,t − C −
i g 

p −
i g ,ω ′ ,t ) 

)
(13a) 

subject to 


p i,ω ′ ,t = p + 
i,ω ′ ,t − p −

i,ω ′ ,t , ∀ i ∈ I, ∀ t ∈ T , (13b) 
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− p * i,t ≤ 
p i,ω ′ ,t ≤ P max 
i − p * i,t , ∀ i ∈ I, ∀ t ∈ T , (13c) 

− P - i ≤ 
p i,ω ′ ,t ≤ P + i , ∀ i ∈ I, ∀ t ∈ T , (13d) 

0 ≤ l sh,E 
n,ω ′ ,t ≤ D 

E 
n,t , ∀ n ∈ N, ∀ t ∈ T , (13e) 

0 ≤ w 

sp 
j,ω ′ ,t ≤ W j,ω ′ ,t , ∀ j ∈ J, ∀ t ∈ T , (13f) 

∑ 

i ∈ A I n 

p i,ω ′ ,t + l sh,E 

n,ω ′ ,t + 

∑ 

j∈ J 
(W j,ω ′ ,t − w 

sp 
j,ω ′ ,t − w 

* 
j,t ) 

+ 

∑ 

r :(n,r ) ∈ L 

ˆ f * n,r,t − ˜ f n,r,ω ′ ,t = 0 : ˜ λE 
n,ω ′ ,t , ∀ n ∈ N, ∀ t ∈ T , (13g) 

˜ f n,r,ω ′ ,t = B n,r ( ̃  δn,ω ′ ,t − ˜ δr,ω ′ ,t ) ≤F max 
n,r , ∀ (n, r) ∈ L, ∀ t ∈ T , (13h) 

˜ δn,ω ′ ,t free , ∀ n/n : ref , ˜ δn,ω ′ ,t = 0 , n : ref , ∀ t ∈ T , (13i) 

where �ER = { p + 
i,ω ′ ,t , p 

−
i,ω ′ ,t , ∀ i ∈ I, ∀ t ∈ T ; w 

sp 

j,ω ′ ,t , ∀ j ∈ J, ∀ t ∈ T ;
˜ δn,ω ′ ,t , l 

sh,E 
n,ω ′ ,t , ∀ n ∈ N, ∀ t ∈ T } is the set of primal optimization 

variables. The objective function (13a) describes the cost of re- 

dispatch actions, i.e., up/down regulation and load shedding. 

The aim is to activate the least-cost re-dispatch actions in order 

to maintain the system in balance. Power regulation is defined 

by (13b) and constraints (13c) determine its bounds by taking 

into account the day-ahead dispatch of power plants. Moreover, 

constraints (13d) limit power regulation by the reserve capacity 

offer. These reserve capacity offers are defined via reserve capacity 

markets and are treated as parameters in the market-clearing 

models presented in this work. Reserve capacity markets are 

cleared independently but can be incorporated in the presented 

market-clearing models as described in ( Morales et al., 2012 ). 

Electricity load shedding and wind spillage are constrained by 

the nodal demand and actual wind power realization though 

(13e) and (13f) , respectively. Constraints (13g) guarantee power 

balance at each node of the electricity network in real-time 

operation. Constraints (13h) enforce power transmission capac- 

ity limits, while (13i) defines the voltage angle of the system 

nodes. Similarly to the day-ahead stage, the fuel consumption of 

the GFPPs is converted to a time-varying demand deviation via 

D 

PR 
m,ω ′ ,t = 

∑ 

i g ∈ A I g m 

φi g 
p i g ,ω ′ ,t , ∀ m ∈ M, ∀ t ∈ T . The balancing natural 

gas market is formulated in (14) as follows: 

Min. 
�GR 

∑ 

t∈ T 

(∑ 

k ∈ K 
(C + 

k 
g + 

k,ω ′ ,t − C −
k 

g −
k,ω ′ ,t ) + 

∑ 

m ∈ M 

C sh,G l sh,G 
m,ω ′ ,t 

+ 

∑ 

s ∈ S 
(C + s g 

out ,r 
s,ω ′ ,t − C −s g 

in ,r 
s,ω ′ ,t ) 

)
(14a) 

subject to 

0 ≤ g + 
k,ω ′ ,t ≤ G 

max 
k − g * k,t , ∀ k ∈ K, ∀ t ∈ T , (14b) 

0 ≤ g −
k,ω ′ ,t ≤ g * k,t , ∀ k ∈ K, ∀ t ∈ T , (14c) 

0 ≤ g + 
k,ω ′ ,t ≤ G 

+ 
k 
, ∀ k ∈ K, ∀ t ∈ T , (14d) 

0 ≤ g −
k,ω ′ ,t ≤ G 

−
k 
, ∀ k ∈ K, ∀ t ∈ T , (14e) 

0 ≤ l sh,G 
m,ω ′ ,t ≤ D 

G 
m,t , ∀ m ∈ M, ∀ t ∈ T , (14f) 

∑ 

k ∈ A K m 

(
g + 

k,ω ′ ,t − g −
k,ω ′ ,t 

)
+ 

∑ 

s ∈ A S m 
(g out,r 

s,ω ′ ,t − g in,r 
s,ω ′ ,t ) 

+ 

∑ 

u :(m,u ) ∈ Z 

(
q in,* 

m,u,t − q out,* 
u,m,t − q in,r 

m,u,ω ′ ,t + q out,r 
m,u,ω ′ ,t 

)
− D 

PR 
m,ω ′ ,t + l sh,G 

m,ω ′ ,t = 0 : ˜ λG 
m,ω ′ ,t , ∀ m ∈ M, ∀ t ∈ T , (14g) 

NG flow constraints (1) , (4a) − (4e) , (5a) − (5d) , (7a) , (7b) , (8) , 

∀ t ∈ T , (14h) 

NG storage constraints (9a) , (9b) , (10a) − (10c) , (14i) 

where �GR = { g + 
k,ω ′ ,t , g 

−
k,ω ′ ,t , ∀ k ∈ K, ∀ t ∈ T ; e r 

s,ω ′ ,t , g 
in,r 
s,ω ′ ,t , g out,r 

s,ω ′ ,t , 

∀ s ∈ S, ∀ t ∈ T ; h r 
m,u,ω ′ ,t , q in,r 

m,u,ω ′ ,t , q 
out,r 
m,u,ω ′ ,t , y r 

m,u,ω ′ ,t ∀ (m, u ) ∈ Z, ∀ t ∈ 

T ; pr r 
m,ω ′ ,t , l 

sh,G 
m,ω ′ ,t , ∀ m ∈ M, ∀ t ∈ T } is the set of primal optimization 

variables. In order to maintain the natural gas system balanced, a 

set of re-dispatch actions can be activated, namely, up/down reg- 

ulation from the producers, regulation from the storage facilities 

and load shedding. The costs of these actions comprise objective 

function (14a) . The upward and downward regulation from nat- 

ural gas producers is limited by constraints (14b) and (14c) that 

incorporate also the day-ahead schedules. Additionally, constraints 

(14d) and (14e) ensure that the regulation from natural gas pro- 

ducers is kept above zero and below the reserve capacity offer. 

Similarly to the electricity market, reserve capacity offers are de- 

fined through the corresponding reserve capacity markets. Natural 

gas load shedding is limited by the nodal demand through (14f) . 

Observe that an unexpected deviation of wind power production 

from the day-ahead schedule has to be covered by a re-dispatch 

action in the power system, which in turn may translate into a 

deviation for the natural gas system through parameter D 

PR 
m,ω ′ ,t 

that is also indexed by scenario ω 

′ . Constraint (14g) guarantees 

the gas balance at each node of the system in real-time operation. 

The first re-dispatch action that is practically free stems from the 

linepack flexibility considered in this model through the represen- 

tation of the natural gas system via constraints (14h) and (14i) . 

This is also a common practice in reality as the natural gas system 

is mainly balanced via linepack and the costly re-dispatch actions 

are only activated when flexibility by the temporal coupling of 

linepack is not available. It should be noted that variables in 

constraints (14h) and (14i) are to be augmented with superscript 

r and indexed by scenario ω 

′ . We follow an iterative approach to 

simulate the operation of electricity and natural gas system in the 

case of extreme events, such as gas load shedding. If shedding of 

residential natural gas load takes place, we identify the GFPPs that 

cause this event and the corresponding nodes of the system. Then, 

the balancing electricity market is cleared again with additional 

constraints that enforce bounds on the maximum power produc- 

tion of GFPPs during the necessary time periods. This procedure 

is repeated until no residential gas load shedding occurs due to 

the fuel consumption of GFPPs. Solving models (11) –(14) results in 

calculating the total expected cost of the system under scenario 

set �. 

4.2. Sequential coupled electricity and natural gas model 

The sequential and coupled dispatch model simulates an energy 

system where the day-ahead and balancing markets are sequen- 

tially cleared, while the operation of electricity and natural gas 

systems is coordinated. The optimal schedule that minimizes the 

day-ahead cost of the integrated system is determined by model 
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(15) as follows: 

Min. 
�D 

∑ 

t∈ T 

(∑ 

i c ∈ I c 
C i c p i c ,t + 

∑ 

k ∈ K 
C k g k,t + 

∑ 

s ∈ S 
C s g 

out 
s,t 

)
(15a) 

subject to 

DA EL constraints (11b) − (11f) , (15b) 

DA NG constraints (12b) , (12d) , (12e) , (15c) 

∑ 

k ∈ A K m 

g k,t + 

∑ 

s ∈ A S m 
(g out 

s,t − g in s,t ) − D 

G 
m,t −

∑ 

i g ∈ A I g m 

φi g p i g ,t 

−
∑ 

u :(m,u ) ∈ Z 
(q in m,u,t − q out 

u,m,t ) = 0 : ˆ λG 
m,t , ∀ m ∈ M, ∀ t ∈ T , (15d) 

where �D = { �ED ;�GD } is the set of primal optimization vari- 

ables. Objective function (15a) determines the day-ahead operating 

cost of the electricity and natural gas systems. The system operat- 

ing cost stems from the power production cost of thermal power 

plants (TPPs, i.e., non-gas) and the natural gas production cost. 

Note that the power production cost of GFPPs is not included, since 

it would result in double counting it. The cost of operating GFPPs is 

explicitly associated with the natural gas system cost through the 

balancing equation (15d) . In this formulation, the fuel consumption 

is treated as a variable and charged with the locational marginal 

price ( ̂ λG 
m,t ) since the operation is jointly optimized. Having deter- 

mined the day-ahead schedule of the integrated energy system, the 

real-time operation is simulated for each wind power realization 

W j,ω ′ ,t by model (16) that writes as follows: 

Min. 
�R 

∑ 

t∈ T 

(∑ 

k ∈ K 
(C + 

k 
g + 

k,ω ′ ,t − C −
k 

g −
k,ω ′ ,t ) + 

∑ 

i c ∈ I c 
(C + 

i c 
p + 

i c ,ω ′ ,t − C −
i c 

p −
i c ,ω ′ ,t ) 

+ 

∑ 

s ∈ S 
(C + s g 

out ,r 
s,ω ′ ,t − C −s g 

in ,r 
s,ω ′ ,t ) + 

∑ 

n ∈ N 
C sh,E l sh,E 

n,ω ′ ,t + 

∑ 

m ∈ M 

C sh,G l sh,G 
m,ω ′ ,t 

)
(16a) 

subject to 

BA EL constraints (13b) − (13i) , (16b) 

BA NG constraints (14b) − (14f) , (14h) , (14i) , (16c) 

∑ 

k ∈ A K m 

(g + 
k,ω ′ ,t − g −

k,ω ′ ,t ) + 

∑ 

s ∈ A S m 
(g out,r 

s,ω ′ ,t − g in,r 
s,ω ′ ,t ) 

+ 

∑ 

u :(m,u ) ∈ Z 
(q in,* 

m,u,t − q out,* 
u,m,t − q in,r 

m,u,ω ′ ,t + q out,r 
m,u,ω ′ ,t ) 

−
∑ 

i g ∈ I g 
φi g 
p i g ,ω ′ ,t + l sh,G 

m,ω ′ ,t = 0 : ˜ λG 
m,ω ′ ,t , ∀ m ∈ M, ∀ t ∈ T , (16d) 

where �R = { �ER ;�GR } is the set of primal optimization variables. 

The goal is to minimize the cost of re-dispatch actions for the inte- 

grated energy system described in (16a) . Similarly, the power pro- 

duction costs related to GFPPs are not included since they stem 

from the natural gas system. Fuel consumption of GFPPs is a vari- 

able in the co-optimization model of electricity and natural gas 

systems. Solving models (15) –(16) results in calculating the total 

expected cost under scenario set �. 

4.3. Stochastic coupled electricity and natural gas model 

The stochastic and coupled dispatch model optimizes the oper- 

ation of the integrated energy systems and is formulated in such a 

way that the day-ahead decisions anticipate future balancing costs 

over the scenario set �. We formulate a two-stage stochastic pro- 

gramming problem (17) that writes as follows: 

Min. 
�SC 

∑ 

t∈ T 

[ ∑ 

i c ∈ I c 
C i c p i c ,t + 

∑ 

k ∈ K 
C k g k,t + 

∑ 

s ∈ S 
C s g 

out 
s,t 

+ 

∑ 

ω∈ �
πω 

(∑ 

k ∈ K 
(C + 

k 
g + 

k,ω,t 
− C −

k 
g −

k,ω,t 
) + 

∑ 

i c ∈ I c 
(C + 

i c 
p + 

i c ,ω,t 
− C −

i c 
p −

i c ,ω,t 
) 

+ 

∑ 

s ∈ S 
(C + s g 

out ,r 
s,ω,t − C −s g 

in ,r 
s,ω,t ) + 

∑ 

n ∈ N 
C sh,E l sh,E 

n,ω,t + 

∑ 

m ∈ M 

C sh,G l sh,G 
m,ω,t 

)] 
(17a) 

subject to 

DA coupled EL & NG constraints (11b) , (11d) − (11f) , 

(15c) , (15d) , (17b) 

0 ≤ w j,t ≤ W j , ∀ j ∈ J, ∀ t ∈ T , (17c) 

BA coupled EL & NG constraints (16b) − (16d) , ∀ ω ∈ �, (17d) 

where �SC = { �D ;�R 
ω , ∀ ω ∈ �} is the set of primal optimization 

variables. The expected cost of operating the integrated energy sys- 

tem is given by the objective function (17a) to be minimized. The 

stochastic and coupled dispatch model permits an implicit tem- 

poral coordination of the day-ahead and balancing stages through 

the expected balancing costs in (17a) and constraints (17d) that are 

modeled for all scenarios ω ∈ �. It should be noted that the day- 

ahead decisions are treated as variables and that the day-ahead 

wind power production is limited by the installed capacity through 

(17c) . This formulation optimally dispatches the integrated system 

to account for the uncertain wind power production by anticipat- 

ing future balancing needs. Flexible producers may be scheduled 

out of merit-order to make flexibility available at the balancing 

stage. Moreover, the inclusion of natural gas system constraints in 

both day-ahead and balancing stages allows for an optimal spatial 

allocation of linepack flexibility in the system that is significantly 

important when getting closer to real-time operation. 

5. Results 

A modified 24-bus IEEE Reliability Test System and a 12-node 

natural gas system compose the integrated energy system. It con- 

sists of 12 power plants, 2 wind farms, 17 electricity loads, 3 natu- 

ral gas suppliers, 4 natural gas loads and 2 natural gas storage fa- 

cilities. There are 4 flexible GFPPs that account for 427 MW of the 

total 3075 MW installed capacity of conventional generation and 

interconnect the two systems. Wind power uncertainty is modeled 

by a set of 25 equiprobable scenarios that have proper tempo- 

ral and spatial correlation, which are available at Bukhsh (2017) . 

The data of the integrated energy system is based on He et al. 

(2016) and presented along with the network topology in the on- 

line appendix available at Ordoudis, Pinson, and Morales (2018) . 

The forecast profile of electricity and residential natural gas de- 

mands, as well as the expected wind power production are illus- 

trated in Fig. 3 . 

5.1. Comparison of market-clearing models and the effect of 

coordination parameters 

In the following analysis, we highlight the inefficiencies arising 

from fixing the coordination parameters between the two markets 
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Table 1 

Expected cost and share of day-ahead power production. Wind power penetration 40%. 

Total ($) Day-ahead ($) Balancing ($) GFPPs (%) TPPs (%) 

Stoch-Coup 1,747,156 1,755,474 −8 ,318 10.8 89.2 

Seq-Coup 1,817,781 1,731,522 86 ,259 9.1 90.9 

Seq-Dec 1,819,238 1,731,657 87 ,581 9.2 90.8 

Seq-Dec ↑ 1,821,399 1,732,185 89 ,214 6.8 93.2 

Seq-Dec ↓ 1,866,966 1,741,471 125 ,495 14.5 85.5 

Fig. 3. Forecast profile of electricity and natural gas demands along with expected 

wind power production of wind power plant 1 and 2. 

in the decoupled approach and the benefits of dispatching the en- 

ergy system in view of future uncertainties along with the linepack 

flexibility. We consider a 24-hour scheduling horizon, while the 

level of total system linepack and natural gas in the storage fa- 

cilities at the end of day is equal to the one at the beginning and 

accounts for the operation of the following day. For the total sys- 

tem linepack, we set this value equal to 448,0 0 0 kcf. 

Initially, we examine the effect of utilizing fixed natural gas 

prices that are usually different from the natural gas marginal 

prices at each node of the system. Fixed natural gas prices rep- 

resent the estimation of the natural gas spot price or the price 

of supply contracts that is used by GFPPs to bid in the electric- 

ity market. In our approach, the nodal natural gas prices stem- 

ming from the coupled clearing of electricity and natural gas 

markets are considered an appropriate estimation of the actual 

natural gas price. The solution of Seq-Coup results in day-ahead 

natural gas prices ( ̂ λG 
m,t ) that are used in the Seq-Dec model to 

define the power production cost of GFPPs. Specifically, the day- 

ahead offer price of GFPPs in Seq-Dec is calculated by the multipli- 

cation of natural gas price of Seq-Coup and the power conversion 

factor of each plant, i.e., C i g ,t = ̂

 λG 
m,t φi g , ∀ m ∈ A 

i g 
m 

, ∀ i g ∈ I g , ∀ t ∈ T . 

Upward and downward regulation offer prices are equal to 1.1 and 

0.91 of the day-ahead offer price. A mis-estimation of the actual 

natural gas price by GFPPs is introduced in order to simulate the 

case that GFPPs bid in the electricity market with a natural gas 

price different that the actual one. This mis-estimation is simu- 

lated by a 10% over- and under-estimation, while such deviation is 

considered adequate due to the relatively stable natural gas prices 

in short-term operations. The expected system costs are calculated 

based on (17a) in order to ensure consistency of the results. There- 

fore, the offer prices of GFPPs in Seq-Dec only affect their position 

in the merit-order and the unit dispatch, while these prices are not 

taken into account in the cost calculation. 

Tables 1 and 2 show the costs of operating the energy sys- 

tem under the three market-clearing models and the share of day- 

ahead power production for GFPPs and TPPs for wind power pene- 

tration levels, i.e., share of installed wind power capacity on sys- 

tem’s demand, of 40% and 50%, respectively. It is observed that 

Stoch-Coup achieves the lowest expected cost in both cases by ef- 

ficiently accommodating the large shares of renewable power pro- 

duction. This model decides the optimal day-ahead dispatch to ac- 

count for wind power uncertainty which results in a higher day- 

ahead cost but lower expected balancing cost, while the share of 

GFPPs that are efficient balancing producers also increases com- 

pared to deterministic models Seq-Coup and Seq-Dec . The deter- 

ministic models schedule the system based on the merit-order 

principle which may not be appropriate to cope with wind power 

uncertainty. We would like to note that the characteristics of wind 

power scenarios (e.g., mean and variance) affect the outcome of 

the market-clearing models. The Stoch-Coup model handles uncer- 

tainty more efficiently than the deterministic ones and this can be 

observed by the greater decrease in expected cost it accomplishes 

when increasing the wind power penetration level from 40% to 

50%. The initial wind power scenarios are normalized and then 

multiplied by the wind farm capacity; thus a higher penetration 

level results in scenarios with higher mean and variance. We refer 

the reader to Ordoudis and Pinson (2016) for further discussion on 

this issue. 

A coupled clearing of electricity and natural gas markets results 

in lower expected cost compared to the decoupled approaches due 

to the optimal natural gas price signals, as well as the optimized 

natural gas flows and linepack. The spatial allocation of natural 

gas in the system plays an important role for short-term adequacy 

and available flexibility in view of the ability to store gas in the 

pipelines. For the cases of natural gas price mis-estimation, it can 

be noticed that there might be different effects on the total ex- 

pected cost depending on wind power penetration level. The day- 

ahead cost increases when the natural gas price is mis-estimated 

compared to Seq-Dec that utilizes the actual natural gas price from 

Seq-Coup . The reason for that is the misplacement of GFPPs in the 

merit-order because of the over-estimation ( ↑ ) or under-estimation 

( ↓ ) of natural gas price compared to the merit-order built by the 

actual one. This results in scheduling more expensive units at the 

day-ahead stage which in turn increases the day-ahead cost. In 

the under-estimation cases, flexible GFPPs are scheduled more at 

the day-ahead stage which makes them unavailable to provide up- 

regulation in real-time operation, thus the expected balancing cost 

significantly increases as more expensive sources have to be de- 

ployed. On the contrary, it is possible to have a reduced total ex- 

pected cost when the natural gas price is over-estimated. In the 

case of 50% wind power penetration, flexible GFPPs are scheduled 

less at the day-ahead stage which makes them available to provide 

upward regulation services in real-time. 

Additionally, the impact of congestion in the natural gas net- 

work on the scheduling of GFPPs is illustrated in Table 3 and Fig. 4 . 

The residential natural gas demand is increased by 30% to repre- 

sent winter conditions, when natural gas is used extensively for 

heating. The share of GFPPs is reduced from 9.1% to 6.6% and from 

9.2% to 6.7% for Seq-Coup and Seq-Dec respectively. The TPPs have 
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Table 2 

Expected cost and share of day-ahead power production. Wind power penetration 50%. 

Total ($) Day-ahead ($) Balancing ($) GFPPs (%) TPPs (%) 

Stoch-Coup 1,684,075 1,686,504 −2 ,429 11.7 88.3 

Seq-Coup 1,812,790 1,663,477 149 ,313 7.4 92.6 

Seq-Dec 1,814,086 1,663,891 150 ,195 7.2 92.8 

Seq-Dec ↑ 1,813,271 1,664,646 148 ,625 6.1 93.9 

Seq-Dec ↓ 1,874,907 1,674,110 200 ,797 14.3 85.7 

Table 3 

Expected cost and share of day-ahead power produc- 

tion. Wind power penetration 40%. Increased natural 

gas demand by 30%. 

Total ($) GFPPs (%) TPPs (%) 

Seq-Coup 1,949,993 6.6 93.4 

Seq-Dec 2,018,479 6.7 93.3 

Fig. 4. Expected unsatisfied natural gas demand of GFPP 11 under Seq-Dec. 

to cover a higher portion of the electricity demand in this case 

due to the lower priority assigned to the fuel demand of GFPPs 

compared to natural gas residential loads. Moreover, it is observed 

that GFPP 11 is expected to face unsatisfied fuel demand during 

the hours of peak residential natural gas load under Seq-Dec . This 

phenomenon does not occur when the systems are simultaneously 

operated in Seq-Coup . In this case, the importance of efficiently op- 

timizing the gas flows and the spatial allocation of linepack in the 

system is more evident. The expected unsatisfied natural gas de- 

mand of GFPP 11 is higher when the natural gas price is under- 

estimated as it is scheduled more at the day-ahead stage and lower 

when the natural gas price is over-estimated. 

5.2. The benefits and effects of linepack 

The following results aim at exploring the benefits of linepack 

and the corresponding flexibility revealed. In the following analy- 

sis, the wind power penetration level is 50%. Initially, we simulate 

a purely steady-state operation of the natural gas system, where no 

linepack is considered and the inflow and outflow of each pipeline 

is equal ( q in m,u = q out 
m,u , ∀ (m, u ) ∈ Z). 

Table 4 presents the expected system cost under Seq-Coup and 

Seq-Dec comparing the cases where linepack is considered or ne- 

glected (steady-state). The steady-state models result in a higher 

day-ahead cost for both Seq-Coup and Seq-Dec because the most 

expensive natural gas producer is scheduled to meet the demand. 

In this case, the natural gas demand has to be instantly covered 

Table 4 

Effect of linepack on expected cost under Seq-Coup and Seq-Dec . Wind 

power penetration 50%. 

Total ($) Day-ahead ($) Balancing ($) 

Seq-Coup 1,812,790 1,663,477 149,313 

Steady-state Seq-Coup 1,809,753 1,669,452 140,301 

Seq-Dec 1,814,086 1,663,891 150,195 

Steady-state Seq-Dec 1,813,271 1,671,109 142,162 

Table 5 

Effect of linepack on expected cost and share of day-ahead power production 

under Stoch-Coup . Wind power penetration 50%. 

Total ($) GFPPs (%) TPPs (%) 

Steady-state Stoch-Coup 1,691,728 9.9 90.1 

Stoch-Coup 1,684,076 11.7 88.3 

Stoch-Coup ( + 5% initial linepack) 1,631,559 12 88 

Stoch-Coup ( −5% initial linepack) 1,739,304 10.8 89.2 

at each time period by the production units as it is not possible 

to store natural gas in the network for future utilization. When 

the linepack is considered, natural gas is only supplied by the 

two cheaper producers and it is stored in the beginning of the 

day to be used later during the hours of peak demand. It is ob- 

served, though, that the expected balancing costs are lower in 

the steady-state models. The deployment of the expensive natural 

gas supplier increases the natural gas price and makes available 

more cost-effective capacity for down-regulation in the natural gas 

system. This increased availability of cheaper down-regulation is 

also reflected in the electricity market through the GFPPs and re- 

sults in lower expected balancing cost. This observation depends 

on the structure of scenarios and the type of regulation needed in 

real-time operation. Nevertheless, it indicates possible inefficien- 

cies that may arise when a flexible component of the system, such 

as the linepack, is myopically operated. 

The subsequent results show that Stoch-Coup effectively sched- 

ules the system and exploits the available flexibility of linepack 

under uncertainty of wind power production. The temporal coor- 

dination between the two trading floors allows an efficient allo- 

cation of natural gas in the system and overcome the aforemen- 

tioned drawback of the deterministic approaches that are myopic 

to uncertainties. The steady-state model results in higher expected 

cost compared to Stoch-Coup when linepack is taken into account, 

as illustrated in Table 5 . Moreover, Stoch-Coup schedules more the 

GFPPs by taking advantage of the storage ability in the natural gas 

system. 

The main effect of considering a storage facility in the oper- 

ation of the energy system is that it flattens the demand pro- 

file by filling valleys and shaving peaks, as well as utilizing cheap 

power production. In order to quantify the flexibility revealed by 

modeling linepack in the integrated energy system, we simulate 

a case where an ideal storage facility, i.e., having infinite capac- 

ity and charging/discharging rates, is introduced in the electricity 

network allowing to shift the demand profile in the most cost- 

effective manner. In this case, the resulting expected cost ( EC ) of 

Stoch-Coup is $1,629,519. The linepack flexibility is quantified by 
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Fig. 5. Total system linepack and storage level (lp: linepack). 

the following performance ratio, 

E C ss − E C 

E C ss − E C ideal 
= 

1 , 691 , 728 − 1 , 684 , 016 

1 , 691 , 728 − 1 , 629 , 519 

= 12 . 4% . 

This ratio shows that modeling the natural gas network with 

linepack flexibility unveils 12.4% of utilizing an ideal storage in the 

electricity system. This result indicates the need of efficiently mod- 

eling the integrated energy market as it provides an economical 

approach to exploit the available flexibility in the natural gas sys- 

tem. 

Furthermore, we examine the effect of the linepack level at the 

beginning of the day on the system operation by defining two ad- 

ditional cases for the ease of our analysis. These two cases are de- 

fined by having a 5% more or less linepack at the beginning of the 

day in relation to the value at the end of the day. In all cases, the 

total linepack at the end of the day is equal to 448,0 0 0 kcf. The 

total operating cost is lower when there is higher level of initial 

linepack in the system. The system is operated by taking advan- 

tage of the free energy stored in the natural gas network that also 

results in scheduling more the GFPPs compared to the base case of 

Stoch-Coup . On the contrary, the expected cost is higher when the 

gas network has to be filled in order to meet the final condition of 

the scheduling horizon. 

The total linepack of the system is presented in Fig. 5 , along 

with the total storage level. The linepack decreases throughout the 

scheduling horizon when the initial level is higher than the final 

condition and the storage is not utilized at the day-ahead stage. It 

can be noticed that the rate of decrease depends on the residen- 

tial natural gas demand profile, while there are couple of periods 

that the linepack is charged when the residential demand is rela- 

tively low. On the other hand, the linepack is increased when its 

initial value is lower at the beginning of the scheduling horizon. 

The highest rate of increase is observed when the residential natu- 

ral gas demand is low during the first hours of the day. Moreover, 

there is a need to discharge the storage facilities to support the 

secure operation of the system. In both cases, the linepack is de- 

creased below the final hour threshold during the hours of peak 

residential demand to avoid supplying natural gas by the expen- 

sive natural gas producer. 

In addition, Fig. 6 illustrates the total natural gas supply and 

the fuel demand of GFPPs. The natural gas production is signifi- 

cantly higher when the lack of linepack in the system has to be 

covered. On the contrary, the utilization of linepack to cover nat- 

ural gas demand during the first half of the scheduling horizon, 

when the initial value is higher, is demonstrated by the reduced 

Fig. 6. Total natural gas production and total natural demand of GFPPs (NG: natural 

gas, lp: linepack). 

production in the corresponding hours. Moreover, the GFPPs are 

scheduled more in this case due to the excess of natural gas in the 

system. This points out another advantage of the coupled approach 

where the GFPPs will be scheduled according to the gas availability 

in the system. The GFPPs are serving as a flexible demand compo- 

nent for the natural gas system, by either increasing or decreasing 

their fuel consumption, in favor of a cost-effective operation. 

The optimization problems were solved using CPLEX 12.6.2 un- 

der GAMS on a stationary computer with Intel i7 4-core processor 

clocking at 3.4 GHz and 8 GB of RAM. The average time to solve 

Stoch-Coup was 1540 seconds, while Seq-Coup and Seq-Dec were 

solved in less than 90 seconds. 

6. Conclusion 

This paper proposes a co-optimization model for integrated 

electricity and natural gas systems that efficiently takes into ac- 

count uncertain power supply. We follow a linearization approach 

to approximate the dynamics of the natural gas system that yields 

a tractable mixed-integer linear programming (MILP) model and 

considers the possibility to store gas in the pipelines of the nat- 

ural gas network (i.e., linepack), which is of significant importance 

in short-term operations. The combination of the aforementioned 

model properties results in increasing operational flexibility and in 

improved allocation of gas resources in the network. Moreover, we 

provide two market-clearing models with a deterministic descrip- 

tion of the uncertain power supply and assess the value of coordi- 

nation between the energy systems and the trading floors. 

Initially, the impact of coordination parameters, such as con- 

sumption of gas-fired power plants (GFPPs) and natural gas price, 

is examined in a setup where the electricity and natural gas mar- 

kets are decoupled. It is shown that both parameters affect the 

operation of both systems and in turn, the expected cost. A poor 

definition of these parameters between these markets usually has 

a negative effect on the expected cost. However, a distorted day- 

ahead scheduling of GFPPs due to arbitrary definition of these co- 

ordination parameters may result in making available reserve ca- 

pacity that is suitable to cope with the actual imbalances in real- 

time operation. In contrast, a fully coupled model effectively copes 

with power supply uncertainty and makes the most of the flexibil- 

ity inherent to the natural gas system, which is further highlighted 

by comparing the approaches that linepack is modeled or disre- 

garded. Moreover, our analysis shows that it is not adequate to 

introduce an additional source of flexibility (e.g., linepack) in the 
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system without having the proper market design to operate it. Fi- 

nally, simulation results show that the models efficiently capture 

the natural gas system behavior. 

For future works, the optimal definition of coordination param- 

eters between the two markets needs to be studied. Results in 

our analysis indicate that a systematic approach to define them 

is capable of reducing the expected system cost. Moreover, a 

more detailed description of the natural gas system that models 

also fuel consumption of compressors could be considered. This 

would highly increase the computational complexity of the prob- 

lem. However, tailored decomposition techniques can be applied to 

overcome this hurdle. 
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Abstract—Natural gas-fired power plants (NGFPPs) are con-
sidered a highly flexible component of the energy system and
can facilitate the large-scale integration of intermittent renewable
generation. Therefore, it is necessary to improve the coordination
between electric power and natural gas systems. Considering a
market-based coupling of these systems, we introduce a decision
support tool that increases market efficiency in the current setup
where day-ahead and balancing markets are cleared sequentially.
The proposed approach relies on the optimal adjustment of
natural gas price to modify the scheduling of power plants and
reveals the necessary flexibility to handle stochastic renewable
production. An essential property of this price-based approach
is that it guarantees no financial imbalance (deficit or surplus) for
the system operator at the day-ahead stage. Our analysis shows
that the proposed mechanism reduces the expected system cost
and efficiently accommodates high shares of renewables.

Index Terms—Bilevel programming, electricity markets, natu-
ral gas markets, stochastic programming.

NOMENCLATURE

Sets
I Set of dispatchable power production units i.
Ic Set of thermal power plants ic (Ic ⊂ I).
Ig Set of natural gas-fired power plants ig (Ig ⊂ I).
J Set of wind power units j.
K Set of natural gas production units k.
L Set of natural gas pipelines l.
A

ig
l Set of natural gas-fired power plants ig at pipeline l.

Ω Set of wind power scenarios ω.
T Set of time periods t.

Variables
pi,t, wj,t Day-ahead dispatch of units i and j in period t [MW].
p
+/−
i,ω,t Up/down regulation provided by unit i in scenario ω,

period t [MW].
wsp

j,ω,t Wind power spilled by unit j in scenario ω, period t
[MW].

lsh,E
ω,t , l

sh,G
ω,t Electricity and natural gas load shedding in scenario ω,

period t [MW, kNm3/h].
gk,t Day-ahead dispatch of unit k in period t [kNm3/h].
g
+/−
k,ω,t Up/down regulation provided by unit k in scenario ω,

period t [kNm3/h].
xt Natural gas price adjustment [$/kNm3].
λ, μ Dual variables of equality and inequality constraints.

Parameters
DE

t Electricity demand in period t [MW].
DG

t Natural gas demand in period t [kNm3/h].
Ci Day-ahead offer price of unit i [$/MWh].
C

+/−
i Up/down regulation offer price of unit i [$/MWh].

Csh,E Cost of electricity load shedding [$/MWh].
Csp Cost of wind power spillage [$/MWh].

Ck Day-ahead offer price of unit k [$/kNm3].
C

+/−
k Up/down regulation offer price of unit k [$/kNm3].

Csh,G Cost of natural gas load shedding [$/kNm3].
Pmax
i Capacity of dispatchable unit i [MW].

P
+/−
i Up/down reserve offer by unit i [MW].

φig Power conversion factor of unit ig [kNm3/MWh].
Wj,ω,t Wind power realization in scenario ω, period t [MW].
Ŵj,t Expected wind power by unit j in period t [MW].
W j Capacity of wind power unit j [MW].
Gmax

k Capacity of natural gas unit k [kNm3/h].
G

+/−
k Up/down reserve offer by unit k [kNm3/h].

X Limit of natural gas price adjustment [$/kNm3].
FM
l,t Capacity of natural gas pipeline l in period t [kNm3/h].

FA
l Daily contract limit of natural gas pipeline l [kNm3].

I. INTRODUCTION

In recent years, renewable energy makes up a high share
of the total electricity production and is expected to increase
further in the future. In view of accomplishing a transition
to a green energy system, natural gas-fired power plants
(NGFPPs) seem an ideal choice to facilitate this shift due to
their operational flexibility and high efficiency, especially if
the potential of using green gases (e.g., biogas) is considered.

The tighter coupling of electricity and natural gas markets
can promote the integration of renewables in the energy sys-
tem. Coupling these two markets is a natural way to increase
the coordination between the two systems that have existing
synergies mainly through the NGFPPs. Authors in [1] and [2]
study different coordination setups in short-term operational
models and highlight the benefits of such coupling. The effect
of natural gas supply uncertainty and price variability on the
scheduling of power plants is shown in [3]. Moreover, the case
of Spain that builds its energy mix on the basis of combining
renewables and NGFPPs is described in [4] indicating the
need for a coupled operation of the two systems. Towards that
goal, several technical and regulatory challenges need to be
addressed, such as the alignment of electricity and natural gas
market timing, the establishment of effective mechanisms to
couple the operation and the increase of short-term trading
in natural gas markets. Authors in [5] extensively discuss
the timing between the two markets and how this could be
harmonized. In addition, short-term trading of natural gas
has increased compared to previous years as spot markets
(e.g., Gaspoint Nordic) continuously develop and attract larger
volumes for trading [6]. These changes will facilitate the



integration of electricity and natural gas systems to flourish
under high shares of renewables. To this end, we develop a
market-based coupling where the market timing is concurrent
and the quantities are traded in short-term markets.

Current market designs that are based on the sequential
clearing of the day-ahead and balancing trading floors may
result in significant balancing costs as the penetration of
renewables increases. Recent literature, e.g. [7] – [9], discusses
the use of stochastic programming to anticipate future balanc-
ing needs. We consider this approach as the ideal benchmark
in terms of expected cost.

In this paper, we propose a setup that couples electricity and
natural gas markets and bridges the efficiency gap between the
sequential and stochastic models. From a physical perspective,
these two systems interact through the natural gas consumption
of NGFPPs, while from an economic viewpoint they are
implicitly coordinated through the natural gas price offered
to NGFPPs. Exploiting this economic link, we propose a
stochastic bilevel model that explicitly captures the temporal
coordination between the day-ahead and balancing markets,
as well as it respects the existing sequential market structure.
This approach is price-based and allows the system operator
to optimally adjust the natural gas price offered to NGFPPs by
providing proper flexibility price signals. These price signals
aim at modifying the unit dispatch and revealing adequate
flexibility to cope with real-time imbalances. This mechanism
is designed on a cost-neutral basis to ensure that the system
operator will be financially balanced at the day-ahead stage.
Nevertheless, this action may lead to potential real-time deficit
or surplus that can be considered a price-based incentive to
promote power system flexibility, akin to the flexible capacity
remuneration mechanisms that are currently under discussion
in the European electricity market context [10]. Results show a
sound increase of market efficiency by the proposed model, as
the expected system cost significantly reduces via an improved
unit dispatch that effectively handles stochastic production.

This paper is organized as follows. In Sections II-A and
II-B, we present the sequential and stochastic dispatch models,
respectively. We describe the proposed price-based mechanism
in Section II-C. Section III demonstrates the results on a
stylized case study, while Section IV concludes the paper.

II. DISPATCH MODELS

The models considered in this study assume that electricity
and natural gas markets are coupled, i.e., the market clearing is
a single optimization problem. This approach is an optimistic
view of the current setup, where these markets are actually
decoupled and thus loosely coordinated in terms of price, i.e.,
NGFPPs submit their electricity price-quantity offers based on
an estimation and not the true value of the natural gas price.

A. Sequential Coupled Electricity and Natural Gas Model

The sequential dispatch model (Seq) clears independently
the day-ahead and balancing markets. The optimal schedule
that minimizes the day-ahead cost of the integrated system is
determined by model (1) as follows,

Min.
ΘD

∑

t∈T

( ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t

)
(1a)

subject to

0 ≤ pi,t ≤ Pmax
i : μP

i,t
, μP

i,t, ∀i, t, (1b)

0 ≤ wj,t ≤ Ŵj,t : μ
Ŵ
j,t
, μŴ

j,t, ∀j, t, (1c)
∑

i∈I
pi,t +

∑

j∈J
wj,t −DE

t = 0 : λ̂E
t , ∀t, (1d)

0 ≤
∑

ig∈AIg
l

φigpig,t ≤ FM
l,t : μ

M
l,t
, μM

l,t, ∀l, t, (1e)

0 ≤
∑

t∈T

∑

ig∈AIg
l

φigpig,t ≤ FA
l : μA

l
, μA

l , ∀l, (1f)

0 ≤ gk,t ≤ Gmax
k : μG

k,t
, μG

k,t, ∀k, t, (1g)
∑

k∈K
gk,t −DG

t −
∑

ig∈Ig
φigpig,t = 0 : λ̂G

t , ∀t, (1h)

where ΘD = {pi,t, ∀i, t;wj,t, ∀j, t; gk,t, ∀k, t} is the set of
primal optimization variables. The total operating cost in (1a)
stems from the power production cost of thermal power plants
and the total natural gas production cost. The power production
cost of NGFPPs is neglected as this would imply double
counting it. Constraints (1b) and (1c) enforce the upper and
lower limits of power production of dispatchable and wind
power plants. Wind power is constrained by the expected
wind generation. Equations (1d) and (1h) represent the power
and natural gas balance at the day-ahead stage. The physical
pipeline capacity in each hour is imposed by (1e), while (1f)
limits the daily natural gas use. The natural gas production
limits of each plant are determined through (1g). For the sake
of conciseness, we denote the regulation provided by each
balancing power plant as Δpi,ω′,t = p+i,ω′,t − p−i,ω′,t. Having
the day-ahead schedule of the integrated system as a fixed
parameter (denoted with superscript ‘*’) and for a specific
realization of Wj,ω′,t, the real-time market clearing writes as,

Min.
ΘR

∑

t∈T
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k∈K
(C+

k g+k,ω′,t − C−k g−k,ω′,t) + Csh,Elsh,E
ω′,t (2a)

+
∑
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−
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)
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i,ω′,t, ∀i, t, (2b)
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, μP-
i,ω′,t, ∀i, t, (2e)

0 ≤ wsp
j,ω′,t ≤ Wj,ω′,t : μ

sp
j,ω′,t

, μsp
j,ω′,t, ∀j, t, (2f)

0 ≤ lsh,E
ω′,t ≤ DE

t : μsh,E
ω′,t

, μsh,E
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Δpi,ω′,t + lsh,E
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+
∑

j∈J
(Wj,ω′,t − wsp

j,ω′,t − w*
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0≤
∑

ig∈AIg
l
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*
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l,ω′,t

,μMR
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*
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l,ω′ , ∀l, (2j)

0 ≤ g+k,ω′,t ≤ Gmax
k − g*

k,t : μ
GR+
k,ω′,t

, μGR+
k,ω′,t, ∀k, t, (2k)

0 ≤ g−k,ω′,t ≤ g*
k,t : μ
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k,ω′,t

, μGR-
k,ω′,t, ∀k, t, (2l)

0 ≤ g+k,ω′,t ≤ G+
k : μG+

k,ω′,t
, μG+

k,ω′,t, ∀k, t, (2m)

0 ≤ g−k,ω′,t ≤ G−k : μG-
k,ω′,t

, μG-
k,ω′,t, ∀k, t, (2n)

0 ≤ lsh,G
ω′,t ≤ DG

t : μsh,G
ω′,t

, μsh,G
ω′,t, ∀t, (2o)

∑

k∈K
(g+k,ω′,t − g−k,ω′,t) + lsh,G

ω′,t

−
∑

ig∈Ig
φigΔpig,ω′,t = 0 : λ̃G
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where ΘR = {p+i,ω′,t, p
−
i,ω′,t, ∀i, t; lsh,E

ω′,t, l
sh,G
ω′,t, ∀t;w

sp
j,ω′,t, ∀j, t;

g+k,ω′,t, g
−
k,ω′,t, ∀k, t} is the set of primal optimization vari-

ables. The aim of model (2) is to minimize the balancing
cost of re-dispatch actions. Constraints (2b) and (2c) determine
the bounds of power regulation taking into account the day-
ahead schedule and the capacity of the power plant, while (2d)
and (2e) enforce the limits of up- and down-regulation. Wind
spillage is restricted by the actual wind power realization and
load shedding by electricity demand through (2f) and (2g),
respectively. Equation (2h) represents the power balance in
real-time operation. The real-time physical pipeline capacity
is enforced by (2i), while (2j) imposes the daily natural
gas volume limit. Constraints (2k) and (2l) set the bounds
of natural gas regulation given the capacity and day-ahead
schedule of each plant. Up- and down-regulation levels of
natural gas are limited by (2m) and (2n), while load shedding
is limited by the natural gas demand in (2o). Constraint (2p)
enforces real-time natural gas balancing. In all models, the
dual variables of each constraint are indicated after a colon.
The dual variables of equality constraints are of particular
interest since they reflect the market price for electricity and
natural gas. The expected balancing cost over a scenario set
Ω is given as the sum of the balancing cost for each scenario
ω weighed by its probability of occurrence πω .

B. Stochastic Coupled Electricity and Natural Gas Model

The stochastic dispatch model (Stoch) optimizes jointly the
day-ahead and balancing stages of the integrated electric power
and natural gas systems. The problem is formulated as a two-
stage stochastic program aiming to minimize the total expected
cost and writes as follows,

Min.
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is the set of primal optimization variables. In this model, the
temporal coordination of the two trading floors is achieved
through the real-time constraints (3d) for all scenarios ω ∈ Ω.
The day-ahead dispatch of wind power is restricted by the
installed capacity, instead of the expected wind generation
and day-ahead dispatch decisions are treated as variables.

C. Price-Based Coupled Electricity and Natural Gas Model
The proposed dispatch model (P-B) that aims at minimizing

the expected cost of the integrated energy system and defining
the optimal natural gas price adjustment xt writes as follows,

Min.
ΘUL

(3a) (4a)
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where ΘLL
1 = {pi,t, ∀i, t;wj,t, ∀j, t}, ΘLL

2 = {p+i,ω,t, p
−
i,ω,t,

∀i, ω, t; lsh,E
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primal optimization variables of the lower-level problems.
Additionally, ΘUL = {xt, ∀t, ΘLL

1 , ΘLL
2 , ΘLL

3 , ΘLL
4 } is the set

of primal optimization variables of the upper-level problem.
The upper-level problem minimizes the expected cost of
operating the integrated energy system by deciding the optimal
value of variable xt. Additionally, the lower-level problems
practically reproduce the sequential coupled electricity and
natural gas market. The system operator has the ability to
vary the price of natural gas within specified limits, defined by
(4b), to achieve a cost-effective system operation. The upper-
level variable xt has an impact on the decisions of the lower-
level problems as the day-ahead and up/down regulation offer
prices of NGFPPs are affected by this value through (4f), (4i)
and (4j). Moreover, the lower-level decision variables affect
the total expected cost of the integrated system. Capturing
this dependency, the proposed mechanism can reveal the true
value of the NGFPPs’ flexibility and yield a dispatch that
reduces expected system cost while respecting the merit-order
principle. Equation (4c) acts as a cost-neutrality constraint
since it guarantees that this mechanism leaves no financial
deficit or surplus to the system operator, i.e., the hourly day-
ahead payments or charges are counterbalanced throughout
the day. Potential deficit or surplus at the balancing stage is
expected to be fairly limited and can be addressed through
proper regulation as for instance the capacity payments for
power availability in real-time operation.

The bilevel problem (4) can be reformulated as a Math-
ematical Program with Equilibrium Constraints (MPEC) by
replacing the linear, and thus convex, lower level problems
by their Karush-Kuhn-Tucker (KKT) conditions. Then, it is
transformed into a Mixed-Integer Linear Program (MILP) in
order to deal with the bilinear terms that arise from the com-
plementarity conditions. Constraint (4c) is linearized by using
the KKT conditions and strong duality theorem. A detailed
mathematical description of the aforementioned procedure is
presented in the electronic companion of the paper [11].

III. RESULTS

In this section, we illustrate the features of the three dispatch
models presented in Section II. We consider a system that
comprises three thermal power plants and two NGFPPs which
also participate in the natural gas market to acquire their fuel.
The unit data are provided in Table I. Up- and down-regulation
offer prices are equal to 1.1 and 0.9 of day-ahead offer price.

The natural gas price adjustment is limited to $80/kNm3. The
cost of load shedding is $1200/MWh and $1000/kNm3, while
wind spillage is cost free. The peak natural gas and electricity
demand are equal to 60 kNm3/h and to 430 MW, respectively.

TABLE I
ELECTRIC POWER AND NATURAL GAS SYSTEM DATA

Unit i 1 2 3 4 5 Unit k 1 2
Pmax
i 80 110 50 100 100 Gmax

k
150 100

P+
i 10 0 30 25 20 G+

k
50 20

P−i 10 0 30 25 20 G−
k

50 20
Ci 30 10 - - 60 Ck 120 160
φig - - 0.2 0.3 -

For illustration purposes, we perform a simulation in
which wind power uncertainty is characterized by a set of
two equiprobable scenarios, namely, ω1 (166MW) and ω2

(86 MW). The marginal cost of wind power is equal to zero
and the expected wind power production is 126MW. We
provide results for two time periods to show the effect of
adjusted natural gas prices (either increased or reduced) on
the schedules of NGFPPs. The results are presented in Tables
II, III, IV and V. The lowest expected system cost is obtained
by model Stoch. Model Seq respects the merit-order principle
as wind power is dispatched to its expected value due to zero
marginal cost and then the power plants are scheduled based
on an ascending order of marginal costs. The marginal cost of
NGFPPs stems from the multiplication of natural gas price and
power conversion factor. In this example, natural gas is only
produced by unit K1, so its price is $120/kNm3, which results
in a price offer from NGFPP I4 equal to $36/MWh. Unit I5 is
the most expensive and thus not scheduled at day-ahead stage.

Table II shows the generation schedule reported by models
Seq and P-B, when the electricity demand is equal to 387MW.
In model P-B, variable xt1 is equal to -$20/kNm3 that results
in a reduced natural gas price of $100/kNm3 for all NGFPPs,
which in turn affects their marginal cost of power production.
The marginal cost of NGFPP I4 is reduced to $30/MWh,
which is equal to the marginal cost of unit I1. NGFPP I4
is now scheduled to 31MW, while unit I1 to 70MW. The
day-ahead cost increases compared to Seq since in reality the
operating cost of the system rises from the actual costs and not
the reduced one that NGFPPs buy natural gas. However, this
increase is offset by the lower total balancing cost achieved
by P-B. The up-regulation cost is lower since unit I1 is able to
provide a portion of the total 40MW needed for up-regulation.
This is due to the fact that unit I1 has a lower real up-
regulation cost than unit I5. Moreover, NGFPP I4 is more cost-
effective for providing down-regulation compared to NGFPP
I3 and thus reduces the down-regulation cost of P-B.

Similarly, Table IV shows the schedule of power plants
under Seq and P-B, when the electricity demand is equal to
344MW. In this case, the value of xt2 is equal to +$30/kNm3

which in a similar manner affects the marginal cost of NGF-
PPs. The marginal cost of NGFPP I3 is increased to $30/MWh,
which is equal to the marginal cost of unit I1. This action
results in an improved scheduling at the day-ahead stage that
will result in a lower expected cost. In both cases, it can



TABLE II
ELECTRIC POWER SYSTEM SCHEDULE IN MW – (DE = 387 MW)

Agent
Seq P-B

Day-ahead Balancing Day-ahead Balancing
ω1 ω2 ω1 ω2

I1 80 -10 0 70 -10 +10
I2 110 0 0 110 0 0
I3 50 -9 0 50 -5 0
I4 21 -21 +25 31 -25 +25
I5 0 0 +15 0 0 +5

WP 126 +40 -40 126 +40 -40

TABLE III
EXPECTED SYSTEM OPERATION COST IN $ – (DE = 387 MW)

Total Day-ahead Balancing Up regulation Down regulation
Seq 10 400.4 9 982.8 417.6 990.0 -572.4

Stoch 10 234.8 10 222.8 12.0 660.0 -648.0
P-B 10 273.8 10 042.8 231.0 825.0 -594.0

be observed that xt affects the natural gas price for power
production, which in turn changes the day-ahead dispatch.
The dispatch is changed in order to enable more cost-effective
power plants to provide the required regulation. These price
signals establish a temporal coordination between the two
trading floors and thus better exploit the available technical
flexibility of the two systems.

TABLE IV
ELECTRIC POWER SYSTEM SCHEDULE IN MW – (DE = 344 MW)

Agent
Seq P-B

Day-ahead Balancing Day-ahead Balancing
ω1 ω2 ω1 ω2

I1 58 -10 +10 70 -10 +10
I2 110 0 0 110 0 0
I3 50 -30 0 38 -30 +12
I4 0 0 +25 0 0 +18
I5 0 0 +5 0 0 0

WP 126 +40 -40 126 +40 -40

TABLE V
EXPECTED SYSTEM OPERATION COST IN $ – (DE = 344 MW)

Total Day-ahead Balancing Up regulation Down regulation
Seq 8 932.8 8 566.8 366.0 825.0 -459.0

Stoch 8 859.6 8 206.8 652.8 917.4 -264.6
P-B 8 859.6 8 638.8 220.8 679.8 -459.0

The following results are provided for the whole 24-hour
scheduling horizon and 20 wind power scenarios (available at
[12]). Fig. 1 shows the expected cost of the coupled electricity
and natural gas system for different wind power penetration
levels, i.e., share of installed wind power capacity on system’s
demand. It is observed that Stoch results in the lowest expected
cost in all cases and efficiently utilizes the increase of wind
power production. The expected cost of Seq diverges from the
corresponding values of the other dispatch models for a wind
power penetration level above 25% and shows a significant
increase when this share is higher than 40%. On the contrary,
the expected cost of the proposed dispatch model P-B remains
close to Stoch over the whole range of wind power penetration.
This verifies the ability of P-B to bridge the gap between Seq
and Stoch by providing solutions closer to the stochastic ideal,
while maintaining the economic properties of the sequential
market clearing.

Additionally, Table VI presents the expected pay-
ment/charge to adjust the price of natural gas at the balancing
stage and the overall savings in expected cost between Seq

Fig. 1. Impact of wind power penetration level on the expected system cost.

TABLE VI
EXPECTED PAYMENT/CHARGE TO GENERATE FLEXIBILITY PRICE SIGNAL

Wind power
penetration level (%) 25 30 35 40 45 50

Exp. savings ($) 971.5 4 663 8 035.6 12 251.8 14 562.4 19 601.6
Exp. payment/charge ($) -352.1 -177.1 -21.4 133.5 2.2 302.3

and P-B. Relevant results are only illustrated for wind power
penetration levels that models Seq and P-B provide a different
dispatch. The payment/charge at the day-ahead stage is zero
due to (4c) but at the balancing stage the system operator could
have either a deficit or a surplus under different conditions.
However, this financial imbalance is significantly lower than
the benefit of reducing the total expected cost and can be either
socialized or utilized for future investments. We observe larger
expected savings as wind power penetration increases, while
the expected payment/charge remains at the same level that is
relatively small. For the case of 50% wind power penetration,
P-B reduces the expected cost by $19 601.6 compared to Seq
and the system operator is expected to receive $302.3.

We now consider a wind power penetration level of 50%
to provide useful insights of the proposed dispatch model.
Fig. 2 shows the natural gas price adjustment (xt) and the
day-ahead payment/charge in order to generate this signal. It
can be observed that the sign of xt determines whether the
system operator has to incur a deficit or a surplus to change
the price of natural gas, while the total settlement also depends
on the volume of natural gas consumed for power production
at the day-ahead stage. The natural gas price is reduced for
the majority of time periods, which results in a deficit for the
system operator during these hours. However, this deficit is
offset by the surplus generated in periods when the natural
gas price adjustment is positive, retaining this action as cost-
neutral at the day-ahead stage.

Furthermore, we illustrate the natural gas price adjustment
(xt) in relation to the difference in the hourly NGFPPs’
share of the total power production between P-B and Seq. A
positive value (green area) shows that NGFPPs are scheduled
to produce more at the day-ahead stage under P-B than in
Seq, while a negative value (red area) shows the opposite case.
During the first hours of the day, inflexible unit I2 is mainly
dispatched under Seq. It can be observed that during the same



Fig. 2. Hourly natural gas price adjustment (black line: left y-axis) and day-
ahead financial settlement of the system operator to adjust the natural gas
price (colored areas: right y-axis). Wind power penetration 50%.

Fig. 3. Hourly natural gas price adjustment (black line: left y-axis) and
difference in NGFPPs’ share of total power production between P-B and Seq
(colored areas: right y-axis). Wind power penetration 50%.

period, the price of natural gas is reduced under P-B in order to
schedule NGFPP I3 and exploit its flexibility. On the contrary,
the price of natural gas is increased during hours 17-20, when
electricity demand reaches its peak. As a result, a part of the
electricity demand covered by NGFPP I4 is undertaken by
unit I5 and that results in revealing flexibility to handle wind
power uncertainty. Moreover, it is noticed that a change in the
natural gas price does not always reflect an alternation of the
day-ahead dispatch. This decision takes into account the trade-
off between improving the dispatch and guaranteeing that this
action is cost-neutral at the day-ahead stage.

The pricing scheme of Stoch ensures cost recovery for
flexible producers only in expectation. However, maintaining
a sequential setup to clear the market generates prices that
support the dispatch in such a way that the aforementioned
property will hold for each scenario of stochastic production.
We refer the reader to [8] for further discussion on this topic.

Supplementary results and the code are given in [11] for
reader’s convenience. The optimization problems were solved
using CPLEX 12.6.2 under GAMS on a stationary computer
with Inter i7 4-core processor clocking at 3.4 GHz and 8 GB
of RAM. The average time to solve P-B was 520 seconds.

IV. CONCLUSION

This paper proposes a price-based coordination between
electricity and natural gas markets to bring the expected cost
closer to the stochastic ideal solution. Using a natural gas price
adjustment component, this mechanism enables an implicit
temporal coupling of the day-ahead and balancing markets,

while preserving the existing sequential market clearing of
those trading floors. We employ a stochastic bilevel model
that allows the system operator to anticipate the real-time
operation of the integrated system taking into account the
economic link between electricity and natural gas markets. The
proposed method ensures that the natural gas price adjustment
only affects the payment/charge at the balancing stage, where
the traded quantities are significantly lower.

For future research, we intend to enrich the current model
formulation including electricity network constraints. This will
enable us to define more accurately the optimal natural gas
price adjustments taking into account potential transmission
congestions. The proposed model can be adapted to alterna-
tive coordination mechanisms between electricity and natural
gas markets, e.g., quantity-based coordination as well as to
compare the efficiency of these approaches against direct
remuneration mechanisms of flexible producers.
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This document serves as an electronic companion for the paper “Exploiting Flexibility in Coupled Electricity
and Natural Gas Markets: A Price-Based Approach” to be published in the proceedings of IEEE PES PowerTech
2017. It contains three sections that provide supplemental material relative to the mathematical formulation of
the problem and additional results.

1 MPEC formulation of price-based coupled electricity and natural
gas model (P-B)

In this section the bilevel P-B model is reformulated as a Mathematical Program with Equilibrium Constraints
(MPEC) by replacing the linear, and thus convex, lower level problems by their Karush-Kuhn-Tucker (KKT)
conditions. Then, the resulting MPEC is transformed into a Mixed-Integer Linear Program (MILP) in order to

deal with the bilinear terms that arise from the complementarity conditions. We introduce a mapping M
ig
l of

the natural gas-fired power plants ig at pipeline l (entries are equal to 1 if NGFPP is connected to a pipeline
and 0 otherwise). The model writes as follows,

Min.
ΘMUL

∑

t∈T

[ ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t +

∑

ω∈Ω

πω

(∑

k∈K
(C+

k g
+
k,ω,t − C−k g−k,ω,t) +

∑

ic∈Ic
(C+

ic
p+
ic,ω,t

− C−icp
−
ic,ω,t

)

+ Csh,Elsh,E
ω,t + Csh,Glsh,G

ω,t +
∑

j∈J
Cspwsp

j,ω,t

)]
(1a)

subject to

−X ≤ xt ≤ X, ∀t, (1b)
∑

t∈T

∑

ig∈Ig
φigpig,txt = 0, (1c)

0 ≤ pi,t ≤ Pmax
i : µP

i,t
, µP
i,t, ∀i, t, (1d)

0 ≤ wj,t ≤ Ŵj,t : µŴ
j,t
, µŴ
j,t, ∀j, t, (1e)

0 ≤
∑

ig∈AIgl

φigpig,t ≤ FM
l,t : µM

l,t
, µM
l,t, ∀l, t, (1f)

0 ≤
∑

t∈T

∑

ig∈AIgl

φigpig,t ≤ FA
l : µA

l
, µA
l , ∀l, (1g)

∑

i∈I
pi,t +

∑

j∈J
wj,t −DE

t = 0 : λ̂E
t , ∀t, (1h)

Cic − λ̂E
t − µP

ic,t
+ µP

ic,t = 0, ∀ic, t, (1i)

φig (λ̂G
t + xt)− λ̂E

t − µP
ig,t

+ µP
ig,t +

∑

l∈L
M

ig
l (φigµ

M
l,t + φigµ

A
l − φigµM

l,t
− φigµA

l
) = 0, ∀ig, t, (1j)

− λ̂E
t − µŴ

j,t
+ µŴ

j,t = 0, ∀j, t, (1k)

0 ≤ gk,t ≤ Gmax
k : µG

k,t
, µG
k,t, ∀k, t, (1l)
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∑

k∈K
gk,t −DG

t −
∑

ig∈Ig
φigpig,t = 0 : λ̂G

t , ∀t, (1m)

Ck − λ̂G
t − µG

k,t
+ µG

k,t = 0, ∀k, t, (1n)

0 ≤ p+
i,ω,t ≤ Pmax

i − pi,t : µPR+
i,ω,t

, µPR+
i,ω,t , ∀i, ω, t, (1o)

0 ≤ p−i,ω,t ≤ pi,t : µPR-
i,ω,t

, µPR-
i,ω,t, ∀i, ω, t, (1p)

0 ≤ p+
i,ω,t ≤ P+

i : µP+
i,ω,t

, µP+
i,ω,t, ∀i, ω, t, (1q)

0 ≤ p−i,ω,t ≤ P -
i : µP-

i,ω,t
, µP-
i,ω,t, ∀i, ω, t, (1r)

0 ≤ wsp
j,ω,t ≤Wj,ω,t : µsp

j,ω,t
, µsp
j,ω,t, ∀j, ω, t, (1s)

0 ≤ lsh,E
ω,t ≤ DE

t : µsh,E
ω,t

, µsh,E
ω,t , ∀ω, t, (1t)

0 ≤
∑

ig∈AIgl

φigp
+
ig,ω,t

≤ FM
l,t −

∑

ig∈AIgl

φigpig,t : µMR+
l,ω,t

, µMR+
l,ω,t , ∀l, ω, t, (1u)

0 ≤
∑

ig∈AIgl

φigp
−
ig,ω,t

≤
∑

ig∈AIgl

φigpig,t : µMR-
l,ω,t

, µMR-
l,ω,t, ∀l, ω, t, (1v)

0 ≤
∑

t∈T

∑

ig∈AIgl

φigp
+
ig,ω,t

≤ FA
l −

∑

t∈T

∑

ig∈AIgl

φigpig,t : µAR+
l,ω

, µAR+
l,ω , ∀l, ω, (1w)

0 ≤
∑

t∈T

∑

ig∈AIgl

φigp
−
ig,ω,t

≤
∑

t∈T

∑

ig∈AIgl

φigpig,t : µAR-
l,ω

, µAR-
l,ω , ∀l, ω, (1x)

∑

i∈I
(p+
i,ω,t − p−i,ω,t) + lsh,E

ω,t +
∑

j∈J
(Wj,ω,t − wsp

j,ω,t − wj,t) = 0 : λ̃E
ω,t, ∀ω, t, (1y)

C+
ic
− λ̃E

ω,t + µPR+
ic,ω,t

+ µP+
ic,ω,t

− µP+
ic,ω,t

= 0, ∀ic, ω, t, (1z)

− C−ic + λ̃E
ω,t + µPR-

ic,ω,t + µP-
ic,ω,t − µP-

ic,ω,t
= 0, ∀ic, ω, t, (1aa)

φig (λ̃G
ω,t + xt)− λ̃E

ω,t + µPR+
ig,ω,t

+ µP+
ig,ω,t

− µP+
ig,ω,t

+
∑

l∈L
M

ig
l (φigµ

MR+
l,ω,t + φigµ

AR+
l,ω − φigµMR+

l,ω,t
− φigµAR+

l,ω
) = 0, ∀ig, ω, t, (1ab)

− φig (λ̃G
ω,t + xt) + λ̃E

ω,t + µPR-
ig,ω,t + µP-

ig,ω,t − µP-
ig,ω,t

+
∑

l∈L
M

ig
l (φigµ

MR-
l,ω,t + φigµ

AR-
l,ω − φigµMR-

l,ω,t
− φigµAR-

l,ω
) = 0, ∀ig, ω, t, (1ac)

Csh,E − λ̃E
ω,t + µsh,E

ω,t − µsh,E
ω,t

= 0, ∀ω, t, (1ad)

Csp + λ̃E
ω,t + µsp

j,ω,t − µsp
j,ω,t

= 0, ∀j, ω, t, (1ae)

0 ≤ g+
k,ω,t ≤ Gmax

k − gk,t : µGR+
k,ω,t

, µGR+
k,ω,t , ∀k, ω, t, (1af)

0 ≤ g−k,ω,t ≤ gk,t : µGR-
k,ω,t

, µGR-
k,ω,t, ∀k, ω, t, (1ag)

0 ≤ g+
k,ω,t ≤ G+

k : µG+
k,ω,t

, µG+
k,ω,t, ∀k, ω, t, (1ah)

0 ≤ g−k,ω,t ≤ G−k : µG-
k,ω,t

, µG-
k,ω,t, ∀k, ω, t, (1ai)

0 ≤ lsh,G
ω,t ≤ DG

t : µsh,G
ω,t

, µsh,G
ω,t , ∀ω, t, (1aj)

∑

k∈K
(g+
k,ω,t − g−k,ω,t) + lsh,G

ω,t −
∑

ig∈Ig
φig (p+

ig,ω,t
− p−ig,ω,t) = 0 : λ̃G

ω,t, ∀ω, t, (1ak)

C+
k − λ̃G

ω,t + µGR+
k,ω,t + µG+

k,ω,t − µG+
k,ω,t

= 0, ∀k, ω, t, (1al)

− C−k + λ̃G
ω,t + µGR-

k,ω,t + µG-
k,ω,t − µG-

k,ω,t
= 0, ∀k, ω, t, (1am)

Csh,G − λ̃G
ω,t + µsh,G

ω,t − µsh,G
ω,t

= 0, ∀ω, t, (1an)

0 ≤ µP
i,t ⊥ Pmax

i − pi,t ≥ 0, ∀i, t, (1ao)

0 ≤ µP
i,t
⊥ pi,t ≥ 0, ∀i, t, (1ap)

0 ≤ µŴ
j,t ⊥ Ŵj − wj,t ≥ 0, ∀j, t, (1aq)

0 ≤ µŴ
j,t
⊥ wj,t ≥ 0, ∀j, t, (1ar)
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0 ≤ µM
l,t ⊥ FM

l,t −
∑

ig∈AIgl

φigpig,t ≥ 0, ∀l, t, (1as)

0 ≤ µA
l ⊥ FA

l −
∑

t∈T

∑

ig∈AIgl

φigpig,t ≥ 0, ∀l, (1at)

0 ≤ µM
l,t
⊥

∑

ig∈AIgl

φigpig,t ≥ 0, ∀l, t, (1au)

0 ≤ µA
l
⊥
∑

t∈T

∑

ig∈AIgl

φigpig,t ≥ 0, ∀l, (1av)

0 ≤ µG
k,t ⊥ Gmax

k − gk,t ≥ 0, ∀k, t, (1aw)

0 ≤ µG
k,t
⊥ gk,t ≥ 0, ∀k, t, (1ax)

0 ≤ µPR+
i,ω,t ⊥ Pmax

i − pi,t − p+
i,ω,t ≥ 0, ∀i, ω, t, (1ay)

0 ≤ µPR-
i,ω,t
⊥ pi,t − p−i,ω,t ≥ 0, ∀i, ω, t, (1az)

0 ≤ µP+
i,ω,t ⊥ P+

i − p+
i,ω,t ≥ 0, ∀i, ω, t, (1ba)

0 ≤ µP+
i,ω,t
⊥ p+

i,ω,t ≥ 0, ∀i, ω, t, (1bb)

0 ≤ µP-
i,ω,t ⊥ P -

i − p−i,ω,t ≥ 0, ∀i, ω, t, (1bc)

0 ≤ µP-
i,ω,t
⊥ p−i,ω,t ≥ 0, ∀i, ω, t, (1bd)

0 ≤ µsp
j,ω,t ⊥Wj,ω,t − wsp

j,ω,t ≥ 0, ∀j, ω, t, (1be)

0 ≤ µsp
j,ω,t
⊥ wsp

j,ω,t ≥ 0, ∀j, ω, t, (1bf)

0 ≤ µsh,E
ω,t ⊥ DE

t − lsh,E
ω,t ≥ 0, ∀ω, t, (1bg)

0 ≤ µsh,E
ω,t
⊥ lsh,E

ω,t ≥ 0, ∀ω, t, (1bh)

0 ≤ µMR+
l,ω,t ⊥ FM

l,t −
∑

ig∈AIgl

φigpig,t −
∑

ig∈AIgl

φigp
+
ig,ω,t

≥ 0, ∀l, ω, t, (1bi)

0 ≤ µMR+
l,ω,t

⊥
∑

ig∈AIgl

φigp
+
ig,ω,t

≥ 0, ∀l, ω, t, (1bj)

0 ≤ µMR-
l,ω,t ⊥

∑

ig∈AIgl

φigpig,t −
∑

ig∈AIgl

φigp
−
ig,ω,t

≥ 0, ∀l, ω, t, (1bk)

0 ≤ µMR-
l,ω,t
⊥

∑

ig∈AIgl

φigp
−
ig,ω,t

≥ 0, ∀l, ω, t, (1bl)

0 ≤ µAR+
l,ω ⊥ FA

l −
∑

t∈T

∑

ig∈AIgl

φigpig,t −
∑

t∈T

∑

ig∈AIgl

φigp
+
ig,ω,t

≥ 0, ∀l, ω, (1bm)

0 ≤ µAR+
l,ω

⊥
∑

t∈T

∑

ig∈AIgl

φigp
+
ig,ω,t

≥ 0, ∀l, ω, (1bn)

0 ≤ µAR-
l,ω ⊥

∑

t∈T

∑

ig∈AIgl

φigpig,t −
∑

t∈T

∑

ig∈AIgl

φigp
−
ig,ω,t

≥ 0, ∀l, ω, (1bo)

0 ≤ µAR-
l,ω
⊥
∑

t∈T

∑

ig∈AIgl

φigp
−
ig,ω,t

≥ 0, ∀l, ω, (1bp)

0 ≤ µGR+
k,ω,t ⊥ Gmax

k − gk,t − g+
k,ω,t ≥ 0, ∀k, ω, t, (1bq)

0 ≤ µGR-
k,ω,t

⊥ gk,t − g−k,ω,t ≥ 0, ∀k, ω, t, (1br)

0 ≤ µG+
k,ω,t ⊥ G+

k − g+
k,ω,t ≥ 0, ∀k, ω, t, (1bs)

0 ≤ µG+
k,ω,t

⊥ g+
k,ω,t ≥ 0, ∀k, ω, t, (1bt)

0 ≤ µG-
k,ω,t ⊥ G−k − g−k,ω,t ≥ 0, ∀k, ω, t, (1bu)

0 ≤ µG-
k,ω,t

⊥ g−k,ω,t ≥ 0, ∀k, ω, t, (1bv)

0 ≤ µsh,G
ω,t ⊥ DG

t − lsh,G
ω,t ≥ 0, ∀ω, t, (1bw)

0 ≤ µsh,G
ω,t
⊥ lsh,G

ω,t ≥ 0, ∀ω, t. (1bx)
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The nonlinearities that arise from complementarity conditions are linearized via the Fortuny-Amat trans-
formation [1]. We introduce the set of dual variables (λ and µ) Θdual, thus ΘMUL = {ΘUL,Θdual}.

2 Linearization of cost-neutrality constraint

In this section, the aim is to linearize the cost-neutrality constraint (1c). First, we write the strong duality of
problem (4d)-(4f) as presented in the original paper,

∑

t∈T

( ∑

ic∈Ic
Cicpic,t +

∑

ig∈Ig
(λ̂G
t + xt)pig,tφig

)
=
∑

t∈T

(
−
∑

i∈I
µP
i,tP

max
i −

∑

j∈J
µŴ
j,tŴj,t −

∑

l∈L
µM
l,tF

M
l,t+

λ̂E
t D

E
t

)
−
∑

l∈L
µA
l F

A
l ,

(2)

We solve for
∑
t∈T

∑
ig∈Ig xtpig,tφig ,

∑

t∈T

∑

ig∈Ig
xtpig,tφig =

∑

t∈T

(
−
∑

ic∈Ic
Cicpic,t −

∑

i∈I
µP
i,tP

max
i −

∑

j∈J
µŴ
j,tŴj,t −

∑

l∈L
µM
l,tF

M
l,t+

λ̂E
t D

E
t −

∑

ig∈Ig
λ̂G
t pig,tφig

)
−
∑

l∈L
µA
l F

A
l .

(3)

In the case that λ̂G
t = 0, the nonlinear term

∑
t∈T λ̂

G
t

∑
ig∈Ig φigpig,t vanishes. When λ̂G

t 6= 0, we multiply

equation (1m) with λ̂G
t and we sum over time periods t,

∑

t∈T

(
λ̂G
t

∑

k∈K
gk,t − λ̂G

t D
G
t − λ̂G

t

∑

ig∈Ig
φigpig,t

)
= 0 (4a)

⇔
∑

t∈T
λ̂G
t

∑

ig∈Ig
φigpig,t =

∑

t∈T

(
λ̂G
t

∑

k∈K
gk,t − λ̂G

t D
G
t

)
. (4b)

Furthermore, we multiply equality (1n) with gk,t 6= 0,

Ckgk,t − λ̂G
t gk,t − µG

k,t
gk,t + µG

k,tgk,t = 0 ∀k, t. (5)

Then, we sum over the natural gas producers k and time periods t,

∑

t∈T

(∑

k∈K
Ckgk,t − λ̂G

t

∑

k∈K
gk,t −

∑

k∈K
µG
k,t
gk,t +

∑

k∈K
µG
k,tgk,t

)
= 0 (6a)

⇔
∑

t∈T
λ̂G
t

∑

k∈K
gk,t =

∑

t∈T

(∑

k∈K
Ckgk,t −

∑

k∈K
µG
k,t
gk,t +

∑

k∈K
µG
k,tgk,t

)
. (6b)

In equation (4b) the term
∑
t∈T λ̂

G
t

∑
k∈K gk,t is nonlinear and thus substituted by the equivalent expression

given in (6b),

∑

t∈T
λ̂G
t

∑

ig∈Ig
φigpig,t =

∑

t∈T

(∑

k∈K
Ckgk,t −

∑

k∈K
µG
k,t
gk,t +

∑

k∈K
µG
k,tgk,t − λ̂G

t D
G
t

)
. (7)

Moreover, we substitute the nonlinear term
∑
t∈T λ̂

G
t

∑
ig∈Ig φigpig,t in the strong duality equation (3) by (7),

∑

t∈T

∑

ig∈Ig
xtpig,tφig =

∑

t∈T

(
−
∑

ic∈Ic
Cicpic,t −

∑

i∈I
µP
i,tP

max
i −

∑

j∈J
µŴ
j,tŴj,t −

∑

l∈L
µM
l,tF

M
l,t+

λ̂E
t D

E
t

)
−
∑

l∈L
µA
l F

A
l −

∑

t∈T

(∑

k∈K
Ckgk,t −

∑

k∈K
µG
k,t
gk,t +

∑

k∈K
µG
k,tgk,t − λ̂G

t D
G
t

)
.

(8)

From the complementarity condition (1aw) we have,

µG
k,t(G

max
k − gk,t) = 0⇔ µG

k,tG
max
k = µG

k,tgk,t, ∀k, t. (9)

Additionally, from the complementarity condition (1ax) we have,

µG
k,t
gk,t = 0, ∀k, t. (10)
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By substituting (9) and (10) in (8), we have the following linear representation of
∑
t∈T

∑
ig∈Ig xpig,tφig ,

∑

t∈T

∑

ig∈Ig
xtpig,tφig =

∑

t∈T

(
−
∑

ic∈Ic
Cicpic,t −

∑

i∈I
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i,tP

max
i −

∑

j∈J
µŴ
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∑
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l,t FNGA
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t D

E
t

)
−
∑
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µNGA
l FNGA

l −
∑

t∈T

(∑

k∈K
Ckgk,t +

∑

k∈K
µG
k,tG

max
k − λ̂G

t D
G
t

)
.

(11)

3 Supplementary results

In this section, we provide some additional graphs related to the results of the paper. We illustrate the demand
and expected wind power profiles, as well as the day-ahead dispatch of the conventional units under the three
different dispatch models for reader’s convenience. This way the effect of changing the price of natural gas for
power production is demonstrated by comparing the dispatch between Seq and P-B.
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Figure 1: Electricity demand, natural gas demand and expected wind power production profiles.
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Figure 2: Hourly day-ahead schedule of power plants (Seq).
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Figure 3: Hourly day-ahead schedule of power plants (P-B).
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Figure 4: Hourly day-ahead schedule of power plants (Stoch).

Table 1: Profits. Wind power penetration 50%.
I1 I3 I4 I5

Seq Exp. profit ($) 18 725.35 24 634.10 46 411.69 55 360.59
Stoch Exp. profit ($) 16 989.08 16 376.21 14 532.13 2 805.79

Aver. losses ($) -104.57 -106.09 -69.03 -28.37
Prob. profit<0 (%) 1.2 7.6 9.4 0.3

P-B Exp. profit ($) 18 452.14 22 044.05 24 001.30 19 771.83

The expected profits of flexible producers are shown in Table 1. The higher expected profits occur under
Seq due to the high balancing prices that appear when costly balancing actions (e.g., electricity load shedding)
take place. In this case, wind power producers have to bear this cost and this may result in negative profits in
expectation. Model P-B attains to alleviate this effect by significantly reducing the cost of balancing actions.
For Stoch, the average losses for the time periods and scenarios that a negative profit realizes are provided.
Moreover, we calculate the probability of having a negative profit for each time period and scenario. Although
the average losses are relatively small, a considerable probability of having a negative profit per time period and
scenario emerges. In this example, profits per scenario are positive under Stoch but this can not be guaranteed
and generalized for every case. Positive profits for each time period and scenario are guaranteed under models
Seq and P-B.
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Market-based Coordination for Integrated Electricity
and Natural Gas Systems Under Uncertain Supply

Christos Ordoudis, Student Member, IEEE, Stefanos Delikaraoglou, Member, IEEE,
Jalal Kazempour, Member, IEEE, Pierre Pinson, Senior Member, IEEE

Abstract—The interdependence between electricity and natural
gas systems has lately increased due to the wide deployment
of gas-fired power plants (GFPPs). Moreover, weather-driven
renewables introduce uncertainty in the operation of the inte-
grated energy system, increasing the need for operational flex-
ibility. Recently proposed stochastic dispatch models optimally
use the available flexibility and minimize the total expected
system cost. However, these models are incompatible with the
current sequential market design. We propose a novel method
to optimally define the available natural gas volume for power
production scheduling, anticipating the real-time flexibility needs.
Our model is formulated as a stochastic bilevel program aim-
ing to enhance the inter-temporal coordination of scheduling
and balancing operations, while remaining compatible with the
sequential clearing of day-ahead and real-time markets. The
proposed model accounts for the inherent flexibility of the natural
gas system via the proper modeling of linepack properties and
reduces the total expected system cost by the optimal definition of
natural gas volume availability for GFPPs during the scheduling
phase.

Index Terms—Bilevel programming, integrated electricity and
natural gas systems, market-based coordination, uncertainty.

I. INTRODUCTION

The coupling between the electricity and natural gas sys-
tems has been substantially strengthened due to the increased
utilization of gas-fired power plants (GFPPs) over the last
decades and this trend is expected to continue in the foresee-
able future [1]. In addition, renewable energy sources, such
as wind and solar power, already comprise a significant share
of the generation mix. The co-existence of these two types of
power production plants serves as a promising combination
for a smooth transition to a sustainable energy system that is
flexible enough to accommodate high shares of renewables. To
this end, the interdependence between these two energy sys-
tems will increase and the intermittency of renewable energy
sources will eventually affect the operation of both systems.
Hence, there is a compelling need to introduce mechanisms
that treat these systems in an integrated manner.

The coordinated operation of electricity and natural gas
systems has been extensively studied lately. The benefits of
improved coordination between the two energy systems under
high intraday variability of GFPPs’ fuel consumption are
indicated in [2]. In a similar context, the impact of natural gas
supply uncertainty and price variability on the power system
dispatch is analyzed in [3], showing that these parameters can

C. Ordoudis, J. Kazempour and P. Pinson are with the Department
of Electrical Engineering, Technical University of Denmark, Kgs. Lyn-
gby 2800, Denmark e-mail: (chror@elektro.dtu.dk; seykaz@elektro.dtu.dk;
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S. Delikaraoglou is with the Power Systems Laboratory, ETH, Zurich,
Switzerland e-mail: (delikaraoglou@eeh.ee.ethz.ch).

considerably alter the market outcomes. Moreover, authors in
[4] highlight the benefit in terms of improved flexibility and
reliability, when accounting for the ability to store natural gas
in the pipelines, known as linepack. Therefore, both physical
and economic links between electricity and natural gas systems
have an eminent role in short-term operations and are highly
essential in the presence of renewables. The effect of uncertain
renewable power production to the coupled energy system is
analyzed via a robust co-optimization framework in [5], while
authors in [6] utilize stochastic programming to dispatch the
power system with feasible fuel supply from the natural gas
network. Moreover, authors in [7] consider a joint optimization
framework that utilizes GFPPs to firm up uncertain power
supply from renewables. Taking a market perspective, an equi-
librium model for the interdependent electricity and natural
gas markets that allows for short-term energy trading based
on locational marginal prices is proposed in [8]. Similarly,
we study the short-term coupled operation of electricity and
natural gas systems in a market framework where the energy
commodities are traded based on their marginal prices. Such an
approach is highly attractive especially when the two systems
are operated by the same entity, e.g. Energinet.dk in Denmark,
that is both electricity and natural gas systems’ operator [9].

Following the paradigm of the electricity sector, the volume
of natural gas traded in the spot markets is continuously
increasing [9]. Therefore, the short-term operation of elec-
tricity and natural gas systems should be modeled on the
basis of a market-based framework. The short-term operation
is mainly associated with two trading floors, namely the day-
ahead and balancing markets that are cleared in a sequential
manner. The day-ahead market is settled 12-36 hours ahead
of the actual system operation and the balancing market deals
with the necessary adjustments to keep the system balanced.
However, this sequential arrangement is inefficient under high
shares of stochastic renewable power production due to its
deterministic view of the uncertain renewables’ production. In
the European context, the day-ahead market follows a zonal
network representation, while a nodal network representation
is considered during the real-time operation. Stochastic pro-
gramming has been utilized to enhance the temporal coor-
dination between these two trading floors by making use of
a probabilistic description of stochastic renewable production
[10], [11]. Despite that this approach provides the solution
with the minimum expected system cost, it is not compatible
with the current market design and in addition it suffers
from some design flaws related to the violation of the least-
cost merit-order principle [12], [13]. For this reason, several
approaches have been proposed that aim at approximating the
stochastic ideal solution, while maintaining the current market
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architecture. An improved dispatch model that minimizes
system’s expected cost and respects the merit-order principle
by scheduling wind power in a value different than its expected
production is proposed in [12], while cost recovery1 of flexible
producers is guaranteed for any realization of uncertainty.
Additionally, authors in [14] develop a framework to set the
available transfer capacity (ATC) in a cost-optimal manner
and attain a solution closer to the stochastic one. Finally,
a model that efficiently dispatches the power system with
an optimal setting of allocation between energy and reserves
on the inter-regional HVDC interconnections is proposed in
[15]. In the aforementioned works, the system operator is able
to properly tune these purely financial parameters, i.e. wind
dispatch, ATCs, HVDC allocation, in order to communicate
the missing information to the day-ahead stage and achieve a
partial temporal coordination between the trading floors.

Following a similar approach, we propose a systematic
method to define the optimal natural gas volume that is made
available for power production at the day-ahead stage. We
consider this natural gas availability as a parameter that can
be controlled by the operator and we build a stochastic bilevel
model to determine its optimal value, while anticipating the
future balancing needs due to forecast errors from uncertain
power supply. This mechanism aims to improve the temporal
coordination between day-ahead and balancing trading floors
and approximate the efficiency of the stochastic solution,
while the existing market architecture is preserved. The natural
gas availability only affects the day-ahead schedule of the
integrated energy system and the real-time balancing takes
into account the physical characteristics of the two networks.
Regarding the natural gas system, we model the linepack
capability to make optimal use of the available network
flexibility. Our models achieve optimal operation in terms
of total operating cost for the integrated energy system with
detailed representation of the technical constraints for both
components, i.e. electricity and natural gas networks. Thus,
the proposed volume-based model optimally determines the
natural gas volume offered to GFPPs and in turn provides
an appropriate system dispatch to cope with the imbalances
in real-time. Finally, we compare the volume-based approach
with the price-based model proposed in [16], which introduces
a stochastic bilevel program that generates proper flexibility
price signals to adjust the natural gas price perceived by GFPPs
in order to provide a more efficient market outcome.

The remaining of the paper is organized as follows. Section
II outlines the main properties of each dispatch model for the
integrated energy system, while the mathematical formulation
is presented in Section III. The results are illustrated in Section
IV, and Section V concludes the paper. Finally, additional
material including some mathematical extensions, proofs and
a detailed nomenclature are given in the online appendix [17].

II. MARKET-BASED COORDINATION

In this paper, we study four dispatch models for scheduling
and balancing electricity and natural gas systems. These mod-
els achieve different degrees of temporal coordination for the

1Revenue of each market participant is greater than or equal to its operating
costs.

integrated energy system. This section describes their funda-
mental principles and provides a schematic representation to
outline the main properties of each coordination scheme.

A. Sequential Dispatch of Integrated Energy System

The sequential dispatch of the integrated energy system
(Seq) models a case of perfect inter-systems coordination be-
tween electricity and natural gas networks for both day-ahead
and balancing markets, as shown in Fig. 1. However, these
market floors are cleared in sequential and independent auc-
tions, resulting to imperfect temporal coordination between the
scheduling and balancing operations. Having as input a single-
valued forecast of the stochastic power production, a common
day-ahead market is cleared to obtain the initial operation
schedule for both systems. Getting closer to actual operation,
when the realization of stochastic production ω′ is known, the
balancing actions to compensate for potential forecast errors
are jointly optimized for both systems through a common
balancing market. Even though this sequential approach may
be inefficient due to imperfect temporal coordination, it admits
an important economic property that ensures cost recovery for
flexible producers for any realization of stochastic production,
as shown in the electronic companion [17]. Assuming a co-
optimization process that minimizes the combined system cost
at each market stage, this setup deviates from the current
design since it does not respect the asynchronous timing and
independent clearing of the respective markets [18]. However,
this market model allows us to assess the net value of temporal
coordination between the day-ahead and balancing markets of
interdependent energy networks.

Fig. 1. Sequential dispatch of integrated energy system. DA: Day-ahead,
E: Electricity, G: Natural gas, ∆E: Electricity adjustment, ∆G: Natural gas
adjustment.

B. Stochastic Dispatch of Integrated Energy System

To improve the temporal coordination between the schedul-
ing and balancing operations, we construct the stochastic
coupled electricity and natural gas dispatch model (Stoch)
illustrated in Fig. 2. Here, the day-ahead market co-optimizes
the electricity and natural gas schedules based on a probabilis-
tic description of uncertain supply, which allows to anticipate
the cost of re-dispatch actions in real-time operation. Such
probabilistic description is based on the available forecast at
the day-ahead stage and may not cover the exact realization
in real-time. However, given that the uncertainty modelling
adequately captures the true characteristics of the stochastic
processes involved, the potential realization will be represented
via a set of scenarios Ω. This market setup is mathematically
formulated as a two-stage stochastic programming problem
that minimizes the total expected cost of the integrated energy
system. The definition of this model provides an ideal refer-
ence solution that attains perfect inter-systems and temporal
coordination, assuming that a realistic range and probability
distribution of scenarios are considered. However, its real-life
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implementation is restricted because cost recovery for market
participants and revenue adequacy2 for the system operator
hold only in expectation [10]. Actually, these fundamental
economic properties may be violated for some uncertainty
realizations in scenario set Ω since this model does not respect
the least-cost merit-order principle in the day-ahead market.

Fig. 2. Stochastic dispatch of integrated energy system.

C. Volume-based Coordination in Sequential Dispatch of In-
tegrated Energy System

Aiming to address the caveat of imperfect temporal coordi-
nation of the Seq model, while sidestepping the design flaws
of the Stoch model, we introduce a volume-based (V-B) coor-
dination mechanism. This mechanism leverages the physical
coupling of electricity and natural gas systems through the
GFFPs to implicitly coordinate the day-ahead and balancing
markets. The system operator uses as coordination signal an
amount χv of the natural gas volume that is available to GFFPs
at the day-ahead stage, while the full capacity of the natural
gas network is released during real-time operation. Note that
volume χv affects only the fuel demand of GFPPs, while
industrial/commercial natural gas loads have higher priority.

Fig. 3. Volume-based coordination in sequential dispatch of integrated energy
system.

A systematic method for the definition of the optimal value
of χv is mathematically formulated as the stochastic bilevel
program presented schematically in Fig. 3. Similar to the
Stoch model, the upper-level problem minimizes the expected
cost of the integrated system, having χv as a non-negative
decision variable. In turn, the lower-level problem reproduces
the day-ahead clearing of the integrated market for a fixed
value of χv that enters the lower level as a fixed parameter.
This structure accounts for the independence of day-ahead
and balancing markets, since the day-ahead schedule that
is enforced by the lower-level problem has the exact same
properties as its counterpart in the Seq model. Consequently,
the re-dispatch actions are optimized individually for each
uncertainty realization in the upper level. Essentially, the
optimal value of χv is found by anticipating the day-ahead
market outcome and the subsequent expected balancing cost.

This coordination mechanism resembles the “maximum gas
burn” constraint recently introduced by California Independent
System Operator (CAISO) to address reliability risks due

2Payments made to/received from market participants do not incur financial
deficit to the operator.

to the limited operability of the Aliso Canyon natural gas
storage facility. Using this constraint CAISO is able to limit
the gas consumption of a group of generators in a defined
area [19]. In the same vein, our volume signal χv can be
applied to a whole control zone or be tailored to specific
areas or GFPPs. Nonetheless, the proposed mechanism extends
CAISO’s approach to consider primarily issues pertaining to
forecast errors of stochastic power producers.

D. Price-based Coordination in Sequential Dispatch of Inte-
grated Energy System

Apart from the physical interaction of electricity and natural
gas networks, there is also an economic link that couples
the operation of these systems through the natural gas price
offered to GFPPs. Therefore, a coordination mechanism anal-
ogous to the volume-based approach outlined above, can be
established using instead a price-based (P-B) signal χp applied
to the natural gas prices. To define the optimal value of χp

we employ the stochastic bilevel optimization model that is
depicted schematically in Fig. 4 and presented in [16]. The
construction of this model follows the same rationale as the
volume-based coordination scheme and thus it also preserves
the independent clearing of day-ahead and balancing markets
that enforces per-se the merit-order principle.

Fig. 4. Price-based coordination in sequential dispatch of integrated energy
system. RT: Real-time.

This coordination mechanism allows GFPPs to utilize all
available natural gas resources but can instead control (either
increase or decrease) the natural gas price that is perceived
by the GFPPs via the free in sign χp. In turn, this affects
their short-term marginal costs and consequently their price
offers on the electricity side of the integrated market in both
day-ahead and balancing stages. Practically, these price signals
reflect the scarcity value of flexible GFPPs for the system
operator during real-time balancing. In order to ensure fairness
and transparency for all counter-parties, this mechanism is de-
signed on a cost-neutral basis such that the system operator is
financially balanced at the day-ahead stage. Potential financial
imbalances in the real-time settlements can be compensated
using out-of-the-market payments as a supporting mechanism
for the flexible producers, similar to the flexible capacity
remuneration mechanisms that are currently discussed in the
European electricity market context [20].

E. Features of Bilevel Models and Computational Tractability

Since the sequential arrangement between the trading floors
is preserved with V-B and P-B models, cost recovery for flex-
ible producers is guaranteed for each realization of stochastic
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production. Moreover, it can be noticed that in V-B implemen-
tation only the day-ahead stage needs to be included in the
lower-level problem since the natural gas volume availability
χv only affects the natural gas volume that is announced at
the day-ahead market stage and then the physical capacity of
the natural gas network is made available in real-time. On the
contrary, both the day-ahead and balancing markets must be
included in the lower-level problem of P-B, since the price
adjustment χp affects the marginal cost of GFPPs in the day-
ahead market; however, the real-time price offers have to be
altered in a consistent way to preserve the incentive for the
provision of balancing services. Since the proposed dispatch
models V-B and P-B are formulated in a bilevel structure, it
is necessary to ensure that the lower-level problems are linear
and convex in order to allow a single-level reformulation as a
tractable mixed-integer linear program (MILP). Therefore, we
study two variants of the balancing market in the following
section. The first one directly permits the comparison between
V-B and P-B since the balancing market is formulated as a
linear program (LP). On the other hand, the second variant
can be applied only to V-B as it has a detailed formulation
for the gas flows in the real-time stage, which requires the
introduction of binary variables that make the problem non-
convex. Finally, model V-B results in a MILP with fewer binary
variables than P-B as the balancing market is not included in
the lower level. Note that since the balancing market is not
included in the lower level of V-B model, this formulation
is less computationally expensive as the number of binary
variables is independent of the number of scenarios.

III. MODEL FORMULATION

Before presenting the mathematical formulation of the dis-
patch models, we introduce a set of assumptions utilized in this
study. A holistic view of the energy systems is followed, where
the electricity and natural gas markets are considered coupled,
hence the market clearing is a single optimization problem.
Uncertain supply from stochastic producers is modeled via a
finite set of scenarios Ω, accounting for temporal and spatial
correlations of the forecast errors. We assume that electricity
and natural gas demands are inelastic and exactly known,
hence we take the operator’s perspective that minimizes sys-
tem’s cost. The physical link between the electricity and
natural gas systems is provided by GFPPs, where their fuel
consumption has a lower priority than industrial/commercial
natural gas demands. The cost structure for electricity and
natural gas producers is assumed to have the form of linear
functions, while stochastic producers bid with zero marginal
cost. We focus on the two trading floors of day-ahead and
balancing markets, where a pool-based approach, i.e. without
network constraints, is used to clear the day-ahead market,
while the balancing market is formulated under two different
setups. The first setup is formulated as an LP under the
assumption that the balancing market is cleared as a pool with
additional fuel constraints for the GFPPs based on an ex-ante
estimation of pipeline capacities, similarly to the approach in
[3]. In the second setup, we introduce network constraints for
both electricity and natural gas systems. For the power system,
we adopt a DC power flow, while a model that approximates

gas flow dynamics via linepack consideration is used for the
natural gas system [21], which leads to a MILP formulation.

A. Sequential Dispatch of Integrated Energy System

As illustrated in Fig. 1, the day-ahead and balancing markets
are cleared independently in the Seq model. Initially, the day-
ahead market is formulated in (1) as follows,

Min.
ΘD

∑

t∈T

( ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t

)
(1a)

subject to

0 ≤ pi,t ≤ Pmax
i , ∀i, t, (1b)

0 ≤ wj,t ≤ Ŵj,t, ∀j, t, (1c)
0 ≤ gk,t ≤ Gmax

k , ∀k, t, (1d)∑

i∈I
pi,t +

∑

j∈J
wj,t −

∑

re∈Re
DE
re,t = 0 : λ̂E

t , ∀t, (1e)

∑

k∈K
gk,t −

∑

rg∈Rg
DG
rg,t −

∑

ig∈Ig
φigpig,t = 0 : λ̂G

t , ∀t, (1f)

0≤
∑

t∈T

∑

ig∈AIgψ

φigpig,t≤|T |
∑

k∈K
Gmax
k −

∑

t∈T

∑

rg∈Rg
DG
rg,t, (1g)

0 ≤
∑

ig∈AIgψ

φigpig,t ≤ Fmax
ψ,t −

∑

rg∈ARgψ

DG
rg,t, ∀ψ, t, (1h)

where ΘD = {pi,t, ∀i, t;wj,t, ∀j, t; gk,t, ∀k, t} is the set
of optimization variables. The objective function (1a) to be
minimized determines the day-ahead cost of the integrated
electricity and natural gas system, including thermal electricity
producers ic, GFPPs ig and natural gas producers k. Param-
eters Ci and Ck are production costs, and t is the index
for time periods. We have excluded the electricity cost of
GFPPs since this is already accounted through the cost of their
natural gas consumption. Power production pi,t of power plant
i (either thermal or GFPP) is constrained by their generation
capacity Pmax

i in (1b), while power dispatch wj,t of stochastic
(e.g. wind) electricity producer j is bounded by its expected
production Ŵj,t in (1c). Moreover, natural gas production gk,t
is constrained by capacity Gmax

k in (1d) for each producer.
The balance in power and natural gas systems is enforced
through (1e) and (1f), whose dual variables λ̂E

t and λ̂G
t reflect

the market price for electricity and natural gas, respectively.
Note that re and rg are indices for electricity and natural gas
demands, and their loads are denoted by parameters DE

re,t and
DG
rg,t. In addition, parameter φig refers to the power conver-

sion factor for each GFPP. The marginal cost of each GFPP
can be endogenously calculated by the multiplication of the
natural gas price and the power conversion factor. Constraints
(1g) limit the daily natural gas use of GFPPs up to the available
natural gas volume at the day-ahead stage, which is determined
by subtracting the commercial/industrial natural gas demand
from the total daily available capacity. We introduce a specific
set to group GFPPs indexed by ψ, which may comprise GFPPs
in a specific area of the natural gas system or even only a
particular GFPP. Set AIgψ denotes a subset of GFPPs belonging
to the specific area ψ, while similar notation for sets A is used
in all formulations. The hourly fuel constraints are imposed in
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(1h), where Fmax
ψ,t denotes the maximum natural gas availability

for the specific group of GFPPs. For the sake of conciseness,
we denote the power adjustment provided by each power
plant as ∆pi,ω′,t = p+

i,ω′,t − p−i,ω′,t with p+
i,ω′,t, p

−
i,ω′,t ≥ 0

and the natural gas adjustment for each gas producer as
∆gk,ω′,t = g+

k,ω′,t − g−k,ω′,t with g+
k,ω′,t, g

−
k,ω′,t ≥ 0. The day-

ahead schedule is a fixed input (denoted with superscript ‘*’)
to the balancing market and model (2) simulates the balancing
market to compensate for potential imbalances due to the
stochastic power realization Wj,ω′,t:

Min.
ΘR

∑

t∈T

(∑

k∈K
(C+

k g
+
k,ω′,t − C−k g−k,ω′,t) +

∑

re∈Re
Csh,Elsh,E

re,ω′,t

+
∑

ic∈Ic
(C+

ic
p+
ic,ω′,t−C−icp

−
ic,ω′,t)+

∑

rg∈Rg
Csh,Glsh,G

rg,ω′,t

)
(2a)

subject to

− p*
i,t ≤ ∆pi,ω′,t ≤ Pmax

i − p*
i,t, ∀i, t, (2b)

− P -
i ≤ ∆pi,ω′,t ≤ P +

i , ∀i, t, (2c)
0 ≤ wsp

j,ω′,t ≤Wj,ω′,t, ∀j, t, (2d)

0 ≤ lsh,E
re,ω′,t ≤ DE

re,t, ∀re, t, (2e)
∑

i∈I
∆pi,ω′,t +

∑

re∈Re
lsh,E
re,ω′,t

+
∑

j∈J
(Wj,ω′,t − wsp

j,ω′,t − w*
j,t) = 0 : λ̃E

ω′,t, ∀t, (2f)

− g*
k,t ≤ ∆gk,ω′,t ≤ Gmax

k − g*
k,t, ∀k, t, (2g)

−G−k ≤ ∆gk,ω′,t ≤ G+
k , ∀k, t, (2h)

0 ≤ lsh,G
rg,ω′,t ≤ DG

rg,t, ∀rg, t, (2i)
∑

k∈K
∆gk,ω′,t+

∑

rg∈Rg
lsh,G
rg,ω′,t=

∑

ig∈Ig
φig∆pig,ω′,t : λ̃

G
ω′,t, ∀t, (2j)

0≤
∑

t∈T

∑

ig∈AIgz

φig (p*
ig,t+∆pig,ω′,t) ≤ FA

z , ∀z, (2k)

0≤
∑

ig∈AIgz

φig (p*
ig,t+∆pig,ω′,t)≤FM

z,t, ∀z, t, (2l)

where ΘR ={p+/−
i,ω′,t, ∀i, t;lsh,E

re,ω′,t, ∀re, t;lsh,G
rg,ω′,t, ∀rg, t;g

+/−
k,ω′,t,

∀k, t; wsp
j,ω′,t, ∀j, t} is the set of optimization variables. The

cost of re-dispatch actions is minimized in objective function
(2a). Balancing offer prices C+ > C and C− < C denote
the adjustment costs for thermal power plants ic and natural
gas producers k, while Csh,E and Csh,G are costs for load
shedding in the two systems. The bounds of power adjustments
are defined in (2b) considering the day-ahead dispatch of
the power plants. Constraints (2c) limit power adjustments
to the maximum capability P +

i and P -
i of each power plant.

Power spillage wsp
j,ω′,t and electricity load shedding lsh,E

re,ω′,t are
constrained by the realized power production of stochastic pro-
ducers Wj,ω′,t and electricity demand through (2d) and (2e),
respectively. Constraint (2f) represents the power balance in
real-time operation. The adjustment of natural gas production
is limited by (2g), where day-ahead schedules are taken into
account. Additionally, constraints (2h) impose the maximum
capability G+

k and G-
k of natural gas adjustments. Natural gas

load shedding lsh,G
re,ω′,t is limited by the natural gas demand in

(2i). Moreover, constraint (2j) imposes real-time natural gas
balance. The daily natural gas volume limit FA

z for pipeline
z is imposed by (2k), while the real-time physical pipeline
capacity FM

z,t is enforced by (2l). The upper bounds of (2k)
and (2l) are calculated based on an ex-ante analysis, where the
industrial/commercial natural gas demand is subtracted by the
maximum physical capacity of the pipeline and thus no explicit
description of natural gas system dynamics is included.

In the remainder of the section, we present a more detailed
setup for the balancing market where the network flows in
electricity and natural gas systems are taken into account. At
the electricity side, a DC power flow is considered with the
following set of constraints,
∑

i∈AIn

(p*
i,t + ∆pi,ω′,t) +

∑

re∈ARen

lsh,E
re,ω′,t +

∑

j∈AJn

(Wj,ω′,t − wsp
j,ω′,t)

−
∑

r:(n,r)∈L
Bn,r(δn,ω′,t−δr,ω′,t) =

∑

re∈ARen

DE
re,t : λ̃

E
n,ω′,t, ∀n, t, (3a)

Bn,r(δn,ω′,t−δr,ω′,t) ≤ Fmax
n,r , ∀(n, r) ∈ L, t, (3b)

δn,ω′,t free, ∀n/n : ref, δn,ω′,t = 0, n : ref, ∀t. (3c)

More specifically, the real-time balancing is imposed for each
node of the power system, hence (3a) replaces (2f). Moreover,
constraints (3b) determine the power flow between nodes n
and r, where δn,ω′,t is the voltage angle defined in (3c). The
transmission capacity limits Fmax

n,r are enforced by (3b).
At the gas side, an isothermal natural gas flow qm,u in

horizontal pipelines is assumed [22]. Then, the Weymouth
equation is used to describe the natural gas flow from node
m to u with the dependency at the pressure prm of adjacent
nodes,

qm,u = Kf
m,u

√
pr2
m − pr2

u, ∀(m,u) ∈ Z, (4)

where Kf
m,u is the Weymouth constant that depends on

the physical characteristics of each pipeline Z. Since (4)
is non-linear, we use an outer approximation by deriving
the Taylor series expansion around fixed pressure points
(PRm,v, PRu,v) ∈ V to obtain a linear expression [23],
[24]. Consequently, we replace equality constraints (4) by the
following set of linear inequalities,

qm,u≤Kf
m,u

(
PRm,v√

PR2
m,v−PR2

u,v

prm−
PRu,v√

PR2
m,v −PR2

u,v

pru

)
.

∀(m,u) ∈ Z, ∀v ∈ V.
(5)

To ensure an efficient approximation of the non-linear equation
(4), we use a large number of fixed pressure points v ∈ V [25].
Thus, we achieve an outer approximation by the constructed
planes in (5) that are tangent to the surface defined by (4)
which results in approximating the gas flow by the linear
constraint in (5) that is binding [23]. An advanced natural
gas system with linepack is modeled using the following
constraints:

PRmin
m ≤ prm,ω′,t ≤ PRmax

m , ∀m, t, (6a)
pru,ω′,t ≤ Γz · prm,ω′,t, ,∀(m,u) ∈ Z, t, (6b)

qm,u,ω′,t = q+
m,u,ω′,t − q−m,u,ω′,t, ∀(m,u) ∈ Z, t, (6c)
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0 ≤ q+
m,u,ω′,t≤M̃ym,u,ω′,t, ∀(m,u) ∈ Z, t, (6d)

0 ≤ q−m,u,ω′,t≤M̃(1− ym,u,ω′,t), ∀(m,u) ∈ Z, t, (6e)

ym,u,ω′,t + yu,m,ω′,t = 1, ∀(m,u) ∈ Z, t, (6f)
ym,u,ω′,t ∈ {0, 1}, ∀(m,u) ∈ Z, t, (6g)

q+
m,u,ω′,t≤KI+

m,u,vprm,ω′,t −KO+
m,u,vpru,ω′,t

+M̃(1−ym,u,ω′,t),∀{(m,u) ∈ Z|m < u}, ∀v, t, (6h)

q−m,u,ω′,t≤KI−m,u,vpru,ω′,t −KO−m,u,vprm,ω′,t

+ M̃ym,u,ω′,t,∀{(m,u) ∈ Z|m < u}, ∀v, t, (6i)

q−u,m,ω′,t≤KI+
m,u,vprm,ω′,t −KO+

m,u,vpru,ω′,t

+ M̃yu,m,ω′,t,∀{(m,u) ∈ Z|m < u}, ∀v, t, (6j)

q+
u,m,ω′,t≤KI−m,u,vpru,ω′,t −KO−m,u,vprm,ω′,t

+M̃(1−yu,m,ω′,t),∀{(m,u) ∈ Z|m < u}, ∀v, t, (6k)

q+
m,u,ω′,t=

qin
m,u,ω′,t + qout

m,u,ω′,t

2
, ∀(m,u) ∈ Z, t, (6l)

q−m,u,ω′,t=
qin
u,m,ω′,t + qout

u,m,ω′,t

2
, ∀(m,u) ∈ Z, t, (6m)

hm,u,ω′,t=Kh
m,u

prm,ω′,t + pru,ω′,t

2
, ∀(m,u) ∈ Z, t, (6n)

hm,u,ω′,t=hm,u,ω′,t−1+qin
m,u,ω′,t−qout

m,u,ω′,t,∀(m,u)∈Z,t, (6o)
∑

k∈AKm

(g*
k,t + ∆gk,ω′,t)+

∑

rg∈ARgm

lsh,G
rg,ω′,t−

∑

ig∈AIgm

φig (p*
i,t+∆pig,ω′,t)

−
∑

u:(m,u)∈Z
(qin
m,u,ω′,t−qout

u,m,ω′,t)=
∑

rg∈ARgm

DG
rg,t : λ̃

G
m,ω′,t, ∀m, t. (6p)

The bounds of pressure at each node of the system PRmin
m

and PRmax
m are given by (6a), while the active pipelines

are modeled by the relation of pressures between the two
adjacent nodes via a compression factor Γz in (6b) [4].
More specifically, the outlet pressure at node u is greater
than the inlet pressure at node m, when the gas flow is
from m to u for the active branches. The natural gas flow
qm,u,ω′,t is defined in (6c)-(6g) by two non-negative variables
q+
m,u,ω′,t, q

−
m,u,ω′,t ≥ 0, where the direction of flow is defined

by binary variable yu,m,ω′,t. Note that parameter M̃ is a
sufficient large constant. The physical characteristics of gas
flow are introduced in (6h)-(6k) that are derived by (5) with

{
KI+

m,u,v=
Kf
m,uPRm,v√

PR2
m,v−PR2

u,v

,KO+
m,u,v=

Kf
m,uPRu,v√

PR2
m,v−PR2

u,v

,

KI−m,u,v=
Kf
m,uPRu,v√

PR2
u,v−PR2

m,v

,KO−m,u,v=
Kf
m,uPRm,v√

PR2
u,v−PR2

m,v

}
,

∀{(m,u) ∈ Z|m < u}, ∀v.

(7)

Finally, two additional non-negative variables for the inflow
and outflow of each pipeline qin

u,m,ω′,t, q
out
u,m,ω′,t ≥ 0 are

introduced to model linepack flexibility. Constraints (6l) and
(6m) define the flow of each pipeline as the average of inflow
and outflow [4]. The average mass hm,u,ω′,t in each pipeline is
given by (6n), where Kh

m,u is a constant dependent on pipeline
characteristics. The mass conservation at each pipeline is
enforced by (6o). The natural gas balancing in the real-time
is enforced by (6p) that replaces (2j). The presented model
approximates the dynamics of the natural gas system and is

described in detail in [21]. We refer the reader to [26] for a
steady-state modeling of the natural gas system with geometric
programming and to [27] for a transient model that closely
describes the physical behaviour of the natural gas flow.

The pool-based balancing market is formulated with the set
of constraints (2b)-(2l). A different set of constraints is used
for the network constrained balancing market that consists
of {(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)}. In both cases, the
objective function is (2a). We use “N” to determine the use of
network constrained balancing market, hence models Seq and
Seq-N are formulated. Moreover, the set of primary variables
ΘR is extended with ΘEX = {δn,ω′,t, ∀n, t; prm,ω′,t ∀m, t;
qin/out
m,u,ω′,t, q

+/-
m,u,ω′,t, hm,u,ω′,t, yu,m,ω′,t, ∀(m,u) ∈ Z, t} in

Seq-N. In Seq-N, the prices are calculated after having fixed
binary variables related to the natural gas flow direction. The
expected balancing cost over a scenario set Ω is given as the
sum of the balancing cost for each scenario ω weighed by its
probability of occurrence πω .

B. Stochastic Dispatch of Integrated Energy System

As presented in Fig. 2, the Stoch model optimizes jointly
the day-ahead and balancing stages of the integrated electric
power and natural gas systems. The problem is formulated as
a two-stage stochastic program aiming to minimize the total
expected cost and writes as follows:

Min.
ΘSC

∑

t∈T

[ ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t +

∑

ω∈Ω

πω

(

∑

k∈K
(C+

k g
+
k,ω,t − C−k g−k,ω,t) +

∑

ic∈Ic
(C+

ic
p+
ic,ω,t

− C−icp
−
ic,ω,t

)

+
∑

re∈Re
Csh,Elsh,E

re,ω,t +
∑

rg∈Rg
Csh,Glsh,G

rg,ω,t

)]
(8a)

subject to

constraints (1b), (1d)− (1h), (8b)

0 ≤ wj,t ≤W j , ∀j, t, (8c)
constraints (2b)− (2l), ∀ω, (8d)

where ΘSC = {ΘD; ΘR
ω, ∀ω} is the set of optimization

variables. In this model, the temporal coordination of the two
trading floors is achieved through the real-time constraints (8d)
for all scenarios ω ∈ Ω. When network constrains {(2b)-
(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)} are introduced to replace
(8d), the model is named Stoch-N. Note that in model (8),
the day-ahead dispatch of stochastic producers is restricted by
the installed capacity W j , according to (8c), instead of the
expected power generation and day-ahead dispatch decisions
are treated as variables.

C. Volume-based Coordination in Sequential Dispatch of In-
tegrated Energy System

According to Fig. 3, the V-B dispatch model that aims at
minimizing the expected cost of the integrated energy system
and defining the optimal natural gas volume availability writes
as follows:

Min.
ΘVUL

(8a) (9a)
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subject to

(2b)− (2l), ∀ω, (9b)

0 ≤ χvψ ≤ |T |
∑

k∈K
Gmax
k −

∑

t∈T

∑

rg∈Rg
DG
rg,t, ∀ψ, (9c)

0 ≤ χvψ,t ≤ Fmax
ψ,t −

∑

rg∈ARgψ

DG
rg,t, ∀ψ, t, (9d)

(pi,t, wj,t, gk,t) ∈ arg
{

Min.
ΘVLL

∑

t∈T

( ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t

)
(9e)

subject to
constraints (1b)− (1f), (9f)

0 ≤
∑

t∈T

∑

ig∈AIgψ

φigpig,t ≤ χvψ, ∀ψ, (9g)

0 ≤
∑

ig∈AIgψ

φigpig,t ≤ χvψ,t, ∀ψ, t
}
, (9h)

where ΘVUL = {χvψ, ∀ψ;χvψ,t, ∀ψ, t; ΘR
ω, ∀ω} is the set of

optimization variables of the upper-level problem. Addition-
ally, ΘVLL = ΘD is the set of optimization variables of the
lower-level problem. The objective function of model (9) is
the same as in (8). Thus, the upper-level problem minimizes
the expected cost of operating the integrated energy system by
deciding the optimal value of χvψ and χvψ,t. Variable χvψ limits
the total daily natural gas consumption of GFPPs according
to (9g), while χvψ,t defines their hourly fuel limit in (9h). We
define fuel availability χvψ and χvψ,t under different setups,
ranging from a single value for the whole market to individual
values for specific areas or GFPPs. Therefore, these two
variables are indexed by ψ ∈ Ψ that defines the GFPPs that
are grouped together in each setup. The lower-level problem
reproduces the day-ahead coupled electricity and natural gas
market. Under this setup the sequential clearing of day-ahead
and balancing markets is practically emulated, since the day-
ahead decisions are fixed to the sequential dispatch though
(9e)-(9h) and the balancing market is simulated for each inde-
pendent scenario by imposing constraints (9b) for all ω ∈ Ω.
The system operator has the ability to decide the natural gas
volume that will be made available for power production at
the day-ahead stage within specified limits, defined by (9c)
and (9d). The upper-level variables χvψ and χvψ,t have an
impact on the decisions of the lower-level problem as the total
fuel availability for GFPPs affects the day-ahead schedule for
power production. Moreover, the lower-level decision variables
affect the total expected cost of the integrated system. Owning
to the this structure, model (9) finds an appropriate dispatch
that minimizes expected system cost by revealing flexibility
from GFPPs, while ensuring that the least-cost merit-order
principle is respected. The different effects of these approaches
are illustrated in the numerical study. Similarly, the model
is named V-B-N with the introduction of network constrains
{(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)} to replace (9b). The
bilevel problem (9) can be reformulated as a Mathematical
Program with Equilibrium Constraints (MPEC) by replacing

the linear, and thus convex, lower-level problems by their
Karush-Kuhn-Tucker (KKT) conditions as presented in [17].

D. Overview of Dispatch Models

Before proceeding to the numerical results, we provide an
overview of the dispatch models and their features in Table I.

TABLE I
DISPATCH MODELS’ CHARACTERISTICS

Fuel / Network
constraints Seq / Seq-N Stoch / Stoch-N V-B / V-B-N P-B / P-B-N

Temporal
coordination Imperfect Perfect Partial Partial

Coordination
mechanism Non-existing Explicit Implicit via χv * Implicit via χp

* The value of χv can be defined for the whole market, specific areas or GFPPs.

The dispatch models are classified based on the networks’
representation in the balancing market, as well as the temporal
coordination achieved and the mechanism utilized.

IV. NUMERICAL RESULTS

In this section, we first demonstrate the features of the four
dispatch models presented in Section II in a tailored case study.
Then, we compare the performance of volume-based variants
on a more realistic case study.

A. Tailored Case-Study

1) 1-hour Simulation Results: To allow a fair comparison
between P-B and V-B models, the balancing market in this
illustrative example is modeled as a pool with fuel constraints
for GFPPs. Moreover, we assume a single type of uncertain
supply that is wind power. Here, we consider a system which
comprises three thermal power plants (I1, I2 and I5), two
GFPPs (I3 and I4) that acquire their fuel from the natural gas
market, one wind farm (WP) and two natural gas producers
(K1 and K2). Table II collects the data for the producers in
both markets. Wind power is characterized by two equiproba-
ble scenarios ω1 (166 MW) and ω2 (86 MW). The offer prices
for upward and downward regulation are equal to 1.1 and 0.9
of the day-ahead offer prices. In P-B, we limit the natural
gas price adjustment to $1.35/kcf. Moreover, we consider a
pipeline capacity of 6,000 kcf. The cost of electricity and
natural gas load shedding is $1,200/MWh and $600/kcf, while
wind spillage is cost-free. The peak electricity and natural gas
demand for industrial/commercial loads are equal to 430 MW
and 3,600 kcf/h, respectively.

TABLE II
ELECTRIC POWER AND NATURAL GAS SYSTEM DATA

Unit i I1 I2 I3 I4 I5 Unit k K1 K2

Pmax
i (MW) 80 110 50 100 100 Gmax

k (kcf) 10,000 6,000
P+
i (MW) 10 0 30 25 20 G+

k (kcf) 2,500 1,000
P−
i (MW) 10 0 30 25 20 G−

k (kcf) 2,500 1,000
Ci ($/MWh) 30 10 - - 60 Ck ($/kcf) 2 3
φig (kcf/MWh) - - 12 18 -

We solve all dispatch models for 24-hours and provide
detailed results for a specific time period. Two variants of (9),
where natural gas volume availability is determined for the
whole market (V-B) and for each individual GFPP (V-B gen),
are studied. In this instance, natural gas is produced only by
unit K1, hence the natural gas price is $2/kcf and the marginal
costs of GFPPs I3 and I4 are $24/MWh and $36/MWh.
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TABLE III
EXPECTED SYSTEM COST AND ITS BREAKDOWN IN $ WHEN TOTAL POWER

LOAD IS 387 MW
Total Day-ahead Balancing Up regulation Down regulation

Seq / V-B 10,400 9,982 418 990 -572
Stoch 10,234 10,222 12 660 -648
P-B 10,273 10,042 231 825 -594

V-B gen 10,261 10,162 99 693 -594

The action of adjusting the natural gas price or volume
availability becomes beneficial when the day-ahead dispatch is
altered with regards to Seq to allow more cost-effective power
plants to provide the required regulation in the balancing
market. This results in an increase of the day-ahead cost and
a decrease of expected balancing cost that yields a reduction
of total expected cost.

Initially, we demonstrate the performance of all dispatch
models in Table III, when the total electricity demand is
equal to 387 MW. It can be observed that Stoch returns the
lowest expected system cost and Seq the highest one due
to imperfect temporal coordination between day-ahead and
balancing markets. Models P-B, V-B and V-B gen attain an
expected cost that is in between the ideal solution of Stoch
and the one of Seq. Thus, a reduction of expected system cost
can be accomplished, while the system is still dispatched based
on the merit-order principle.

The detailed system dispatch is illustrated in Table IV for an
electricity demand of 387 MW. Regarding P-B, the marginal
cost of all GFPPs is affected by adjusting the natural gas price
with χpt1 = −$0.333/kcf. The decreased natural gas price of
$1.666/kcf results in a lower marginal cost for GFPP I4 equal
to $30/MWh, which equals the one of unit I1. Therefore,
unit I1 is dispatched to 70 MW and GFPP I4 to 31 MW
without breaking the merit order. Model V-B returns the same
results with Seq, as a change of total natural gas volume
availability would not decrease the total expected cost. On the
contrary, V-B gen has a better performance due to its ability
to influence the dispatch of both GFPPs I3 and I4. Note that
GFPPs I3 and I4 produce a total of 71 MW in both Seq
and V-B gen at the day-ahead stage. However, the allocation
between the two GFPPs is different and more efficient under
V-B gen. More specifically, the total natural gas volume bought
by GFPPs in Seq is 987 kcf, where 600 kcf are consumed
by GFPP I3 and the remaining 387 kcf by GFPP I4. In
V-B gen, the natural gas volume made available for GFPP I3
is 420 kcf, while GFPP I4 consumes 648 kcf. The adjustment
of natural gas volume availability has a direct impact on the
day-ahead dispatch which in turn reduces the total expected
cost compared to Seq. The day-ahead cost increases but this
increase is counterbalanced by a greater decrease of balancing
cost. In particular, the up-regulation cost is decreased because
unit I5 is not activated and the need for up-regulation is
covered by the cheaper GFPP I3. Moreover, a greater portion
of the total 40 MW needed for down-regulation is provided
by GFPP I4 that is more cost-effective than GFPP I3.

The Stoch and Seq models provide the two extreme solutions
in terms of expected cost for all time periods of the scheduling
horizon and serve as upper and lower bounds, respectively,
for the expected costs of P-B, V-B and V-B gen models. We
perform an analogous analysis for the case with a total power

TABLE IV
POWER SYSTEM SCHEDULE IN MW WHEN TOTAL POWER LOAD IS 387

MW (VARIATION FROM Seq DAY-AHEAD (DA) SCHEDULE IN BOLD)

Seq P-B V-B V-B gen
Unit DA ω1 ω2 DA ω1 ω2 DA ω1 ω2 DA ω1 ω2

I1 80 -10 0 70 -10 +10 80 -10 0 80 -10 0
I2 110 0 0 110 0 0 110 0 0 110 0 0
I3 50 -9 0 50 -5 0 50 -9 0 35 -5 +15
I4 21 -21 +25 31 -25 +25 21 -21 +25 36 -25 +25
I5 0 0 +15 0 0 +5 0 0 +15 0 0 0

WP 126 +40 -40 126 +40 -40 126 +40 -40 126 +40 -40
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Fig. 5. Impact of wind power penetration level on the expected system cost.

load of 344 MW where χp gets a positive value and all three
improved sequential models achieve the same expected cost
with Stoch. This fact illustrates that it is possible in specific
cases to have an efficient sequential dispatch if the future
balancing costs are communicated into the day-ahead market
through the operator-defined parameters χ. The additional
results are presented in the electronic companion [17].

2) 24-hour Simulation Results: Additionally, we provide
the following results for the whole 24-hour scheduling horizon,
where 20 equiprobable wind power scenarios are utilized
(available at [28]). Fig. 5 presents the expected cost of the
integrated energy system as a function of wind power pene-
tration level, defined as the share of wind power capacity on
total system’s electricity demand.

The expected cost of Stoch is decreasing with an increase of
wind power penetration and achieves the lowest expected cost
in all cases. On the other hand, model Seq becomes inefficient
for a wind power penetration level above 25%, while even an
increase of the expected cost is observed when this level is
greater than 40%. The V-B and V-B gen models manage to
approximate efficiently the solution of Stoch model up to a
share of 40%, where they start diverging with an increasing
tendency. Note that the expected cost of V-B gen is lower than
V-B, confirming its higher flexibility to provide an improved
day-ahead dispatch. Similarly, P-B attains an expected cost
close to the one obtained by Stoch.

We now highlight the main features of the proposed dis-
patch models. All three P-B, V-B and V-B gen demonstrate
a considerable ability to bridge the gap between Seq and
Stoch models. They manage to return an expected system
cost closer to the stochastic ideal solution, while still dispatch
the system based on the merit-order principle and keep the
economic properties of Seq. Moreover, they can affect the
system dispatch regardless of the type of marginal producer,
i.e. GFPP or power plant using another fuel. In models V-B
and V-B gen at least one GFPP would have to be scheduled
in order to be able to improve the dispatch of the system,
while this restriction does not apply to P-B. Additionally,



ORDOUDIS et al.: MARKET-BASED COORDINATION FOR INTEGRATED ELECTRICITY AND NATURAL GAS SYSTEMS UNDER UNCERTAIN SUPPLY 9

10 20 30 40 50

1.7

1.8

1.9

2

·106

Wind power penetration level (%)

E
xp

ec
te

d
co

st
($

)

Seq-N V-B-N

V-B-N area V-B-N gen

Stoch-N

Fig. 6. Impact of wind power penetration level on the expected system cost.

model V-B is able to alter the dispatch of the GFPP with the
higher conversion factor. In case the natural gas availability
is defined individually for specific areas of the system, the
GFPP affected is the one with the greater conversion factor in
the specific area. Finally, V-B gen is more flexible than V-B
as it can change the dispatch of each individual GFPP. More
specifically, the portion of the day-ahead power to be produced
by GFPPs can be split under different shares in order to reveal
more cost-effective regulation in the balancing market.

B. Realistic Case-Study

A more realistic case study is considered to assess the
performance of the proposed dispatch model V-B-N when
network constraints are included for the real-time operation
of the energy system. The integrated energy system consists
of the IEEE 24-bus Reliability Test System (RTS) [29] and a
12-node natural gas system based on [5]. More specifically,
there exist 12 conventional power plants, out of which 4 are
GFPPs, 2 wind farms and 3 natural gas suppliers. Wind power
production is modeled by a set of 25 equiprobable scenarios.
The data and network topology are provided in the online
appendix available in [17]. Moreover, we introduce a new
variant of (9) that defines the natural gas volume availability
for specific areas of the integrated energy system, namely
V-B area. Two areas are determined in this study including two
GFPPs in each one of them. More specifically, GFPP 1 and
GFPP 5 are included in area I , while GFPP 7 and GFPP 11 in
area II . Similarly to Section IV-A, we also examine V-B-N and
V-B-N gen. We optimize over a 24-hour scheduling horizon
and we set the level of linepack at the end of the day equal
to the one at the beginning of the day that is 448,000 kcf.

The expected system cost for different wind power pen-
etration levels is illustrated in Fig. 6. All models reduce
the expected cost compared to Seq-N and this reduction is
more significant for higher shares of wind power penetration.
Moreover, it can be observed that allowing more degrees of
freedom to define natural gas availability allows to capture
more efficiently the benefits of Stoch-N.

Additionally, we quantify the benefits of modeling the
linepack in the natural gas system by comparing the outcome
of the dispatch models when a purely steady-state operation
is followed. In this case, the pipelines are not able to store
natural gas, hence the inflow and outflow is equal for each
time period. Fig. 7 illustrates the relative increase in expected
cost when neglecting linepack in comparison with the expected
cost presented in Fig. 6. An increase in expected cost is ob-
served for all dispatch models, when the additional flexibility
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Fig. 7. Impact of wind power penetration level on the expected system cost
increase when neglecting linepack modeling.

TABLE V
DAILY PROFITS OF THERMAL UNIT I3 IN CASE WIND PENETRATION IS 50%

Seq-N Stoch-N V-B-N V-B-N area V-B-N gen
Expected profit ($) 239,062 4,618 73,895 52,649 47,487

Probability of
negative profits*(%) 0 4 0 0 0

Average losses ($) 0 −46.7 0 0 0
* Based on the available scenario set Ω.

introduced by linepack is not considered. Model Stoch-N is the
most advanced one and accomplishes a consistent decrease of
expected cost in both cases, which is only slightly affected
by wind power penetration level. On the other hand, Seq-N
is the most inefficient and has the greatest increase when
linepack is ignored that results in about 3.5% for a wind
power share of 50%. Regarding the proposed volume-based
dispatch models, two trends are noticed. Initially, we observe
that the more flexible the procedure to define natural gas
volume availability, the less the outcome is altered up to a 30%
wind power penetration level. Then, the difference in expected
cost is higher for V-B-N gen at higher penetration levels.
This difference though mainly stems from the efficiency of
V-B-N gen to exploit the linepack flexibility and significantly
reduce the expected cost in this case, while still having an
adequate performance when linepack is neglected.

Finally, we illustrate that it is possible for flexible producers
to face losses in Stoch-N as cost recovery is only guaranteed
in expectation and not for each wind power scenario. On the
contrary, models Seq-N, V-B-N, V-B-N area and V-B-N gen
respect the merit-order and thus cost recovery is ensured for
each scenario. Table V presents the daily profits for the flexible
power plant I3 for wind power penetration level equal to 50%.
For Stoch-N, the average losses and the probability of facing
a negative profit is shown. Note that the expected profit is
significantly higher in Seq-N due to the payments to flexible
producers under the very costly balancing actions (e.g. load
shedding). Such balancing actions are less often under V-B-N,
V-B-N area and V-B-N gen; hence, the expected profits are
decreased for power plant I3.

The optimization problems were solved using CPLEX
12.6.2 under GAMS on a stationary computer with Intel i7
4-core processor clocking at 3.4 GHz and 8 GB of RAM. The
average solution time is presented in Table VI for both case
studies. It can be noticed that P-B has significantly higher
solution time. This is due to the greater number of binary
variables required for the linearization of complementarity
constraints in the KKT conditions, since the balancing market
is also included in the lower-level problem of the bilevel for-
mulation. Moreover, the time-coupling constraint that ensures
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TABLE VI
AVERAGE SOLUTION TIME IN SECONDS

Model Seq Stoch V-B V-B gen P-B
Tailored Case-Study 0.3 0.6 1.5 1.5 520

Model Seq-N Stoch-N V-B-N V-B-N area V-B-N gen
Realistic Case-Study 48 1,100 2,920 1,409 1,034

cost neutrality for the system operator at the day-ahead stage
also increases the complexity of the problem.

V. CONCLUSION

This paper proposed a framework to optimally define the
natural gas volume availability for power production in an
integrated electricity and natural gas system under high shares
of stochastic renewables. Releasing in the day-ahead market a
proper amount of natural gas to be consumed by the GFPPs
allows us to increase the efficiency of the sequential market
design via creating an implicit link between the day-ahead and
balancing markets. The current sequential market structures
are highly challenged from the increased uncertainty and
variability introduced by renewables since the description of
uncertain parameters is performed in a deterministic way.
Using the stochastic dispatch model as an ideal benchmark,
the proposed volume-based model is utilized to bridge the
efficiency gap between the sequential and stochastic dispatch
models. The optimal setting of natural gas availability is
achieved through a stochastic bilevel program that anticipates
balancing costs, while its outcome can be directly incorporated
in the current market structure. In order to fully exploit the
flexibility of the integrated energy system and to enhance
the overall system efficiency, we approximate the natural gas
system dynamics by modeling linepack that plays an important
role in short-term operations. Moreover, a comparison with the
price-based model that alters the natural gas price perceived
by GFPPs to achieve an implicit temporal link is performed.

Our analysis illustrated that the efficiency of the sequential
dispatch model through the intelligent adjustment of the nat-
ural gas volume or price significantly improves and approx-
imates the stochastic ideal solution. The utilization of such
decision-support tools facilitates the integration of renewables
and captures the benefits of the stochastic dispatch model,
while respecting the least-cost merit-order principle and its
economic properties. For future work, more detailed models
for the electricity and natural gas systems can be considered,
as the utilization of AC power flow and the incorporation
of compressors’ fuel consumption in the natural gas system.
Moreover, potential computational challenges can be tackled
by the use of decomposition techniques.

REFERENCES

[1] U.S. Energy Information Administration, “International energy outlook
2016,” U.S. Energy Information Administration, Tech. Rep. May 2016.

[2] A. Zlotnik et al., “Coordinated scheduling for interdependent electric
power and natural gas infrastructures,” IEEE Trans. Power Syst., vol. 32,
no. 1, pp. 600–610, Jan. 2017.

[3] B. Zhao, A. J. Conejo, and R. Sioshansi, “Unit commitment under gas-
supply uncertainty and gas-price variability,” IEEE Trans. Power Syst.,
vol. 32, no. 3, pp. 2394–2405, 2016.

[4] C. M. Correa-Posada and P. Sanchez-Martin, “Integrated power and
natural gas model for energy adequacy in short-term operation,” IEEE
Trans. Power Syst., vol. 30, no. 6, pp. 3347–3355, 2014.

[5] C. He, L. Wu, T. Liu, and M. Shahidehpour, “Robust co-optimization
scheduling of electricity and natural gas systems via ADMM,” IEEE
Trans. Sustain. Energy, vol. 8, no. 2, pp. 658–670, April 2017.

[6] A. Alabdulwahab, A. Abusorrah, X. Zhang, and M. Shahidehpour,
“Coordination of interdependent natural gas and electricity infrastruc-
tures for firming the variability of wind energy in stochastic day-ahead
scheduling,” IEEE Trans. Sustain. Energy, vol. 6, no. 2, pp. 606–615,
2015.

[7] A. Zeinalzadeh et al., “Using natural gas reserves to mitigate intermit-
tence of renewables in the day ahead market,” in Proc. IEEE 56th Conf.
Decision Control, Dec 2017, pp. 3896–3901.

[8] C. Wang et al., “Equilibrium of interdependent gas and electricity
markets with marginal price based bilateral energy trading,” IEEE Trans.
Power Syst., 2018.

[9] P. Pinson, L. Mitridati, C. Ordoudis, and J. Østergaard, “Towards fully
renewable energy systems : Experience and trends in Denmark,” CSEE
J. Power Energy Syst., vol. 3, no. 1, pp. 26–35, 2017.

[10] J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong, “Pricing electricity
in pools with wind producers,” IEEE Trans. Power Syst., vol. 27, no. 3,
pp. 1366–1376, Aug. 2012.

[11] G. Pritchard, G. Zakeri, and A. Philpott, “A single-settlement, energy-
only electric power market for unpredictable and intermittent partici-
pants,” Oper. Res., vol. 58, no. 4-part-2, pp. 1210–1219, Aug. 2010.

[12] J. M. Morales, M. Zugno, S. Pineda, and P. Pinson, “Electricity market
clearing with improved scheduling of stochastic production,” Eur. J.
Oper. Res., vol. 235, no. 3, pp. 765–774, Jun. 2014.

[13] V. M. Zavala, K. Kim, M. Anitescu, and J. Birge, “A stochastic electricity
market clearing formulation with consistent pricing properties,” Oper.
Res., vol. 65, no. 3, pp. 557–576, 2017.

[14] T. V. Jensen, J. Kazempour, and P. Pinson, “Cost-optimal ATCs in zonal
electricity markets,” IEEE Trans. Power Syst., 2017.

[15] S. Delikaraoglou and P. Pinson, “Optimal allocation of
HVDC interconnections for exchange of energy and reserve
capacity services,” Energy Syst., Apr 2018. [Online]. Available:
https://doi.org/10.1007/s12667-018-0288-6

[16] C. Ordoudis, S. Delikaraoglou, P. Pinson, and J. Kazempour, “Exploiting
flexibility in coupled electricity and natural gas markets: A price-based
approach,” in 2017 IEEE Manchester PowerTech, June 2017, pp. 1–6.

[17] C. Ordoudis, S. Delikaraoglou, J. Kazempour, and P. Pinson,
“Electronic companion - Market-based coordination for integrated
electricity and natural gas systems under uncertain supply,”
https://doi.org/10.5281/zenodo.1283327, 2018, accessed: 5.4.2018.

[18] P. J. Hibbard and T. Schatzki, “The interdependence of electricity and
natural gas: Current factors and future prospects,” Electr. J., vol. 25,
no. 4, pp. 6–17, 2012.

[19] CAISO, “Aliso Canyon gas-electric coordination,” 2017,
http://www.caiso.com/Documents/DraftFinalProposal-AlisoCanyonGas-
ElectricCoordinationPhase3.pdf Accessed 04.04.18.

[20] A. Henriot and J.-M. Glachant, “Capacity remuneration mechanisms
in the European market: now but how?” European University Institute
(EUI), Robert Schuman Centre of Advanced Studies (RSCAS), 2014.

[21] C. Ordoudis, P. Pinson, and J. M. Morales, “An integrated market for
electricity and natural gas systems with stochastic power producers,”
under review in Eur. J. Oper. Res. arXiv:1805.04414.

[22] C. Borraz-Sanchez et al., “Convex relaxations for gas expansion plan-
ning,” INFORMS J. Comput., vol. 28, no. 4, pp. 645–656, 2016.

[23] A. Tomasgard, F. Rømo, M. Fodstad, and K. Midthun, “Optimization
models for the natural gas value chain,” in Geom. Model. Numer.
Simulation, Optim. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 521–558.

[24] F. Rømo et al., “Optimizing the Norwegian natural gas production and
transport,” Interfaces (Providence)., vol. 39, no. 1, pp. 46–56, 2009.

[25] M. Fodstad, K. T. Midthun, and A. Tomasgard, “Adding flexibility in
a natural gas transportation network using interruptible transportation
services,” Eur. J. Oper. Res., vol. 243, no. 2, pp. 647–657, 2015.

[26] S. Misra et al., “Optimal compression in natural gas networks: A
geometric programming approach,” IEEE Trans. Control Netw. Syst.,
vol. 2, no. 1, pp. 47–56, March 2015.

[27] A. Zlotnik, M. Chertkov, and S. Backhaus, “Optimal control of transient
flow in natural gas networks,” in Proc. IEEE 54th Conf. Decision
Control, Dec 2015, pp. 4563–4570.

[28] W. Bukhsh, “Data for stochastic multiperiod optimal power flow prob-
lem,” 2017, https://sites.google.com/site/datasmopf/ Accessed 04.04.18.

[29] C. Grigg et al., “The IEEE reliability test system-1996. A report prepared
by the reliability test system task force of the application of probability
methods subcommittee,” IEEE Trans. Power Syst., vol. 14, no. 3, pp.
1010–1020, 1999.



Market-based Coordination for Integrated Electricity & Natural
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This document serves as an electronic companion (EC) for the paper “Market-based Coordination for

Integrated Electricity and Natural Gas Systems under Uncertain Supply”. It contains four sections that

present the MPEC formulation of the bilevel model V-B, provide proofs regarding the non-negative profits of

flexible producers, a nomenclature and additional results.

1. MPEC formulation of volume-based coupled electricity and natural gas model (V-B)

In this section the bilevel V-B model is reformulated as a Mathematical Program with Equilibrium Con-

straints (MPEC) by replacing the linear, and thus convex, lower level problems by their Karush-Kuhn-Tucker

(KKT) conditions. Then, the resulting MPEC is transformed into a Mixed-Integer Linear Program (MILP)

in order to deal with the bilinear terms that arise from the complementarity conditions. We introduce a

mapping M
ig
a of the natural gas-fired power plants ig at area a (entries are equal to 1 if NGFPP is connected

to an area and 0 otherwise). The model writes as follows,

Min.
ΘMUL

∑

t∈T

[ ∑

ic∈Ic
Cicpic,t +

∑

k∈K
Ckgk,t +

∑

ω∈Ω

πω

(∑

k∈K
(C+

k g
+
k,ω,t − C−k g−k,ω,t) +

∑

ic∈Ic
(C+

ic
p+
ic,ω,t

− C−icp
−
ic,ω,t

)

+
∑

re∈Re
Csh,Elsh,E

re,ω,t +
∑

rg∈Rg
Csh,Glsh,G

rg,ω,t

)]
(1a)

subject to

− pi,t ≤ ∆pi,ω′,t ≤ Pmax
i − pi,t, ∀i, t, (1b)

− P -
i ≤ ∆pi,ω′,t ≤ P+

i , ∀i, t, (1c)

0 ≤ wsp
j,ω′,t ≤Wj,ω′,t, ∀j, t, (1d)

0 ≤ lsh,E
re,ω′,t ≤ DE

re,t, ∀t, (1e)
∑

i∈I
∆pi,ω′,t +

∑

re∈Re
lsh,E
re,ω′,t +

∑

j∈J
(Wj,ω′,t − wsp

j,ω′,t − wj,t) = 0 : λ̃E
ω′,t, ∀t, (1f)

− gk,t ≤ ∆gk,ω′,t ≤ Gmax
k − gk,t, ∀k, t, (1g)

−G−k ≤ ∆gk,ω′,t ≤ G+
k , ∀k, t, (1h)

0 ≤ lsh,G
rg,ω′,t ≤ DG

rg,t, ∀t, (1i)
∑

k∈K
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φig∆pig,ω′,t = 0 : λ̃G

ω′,t, ∀t, (1j)
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φig (pig,t+∆pig,ω′,t) ≤ FA
z , ∀z, (1k)
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∑
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φig (pig,t+∆pig,ω′,t)≤FM
z,t, ∀z, t, (1l)

1
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0 ≤ χvψ ≤ |T |
∑

k∈K
Gmax
k −

∑

t∈T

∑

rg∈Rg
DG
rg,t, ∀ψ, (1m)

0 ≤ χvψ,t ≤ Fmax
ψ,t −

∑

rg∈ARgψ

DG
rg,t, ∀ψ, t, (1n)

0 ≤ pi,t ≤ Pmax
i : µP

i,t
, µP
i,t, ∀i, t, (1o)

0 ≤ wj,t ≤ Ŵj,t : µŴ
j,t
, µŴ
j,t, ∀j, t, (1p)
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i∈I
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∑

j∈J
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∑

re∈Re
DE
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0 ≤ gk,t ≤ Gmax
k : µG

k,t
, µG
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v
ψ, ∀ψ, (1t)
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φigpig,t ≤ xvψ,t : µv
ψ,t
, µvψ,t, ∀ψ, t (1u)

Cic − λ̂E
t − µP
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+ µP

ic,t = 0, ∀ic, t, (1v)

φig λ̂
G
t − λ̂E

t − µP
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+ µP
ig,t +

∑

ψ∈Ψ

M
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ψ (φigµ

v
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v
ψ − φigµvψ,t − φigν

v
ψ) = 0, ∀ig, t, (1w)

− λ̂E
t − µŴ

j,t
+ µŴ

j,t = 0, ∀j, t, (1x)

Ck − λ̂G
t − µG
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+ µG

k,t = 0, ∀k, t, (1y)

0 ≤ µP
i,t ⊥ Pmax

i − pi,t ≥ 0, ∀i, t, (1z)

0 ≤ µP
i,t
⊥ pi,t ≥ 0, ∀i, t, (1aa)

0 ≤ µŴ
j,t ⊥ Ŵj − wj,t ≥ 0, ∀j, t, (1ab)

0 ≤ µŴ
j,t
⊥ wj,t ≥ 0, ∀j, t, (1ac)

0 ≤ µvψ,t ⊥ xvψ,t −
∑

ig∈AIgψ

φigpig,t ≥ 0, ∀ψ, t, (1ad)

0 ≤ νvψ ⊥ xvψ −
∑

t∈T
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ig∈AIgψ

φigpig,t ≥ 0, ∀ψ, (1ae)

0 ≤ µv
ψ,t
⊥
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ig∈AIgψ

φigpig,t ≥ 0, ∀ψ, t, (1af)
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0 ≤ µG
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The nonlinearities that arise from complementarity conditions are linearized via the Fortuny-Amat trans-

formation [1]. We introduce the set of dual variables (λ, µ and ν) Θdual, thus ΘMUL = {ΘVUL,Θdual}. For the

network constrained balancing market, we use the set of constraints {(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)}
(numbered from the original manuscript) instead of (1b)-(1l).
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2. Proofs for the non-negative profits of flexible producers

In this section, we provide the proofs for the non-negativity of profits of flexible producers, when considering

a sequential clearing of day-ahead and balancing markets. We would initially like to notice that model Seq

in the original manuscript is an optimization problem. Let us then introduce model Seq-Eq, which is a

two-settlement equilibrium model. Considering a different optimization problem for each market participant

and the market-clearing conditions for each trading floor (i.e. day-ahead and balancing), we can formulate

Seq-Eq by writing the KKT conditions for each individual optimization model. This set of KKT conditions is

identical to those conditions associated with the Seq model, which proves that Seq and Seq-Eq are equivalent.

Thus, any solution of one model is a solution of the other model too. The aforementioned statement holds

if the problems are convex. We refer the reader to [2] and [3] for an extensive discussion on this topic and

presentation of the approach to equivalently formulate the equilibrium and optimization models.

First, we focus on the thermal power plants that are not consuming natural gas. Focusing to the equilibrium

model Seq-Eq, the profit maximization problem of each power producer for the day-ahead stage writes as

follows,

{
Max.
pic,t

∑

t∈T

[
pic,t(λ̂

E
t − Cic)

]
(2a)

subject to

0 ≤ pic,t ≤ Pmax
i : µP

ic,t
, µP
ic,t

}
, ∀ic, t. (2b)

Since program (2) is linear and thus convex, the strong duality theorem holds for the optimal solution and,

∑

t∈T

[
pic,t(λ̂

E
t − Cic)

]
=
∑

t∈T
µP
ic,tP

max
ic , (3)

where µP
ic,t ≥ 0 and Pmax

ic
≥ 0 which shows that the profits in the day-ahead market are positive. Similarly,

we can write the profit maximization problem for the balancing market by having the day-ahead decision p∗ic,t
fixed,

{
Max.

∆pi,ω′,t

∑

t∈T

[
∆pi,ω′,t(λ̃

E
ω′,t − Cic)

]
(4a)

subject to

− p∗ic,t ≤ ∆pic,ω′,t ≤ Pmax
ic − p∗ic,t : µR

ic,ω′,t
, µR
ic,ω′,t, (4b)

− P -
i ≤ ∆pig,ω′,t ≤ P+

i : µRR
ic,ω′,t

, µRR
ic,ω′,t

}
, ∀ic, ω′, t. (4c)

We can also write the strong duality theorem for the optimal solution for program (4),

∑

t∈T

[
∆pic,ω′,t(λ̃

E
ω′,t − Cic)

]
=
∑

t∈T

(
µR
ic,ω′,t(P
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ic − p∗ic,t) + µR

ic,ω′,t
p∗ic,t + µRR

ic,ω′,tP
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ic

+ µRR
ic,ω′,t

P -
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)
, (5)

where µR
ic,ω′,t, µ

R
ic,ω′,t

, µRR
ic,ω′,t, µ

RR
ic,ω′,t

≥ 0. Moreover, the quantities (Pmax
ic
− p∗ic,t), p∗ic,t, P

+
ic
, P -

ic
≥ 0. Thus,

the profits in balancing market are also positive and this completes the proof. Since cost-recovery holds for

model Seq-Eq, then it means that it is also ensured in optimization model Seq due to their equivalence.

The similar proof can be written for the GFPPs, where the marginal cost (Cic) is replaced by φig λ̂
G
t and

φig λ̃
G
ω′,t for the day-ahead and balancing markets, respectively. The relative proof regarding cost recovery

for flexible producers in stochastic dispatch model only in expectation and not per scenario realization of
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stochastic power production is presented in [4], while authors in [5] provide a detailed discussion on the topic.

Finally, a stochastic market-clearing model that ensures cost-recovery and revenue adequacy per scenario is

proposed in [6].
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3. Nomenclature

In Tables 1-3, we present the symbols used in the original paper and the description for each one of them.

Table 1. Nomenclature for the variables

Symbol Description
pi,t Day-ahead dispatch of power plants i in period t [MW]
wj,t Day-ahead dispatch of stochastic power producers j in period t [MW]
p+
i,ω,t Up regulation provided by dispatchable power plant i in scenario ω, period t [MW]

p−i,ω,t Down regulation provided by dispatchable power plant i in scenario ω, period t [MW]

wsp
j,ω,t Power spilled by stochastic power plant j in scenario ω, period t [MW]

lsh,E
re,ω,t Electric power load shedding at node n in scenario ω, period t [MW]

lsh,G
rg,ω,t Natural gas load shedding at node m in scenario ω, period t [kcf/h]

δ̃n,ω,t Voltage angle at node n in scenario ω, period t [rad]
gk,t Day-ahead dispatch of natural gas producer k in period t [kcf/h]
g+
k,ω,t Up regulation provided by natural gas producer k in scenario ω, period t [kcf/h]

g−k,ω,t Down regulation provided by natural gas producer k in scenario ω, period t [kcf/h]

prr
m,ω,t Pressure at node m in scenario ω, period t [psig]

hr
m,u,ω,t Average mass of natural gas (linepack) in pipeline (m,u), scenario ω, period t [kcf]

qin,r
m,u,ω,t Inflow natural gas rates of pipeline (m,u) in scenario ω, period t [kcf/h]

qout,r
m,u,ω,t Outflow natural gas rates of pipeline (m,u) in scenario ω, period t [kcf/h]
qm,u Natural gas flow in pipeline (m,u) [kcf/h]

yr
m,u,ω,t Binary variable defining the direction of the natural gas flow in pipeline (m,u), scenario ω, period t {0,1}
χpt Natural gas price adjustment in period t [$/kcf]
χvψ Daily natural gas volume availability for GFPPs’ group in specific area ψ [kcf]
χvψ,t Hourly natural gas volume availability for GFPPs’ group in specific area ψ in period t [kcf]
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Table 2. Nomenclature for the parameters
Symbol Description
DE
re,t Electricity demand re and in period t [MW]

DG
rg,t Natural gas demand rg and in period t [kcf/h]

Ci Day-ahead offer price of dispatchable power plant i [$/MWh]
C+
i Up regulation offer price of dispatchable power plant i [$/MWh]

C−i Down regulation offer price of dispatchable power plant i [$/MWh]
Csh,E Cost of electricity load shedding [$/MWh]
Ck Day-ahead offer price of natural gas producer k [$/kcf]
C+
k Up regulation offer price of natural gas producer k [$/kcf]

C−k Down regulation offer price of natural gas producer k [$/kcf]
Csh,G Cost of natural gas load shedding [$/kcf]
Pmax
i Capacity of dispatchable power plant i [MW]
P+
i Maximum up regulation capability of dispatchable power plant i [MW]
P−i Maximum down regulation capability of dispatchable power plant i [MW]
φig Power conversion factor of natural gas-fired power plant ig [kcf/MWh]
Wj,ω,t Power production by stochastic power plant j in scenario ω, period t [MW]

Ŵj,t Expected power production by stochastic power plant j in period t [MW]
W j Capacity of stochastic power plant j [MW]
Gmax
k Capacity of natural gas producer k [kcf/h]
G+
k Maximum up regulation capability of natural gas producer k [kcf/h]

G−k Maximum down regulation capability of natural gas producer k [kcf/h]
Bn,r Absolute value of the susceptance of line (n,r) [per unit]
Fmax
n,r Transmission capacity of line (n,r) [MW]
Kh
m,u Natural gas flow constant of pipeline (m,u) [kcf/psig]

Kf
m,u Linepack constant of pipeline (m,u) [kcf/(psig · h)]

PRmin
m Minimum pressure at node m [psig]

PRmax
m Maximum pressure at node m [psig]

Γz Compressor factor located at natural gas network branch z [-]
πω Probability of scenario ω [-]

M̃ Sufficiently large constant [-]
FM
z,t Capacity of natural gas pipeline z in period t [kcf/h]
FA
z Daily contract limit of natural gas pipeline z [kcf]

Fmax
ψ,t Maximum natural gas availability for a specific area ψ containing the group of GFPPs [kcf/h]
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Table 3. Nomenclature for the sets
Symbol Description

I Set of dispatchable power plants i
Ic Set of thermal power plants ic (Ic ⊂ I)
Ig Set of natural gas-fired power plants ig (Ig ⊂ I)
J Set of stochastic power plants j
L Set of electricity transmission lines l
N Set of electricity network nodes n
K Set of natural gas producers k
Z Set of natural gas network branches z
M Set of natural gas network nodes m
Re Set of electricity demands re
Rg Set of natural gas demands rg
V Set of fixed pressure points v for the linearization of Weymouth equation
Ω Set of stochastic power production scenarios ω
T Set of time periods t
AIn Set of dispatchable power plants i located at electricity network node n
AJn Set of stochastic power plants j located at electricity network node n

A
Ig
m Set of natural gas-fired power plants ig located at natural gas network node m

A
Ig
ψ Set of natural gas-fired power plants ig located in a specific area ψ

AKm Set of natural gas producers k located at natural gas network node m
ARen Set of electricity demands re located at electricity network node n

A
Rg
m Set of natural gas demands rg located at natural gas network node m
Ψ Set of groups of natural gas-fired power plants located in a specific area ψ
Θ Set of primal optimization variables defined for each optimization model
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4. Additional Results

Fig. 1 shows the natural gas price adjustment (χpt ) and the day-ahead payment/charge in order to generate

this signal. Moreover, Fig. 2 illustrate the natural gas price adjustment (χpt ) in relation to the difference in

the hourly GFPPs share of the total power production between P-B and Seq. A detailed analysis of these

results is presented in [7].
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Figure 1. Hourly natural gas price adjustment (black line: left y-axis) and day-ahead fi-
nancial settlement of the system operator to adjust the natural gas price (colored areas: right
y-axis). Wind power penetration 50%.
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Figure 2. Hourly natural gas price adjustment (black line: left y-axis) and difference in
GFPPs share of total power production between P-B and Seq (colored areas: right y-axis).
Wind power penetration 50%.
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Fig. 3 shows the natural gas volume (χva,t) in relation to the natural gas volume consumed in Seq and the

the difference in the hourly GFPPs share of the total power production between V-B and Seq. Moreover,

Fig. 4 illustrate the natural gas volume (χva,t) change compared to the natural gas volume consumed in Seq

in relation to the difference in the hourly GFPPs share of the total power production between V-B gen and

Seq. Thus, the left y-axis illustrates the quantity F (V-B)−F (Seq)
F (Seq) or F (V-B gen)−F (Seq)

F (Seq) , where F is the natural

gas volume made available at the day-ahead stage for each dispatch model.
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Figure 3. Hourly natural gas volume adjustment (black line: left y-axis) and difference in
GFPPs share of total power production between V-B and Seq (colored areas: right y-axis).
Wind power penetration 50%.
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Figure 4. Hourly natural gas volume adjustment (black line: left y-axis) and difference
in GFPPs share of total power production between V-B gen and Seq (colored areas: right
y-axis). Wind power penetration 50%.

It can be noticed in Fig. 3 that a decrease in the natural gas volume results in a decrease of the power

production share of GFPPs compared to the scheduling provided from model Seq. A similar effect is also

observed in Fig. 4, except for two periods in the middle of the day. During these hours, the total natural gas

consumed by GFFPs in V-B gen is higher than in Seq, while GFPPs’ share of total power production is not

affected. This happens because there is a sift of “X MW” between the two GFPPs, resulting in the one with

the higher power conversion factor to produce more than in Seq ; hence increase the total gas consumption

for power production.
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Table 4 illustrates the performance of the dispatch models in terms of expected cost when the electricity

demand is equal to 344 MW in order to explore an alternative case of natural gas price adjustment and volume

availability. Models Stoch and Seq provide the two extreme solutions in terms of expected cost. We highlight

though that P-B, V-B and V-B gen manage to return the same expected cost as Stoch. This fact illustrates

that it is possible in specific cases to have an efficient sequential system dispatch if the future balancing costs

are communicated into the day-ahead market through the operator-defined parameters χ.

Table 4. Expected system cost and its breakdown in $ when total power load is 344 MW

Total Day-ahead Balancing Up regulation Down regulation
Seq 8,932.8 8,566.8 366.0 825.0 -459.0
Stoch 8,859.6 8,206.8 652.8 917.4 -264.6

P-B / V-B / V-B gen 8,859.6 8,638.8 220.8 679.8 -459.0

The schedule of power plants is given in Table 5 for DE=344 MW. In P-B, the natural gas price adjustment

is χpt2 = +$0.5/kcf which increases the marginal cost of GFPP I3 to $30/MWh. Thus, an improved day-

ahead schedule is achieved by sifting 12 MW from GFPP I3 to unit I1, resulting in a lower expected cost.

Models V-B and V-B gen reduce the total natural gas availability from 600 kcf to 456 kcf and return the

same improved dispatch as P-B.

Table 5. Power system schedule in MW when total power load is 344 MW (variation from
Seq day-ahead (DA) schedule in bold)

Seq P-B V-B V-B gen
Unit DA ω1 ω2 DA ω1 ω2 DA ω1 ω2 DA ω1 ω2

I1 58 -10 +10 70 -10 +10 70 -10 +10 70 -10 +10
I2 110 0 0 110 0 0 110 0 0 110 0 0
I3 50 -30 0 38 -30 +12 38 -30 +12 38 -30 +12
I4 0 0 +25 0 0 +18 0 0 +18 0 0 +18
I5 0 0 +5 0 0 0 0 0 0 0 0 0

WP 126 +40 -40 126 +40 -40 126 +40 -40 126 +40 -40
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Energy and Reserve Dispatch with
Distributionally Robust Joint Chance Constraints

Christos Ordoudis, Student Member, IEEE, Viet Anh Nguyen, Daniel Kuhn, Pierre Pinson, Senior Member, IEEE

Abstract—The stochastic nature of power production from
renewables calls for changes in system operations due to the
immense uncertainty and variability introduced. Various ap-
proaches have been proposed to deal with this challenge based
on chance constrained programming. However, these problems
often assume that the probability distribution of the uncertain
parameter is perfectly known and consider chance constraints
individually. To address these shortcomings, we consider a data-
driven, distributionally robust joint chance constrained program
where we use the Wasserstein distance to construct the ambiguity
set. We propose a novel approach to safely approximate the
feasible set, and the resulting model is a conic program that
can be further simplified into a linear program in specific cases.
We apply the model to solve the energy and reserve dispatch
problem with fuel constraints for gas-fired power plants in view
of an increased interdependence between the electricity and the
natural gas systems. The numerical study based on an out-of-
sample analysis shows the effect of Wasserstein radius on the
conservativeness of solutions and demonstrates that a systematic
choice of the Wasserstein radius results in attractive solutions in
terms of the expected system cost.

Index Terms—Distributionally robust optimization, energy and
reserve dispatch, joint chance constraints, Wasserstein metric.

I. INTRODUCTION

The increased deployment of renewable energy sources,
including solar, wind and tidal energy, has dramatically shifted
the generation mix. Being a key element for the transition
towards a more sustainable energy system, renewable energy
sources also bring numerous challenges to power system oper-
ation because of its highly variable and only partly predictable
production [1]. Meanwhile, gas-fired power plants (GFPPs)
are able to increase system’s flexibility and are widely built to
replace older power plants recently. Thus, a tighter coupling
of electricity and natural gas systems is foreseeable [2], which
behooves us to study both systems in a coordinated manner.

Various approaches have been proposed to deal with the
uncertain power production of renewables including robust op-
timization [3], [4], chance-constrained programming [5]–[7],
and stochastic programming [8], [9]. The solutions obtained
from robust optimization may be overly conservative because
the decisions are optimized for the worst-case realization in
the uncertainty set [10]. Alternatively, a chance-constraint
approach ensures that stochastic constraints are only satisfied
for a predefined probability to alleviate the conservative-
ness of robust optimization. In the stochastic programming
framework, the uncertain parameter is assumed to follow a
specific probability distribution [11]. The distribution is chosen
to facilitate the reformulation of the problem, for example,
Gaussian distribution of forecast errors is assumed in [5] and
[7]. Another approach is proposed in [12] that replaces the
original set of chance constraints by a finite number of sampled
constraints to create an approximate problem. In this case, it

is shown that the probability to satisfy the original constraints
by the approximate solution essentially increases with an
increase of the number of samples used in the approximate
problem. However, such an approach would imply that there
is a plethora of available samples drawn from the true data
generating distribution and would result in large instances of
the problem and suffer from computational challenges.

Acknowledging the need to follow a data-driven approach
that utilizes the available data at hand, we focus on dis-
tributionally robust optimization that fills the gap between
stochastic programming and robust optimization by optimizing
over a family of distributions (i.e., ambiguity set) that would
optimally include the true data generating one. Two types
of ambiguity sets are more commonly used in the literature:
the moment-based [13] and the metric-based ones [14]. In
the first approach, the set is defined by the distributions
satisfying moment constraints (e.g., having the same mean
and covariance matrix), while in the latter approach the
set contains the distributions that are close to the empirical
one based on the probability metric selected. Moment-based
ambiguity sets have been adopted by various works in the
field of power systems, such as [15]–[20]. More specifically,
a distributionally robust approach is followed to formulate
ambiguous chance constraints in [19] and [20]; however, these
constraints are treated as individual chance constraints. There
exist only a few papers dealing with distributionally robust
joint chance constraints, such as [18], [21], [22], though using
moment-based approaches.

There is a recent surge in using the Wasserstein metric in
the distributionally robust framework. [23] use the property
of the Wasserstein metric to calibrate an uncertainty set from
the available data and solve an equivalent robust optimization
problem instead of the original chance constrained program.
To solve distributionally robust joint chance constraints with
the Wasserstein metric, a naive idea is to directly apply
the reformulation in [14, Section 5.2]; though, this approach
introduces bilinear terms which makes it intractable for high
dimensional problems. Recently, mixed-integer conic refor-
mulations of chance constraints with the Wasserstein metric
are proposed in [24]–[26]; however, these approaches are
prohibitive for problems of high dimensions.

In this paper, we develop a novel approach to solve dis-
tributionally robust joint chance constrained programs where
the ambiguity set represents a Wasserstein ball centered at a
nominal distribution estimated from the available data [14].
Thus, we make no assumption regarding the existence of the
true probability distribution in any parametric family of dis-
tributions and handle multiple constraints simultaneously. We
provide a convex conservative approximation of the feasible
set defined by the joint chance constraints and show that

*The list of authors may be subject to changes.
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our approach outperforms the Bonferroni approximation [27]
that is widely used in the literature. Moreover, the effect of
adjusting the Wasserstein radius on the performance of the
optimal solutions is demonstrated using an intensive out-of-
sample analysis. By fine-tuning the radius of the Wasserstein
ball, the decision maker attains cost-effective solutions when
only limited amount of data is available. Hence, we present a
detailed procedure to estimate the optimal Wasserstein radius
in order to provide an implementable solution with remarkable
out-of-sample performance.

The contributions of this paper are summarized as follows:
1) We propose a new approximation scheme for distribution-

ally robust joint chance constrained programs in which
the ambiguity set is defined using the Wasserstein type-1
distance. By associating the joint chance constraint with a
positive scaling vector, the feasible set can be safely approx-
imated by a set of conic constraints. Under specific norms
of the Wasserstein metric, these conic constraints become
linear constraints and the resulting model is tractable in high
dimensional problems.

2) We present a simple, yet effective procedure to sequentially
optimize over decision variables and scaling factors. This
procedure not only improves the quality of the optimal so-
lution but also facilitates the detection of feasible solutions
for tightly-constrained systems.

3) We compare the numerical experiments on the problem of
energy and reserve dispatch with fuel constraints for GFPPs
under uncertain power supply. By comparing the out-of-
sample performance, we show that our approach has a sub-
stantially better performance compared to existing methods
including the ambiguity-free and robust approach, as well as
the Bonferroni approximation. A realistic system operation
is also modeled by allowing for optimal re-dispatch after
the uncertainty realization and provide a systematic method
to choose the ambiguity size based on the available data.
The remaining of the paper is organized as follows. Section

II provides the problem formulation in the stochastic program-
ming framework, while the distributionally robust approach is
presented in Section III. Section IV shows the reformulation
of the objective function and two approaches to approximate
the ambiguous joint chance constraints under the Wasserstein
ambiguity set along with the advantages of the proposed
approaches. Numerical results are reported in Section V and
Section VI concludes the paper.

II. MODEL FORMULATION

We develop a two-stage stochastic program for energy and
reserve dispatch with fuel constraints for the GFPPs, which
aims to ensure the safe operation of a power system with a high
penetration of renewables [8] and a strong interdependence
with the natural gas system [28]. Specifically, we consider a
combined power system with B buses, L transmission lines,
W wind farms, G power plants, D demand centers and P gas
pipelines connected to GFPPs. Each transmission line connects
a pair of buses, while each wind farm, power plant and
demand center is attached to exactly one bus. Each GFPP is
served by exactly one gas pipeline. Adopting a DC power flow
approximation [29], we denote by Qw P RLˆW , Qg P RLˆG

and Qd P RLˆD the matrices of power transfer distribution
factors. Thus, Qw

lw and Qg
lg denote the change in the power

flow on line l per unit of power generated by wind farm w
and power plant g, respectively. Similarly, Qd

ld quantifies the
change in the power flow on line l per unit of power extracted
at demand center d. We denote by Φ P RPˆG` the matrix of gas
transfer distribution factors. Thus, Φpg stands for the increase
in the gas flow through pipeline p per unit of power produced
by the corresponding GFPP connected to pipeline p [28]. All
information about the topology and physical properties of the
two systems is hidden in the transfer distribution factors.

The power output of the wind farms is modeled as Cpµ`ξq,
where C P RWˆW` is the diagonal matrix of the wind
farm capacities, µ P RW , 0 ď µ ď e, is the relative
power output predicted at the day-ahead stage, and ξ P RW ,
´µ ď ξ ď e ´ µ, is the uncertain deviation from µ, which
is revealed in real-time operation. Note that e is a vector of
ones with appropriate dimensions. We assume that ξ follows
a distribution P concentrated around 0. Without much loss of
generality, we assume that the power consumption d P RD` at
the demand centers is known. The operating decisions for the
GFPPs are taken in two stages. At the day-ahead stage, the
dispatch y0 P RG` as well as the upward and downward reserve
capacities r`, r´ P RG` are chosen for each power plant.
Upon observation of ξ in real-time operation, the real-time
adjustments y1pξq P RG to the power production are chosen
with the aim to ensure—with high probability—the integrity
of the transmission system while respecting the generator
capacities. This energy and reserve dispatch problem gives
rise to the following two-stage stochastic program.

min
y0,y1p¨q,r`,r´

cJy0 ` c
J
`r` ` c

J
´r´ ` E

PrcJy1pξqs (1a)

s. t. 0 ď r` ď r, 0 ď r´ ď r (1b)
y ď y0 ´ r´, y0 ` r` ď y (1c)

eJC pµ` ξq ` eJ py0 ` y1pξqq

“ eJd P-a.s. (1d)
Pr´r´ ď y1pξq ď r`s ě 1´ εgen (1e)

Pr´f ď Qgpy0 ` y1pξqq `Q
wCpµ` ξq

´Qdd ď f s ě 1´ εgrid (1f)
Pr0 ď Φpy0 ` y1pξqq ď qs ě 1´ εgas (1g)

The objective function (1a) reflects the expected operating
costs, where c P RG captures the variable costs of the power
plants, and c`, c´ P RG represent the costs of reserving capac-
ity to balance the system in real time [8]. The constraints (1b)
limit the (positive and negative) reserve capacity procurements
up to the prescribed maximum r P RG`, while (1c) ensures
that the day-ahead energy and reserve dispatch obey the
production limits y, y P RG` of the GFPPs. The almost sure
constraint (1d) requires that total production matches total
demand with probability 1, while the chance constraints (1e)-
(1g) ensure that the real-time adjustments to the power output
obey the chosen reserve capacities, the power flows respect the
capacity limits f P RL` of the transmission lines, and the power
outputs of the GFPPs are limited by the maximum delivery
rates q P RP` of the natural gas pipelines, respectively. The



TO BE SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 3

prescribed violation probabilities εgen, εgrid, εgas P p0, 1q reflect
the risk attitude of the decision maker.

The stochastic program (1) is intractable because it consti-
tutes an infinite-dimensional optimization problem. To miti-
gate its complexity, it has been proposed to approximate the
functional recourse decisions y1pξq by linear decision rules of
the form y1pξq “ Y ξ for some finite-dimensional coefficient
matrix Y P RGˆW [10, § 14]. In the context of chance
constrained optimal power flow problems, linear decision rules
have been used in [18] and [19]. The stochastic program (1)
can thus be approximated by the linear decision rule problem

min
y0,Y,r`,r´

cJy0 ` c
J
`r` ` c

J
´r´ ` E

PrcJY ξs (2a)

s. t. Constraints (1b)–(1c)

eJy0 ` e
JCµ “ eJd, eJY ` eJC “ 0 (2d)

Pr´r´ ď Y ξ ď r`s ě 1´ εgen (2e)

Pr´f ď pQgy0 `Q
wCµ´Qddq`

` pQgY `QwCqξ ď f s ě 1´ εgrid (2f)
Pr0 ď Φpy0 ` Y ξq ď qs ě 1´ εgas, (2g)

where (2d) is obtained by matching the zero- and first-order
coefficients of ξ on both sides of (1d), which is allowed
because the support of ξ spans RW [30, § 2.2]. For ease of
exposition, we denote by x fi py0, r`, r´q P R3G

` the collec-
tion of all first-stage decisions and by cx fi pc, c`, c´q P R3G

`

the corresponding aggregate cost vector. Using this notation,
problem (2) can be represented more compactly as

min
px,Y qPΘ

cJx x` E
PrcJY ξs (3a)

s. t. P
“

AjpY qξ ď bjpxq
‰

ě 1´ εj @j P J , (3b)

where Θ stands for the set of all px, Y q P R3G
` ˆ RGˆW

satisfying (1b), (1c) and (2d). The joint chance constraint (3b)
is indexed by j P J fi tgen, grid, gasu and thus encodes the
capacity constraints (2e) through

AgenpY q “

„

Y
´Y



, bgenpxq “

„

r`
´r´



,

the line capacity constraints (2f) through

AgridpY q “

„

QgY `QwC
´QgY ´QwC



,

bgridpxq “

„

f ´QwCµ`Qdd´Qgy0

f `QwCµ´Qdd`Qgy0



,

and the pipeline capacity constraints (2g) through

AgaspY q “

„

ΦY
´ΦY



, bgaspxq “

„

q ´ Φy0

Φy0



.

In spite of the decision rule approximation, problem (3)
remains intractable. In fact, only checking feasibility of the
chance constraint (3b) is already #P-hard even if ξ follows
a uniform distribution on a box [31]. Moreover, the distribu-
tion P, which is needed to evaluate both the expectation in (3a)
and the probabilities in (3b), is not even observable in practice
but must be inferred from data. Unfortunately, the available
data is often scarce, and the procurement of additional samples

is either infeasible or expensive. Indeed, any wind power
time series is invariably restricted to the service life of the
corresponding wind farm. However, if problem (3) is fitted to
a small training dataset, and the resulting optimal decisions are
evaluated on a (different) test dataset, then the test performance
is often disappointing, even if the training and test datasets are
governed by the same (unknown) distribution P [14].

III. DATA-DRIVEN DISTRIBUTIONALLY ROBUST
OPTIMIZATION

Assume now that the decision maker is ignorant of P but
has access to finitely many training samples pξi, i ď N , drawn
independently from P (a wind power time series). As P is
unknown, a fundamental input of problem (3) is thus lacking.
A naı̈ve remedy would be to replace the unknown P with
the discrete empirical distribution pPN , that is, the uniform
distribution on the (known) training samples. This amounts
to solving the sample average approximation of problem (3),
which is prone to yield biased decisions that perform poorly
in out-of-sample tests for small sample sizes N . Hence, it
makes sense to reformulate (3) as a distributionally robust
optimization problem that hedges against all distributions in a
neighborhood of pPN with respect to the Wasserstein metric.

Definition 1 (Wasserstein metric). The type-1 Wasserstein dis-
tance between two distributions P1 and P2 on RW is defined as

WpP1,P2q fi

$

’

’

&

’

’

%

min
Π

ż

RWˆRW
}ξ1 ´ ξ2}Πpd ξ1,d ξ2q

s. t. Π is a distribution on RW ˆ RW
with marginals P1 and P2, respectively.

The Wasserstein distance between P1 and P2 can be viewed
as the cost of an optimal mass transportation plan Π that
minimizes the cost of moving P1 to P2, where }ξ1 ´ ξ2}
is the cost of moving a unit mass from ξ1 to ξ2. In the
following we denote by MpΞq the set of all distributions on
the polyhedron Ξ “ tξ P RW : Hξ ď hu, where H “ rI ÍsJ

and h “ rpe´ µqJ µJsJ, and we define the ambiguity set

P fi

!

P PMpΞq : WpP, pPN q ď ρ
)

as the family of all distributions on Ξ that have a Wasserstein
distance of at most ρ ě 0 from the empirical distribution pPN .
The hope is that, for a judiciously chosen radius ρ, the
ambiguity set P contains the unknown true distribution with
high confidence. Following [14], we can then recast (3) as a
distributionally robust optimization problem of the form

min
px,Y qPΘ

cJx x`max
PPP

EPrcJY ξs (4a)

s. t. min
PPP

P
“

AjpY qξ ď bjpxq
‰

ě 1´ εj @j P J , (4b)

which minimizes the worst-case expected operating costs and
requires that the joint chance constraints are satisfied for all
distributions in the ambiguity set P . If the true distribution be-
longs to P , then the optimal value of (4) overestimates the true
expected cost of the optimal decisions. Moreover, the optimal
decisions satisfy the true chance constraints. Modelling the
ambiguity set as a Wasserstein ball in the space of distributions
has several benefits that may appeal to decision makers, i.e.,
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it provides rigorous finite-sample and asymptotic consistency
guarantees and offers computational tractability [14, § 2].

It is known that the empirical distribution pPN converges
in Wasserstein metric (and thus also weakly) to the unknown
true distribution as N tends to infinity. One can thus show
that for any given significance level β P p0, 1q there is a
sequence ρN pβq ě 0, N P N, that converges to 0 such that
the Wasserstein ball of radius ρN pβq around pPN contains
the unknown true distribution with confidence 1 ´ β for
every N [14, Theorem 3.4]. In practice, the best Wasserstein
radius for a given sample size is determined in a data-driven
manner, e.g., via cross validation; see Section V. Moreover, the
distributionally robust chance constrained program (4) admits
several tractable conservative approximations.

IV. TRACTABLE APPROXIMATIONS

The distributionally robust chance constrained program (4)
is still hard. Indeed, for ρ “ 0 it reduces to a classical chance
constrained program under the discrete empirical distribution.
Such problems are known to be NP-hard even in the simplest
settings [32, Theorem 1]. Leveraging results from [14], we
now derive tractable conservative approximations for (4). In
Section IV-A we first discuss an exact reformulation for the
objective function (4a). In Sections IV-B and IV-C we then
provide two conservative approximations for the feasible set

ΩCC fi

"

px, Y q : min
PPP

P rApY qξďbpxqs ě 1´ε

*

of a generic joint chance constraint of the form (4b), where
the superscript j is omitted to avoid clutter. In Section IV-D
we finally assess the computational tractability of the two
approaches. All proofs are relegated to the e-companion [33].

A. Reformulation of the Objective Function

Evaluating the objective function (4a) for a fixed Y P RGˆW
necessitates the solution of a worst-case expectation problem
of a linear function in ξ over the Wasserstein ball P . By [14,
Corollary 5.1] this problem is equivalent to the conic program

max
PPP

EPrcJY ξs

“

$

’

’

’

’

’

&

’

’

’

’

’

%

min
λo,so,γo

λoρ` 1
N

řN
i“1 s

o
i

s. t. cJY pξi ` γ
o
i
J
ph´Hpξiq ď soi @i ď N

}HJγoi ´ Y
Jc}˚ ď λo @i ď N

γoi P RM` @i ď N
λo P R`, so P RN ,

where } ¨ }˚ stands for the dual norm of } ¨ }.

B. Combined Bonferroni and CVaR Approximation

If the joint chance constraint involves K linear inequalities,
we can decompose the matrix ApY q and the vector bpxq as

ApY q “

»

—

–

a1pY q
J

...
aKpY q

J

fi

ffi

fl

, bpxq “

»

—

–

b1pxq
...

bKpxq

fi

ffi

fl

.

The joint chance constraint is thus equivalent to

min
PPP

P
“

akpY q
Jξ ď bkpxq @k ď K

‰

ě 1´ ε. (5)

Given a set of individual violation tolerances εk ě 0, k ď K,
with

řK
k“1 εk “ ε, one can exploit Bonferroni’s inequality to

split the original joint chance constraint up into a family of K
simpler but more conservative individual chance constraints.
This amounts to approximating the feasible set ΩCC by

ΩB fi

"

px, Y q :min
PPP

P
“

akpY q
Jξ ď bkpxq

‰

ě 1´ εk,@k ď K

*

.

Bonferroni’s inequality implies that ΩBĎ ΩCC, see [11, § 6.1].
Optimizing over ΩB remains hard even for ρ “ 0, which
prompts us to approximate the individual worst-case chance
constraints by worst-case Conditional Value-at-Risk (CVaR)
constraints [34]. Thus, ΩB is conservatively approximated by

ΩBC fi

!

px, Y q :

max
PPP

P- CVaRεk

“

akpY q
Jξ ´ bkpxq

‰

ď 0@k ď K
)

.

One can show that ΩBC constitutes the best convex inner
approximation of ΩB in a sense made precise in [27], and
thus ΩBC Ď ΩB. Moreover, we have ΩBC “ ΩB if εk ď N´1

for all k ď K [24, Corollary 2]. The following proposition
further guarantees that optimizing over ΩBC is easy.

Proposition 1. The set ΩBC admits the conic reformulation

ΩBC“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

px, Y q P R3G ˆ RGˆW :

λkρ`N
´1

řN
i“1 sik ď 0 @k ď K

τk ď sik @i ď N, k ď K

akpY q
J
pξi ´ bkpxq`pεk ´ 1qτk

`εkγ
J
ikph´H

pξiq ď εksik @i ď N, k ď K
}εkH

Jγik ´ akpY q}˚ ď εkλk @i ď N, k ď K
γik P R2W

` @i ď N, k ď K
τ P RK , λ P RK , s P RNˆK

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

.

C. Optimized CVaR Approximation

The Bonferroni approximation is inadequate when the sets
of violating wind power scenarios for different individual
chance constraints in ΩB have significant overlap [35]. In this
case, one may convert the original (linear) joint chance con-
straint to an equivalent (nonlinear) individual chance constraint
before deploying the CVaR approximation [21], [35]. To do so,
denote by ∆`` fi tδ P RK`` : eJδ “ 1u the relative interior
of the probability simplex, and note that (5) is equivalent to

min
PPP

P
„

max
kďK

 

δk
“

akpY q
Jξ´bkpxq

‰(

ď 0



ě 1´ ε (6)

for any fixed δ P ∆``. Note that the overall scale of δ is
immaterial, and thus the normalization eJδ “ 1 does not
restrict generality. Note also that (6) constitutes a distribution-
ally robust individual chance constraint, which is immediately
susceptible to the CVaR approximation. To see this, denote by

Jδpx, Y q fi max
PPP

P- CVaRε

„

max
kďK

 

δk
“

akpY q
Jξ´bkpxq

‰(



the worst-case CVaR function, and define

ΩCpδq fi tpx, Y q : Jδpx, Y q ď 0u .

As in Section IV-B, one can show that ΩCpδq Ď ΩCC for every
δ P ∆`` [27]. We emphasize that ΩCpδq depends nontrivially
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on δ even though the worst-case probability on the left hand
side of (6) is manifestly constant in δ. Hence, δ constitutes a
vector of scaling parameters that can be tuned to optimize the
quality of the CVaR approximation. The following proposition
further guarantees that Jδpx, Y q can be evaluated efficiently,
which implies that optimizing over ΩCpδq is easy.

Proposition 2. For any fixed px, Y q P R3G ˆ RGˆW and
δ P ∆``, the worst-case CVaR Jδpx, Y q coincides with the
optimal value of the conic program

min λρ` 1
N

řN
i“1 si

s. t. τ P R, λ P R, s P RN , γik P R2W
` @i ď N, k ď K

τ ď si @i ď N

δk

”

akpY q
J
pξi ´ bkpxq

ı

` pε´ 1qτ

`εγJikph´H
pξiq ď εsi @i ď N, k ď K

}εHJγik ´ δkakpY q}˚ ď ελ @i ď N, k ď K.

Returning to problem (7), we denote the number of inequal-
ities in the j-th chance constraint by Kj and define ∆j

`` as
the relative interior of the Kj-dimensional probability simplex.
Moreover, for any δj P ∆j

``, we denote by J jδj px, Y q the
worst-case CVaR function corresponding to the j-th chance
constraint, j P J . The previous discussion implies that

min
px,Y qPΘ

cJx x`max
PPP

EPrcJY ξs (7a)

s. t. J jδj px, Y q ď 0 @j P J (7b)

constitutes a tractable conic program and provides an upper
bound on (7) for every fixed set of scaling parameters. In
principle, the best upper bound can be found by minimizing (7)
over all δj P ∆j

``, j P J . We emphasize that this best upper
bound generally exceeds the optimal value of (7); see [24,
§ 3]. Moreover, unfortunately, the variant of problem (7) that
treats the δj as additional decision variables is nonconvex,
thus resisting efficient solution. This motivates us to devise
an iterative algorithm that optimizes sequentially over px, Y q
and δj , j P J , which is inspired by [21]. In the following
we denote by η ą 0 the minimum relative improvement per
iteration and by t P N the maximum iteration count.

0) Initialization. Set g0 Ð `8, tÐ 1, δjt Ð e{Kj @j P J .
1) Step 1. Find a solution pxt, Yt, vtq of

gt“

$

&

%

min
px,Y qPΘ,vě0

cJx x`max
PPP

EPrcJY ξs `MeJv

s. t. J j
δjt
px, Y q ď vj @j P J ,

which is a tractable conic program thanks to the results of
Sections IV-A and IV-C. If |pgt ´ gt´1q{gt| ă η or t ě t,
then stop and report pxt, Yt, vtq, else go to Step 2.

2) Step 2. Find a solution δt`1 of

min
δ

#

ÿ

j

J jδj pxt, Ytq : δj P ∆j
`` @j P J

+

,

which is a tractable conic program by virtue of Proposi-
tion 2. Set tÐ t` 1, and return to Step 1.

The sequence tgtutPN of objective values generated by the
algorithm is non-increasing and thus guaranteed to converge.

The auxiliary slack variables v ě 0 in the optimization
problem of Step 1 are penalized with a big-M constant in the
objective. They ensure feasibility in case of poor initialization
of the scaling parameters. If M is chosen sufficiently large,
then the algorithm is guaranteed to terminate with v “ 0 and
thus outputs a decision pxt, Ytq that is feasible in (7).

D. Discussion

The results of this section give rise to two tractable conser-
vative approximations for the chance constrained program (4).
Under the joint Bonferroni and CVaR approximation, the
worst-case expectation in the objective function (4a) is re-
placed by the conic program derived in Section IV-A, while
each joint chance constraint is conservatively approximated
by its corresponding Bonferroni feasible set ΩBC, which
admits a conic representation by virtue of Proposition 1. This
results in a single tractable conic program that can be solved
efficiently with off-the-shelf software. Under the optimized
CVaR approximation, on the other hand, a feasible (and
hopefully near-optimal) solution to (4) is found by the efficient
sequential convex optimization algorithm from Section IV-C.
We emphasize that all conic programs underlying the two
approaches reduce to simple linear programs if the Wasserstein
metric is defined in terms of the 1-norm or the 8-norm.

The sequential convex optimization algorithm underlying
the optimized CVaR approximation enjoys several benefits.
First, it bypasses the necessity to solve a nonconvex optimiza-
tion problem with bilinear terms, which emerge in the exact re-
formulations of joint chance constraints derived in [14, § 5.1].
Moreover, in contrast to the approaches proposed in [18], [24],
it remains applicable even when there are K ą 2 inequalities
in the chance constraint and when these inequalities involve
products of decision variables and uncertain parameters.

In retrospect, we conclude that the optimized CVaR approx-
imation from Section IV-C is superior to the joint Bonferroni
and CVaR approximation from Section IV-B because the
feasible set ΩCpδq involves fewer constraints and auxiliary
variables than ΩBC. Indeed, ΩBC introduces 2K ` pN ˆ

Kq ` pN ˆK ˆ 2W q auxiliary variables and K ` 4pN ˆKq
constraints, while ΩCpδq creates only 2`N `pN ˆKˆ2W q
auxiliary variables and 1 ` N ` 3pN ˆ Kq constraints. The
relative advantage of ΩCpδq over ΩBC in terms of complexity
of representation becomes increasingly significant for higher
dimensions N , K and W . We emphasize that the parsimonious
representation of ΩCpδq comes at the expense of solving a
sequence of conic programs. However, as we will demonstrate
through numerical experiments in Section V, the sequential
convex optimization algorithm usually terminates after only a
few iterations and outputs superior decisions.

We highlight that the choice of the individual violation
tolerances εk critically affects the performance of the joint
Bonferroni and CVaR approximation. Unfortunately, however,
finding the optimal values of εk is hard [27, Remark 2.1], and
optimizing separately over the εk and the decision variables as
in the algorithm of Section IV-C is also impractical because
of bilinear terms. In the numerical experiments we thus set
εk “ ε{K for all k ď K as recommended in [27] even
though this choice is known to be conservative when ε is
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small or when the inequalities in the joint chance constraint
are positively correlated [21, Example 3.1].

V. NUMERICAL RESULTS

We assess the quality of the two approximations described
in Section IV on an extended variant of the IEEE 24-bus
Reliability Test System [36]. The original system accommo-
dates 24 buses, 34 transmission lines, 12 generators (6 of
which are GFPPs) and 17 demand centers. For further details
see [36]. We augment this system with 6 wind farms connected
to buses 1, 2, 11, 12, 12 and 16, respectively, all of which
have a capacity of 250 MW. We also add 3 gas pipelines that
serve a pair of GFPPs each. The pipelines serving the pairs
t1, 2u, t3, 4u and t5, 6u have capacity 10,000 kcf, 5,500 kcf
and 7,000 kcf, respectively. Under this parameterization, the
total installed wind capacity adds up to 55% of the system
demand. We assume that each generator uses at most 40% of
its capacity for reserve provision (i.e., r “ 0.4y) at a cost equal
to 20% of the variable production cost (i.e., c` “ c´ “ 0.2c).

All simulations are based on the Wasserstein metric induced
by the 1-norm on RW , and thus all arising optimization prob-
lems are equivalent to tractable linear programs. Throughout
the experiments, we set H “ 0 and h “ 0, which amounts
to approximating Ξ by RW . We have observed that this
approximation greatly accelerates the computations but has no
significant impact on the results for the Wasserstein radii of
interest. Finally, we set εj to the same ε P p0, 1q for all j P J .

Recall that the distribution P of the uncertain deviation ξ
from the relative wind power output forecast µ is only in-
directly observable through independent and identically dis-
tributed (i.i.d.) samples from P. In our experiments we con-
struct µ and synthetic samples from P as in [37] using relative
wind power output data for 6 wind farms in southeastern Aus-
tralia from 2012 to 2013. We first pass the raw (percentage)
data through the inverse logistic function to obtain real-valued
data and compute the corresponding sample mean and sample
covariance matrix. We then construct i.i.d. samples from P
by applying the componentwise logistic function to random
samples from the normal distribution with the estimated mean
and covariance matrix.

The complete input data of all numerical experiments is
provided in the e-companion [33]. All simulations are run on
a 4 core 3.4 GHz desktop computer running Windows 8. All
optimization problems are implemented in MATLAB using the
YALMIP interface [38] and solved via Gurobi 7.5.

A. Operation without Reoptimization

In the first experiment we assess the candidate solutions
of (4) obtained with the methods from Section IV, assuming
that the system operator implements the linear decision rules
without reoptimizing. From raw data pψi, i “ 1, . . . , N ` 102,
we use the training sample pψi, i “ 1, . . . , N to estimate the
mean µ. The data pξi, i “ 1, . . . , N `102 is the deviation from
µ. To this end, we generate N training samples pξi, i ď N ,
and 102 test samples pξN`i, i ď 102.

Using the training data, we then solve (4) both with the
combined Bonferroni and CVaR approximation as well as the
optimized CVaR approximation for ε “ 5% and for different

Fig. 1. Pareto frontiers of the out-of-sample costs versus the out-of-sample
violation probabilities for the joint Bonferroni and CVaR (left) and optimized
CVaR (right) approximations with N “ 50 (top) and N “ 200 (bottom).

Wasserstein radii ρ P R`. The quality of an optimal solution
pxpρq and pY pρq (which constitutes an implicit function of the
training samples) is assessed by its empirical out-of-sample
cost

pCpρq “ cJx pxpρq `
1

102

řN`102

i“N`1 c
J
pY pρqpξi

and its empirical out-of-sample violation probabilities

pVjpρq “ 1
102

řN`102

i“N`1 IAp pY pρqqpξiąbppxpρqq, j P J .
Finally, all results are averaged across 100 independent simu-
lation runs in order increase their statistical robustness.

Figure 1 visualizes the trade-off between the out-of-sample
costs and violation probabilities under the two approximations.
Note that with increasing Wasserstein radius ρ the costs in-
crease, while all three violation probabilities decrease. This is
expected as larger Wasserstein radii result in more conservative
solutions that dispatch more expensive generators. The curves
in Figure 1 can thus be interpreted as Pareto frontiers. Note
that for sufficiently large values of ρ, both approximations can
guarantee that all chance constraints are satisfied out of sample
(i.e., the empirical violation probabilities are smaller than
ε “ 5%). We also observe that, as N increases, the violation
probabilities for fixed ρ tend to decrease. Finally, for the
majority of all Wasserstein radii that result in sufficiently small
out-of-sample violation probabilities ď 5%, the optimized
CVaR approximation generates lower out-of-sample costs than
the combined Bonferroni and CVaR approximation.

B. Operation with Reoptimization

In the second experiment we assess the candidate solutions
ppx, pY q of (4) under the premise that only the first-stage deci-
sion px “ ppy0, pr`, pr´q is implemented and that the real-time
adjustments y1pξq, lpξq, wpξq, rpξq are determined by solving
the deterministic optimal power flow problem

min
y1,l,w,r

cJy1 ` cle
Jl ` cwe

Jw ` cre
Jr

s. t. 0 ď py0 ` y1 ď y, ´ ppr´ ` rq ď y1 ď pr`
eJy1 ` e

JpCξ ´ wq ` eJl “ 0

´f ď Qgppy0 ` y1q

Q̀wpCµ` Cξ ´ wq ´Qdpd´ lq ď f
0 ď Φppy0 ` y1q ď q
0 ď l ď d, 0 ď w ď Cpµ` ξq, 0 ď r,

(8)
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which optimizes over the power adjustments y1 P RG, the
reserve-increase r P RG`, the load shedding quantities l P RD`
at the different demand centers and and the wind spills
w P RW` at the different wind farms. The constraints in the
last line of (8) prevent the load shedding and wind spilling
quantities from exceeding the actual demands and wind power
output realizations, respectively. All other constraints have
natural counterparts in (1), and thus their meaning is evident.
Note that in contrast to the day-ahead scheduling problem (1),
the real-time optimal power flow problem (8) enforces the
capacity constraints for the reserves, the transmission lines
and the gas pipelines deterministically. Note also that px is a
fixed parameter in (8). The real-time power adjustment incurs
the same cost as the variable cost of the power plants, while
we penalize reserve-increase, load shedding and wind spilling
by cr ą cl ą cw ě 0 to preserve their order of activation.

In the above real-time dispatch problem, the joint chance
constraints are replaced by hard constraints, and there will be
no out-of-sample violation. Empirically, all out-of-sample rpξq
are zeros, thus the analysis will focus on the empirical cost
calculated using the optimal solutions py1pξq, lpξq, wpξqq of
the real-time dispatch problem by

pR “ cJx px`
1

102

N`102
ÿ

i“N`1

cJy1ppξiq ` cle
Jlppξiq ` cwe

Jwppξiq,

and the results are also averaged over 100 runs. The same
process is applied for all possible values of ρ.

For the optimized CVaR approach, Fig. 2 illustrates pROpρq
as a function of ρ for ε “ 5% and different values of N . We
observe that at each level of the sample size N , there exists an
optimal radius pρ‹ which minimizes the realistic expected cost
pRO. Solving the problem with radius pρ‹ leads to a lower em-
pirical average cost compared to the ambiguity-free approach
with the radius ρ “ 0 and this reduction in the expected cost
is more substantial under lower sample size N . For example,
at N “ 25, pROppρ

‹q is 7.9% lower than the ambiguity-free
cost pROp0q, and this reduction is 1.9% when N “ 200. A
similar pattern appears in the plot of the interquantile range
(IQR) between the 10th- and 90th-quantile of pRiOpρq in Fig. 3,
as well as in the similar plots for the Bonferroni and CVaR
approach included in the e-companion [33]. These results
show the advantages of employing the distributionally robust
optimization approach: in all cases, solving problem (4) with
ρ ą 0 reduces both the empirical average and the variability of
the out-of-sample cost in the realistic operation settings. The
advantages of distributionally robust optimization are more
convincing in the low sample size settings.

Table I presents the optimal radius pρ‹ and the corresponding
pR‹ for various ε and different number of samples N for both
approaches. The cost for the Bonferroni and CVaR approach
pR‹B is reported as the percentage difference from pR‹O. In all
cases pR‹O is lower than pR‹B, while the greatest difference
takes place at ε “ 1%. Moreover, we notice that for a
fixed ε, as the number of samples N increase, the optimal
expected cost pR‹ and radius pρ‹ decrease. More specifically,
radius pρ‹ tends to zero with an increase in N , which is
coherent with the observations in [14, Section 7]. Additionally,
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Fig. 2. Average realistic cost pRO as a function of the Wasserstein radius ρ.
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Fig. 3. Interquantile range (between 10th and 90th quantile) of realistic cost
as a function of the Wasserstein radius ρ.

for a fixed number of samples N , decreasing ε returns a
lower optimal radius pρ‹ as the feasible space of probability
constraints becomes more stringent. On the upside, decreasing
ε also decreases pR‹O since less costly real-time adjustments are
activated due to increased robustness.

A robust optimization model (presented in the e-
companion [33]), which minimizes the worst-case cost and
risk constraints are satisfied for any realization of uncertain
parameter in the support Ξ, is solved and the results are given
in Table II for different number of samples N . In all cases,
the robust approach yields a significantly higher realistic cost
pRRO with respect to the distributionally robust and ambiguity-
free approaches, demonstrating the fact that the acquired first-
stage decisions pxi are overly conservative. The robust solution
varies with N as we estimate mean µ from the training sample.

Computational performance is reported for the setting with
ε “ 5% and N “ 200. Solving program (4) under the
Bonferroni and CVaR approximation takes on average 20 sec-
onds, while for the optimized CVaR approximation the average
solution time until convergence is 38 seconds. In practice, we
consistently observe convergence of the sequential algorithm
for optimized CVaR approximation in less than 3 iterations.
The average time to solve the robust optimization model and
the optimal power flow is 0.75 sec and 0.12 sec, respectively.

VI. CONCLUSION

In this paper, we proposed a purely data-driven approach
to study distributionally robust joint chance constraints based
on the Wasserstein metric. Our approach results in a convex
conservative approximation of distributionally robust joint
chance constraints, where the true data generating distribution
is not assumed to be a member of a parametric family
and the ambiguity set is nonparametric. We showed that the
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TABLE I
OPTIMAL REALISTIC COST pR‹ ($) AND WASSERSTEIN RADIUS pρ‹ FOR
BONFERRONI AND CVAR AND OPTIMIZED CVaR APPROXIMATIONS.

N “ 25 N “ 50

ε pR‹
O ($) pρ‹

O
pR‹

B pρ‹
B

pR‹
O ($) pρ‹

O
pR‹

B pρ‹
B

1% 22,269 0.0030 +4.00% 0.0001 22,105 0.0026 +1.71% 0.0001
5% 22,392 0.0168 +1.43% 0.0008 22,154 0.0143 +1.49% 0.0005

10% 22,414 0.0400 +1.31% 0.0018 22,275 0.0300 +0.94% 0.0009
N “ 100 N “ 200

ε pR‹
O ($) pρ‹

O
pR‹

B pρ‹
B

pR‹
O ($) pρ‹

O
pR‹

B pρ‹
B

1% 22,032 0.0008 +0.53% 0 21,932 0.0005 +0.89% 0
5% 22,039 0.0118 +0.50% 0 21,944 0.0103 +0.48% 0

10% 22,135 0.0250 +0.35% 0.0003 22,042 0.0230 +0.80% 0

TABLE II
REALISTIC COST pRRO AND IQR OF REALISTIC COST pRi

RO BETWEEN
10TH AND 90TH QUANTILE FOR ROBUST OPTIMIZATION IN ($).

N “ 25 N “ 50 N “ 100 N “ 200
pRRO 29,690 29,644 29,673 29,687

IQR pRi
RO 1,466 1,246 895 687

approximation is tractable and the optimal solution can be
obtained by solving a sequence of conic programming prob-
lems. We solved the two-stage problem of energy and reserve
dispatch with fuel constraints for GFPPs and demonstrated
that the proposed model has superior performance compared
to the widely used in the literature Bonferroni and CVaR
approximation. A systematic approach to estimate the optimal
Wasserstein radius from data is presented. From our numerical
study, we note that following a distributionally robust attitude
is of great significance when few samples are available,
while less robustness is needed as more information for the
true data generating distribution becomes available. A future
consideration would be to apply decomposition techniques to
solve very large instances of such problems.
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Christos Ordoudis, Viet Anh Nguyen, Daniel Kuhn, Pierre Pinson

This document serves as an electronic companion (EC) for the paper “Energy and Reserve Dispatch with

Distributionally Robust Joint Chance Constraints”. It contains seven sections that provide proofs of the

prepositions in the original manuscript, a nomenclature, the robust optimization formulation, data for the

IEEE 24-bus RTS, the procedure to generate the wind power data, parameters related to the simulations for

the numerical results and additional results.

1. Proofs of Proposition 1 and Proposition 2

Proof of Proposition 1. Using standard duality techniques, each worst-case CVaR in

ΩBC ,
{

(x, Y ) : max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
≤ 0 ∀k ≤ K

}

can be rewritten as

max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
= max

P∈P
min
τ∈R

{
τ +

1

εk
EP
[(
ak(Y )>ξ − bk(x)− τ

)+]}
(1a)

= max
P∈P

min
τ∈R

{
EP
[
max

{
τ,

1

εk

(
ak(Y )>ξ−bk(x)

)
+

(
1− 1

εk

)
τ

}]}
(1b)

≤min
τ∈R

{
max
P∈P

EP
[
max

{
τ,

1

εk

(
ak(Y )>ξ−bk(x)

)
+

(
1− 1

εk

)
τ

}]}
, (1c)

where in (1a) we use the definition of CVaR in [1, Theorem 1], and the inequality in (1c) comes from weak

duality. Notice that the objective function of (1b) is convex in τ and linear in P. Furthermore, by the result

of [2, Theorem 7.12, part (ii)], one can show that the ambiguity set P is weakly compact. As a result, [3,

Theorem 4.2] implies that sup-inf equals min-max, and (1c) holds with equality. Because the expression

inside the expectation is a pointwise maximum of two affine functions in terms of ξ, [4, Corollary 5.1, part

(i)] applies and the worst-case expectation over the probability measure P in (1c) admits a reformulation in

the dual form, and we can rewrite each worst-case CVaR value as

max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
=





min
τk,λk,sk,γk

λkρ+N−1
∑N
i=1 sik

s. t. τk ≤ sik ∀i ≤ N
ak(Y )>ξ̂i − bk(x)+(εk − 1)τk

+εkγ
>
ik(h−Hξ̂i) ≤ εksik ∀i ≤ N

‖εkH>γik − ak(Y )‖∗ ≤ εkλk ∀i ≤ N
γik ∈ R2W

+ ∀i ≤ N
τ ∈ RK , λ ∈ RK , s ∈ RN×K

(2)

and ΩBC can be reformulated as the intersection of K feasible sets by substituting the value of (2) into (1).

This completes the proof. �

1
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Proof of Proposition 2. For an individual chance constraint from the feasible set

ΩC(δ) ,
{

(x, Y ) : max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]
≤ 0

}
.

the worst case CVaR can be expressed based on definition in [1, Theorem 1] as

max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]
(3a)

= max
P∈P

min
τ∈R

{
τ +

1

ε
EP
[(

max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}
− τ
)+
]}

(3b)

= max
P∈P

min
τ∈R

{
EP
[
max

{
τ,

(
max
k≤K

{
δk
εk

[
ak(Y )>ξ−bk(x)

]})
+

(
1− 1

ε

)
τ

}]}
(3c)

≤min
τ∈R

{
max
P∈P

EP
[
max

{
τ,

(
max
k≤K

{
δk
εk

[
ak(Y )>ξ−bk(x)

]})
+

(
1− 1

ε

)
τ

}]}
. (3d)

Using the same reasoning as in the proof of Proposition 1, the inequality in (3d) holds with equality. The

expression inside the expectation is the pointwise maximum of K+1 affine functions. Thus, we can reformulate

the worst-case CVaR based on [4, Corollary 5.1, part (i)] as

max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]
=





min
τ,λ,s,γ

λρ+ 1
N

∑N
i=1 si

s. t. τ ∈ R, λ ∈ R, s ∈ RN , γik ∈ R2W
+ ∀i ≤ N, k ≤ K

τ ≤ si ∀i ≤ N
δk

[
ak(Y )>ξ̂i − bk(x)

]
+ (ε− 1)τ

+εγ>ik(h−Hξ̂i) ≤ εsi ∀i ≤ N, k ≤ K
‖εH>γik − δkak(Y )‖∗ ≤ ελ ∀i ≤ N, k ≤ K.

(4)

Replacing (4) into (3) completes the proof. �
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2. Nomenclature

In Table 1, we present the main symbols used in the original paper and the description for each one of

them.

Table 1. Nomenclature
Symbol Description

y0 First-stage power dispatch of conventional power plants

Y Afine policy to approximate the recourse decisions of conventional power plants

r− First-stage downward reserve capacity of conventional power plants

r+ First-stage upward reserve capacity of conventional power plants

µ Predicted power production of wind farm

ξ Random variable with zero mean

C Diagonal matrix of wind farm capacities

Q Matrix of power transfer distribution factors

r Maximum reserve capacity offered by conventional power plants

y Maximum power production of conventional power plants

y Minimum power production of conventional power plants

f Capacity limit of transmission line

q Capacity limit of pipeline

Φ Matrix of gas distribution factors (containing power conversion factor)

d Electricity demand

c Variable cost of conventional power plants

c− Cost of reserving downward capacity

c+ Cost of reserving upward capacity

y1 Power adjustments of conventional power plants in real-time optimal power flow problem

r Reserve-increase for conventional power plants in real-time optimal power flow problem

l Load shedding quantities of electricity demand in real-time optimal power flow problem

w Wind spilling in real-time optimal power flow problem

cl Load shedding cost in real-time optimal power flow problem

cw Wind spilling cost in real-time optimal power flow problem

cr Reserve-increase cost in real-time optimal power flow problem

ε Violation probabilities of joint chance constraints

P True probability distribution of random variable ξ

P̂N Empirical distribution: uniform distribution on the training samples

Ξ Support of ξ

N Number of training samples drawn from P
P Ambiguity set

ρ Wasserstein radius

δ Vector of scaling parameters

η Minimum relative improvement per iteration in iterative algorithm of Optimized CVaR approximation

v Auxiliary slack variable in iterative algorithm of Optimized CVaR approximation

M Big-M constant in iterative algorithm of Optimized CVaR approximation
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3. Robust optimization formulation

The robust optimization problem is formulated as follows. Given the raw sample ψ̂i, i = 1, . . . , N +102, we

first estimate the mean using the sample average µ = N−1
∑N
i=1 ψ̂i, and ξ̂i = ψ̂i − µ, i = 1, . . . , N + 102 are

the deviation from the estimated mean. In the robust optimization approach, we assume that the uncertain

factors ξ varies in the box uncertainty set Ξ = {ξ ∈ RW : −µ ≤ ξ ≤ e− µ}. The robust program is

min
(x,Y )∈Θ

c>x x+ c>Y µ

s. t. Aj(Y )ξ ≤ bj(x) ∀ξ ∈ Ξ,∀j ∈ {gen, grid, gas},
where the worst-case cost is minimized and the constraints are reformulated as robust constraints. The

definition of Θ and the mappings Aj(Y ) and bj(x) are analogous to Section II of the main paper. Because the

uncertainty set Ξ has 2W vertices, we replace each robust constraint by 2W individual constraints for each

vertex ξv of Ξ, v = 1, . . . , 2W . The robust problem can be re-expressed as a linear program

min
x,Y,β

c>x x+ c>Y µ

s. t. (x, Y ) ∈ Θ

Aj(Y )ξv ≤ bj(x) ∀v = 1, . . . , 2W , ∀j ∈ {gen, grid, gas}

Let (x?, Y ?, β?) be the optimal solution of the robust program. The out-of-sample performance evaluated

on the test sample ξ̂i, i = N + 1, . . . , N + 102 is calculated in a similar procedure as in Section V-B of the

main paper.
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4. Data for the IEEE 24-bus RTS

The 24-bus power system is illustrated in Figure 1. The slack bus of the system is bus 13.

Figure 1. 24-bus power system – Single area RTS-96

Table 2 presents the generating units’ data of the power system. The generating units offer a single block

of energy, up and down reserve capacity. Table 2 provides the technical data of generating units, the costs,

the location on the power system, as well as the conversion factor and the connection with the corresponding

pipelines for the gas-fired power plants. There are three pipelines that the gas-fired power plants are connected.

Pipeline 1 has a capacity of 10,000 kcf, Pipeline 2 has a capacity of 5,500 kcf and Pipeline 3 has a capacity

of 7,000 kcf (kcf: 1,000 cubic feet).

Table 2. Technical Data of Generating Units

Unit # Bus
y

(MW)

y

(MW)

r

(MW)

c

($/MWh)

c+
($/MW)

c−
($/MW)

Φ

(kcf/MWh)
Pipeline

1 1 152 0 60.8 17.5 3.5 3.5 12.65 1

2 2 152 0 60.8 20 4 4 13.45 3

3 7 300 0 120 15 3 3 - -

4 13 591 0 236.4 27.5 5.5 5.5 - -

5 15 60 0 24 30 6 6 11.12 2

6 15 155 0 62 22.5 4.5 4.5 - -

7 16 155 0 62 25 5 5 14.88 1

8 18 400 0 160 5 1 1 - -

9 21 400 0 160 7.5 1.5 1.5 - -

10 22 300 0 120 32.5 6.5 6.5 - -

11 23 310 0 124 10 2 2 16.8 2

12 23 350 0 140 12.5 2.5 2.5 15.6 3
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Table 3 presents the bus location of the loads, as well as the load at each bus as a percentage of the total

system demand. The total electricity demand is 2,650 MWh and the cost of load shedding is $1,000 /MWh.

Table 3. Bus Location and Distribution of the Total System Demand

Load # \text{Bus} % of system load Load # \text{Bus} % of system load

1 1 3.8 10 10 6.8

2 2 3.4 11 13 9.3

3 3 6.3 12 14 6.8

4 4 2.6 13 15 11.1

5 5 2.5 14 16 3.5

6 6 4.8 15 18 11.7

7 7 4.4 16 19 6.4

8 8 6 17 20 4.5

9 9 6.1

The transmission lines data is given in Table 4. The lines are characterized by the bus that are connected,

as well as the reactance and the capacity of each line.

Table 4. Reactance and Capacity of Transmission Lines

From To
Reactance

(p.u.)

Capacity

(MW)
From To

Reactance

(p.u.)

Capacity

(MW)

1 2 0.0146 175 11 13 0.0488 500

1 3 0.2253 175 11 14 0.0426 500

1 5 0.0907 400 12 13 0.0488 500

2 4 0.1356 175 12 23 0.0985 500

2 6 0.205 175 13 23 0.0884 500

3 9 0.1271 400 14 16 0.0594 1000

3 24 0.084 200 15 16 0.0172 500

4 9 0.111 175 15 21 0.0249 1000

5 10 0.094 400 15 24 0.0529 500

6 10 0.0642 400 16 17 0.0263 500

7 8 0.0652 600 16 19 0.0234 500

8 9 0.1762 175 17 18 0.0143 500

8 10 0.1762 175 17 22 0.1069 500

9 11 0.084 200 18 21 0.0132 1000

9 12 0.084 200 19 20 0.0203 1000

10 11 0.084 200 20 23 0.0112 1000

10 12 0.084 200 21 22 0.0692 500

There are 6 wind farms of 250 MW with different locations throughout the grid. The wind farms are

connected at the 1, 2, 11, 12, 12, 16 bus. The data in Tables 2-4 are based on [5]. We have modified the

marginal cost of power production to have different costs for each power plant. The value of power conversion

factor and capacity of pipelines are based on the test case used in [6].
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5. Wind power data generation for the simulation of numerical results

The data consists of wind power forecast errors that is generated with the same method and the historical

data given in [7]. The wind power data are provided by the Australian System Operator [8], which consists

of wind power generation recordings from 22 wind farms in the southeastern Australia. The complete dataset

can be found in [9]. Data from 2012 and 2013 are normalized by the nominal power of the corresponding

wind farm which results in data being in the range of [0,1]. From the csv file that can be found in [9], we

have picked the 6 wind farms presented in Table 5.

Table 5. Wind Farm Location and Name tag in csv

WF Bus Name tag in csv

1 1 CAPTL WF

2 2 CATHROCK

3 11 CULLRGWF

4 12 LKBONNY1

5 12 MTMILLAR

6 16 STARHLWF

The wind power data are generated with the following procedure:

(1) The 2 years of data for the 6 wind farms is loaded.

(2) The data range is adjusted to [0.01,0.99] to permit the logit-normal transformation in the next step.

(3) A logit-normal transformation is performed based on [7, Equation (1)].

(4) The mean and covariance are calculated.

(5) We generate the required number of independent and identically distributed random samples by

assuming the transformed variable to be normally distributed.

(6) The inverse of logit-normal transformation is applied based on [7, Equation (2)].

We refer the reader to [7] for a detailed presentation of the method and additional insights in very-short-

term probabilistic wind power forecasting. Note that the procedure can be found also in the source code

provided online.
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6. Data for the simulation of numerical results

The positive-valued vector containing the Wasserstein radii for the Combined Bonferroni and CVaR ap-

proximation is [0 linspace(10−4, 24 · 10−4, 23)], while for the Optimized CVaR approximation is given at Table

6.

Table 6. Positive-value Vector containing the Wasserstein radii for Optimized CVaR Approximation

N = 25 Vector

ε = 1% [0 10−4 linspace(10−3, 10−2, 23)]

ε = 5% [0 linspace(10−4, 3.5 · 10−2, 24)]

ε = 10% [0 10−4 10−3 10−2 linspace(3.5 · 10−2, 6 · 10−2, 21)]

N = 50

ε = 1% [0 10−4 linspace(10−3, 6 · 10−3, 23)]

ε = 5% [0 10−4 10−3 linspace(10−2, 4 · 10−2, 22)]

ε = 10% [0 10−4 10−3 10−2 3 · 10−2 linspace(4 · 10−2, 7 · 10−2, 20)]

N = 100

ε = 1% [0 10−4 10−3 linspace(3 · 10−3, 4 · 10−2, 22)]

ε = 5% [0 10−4 10−3 linspace(3 · 10−3, 4 · 10−2, 22)]

ε = 10% [0 10−4 10−3 6 · 10−3 linspace(10−2, 6 · 10−2, 21)]

N = 200

ε = 1% [0 10−4 10−3 linspace(3 · 10−3, 10−2, 22)]

ε = 5% [0 10−4 10−3 linspace(3 · 10−3, 2.5 · 10−2, 22)]

ε = 10% [0 10−4 10−3 linspace(5 · 10−3, 4 · 10−2, 22)]

Table 7 presents the values of the parameters related to the algorithm utilized in the Optimized CVaR

approximation of distributionally robust joint chance constraints.

Table 7. Parameter for the Algorithm in Optimized CVaR Approximation

Parameter Value

t 40

η 0.1

δ 1000

δ 10−4

M 106
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7. Additional Results

Figs. 2 and 3 illustrate the impact of Wasserstein radius ρ on the expected value and interquantile range

between the 10th and 90th quantile of R̂iB(ρ). For the Combined Bonferroni and CVaR approximation, we

have similar observations as the ones for Optimized CVaR approximation presented in the original manuscript.
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Figure 2. Average realistic cost R̂B as a function of Wasserstein radius ρ.
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Figure 3. Interquantile range of realistic cost R̂iB between 10th and 90th quantile as a

function of Wasserstein radius ρ.
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Data-driven Distributed Operation of Electricity and Natural Gas

Systems

Christos Ordoudis and Viet Anh Nguyen

Abstract– The simultaneous growth in the installation of renewable energy sources and gas-fired power

plants introduces a compelling need to jointly optimize the operation of electricity and natural gas systems

under uncertain power supply. However, there exist limitations on the private data that the two system

operators are willing to share and this creates challenges in performing a coupled optimization of the elec-

tricity and natural gas systems. Moreover, dealing with uncertainty increases the complexity of this problem

since efficient and transparent ways would need to be used. Therefore, we propose a distributed algorithm

based on the Alternating Direction Method of Multipliers (ADMM) that optimally dispatches electricity and

natural gas systems independently, but in a coordinated manner, with the minimum amount of information

shared between the two system operators. We utilize a data-driven distributionally robust chance constrained

approach, where we optimize over a family of distributions defined by the first and second order moments

of the underlying uncertainty that can be estimated from historical data. A second-order cone programming

(SOCP) problem reformulation can be developed that guarantees the convergence of the ADMM algorithm

and requires only a limited amount of information regarding the underlying distribution to be shared. In the

numerical study, we illustrate the performance of the proposed distributed algorithm, which is able to obtain

the same solutions as a centralized dispatch of the coupled energy system. We compare the solutions with two

benchmark reformulations; one that assumes a normally distributed uncertainty and a deterministic model.

That way, we find that the solutions of the proposed model outperform both benchmarks in an out-of-sample

Index terms– ADMM, chance constraints, distributionally robust optimization, distributed operation,

electricity and natural gas systems, renewable energy sources.

1. Introduction

Over the last decades, the whole energy system undergoes a transition phase, where the generation mix, the

interactions between the various networks and systems’ operation are going through unprecedented changes.

Two of the main trends in the aforementioned transformation are the transition to a renewable-based power

system and the increased interaction between the energy systems. More specifically, natural gas is expected

to play an important role in the development of the power system [1], since gas-fired power plants (GFPPs)

are the least polluting conventional technology and their high efficiency and flexibility can facilitate the

integration of intermittent renewable energy sources, such as wind and solar power. As a consequence, the

interaction between the electricity and natural gas systems will be continuously strengthened, as well as the

uncertainty and variability of renewables will have an impact on the operation of both energy systems.

Historically, the electricity and natural gas systems have been developed and operated in a decoupled man-

ner, since the interplay between them was fairly limited [2]. The systems have been dispatched individually

without taking into account each system’s complexities and limitations, which may yield potential challenges

nowadays. For instance, fuel supply scarcity from the natural gas network can cause outage of GFPPs that

eventually put at risk the security of the power system operation. Moreover, the fuel demand of GFPPs

can affect the scheduling of the natural gas system and flows in the pipelines. Therefore, it is essential to

set up proper coordination frameworks to ensure the economic and efficient operation of the whole energy

system. To accomplish that, the coupled operation of electricity and natural gas systems has been examined

in various research studies lately, such as [3, 4, 5, 6, 7, 8]. The power flow problem is solved by taking into

account the natural gas flow constraints in [3, 4], while authors in [5, 6] propose the introduction of natural
1

*The list of authors may be subject to changes.
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gas fuel feasibility constraints in the unit commitment problem. The enhanced flexibility and reliability in

a coupled operation of the two energy systems is discussed in [7, 8] highlighting the need to incorporate

network constraints in the system modeling. In view of high shares of renewables, the effect of uncertain

power production to the coupled energy system is examined via a robust optimization framework in [9, 10]

and by utilizing stochastic programming in [11, 12, 13].

A common assumption of the aforementioned works is that the electricity and natural gas systems are

operated by an integrated utility that is able to control and operate both energy systems with a centralized

model. A centralized dispatch model is attractive and can be effectively utilized in practice when the electricity

and natural gas systems have the same operator, e.g. Energinet.dk in Denmark [14]. However, the systems

are operated by different entities in most of the countries that want to keep their information private, such

as network details, system’s dispatch and market participants’ data, and only share the minimum amount of

information needed to guarantee a secure operation of the whole energy system. Along these lines, another

issue with regards to the characterization of the uncertainty introduced by renewables and its incorporation

in the dispatch models is raised. Following an uncertainty-aware dispatch for the systems would require

specific actions by the system operators. More specifically, these actions would include the agreement on

the probability distribution of the uncertain parameter, the scenario generation technique and the number

of scenarios in the case of stochastic programming, while the uncertainty sets would also need to be defined

and agreed in case robust optimization is applied. In this paper, we are interested in answering the following

questions. First, how to design a mechanism that allows each operator to dispatch the system independently,

while requiring the minimum information sharing? and subsequently: is it possible to attain the solution of

a centralized dispatch model with the minimum overall system cost? In terms of dealing with uncertainty,

how to develop a model that allows the operators just to share a limited amount of information inferred from

historical data?

To address these questions, we develop a distributed mechanism in a data-driven framework to dispatch

electricity and natural gas systems under uncertainty. Regarding the distributed mechanism, various decen-

tralized and distributed approaches have been widely utilized to solve power system operational and market

design problems over the years [15, 16, 17, 18, 19] but also to study the coordination between the electricity

and natural gas networks lately, as in [20, 21, 22, 23]. More specifically, authors in [20, 21, 22] develop

distributed algorithms that solve the electricity and natural gas dispatch problems independently, while in

[23] they solve a dispatch problem for a multi-area integrated electricity and natural gas system1. Regarding

uncertainty modeling, various approaches have been proposed in the literature such as stochastic program-

ming [25, 26, 27, 28], robust optimization [29, 30] and chance constrained programming [31]. In stochastic

programming usually a specific distribution is assumed to be followed by the uncertain parameter [32], while

robust optimization may yield to overly conservative solutions [33]. Aiming to reduce the conservatiness of

solutions, chance constrained programming allows for the violation of uncertain constraints up to a predefined

probability. It is common though to assume an underlying distribution for the uncertain parameter in chance

constrained programming in order to obtain analytical reformulations, as in [34, 35] that assume Gaussian

uncertainty of forecast errors. To overcome these issues, a novel data-driven approach can be adopted, namely

distributionally robust optimization. Following this approach, one optimizes over a family of distributions

(i.e. ambiguity set) without requiring the exact knowledge of the underlying true distribution. The ambiguity

sets are classified based on the approach that is used to characterize the family of distributions. Moment-

based ambiguity sets are defined by the distributions that satisfy certain moment constraints [36], while the

1The distributed and decentralized algorithms to solve power and natural gas systems’ dispatch problems are based on

various decomposition coordination algorithms, such as Lagrangian relaxation (LR), alternating direction method of multipliers

(ADMM), optimality condition decomposition (OCD), auxiliary problem principle (APP), consensus and innovation (C+I),

proximal message passing (PMP) and dual decomposition. Authors in [18] and [24] provide an extensive analysis on the

application of such decomposition algorithms to the optimal power flow problems, as well as optimal frequency and voltage

control problems, and discuss their key features.
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metric-based ones are determined by the distributions that are close to the empirical one with respect to a

selected probability metric [37].

In this paper, we propose an algorithm based on ADMM [38] for the distributed operation of electricity and

natural gas systems in a distributionally robust framework. Instead of operating the systems in a centralized

manner, we introduce a system coordinator that facilitates the communication between the electricity and

natural gas system operators. Moreover, we define a moment-based ambiguity set by the mean and covariance

matrix that are estimated from the historical data. The proposed setup is illustrated in Figure 1. In contrast to

stochastic programming and robust optimization, utilizing a purely data-driven approach with the estimated

mean and covariance to be shared between the operators results in a procedure that does not involve any

further action like scenario or uncertainty set generation. The mean and covariance can be estimated from

the publicly available historical data, which promotes transparency and the operators can be more easily

persuaded to treat them as common knowledge. Such assumptions and limitations are also discussed in

[26, 28, 30], where information regarding uncertainty characterization has to be shared in the proposed

distributed models.

Figure 1. Data-driven distributed operation of electricity (EL) and natural gas (NG) sys-

tems. SC: system coordinator.

The main contributions of this paper are summarized as follows:

(1) We propose a purely data-driven approach for the dispatch of electricity and natural gas systems that

is formulated as a distributionally robust chance constrained (DRCC ) program where the ambiguity

set is defined by the mean and covariance matrix estimated from the historical data. Such an approach

results in an analytical reformulation of the problem that is efficiently scalable, since the number of

random parameters does not affect the size of the problem as opposed to scenario approaches.

(2) We provide a tractable reformulation of the DRCC problem and solve it using ADMM that allows a

distributed operation of the electricity and natural gas systems under uncertainty. The two system

operators only need to communicate the consumption of GFPPs, while with regards to uncertainty

characterization; the estimated mean and covariance are sufficient to describe their ambiguity sets.

The proposed algorithm converges efficiently to the same solution of the centralized approach since

the reformulation of the original problem results in a convex problem at hand to be solved.

(3) We illustrate the performance of the proposed algorithm in an experimental setup where the electric-

ity and natural gas systems are dispatched centrally, in a distributed manner and with a sequential

approach as proposed in [39]. Moreover, we compare the solution of the DRCC model with a deter-

ministic approach and an approach where it is assumed that uncertain parameters follow a Gaussian

distribution. All the analysis is performed on an out-of-sample basis, meaning that the decisions

are tested on unseen realizations of uncertainty. The numerical results show that DRCC results in

more attractive solutions in terms of violation probability of constraints under various metrics (i.e.

empirical violation, maximum average violation and joint violation probability). Finally, a realistic

operation that resembles how the system would be dispatched in reality by solving an optimal power

and natural gas flow after the realization of uncertainty is introduced, where DRCC outperforms the

other models in terms of expected cost in a realistic operation.

Compared to [20, 21, 22], the proposed DRCC model provides a distributed algorithm to solve the electricity

and natural gas systems independently, while incorporating the uncertainty introduced by renewable energy

sources. This is considered highly important in view of a tighter coordination between electricity and natural
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gas systems where uncertainty and variability impacts the operation of both. Authors in [25, 26, 27, 28, 29, 30,

31], solve power system related problems in a distributed manner under uncertainty by utilizing stochastic

programming, robust optimization or chance constraints. On the contrary, we deal with uncertainty in a

data-driven framework by utilizing distributionally robust optimization to solve the electricity and natural

gas dispatch problem motivated by the foreseen increased availability of data.

The remaining of the paper is organized as follows. Section 2 presents the coupled electricity and natural

gas dispatch model in a distributionally robust framework, while the tractable reformulation of the objective

function and distributionally robust chance constraints is presented in Section 3. Section 4 presents the

reformulation of the problem based on the assumption of Gaussian uncertainty. In Section 5, we provide the

distributed algorithm based on ADMM as well as some additional insights. The numerical results are given

in Section 6 and Section 7 concludes the paper. Finally, a detailed nomenclature is given in the Appendix A.

Notation: We denote R+ the non-negative and R++ the positive. Moreover, we use upper case letters for

matrices and lower case letters for vectors. Throughout this paper, we use Ai to denote the i-th row vector

of matrix A ∈ RN×K of arbitrary dimensions. The Frobenius inner product of two matrices A,B ∈ RN×K

is denoted by
〈
A,B

〉
= Tr(A>B). Finally, the Frobenius norm for a real matrix A ∈ RN×K is defined as

||A|| =
√
A>A.

2. Coupled electricity and natural gas model

An integrated setup that optimizes the coupled operation of electricity and natural gas systems under

uncertainty is followed in this study. Uncertain power production from Z stochastic producers is modeled by

W (µ + ζ), where µ ∈ RZ is the mean power production and ζ ∈ RZ a random variable with mean µ0 ∈ RZ

and covariance matrix Σ0 ∈ RZ×Z . The diagonal matrix W contains the installed capacity of stochastic

producers. We restrict the recourse actions to linear decision rules2 and define vector ξ = [1, ζ]> in the

following formulation, along the lines with various works in the literature such as [34, 41]. Thus, the power

production is formulated as Xξ, where X ∈ RG×(Z+1) contains the day-ahead schedule of G conventional

power plants in the first column and the real-time adjustments in the remaining columns resulting in a total

of Z + 1 number of columns. Similarly, the natural gas production from each one of the U producers is

described by Y ξ with Y ∈ RU×(Z+1). Note that the day-ahead schedules are the first-stage decisions, while

the recourse actions comprise the real-time dispatch of the system to cover the imbalances due to forecast

errors. In this work, we assume that the electricity d ∈ RD and natural gas h ∈ RH demands are exactly

known3. The link between the two systems is defined by GFPPs that consume natural gas in order to produce

power. The electricity system is modelled as a network with E nodes and L transmission lines, while the

natural gas network contains M nodes and V pipelines. For the power flow, we use a linearized lossless DC

approximation4 through the utilization of the PTDF matrix Q ∈ RL×E , which defines the power flow as a

linear function of nodal injections [43]. More specifically, we define three matrices QG ∈ RL×G, QW ∈ RL×Z

and QD ∈ RL×D that incorporate already the mapping of conventional power plants, stochastic producers

and demands on the network, respectively. For the natural gas flow, we adopt a controllable-flow model5,

2Restricting the functional form of decision rules to be linear yields to an approximation of the original stochastic program;

however, it allows for a tractable reformulation of the problem. We refer the interested reader to [40, Section 2.1-2.2] for more

information on this topic.
3It is possible to introduce uncertain demand profiles by studying a joint probability distribution among the various uncer-

tainties but this refinement is left for future research.
4A linearized lossless DC power flow has been widely used in the literature as in [34, 35]. An alternative would be to consider

recent advances in the area of convex relaxations for AC power flow (see [42] and references therein), though the tractability of

ambiguous chance constraints reformulation would have to be preserved.
5A controllable-flow model results in a linear program for the representation of the natural gas system. Including a detailed

representation of the natural gas flow dynamics would require the utilization of partial differential equations (PDEs) or under

some further assumptions non-linear and non-convex functions such as the Weymouth equation [44]. This would raise significant

challenges in the reformulation of distributionally robust chance constraints and is left for future research.



DATA-DRIVEN DISTRIBUTED OPERATION OF ELECTRICITY AND NATURAL GAS SYSTEMS 5

where the nodal gas pressures and linepack are omitted for the sake of computational tractability as in [45].

More specifically, the natural gas flow is fully controllable and is limited by the maximum capacity of each

pipeline that can be calculated via an ex-ante analysis based on the physical limits of the pressures in the

natural gas system. Moreover, the nodal gas balancing is enforced. The DRCC coupled dispatch model for

electricity and natural gas systems is formulated as

min
X,Y,C,F

max
P∈P

EP[fx(X, ξ) + fy(Y, ξ)] (1a)

s. t. X ≤ Xe ≤ X (1b)

1>Xe+ 1>Wµ = 1>d (1c)

1>XE + 1>W = 0 (1d)

Y ≤ Y e ≤ Y (1e)

1>Y e = 1>Ce+ 1>h (1f)

1>Y E = 1>CE (1g)

BGY +BFF = BDh+BPC (1h)

ΦX = C (1i)

min
P∈P

P
(
Xgξ ≤ Xg

)
≥ 1− εg ∀g = 1, . . . , G (1j)

min
P∈P

P
(
−Xgξ ≤ −Xg

)
≥ 1− εg ∀g = 1, . . . , G (1k)

min
P∈P

P
(
QG
l Xξ + (QW

l Wµ−QD
l d) +QW

l Wζ ≤ f l
)
≥ 1− εl ∀l = 1, . . . , L (1l)

min
P∈P

P
(
−(QG

l Xξ + (QW
l Wµ−QD

l d) +QW
l Wζ) ≤ f l

)
≥ 1− εl ∀l = 1, . . . , L (1m)

min
P∈P

P
(
Yuξ ≤ Y u

)
≥ 1− εu ∀u = 1, . . . , U (1n)

min
P∈P

P (−Yuξ ≤ −Y u) ≥ 1− εu ∀u = 1, . . . , U (1o)

min
P∈P

P (Fvξ ≤ qv) ≥ 1− εv ∀v = 1, . . . , V (1p)

min
P∈P

P (−Fvξ ≤ qv) ≥ 1− εv ∀v = 1, . . . , V, (1q)

where the worst-case expected cost is minimized across all distributions P in the ambiguity set P in (1a).

We have excluded the cost of GFPPs as this would result in double-counting it. Thus, the cost of GFPPs

is calculated from the production cost of natural gas producers instead of incorporating fuel prices for the

GFPPs. Inequalities in (1) are formulated as ambiguous individual6 chance constraints that are defined over

ambiguity set P. Therefore, the worst-case probability that each inequality constraint is not violated has to

be smaller than 1 − ε. All parameters ε ∈ (0, 1) determine the safety factor for the ambiguous individual

chance constraints that is desired. Column vector e ∈ R(Z+1) and matrix E ∈ R(Z+1)×Z are utilized to pick

the appropriate columns of matrices X and Y in order to define the decisions associated with the day-ahead

dispatch and real-time operation. Hence, they have the following form,

e = [1; 0; . . . ; 0] and E=

[
0

I

]

where 0 is a zero row vector and I ∈ RZ×Z is the identity matrix. More specifically, constraints (1b) limit

the power production at the day-ahead stage between the lower bound X ∈ RG and upper bound X ∈ RG.

Enforcing the power balance equality constraint,

Xξ +W (µ+ ζ) = d, P-a.s.,

6Utilizing joint chance constraints is possible under specific types of ambiguity sets and type of constraints. In this paper,

we focus on individual chance constraints and the interested readers are referred to [46, 47, 48] for additional information on

dealing with joint chance constraints.
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to hold with probability equal to 1, eventually results in two deterministic constraints by performing the

corresponding coefficient matching [40, Section 2.2]. Therefore, the power balance in the nominal case is

imposed by (1c), while (1d) ensures that the balancing holds for any realization of the uncertain power

production. Similarly, the day-ahead natural gas production is constrained in (1e) for each producer by

Y ∈ RU and Y ∈ RU . The natural gas balance in both day-ahead and real-time stages is ensured also with

probability equal to 1 by constraints (1f) and (1g), where C ∈ RΓ×(Z+1) is the natural gas consumption of

GFPPs that constitute a subset of conventional power plants. Equality constraint (1h) ensures the nodal

natural gas balancing, where the natural gas flow F ∈ RV×(Z+1) in the pipelines is taken into account.

Note that the appropriate mappings in the form of incidence matrices need to be introduced for natural

gas producers BG ∈ RM×U , natural gas demands BD ∈ RM×H and GFPPs BP ∈ RM×Γ. The entries of

matrix BF ∈ RM×V are equal to -1 for the pipelines departing from node m and equal to 1 for the pipelines

arriving at node m. The coupling constraint (1i) links the natural gas consumption of GFPPs to their power

production via the mapping matrix Φ ∈ RΓ×G, which contains the power conversion factor of the GFPPs, with

a probability equal to 1. Constraints (1j)-(1k) limit the power production in real-time, while the power flow is

bounded by the transmission capacity limits f ∈ RL++ for each transmission line of the power system in (1l)-

(1m). The natural gas production in real-time is limited in (1n)-(1o) and the natural gas flow F ∈ RV×(Z+1)

needs to satisfy the capacity limits of each pipeline q ∈ RV++ by (1p)-(1q).

For notational convenience, we provide the following compact form of the optimization problem (1),

min
X,Y,C,F

max
P∈P

EP[fx(X, ξ) + fy(Y, ξ)] (2a)

s. t. X ∈ X (2b)

Y,C, F ∈ Y (2c)

ΦX − C = 0, (2d)

where X captures the feasible set for the electricity system (1b)-(1d) and (1j)-(1m), Y captures the feasible

set of the natural gas system (1e)-(1h) and (1n)-(1q) and (2d) is the coupling constraint.

Following an approach that restricts the recourse actions to linear decision rules, program (1) permits the

definition of the integrated energy system’s dispatch in view of uncertain power supply. Solving model (1)

yields the optimal values of X?, Y ?, F ? and C? under the specified values of ε. Depending on the risk attitude

of the decision maker, which is defined by the values of ε, a violation of the inequality constraints can be

acceptable. In practice, the day-ahead decisions can be defined by model (1) and the real-time production can

be decided by solving an economic dispatch model, where the real-time decisions do not need to be linearly

dependent on the uncertainty. Therefore, the inclusion of additional variables (i.e. load shedding and wind

spilling) is required in this case to guarantee the feasibility of the real-time economic dispatch model.

3. Tractable reformulation of distributionally robust chance constrained program

In this section, we provide a tractable reformulation of DRCC problem presented in (1) based on a moment-

based ambiguity set. We consider a moment-based ambiguity set that defines the probability distributions

taken into account. Having a finite number of samples observed from the true distribution P at hand,

the decision maker collects them in a dataset ẐN := {ζ̂i}i≤N . Thus, we can calculate the empirical mean

µ̂0 = 1
N

∑N
i=1 ζ̂i and covariance matrix Σ̂0 = 1

N

∑N
i=1(ζ̂i− µ̂0)(ζ̂i− µ̂0)>. The ambiguity set is defined by the

first and second order moments [41] as follows

P :=
{
P ∈M(RZ) : E[ζ] = µ̂0,E[ζζ>] = Σ̂0

}
, (3)

where M(RZ) denotes the set of all probability measures on RZ and Σ̂0 is a positive semi-definite matrix.

Utilizing ambiguity set P, we restrict the true mean and covariance of ζ to be equal to the empirical mean µ̂0

and covariance Σ̂0. Uncertainty of the mean and covariance can be included by using the approach proposed

in [36]. In our case though we assume that µ̂0 and Σ̂0 have been sufficiently approximated from the available
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historical data. Conditional mean and covariance estimates can be incorporated in our model if necessary to

have more representative estimates (e.g. depending on the hour of the day or season of the year).

3.1. Reformulation of distributionally robust chance constraints

For notational convenience, we use a general form of distributionally robust individual chance constraints

to provide the reformulation of (1j)-(1q),

min
P∈P

P(Aiξ ≤ bi) ≥ 1−εi ∀i = 1, . . . , I, (4)

where A ∈ RN×(Z+1) is an arbitrary matrix of proper dimensions. Note that all constraints (1j)-(1q) can be

written in the form of (4). Then, we can equivalently reformulate (4) as a second-order cone (SOC) constraint

for any ε ∈ (0, 1),
√

1− εi
εi

√
AiΣ̂A>i ≤ (bi − µ̂>A>i ) ∀i = 1, . . . , I, (5)

where

E[ξ] = µ̂ =

(
1

µ̂0

)
, E[ξξ>] = Σ̂ =

[
1 µ̂>0
µ̂0 Σ̂0 + µ̂0µ̂

>
0

]
(6)

This reformulation is based on [49, Theorem 3.1] for distributionally robust individual chance constraints with

given mean and covariance. It can be noticed that taking into account uncertainties leads to tightening each

original deterministic constraint Aie ≤ bi by Ti =
√

1−εi
εi

√
AiΣ̂A>i + µ̂>0 E

>A>i , which increases the system’s

security by increasing the protection against forecast deviations. We adopt the name of uncertainty margin,

which is proposed and further discussed in [35, 50], for this reduction.

3.2. Reformulation of objective function

Regarding the objective function in problem (1), we minimize the worst-case expected cost for all distri-

butions in P. The cost functions fx(X, ξ) and fy(Y, ξ) are assumed to be quadratic7 and have the following

form,

fx(X, ξ) = (Xξ)> diag(αx)(Xξ) + β>x Xξ + γx and fy(Y, ξ) = (Y ξ)> diag(αy)(Y ξ) + β>y Y ξ + γy,

where the vectors α, β and γ contain the cost coefficients. As we assume known mean and covariance of

uncertain parameter ζ, the following reformulation can be provided,

G(X,Y ) = max
P∈P

EQ[fx(X, ξ)+fy(Y, ξ)] = Tr(X> diag(αx)XΣ̂)+β>x Xµ̂+γx+Tr(Y > diag(αy)Y Σ̂)+β>y Y µ̂+γy

which results in a convex quadratic objective function by utilizing the estimated mean and covariance from

the available historical data. We define the following functions,

Gx(X) = Tr(X> diag(αx)XΣ̂) + β>x Xµ̂+ γx and Gy(Y ) = Tr(Y > diag(αy)Y Σ̂) + β>y Y µ̂+ γy

that are used in the subsequent sections.

We are now equipped with all the necessary reformulations for model (1) to replace the distributionally

robust individual chance constraints and the objective function as described in Sections 3.1 and 3.2.

7It is considered a standard practice to assume quadratic cost functions (similar to [34, 48]), while also linear cost functions

can be utilized in our model. Using a higher order polynomial to describe the cost function would require the knowledge of

higher order moments (e.g. skewness and kurtosis) for its reformulation.
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4. Benchmark model: chance constrained program with Gaussian assumption of

uncertainty

In this section, we write problem (1) as a chance constrained program and assume that parameter ζ follows

a Gaussian distribution. This assumption allows for an analytical reformulation of chance constraints and

serves as a benchmark in order to compare the original DRCC problem with. Moreover, a discussion on the

tightening of the stochastic constraints by the distributionally robust and benchmark approaches is presented.

4.1. Reformulation of chance constraints and objective function

Assuming a Gaussian distribution, problem (1) can be rewritten as a chance constrained program that

can be equivalently reformulated as a convex program [34, 35]. Ambiguous chance constraints (1j)-(1q) are

formulated as chance constraints to the following form,

P(Aiξ ≤ bi) ≥ 1−εi ∀i = 1, . . . , I, (7)

where A ∈ RN×(Z+1) is an arbitrary matrix of proper dimensions. Since the uncertain parameter ζ fol-

lows a multivariate normal distribution with mean µ̂0 and known covariance Σ̂0, we provide an analytical

reformulation of the individual chance constraint and (7) is equivalent to

F−1(1− εi)
√
AiΣ̂A>i ≤ (bi − µ̂>A>i ) ∀i = 1, . . . , I, (8)

where F−1(1 − εi) is the inverse cumulative distribution function. Constraint (8) is an SOC constraint if

F−1(1 − εi) ≥ 0, which translates to 1 − εi ≥ 0.5. In practice, the decision maker would like the individual

constraints to hold with a probability higher than 50%, so this is considered a mild assumption. Similarly,

a tightening of each original deterministic constraint Aie ≤ bi by Hi = F−1(1 − εi)
√
AiΣ̂A>i + µ̂>0 E

>A>i is

attained. Finally, the objective function is calculated as the following expectation,

EP[fx(X, ξ) + fy(Y, ξ)] = Tr(X> diag(αx)XΣ̂) + β>x Xµ̂+ γx + Tr(Y > diag(αy)Y Σ̂) + β>y Y µ̂+ γy

which yields the same expression as G(X,Y ) in Section 3.2.

4.2. Uncertainty margin: A measure for comparing the distributionally robust and

benchmark models

It can be noticed that the tractable reformulations of distributionally robust chance constraints (5) and

benchmark chance constraints (8) have the same form and the only difference emerges from the multiplication

factor of

√
AiΣ̂A>i . In an attempt to provide additional insights to the tightening of each individual inequality

constraints, we plot the multiplication factor with respect to the predefined security level in Figure 2. First,

it can be observed that for an increase in the security level 1−ε the multiplication factor increases. Therefore,

a greater uncertainty margin is required to guarantee the predefined violation probability. The reformulation

in (5) is able to provide more robust solutions for higher values of the security level, as well as allows for a

wider range of tightening options of the constraints. Note that F−1(0.5) = 0 and that only the domain of

1− εi ≥ 0.5 is taken into account to ensure that (8) is an SOCP constraint, while
√

1−εi
εi

= 0 for ε = 1.

5. ADMM-based distributed approach

In practice, it may not be desirable to solve the coupled dispatch problem of electricity and natural gas

systems centrally since the two systems are operated by different entities in many countries around the world.

Moreover, the system operators may not wish to share their private information, such as cost functions,

dispatch of the power or natural gas producers and network topology. Therefore, we propose a distributed

approach that decomposes the centralized model into an electricity subproblem and a natural gas subproblem

that are solved independently.
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Figure 2. Values of the multiplication factor in the uncertainty margin.

Initially, we write the Lagrangian dual problem of (2) by relaxing the coupling constraint (2d),

min
X,Y,C,F

max
Λ
G(X,Y ) +

〈
Λ,ΦX − C

〉

s. t. X ∈ X
Y,C, F ∈ Y

(9)

where Λ ∈ RΓ×(Z+1) is the dual variable of the coupling constraint. Then, we can equivalently write,

max
Λ

min
X,Y,C,F

G(X,Y ) +
〈
Λ,ΦX − C

〉

s. t. X ∈ X
Y,C, F ∈ Y

(10)

since the optimization problem is convex by applying duality. Having relaxed the coupling constraint, we

can solve problem (10) in a distributed manner with ADMM [38]. The ADMM algorithm is based on the

augmented Lagrangian

Lρ = Gx(X) + Gy(Y ) +
〈
Λ,ΦX − C

〉
+ ρ

2 ||ΦX − C||2 (11)

where ρ > 0 is a penalty parameter. The ADMM algorithm iteratively minimizes the augmented Lagrangian

with the following steps:

(0) Initialization. Set k ← 1, Λk ← Λinit, Xk ← Xinit and Ck ← Cinit

(1) Step 1. Solve the electricity subproblem:

min
X

Gx(X) +
〈
Λk,ΦX

〉
+ ρ

2 ||ΦX − Ck||2

s. t. X ∈ X
(12)

in order to obtain the natural gas consumption of GFPPs. Set Xk+1 ← X?, where X? is the optimal

solution of (12).

(2) Step 2. Solve the natural gas subproblem:

min
Y,C,F

Gy(Y )−
〈
Λk, C

〉
+ ρ

2 ||ΦXk+1 − C||2

s. t. Y, C, F ∈ Y
(13)

in order to obtain the natural gas consumption of GFPPs. Set Ck+1 ← C?, where C? is the optimal

solution obtained by (13).
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(3) Step 3. Convergence of the algorithm is monitored by the primal residual Rk+1 = ΦXk+1 − Ck+1

and the dual residual Sk+1 = ρ(Ck+1 − Ck). If ‖Rk+1‖ ≤ η and ‖F k+1‖ ≤ η, where η is small

tolerance, then report (Xk+1, Y k+1, Ck+1, F k+1) and stop. Else, Λ is updated:

Λk+1 = Λk + ρ(ΦXk+1 − Ck+1), (14)

by the system coordinator, we set k ← k + 1 and go back to step 1.

Since the electricity and natural gas subproblems are independent, they can be solved in a distributed

fashion where the exchange of information between the two system operators is monitored by the system

coordinator as illustrated in Figure 3.

Figure 3. ADMM-based distributed algorithm. SC: System coordinator, EL: Electricity

system and NG: Natural gas system.

An alternative algorithm to be employed in our study is Lagrangian Relaxation; though, we would need

to restrict the objective function to be smooth and differentiable which is not necessary for ADMM. The

aforementioned algorithm can be utilized for any problem that the resulting feasible sets X and Y are convex,

as well as the final form of the objective function is convex with respect to optimization variables. For instance,

there are various ambiguity sets that can be utilized to obtain convex feasible sets as in [36, 47, 46, 51, 48] for

the case of moment-based ones or as in [37, 52, 53] for the metric-based ones under the respective assumptions

mentioned therein. Maintaining the convexity of the original problem guarantees convergence of the algorithm,

which highly depends though on the choice of ρ. We refer the reader to [38] for an extensive analysis on the

convergence and stopping criterion of the algorithm, as well as some variations and extensions of it. The

ADMM algorithm can be applied to non-convex problems as well, but the convergence is not guaranteed.

6. Numerical results

An integrated energy system that consists of the IEEE 24-bus Reliability Test System (RTS) [54] and a 12-

node natural gas system based on [55] is utilized for the case study. We consider a single type of uncertainty

that stems from wind power produced by the Z = 6 wind farms installed with a total capacity of 55% of

the total system’s electricity demand. Moreover, wind power is dispatched at the day-ahead stage to the

conditional expectation and thus the mean of forecast errors µ0 is equal to zero. We neglect the constant

term γ in the cost functions and set the coefficient of the quadratic term equal to 0.01% of the linear cost

coefficient (i.e. α = 0.0001β). In all simulations, we infer the mean µ and covariance Σ̂0 from the forecast

error data that are generated similarly to the procedure presented in [56, Equation (2)] and based on the

historical data given in [56]. The forecast errors for the 6 wind farms are illustrated in Figure 4. Moreover,

the same value of ε ∈ (0, 1) for all individual chance constraints is considered in this work. The network

topology of the integrated energy system and the corresponding data are provided in detail at the electronic

companion [57]. All optimization models that were implemented in Matlab using YALMIP [58] and solved by
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Gurobi are available at [57], while the simulations were run on a 4-core 3.4GHz stationary computer under

Windows 8.

Figure 4. Forecast errors for the 6 wind farms. The diagonal plots show the histograms

of the forecast errors (x axis: deviation in p.u. and y-axis: number of occurrences), while

the off-diagonal plots illustrate the scatter plots between the two corresponding wind farms

(x-axis and y-axis: deviation in p.u.).

6.1. Performance of the ADMM-based distributed approach

Initially, we compare the performance of the ADMM algorithm presented in Section 5 in terms of system

cost and computational needs with a fully centralized model (CM) and the sequential model (SM) presented

in [39] that mimics how the electricity and natural gas systems are operated in practice in Great Britain.

An iterative approach is described in [39] that first solves the electricity system dispatch disregarding the

natural gas system; then, the natural gas system is dispatched with fixed fuel demand from GFPPs; and

finally, the power production of GFPPs (i.e. equivalent to fuel consumption) is further constrained in the

event of infeasible fuel schedules of GFPPs for the natural gas system. This procedure is carried out until the

total natural gas consumption can be met by the natural gas system. Note that the residential and industrial

natural gas demands have higher priority than the fuel demand of GFPPs. In this work, we consider a natural

gas price estimation that is given as an input in the sequential model to calculate the cost function of GFPPs.

This price estimation is equal to the mean value calculated from the linear cost coefficient of all natural gas

producers. In this setting, we utilize 1,000 samples of the historical data from [56] for the simulations.

Initially, to evaluate the performance of the proposed distributed algorithm, we pick the value of ρ is

equal to 0.001, while the convergence tolerance η is set to 10−2. Moreover, we set a maximum number of

iterations equal to 104 for the ADMM algorithm and sequential model. Table 1 presents the value of the

objective function for the fully centralized model, the ADMM approach and the sequential approach given

when setting ε = 0.1. The ADMM algorithm achieves the same solution as the centralized model that solves

a single optimization problem to dispatch the integrated energy system but by simulating the two systems

independently and allowing only limited information to be shared. Moreover, it can be observed that the

sequential model yields a solution that has a higher operational cost of around 5.2%, although the information

exchange is similar to the proposed ADMM algorithm.

Figures 5-7 provide additional insights into the convergence of the ADMM algorithm. More specifically,

Figure 5 illustrates the convergence of the objective function via the ratio γk =
G?kADMM−G?CM

G?CM
× 100, while
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Table 1. Value of the objective function G? in $ for the centralized model, ADMM algorithm

and sequential model.

Model Centralized ADMM Sequential

G? ($) 63,500 63,500 66,821

similar ratios are calculated for the individual objective functions of the electricity γEL
k and natural gas

γNG
k operators for each iteration of the algorithm. Moreover, the norm of the primal residual %k = ‖Rk‖

is shown in Figure 6 and the convergence of the system dispatch is presented in Figure 7 by plotting the

norms χk = ‖Xk
ADMM −XCM‖ and υk = ‖Y kADMM − YCM‖. The ADMM algorithm converges in 39 iterations

and in 65 sec for the predefined threshold (i.e. 1.66 sec per iteration), while it can be observed that the

objective function and primal residual approximate the centralized solution very fast and already after the

10th iteration the solution is of high quality. The solution time for the sequential model is 20 sec.
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Figure 5. Convergence of the objective functions over the iterations.
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Figure 6. Convergence of the primal residual over the iterations.

Additionally, Figure 7 shows the convergence of the integrated system dispatch, where both the power

and natural gas producers are dispatched in a similar manner with the centralized model by the distributed

algorithm. This verifies that the implementation of the distributed approach would not have an impact on
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the profits of the producers and would not alter the market outcomes if the integrated system is scheduled

at the day-ahead stage in this distributed fashion.
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Figure 7. Convergence of the system dispatch over the iterations.

As it can be observed in Table 2, the value of ρ has an impact on the number of iterations and eventually

on the solution time, while the time per iteration does not vary much under each case. Therefore, one should

carefully select the value of ρ in order to achieve an efficient utilization of the algorithm in terms of the

convergence time.

Table 2. Number of iterations and time for the ADMM algorithm as a function of ρ.

ρ Iterations Time (sec) Time per iteration (sec)

0.0001 289 475 1.64

0.001 39 65 1.66

0.01 131 223 1.70

0.1 839 1448 1.72

6.2. Out-of-sample evaluation

The results of the proposed distributionally robust approach are compared with chance constrained pro-

gram that assumes a Gaussian distribution of forecast errors (GCC ) as presented in [34], as well as with a

deterministic model (DM ) that assumes no uncertainty; hence, with no tightening of each original determinis-

tic constraint Aie ≤ bi. To assess the true operation of the integrated energy system, we evaluate the systems’

cost and violation probabilities of chance constraints based on 100 coupled datasets {ẐiN , Ψ̂i
N ′}i=1,...,100, where

ẐiN is a training dataset containing N independent and identically distributed (i.i.d.) sample data, and Ψ̂i
N ′ is

a testing dataset containing N ′ i.i.d. realizations. We keep the number of i.i.d. samples in ẐiN and realizations

in Ψ̂i
N ′ fixed and equal to 100. The coupled datasets {ẐiN , Ψ̂i

N ′}i=1,...,100 are given in the electronic compan-

ion [57]. The out-of-sample analysis is carried out on the basis of a projected and of a realistic operation, as

presented in the subsequent subsections. For the projected operation, we consider the safety factor ε as a

design parameter that is decided by the operator based on the trade-off between the operational cost and the

risk of violating the constraints. The analysis is performed to provide indications regarding this trade-off and

to compare the three different approaches. In the realistic operation, the system operators re-dispatch the

systems after the realization of uncertainty based on an optimal power and natural gas flow problem, where

no violation of constraints is allowed. The effect of safety factor ε on the realistic systems’ cost is presented.
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6.2.1. Projected operation

The goal of this analysis is to evaluate the performance of the solutions X and Y obtained when solving

model (1) with the in-sample dataset ẐN on the out-of-sample dataset Ψ̂N ′ . Initially, we solve problem (1)

to obtain the optimal X̂i and Ŷ i for each training dataset ẐiN . Then, the out-of-sample cost is calculated for

each realization in the testing dataset ψ̂ik ∈ Ψ̂i
N ′ by

Ĉi = G(X̂i, Ŷ i)

which is utilized to estimate the expected cost by taking the average over the 100 datasets

Ĉ =
1

100

100∑

i=1

Ĉi.

Moreover, we calculate three different metrics for the violation probability. The first two metrics provide

insights regarding the violation of each individual constraint. The following indicator function is used,

Ĩijk =

{
1 if Ajψ̂

i
k ≤ bj ,

0 otherwise

where j indicates each individual chance constraint from (1j)-(1q). Thus, each constraint is evaluated indi-

vidually and we can calculate the average number of violations for each out-of-sample simulation by

Ṽik =
1

J

J∑

j=1

(
1− Ĩijk

)
,

with J the total number of individual inequalities in (1). Then, the empirical violation probability is calculated

by

Ṽemp =
1

N ′
1

100

N ′∑

k=1

100∑

i=1

Ṽik,

and the maximum average violation probability for each chance constraint by

Ṽmax = max
k,i
{Ṽik}.

Additionally, the average violation probability for each type of chance constraint is calculated jointly with

Iik =

{
1 if Aψ̂ik ≤ b,
0 otherwise

.

Therefore, we can evaluate the violation probability for the dataset Ψ̂i
N ′ with

V̂i =
1

N ′

N ′∑

k=1

(
1− Iik

)
,

and the average violation probability for each type of chance constraint

V̂ =
1

100

100∑

i=1

V̂i.

For the metric of joint chance constraints, we define four different types of chance constraints that are related

to the power capacity (pc) constraints (1j)-(1k), the power flow (pf) constraints (1l)-(1m), the natural gas

capacity (gc) constraints (1n)-(1o) and the natural gas flow (gf) constraints (1p)-(1q).

Figure 8 presents the empirical and maximum average violation probability for DRCC and GCC. It can

be observed that both Ṽemp and Ṽmax increase with an increase of ε. Moreover, it is illustrated that DRCC

returns a lower Ṽemp and Ṽmax than GCC in all cases. More specifically, DRCC yields very low Ṽemp, while

Ṽmax is always below 10%. On the hand, Ṽemp and Ṽmax have a higher increase with the increase of ε in

the case of GCC, while this phenomenon is more profound for ε ≥ 0.4. The accepted violation probability
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(a) Empirical violation probability.
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(b) Maximum average violation probability.

Figure 8. Empirical and maximum average violation probability for DRCC and GCC.

that is defined by the operator is satisfied for all cases, except for the instance of ε = 0.05 in GCC where

Ṽmax > 0.05.

Additionally, Figure 9 presents the joint violation probability for the power capacity and power flow

constraints. It can be observed that the solution of GCC model does not yield a robust solution since V̂ is

notably high in all cases and especially for large values of ε. Note that V̂pc becomes greater than 0.7, when

ε ≥ 0.4, which indicates that is highly probable one of the power capacity constraints to be violated in these

cases. On the other contrary, DRCC is more efficient since it always returns lower V̂ than GCC and more

specifically it obtains a V̂ very close to 0 for ε ≤ 0.15. Similarly, Figure 10 illustrates the joint violation

probability for the natural gas capacity and flow constraints. Also in this case, DRCC outperforms GCC ;

the difference though is less subtle because the operation of the natural gas systems is less stressed.
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(a) Power capacity constraint.
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(b) Power flow constraint.

Figure 9. Joint violation probability for DRCC and GCC.

In addition, Table 3 presents the violation probabilities for DM. In all cases, the violation probabilities are

higher than the corresponding ones of the DRCC and GCC models. The values are very high, especially for

the case of joint violation probabilities. This highlights the need to utilize probabilistic approaches for the

operational limits and account for uncertainty.

Figure 11 illustrates the cost difference between the DRCC and GCC models for different values of safety

factors, where it can be observed that the cost difference reduces as the safety factor increases. The cost of

DRCC is higher since it is more conservative for small ε. The cost difference is at most 7.11% and it drops
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(a) Gas capacity constraint.
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Figure 10. Joint violation probability for DRCC and GCC.

Table 3. Violation probabilities for deterministic model

Ṽemp Ṽmax V̂pc V̂pf V̂gc V̂gf

DM 0.22 0.49 1 0.93 0.48 0.69

to almost 0.3% for an ε ≥ 0.35. Thus, the system operator is able to decide the appropriate ε to reduce the

total cost at the expense of higher chance of violating the constraints. It can be noticed that DRCC is more

efficient than GCC, since the operator is able to pick the value of ε and accomplish a system cost very close

to GCC but with much lower violation probabilities.
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Figure 11. Percentage of total cost difference between the DRCC and GCC.

Table 4 shows the projected cost Ĉ for all three models. For DRCC and GCC, the value of Ĉ is reported for

ε = 0.35. It can be noticed that the attained projected cost Ĉ is close for all three models. In particular, the

projected cost Ĉ of DRCC is 0.3% and 0.46% greater than the one obtained by the GCC and deterministic

models, respectively. However, all the violation probabilities obtained by DRCC are lower compared to GCC

and DM.

Table 4. Projected cost Ĉ and violation probabilities Ṽemp and Ṽmax for ε = 0.35

Model DRCC GCC DM

Ĉ 61,163 60,957 60,881
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6.2.2. Realistic operation

Aiming to explore how the system would respond in a more realistic setup and estimate its true operational

cost, we solve each one of the DRCC, GCC and DM models to obtain the first-stage decisions and then

resolve a real-time economic dispatch problem with the first-stage decisions fixed. Following this approach,

the system operator is able to adjust the real-time production and provide the necessary actions to keep the

system balanced for any realization of stochastic production in a more flexible manner, i.e. without restricting

the recourse actions to follow a linear decision rule. Therefore, we solve each model for a given in-sample

dataset ẐN and obtain first-stage decisions X̂ie and Ŷ ie. Then, following real-time dispatch problem is

solved:

min
∆pk,∆gk,lek,l

g
k,wk

Tr(∆pk
> diag(αx)∆pk) + β>x ∆pk + Tr(∆gk

> diag(αy)∆gk) + β>y ∆gk + č>lek + č>lgk

s. t. 0 ≤ X̂ie+ ∆pk ≤ X
0 ≤ Ŷ ie+ ∆gk ≤ Y
1>∆pk+1>(Wψ̂ik−wk)+ 1>lek =0

BG(Ŷ ie+ ∆gk) +BFqk = BD(h− lgk) +BP(X̂ie+ ∆pk)

−f ≤ QG(X̂ie+ ∆pk)+QW(Wµ+Wψ̂ik−wk)−QD(d−lek) ≤ f
−q ≤ qk ≤ q
0 ≤ lek ≤ d, 0 ≤ lgk ≤ h, 0 ≤ wk ≤Wµ+Wψ̂ik,

that minimizes the cost of re-dispatch actions for each realization ψ̂ik ∈ Ψ̂i
N ′ from the out-of-sample dataset.

The re-dispatch actions include the adjustments ∆pk and ∆gk for electricity and natural gas, respectively,

as well as electricity load shedding lek ∈ RD+ , natural gas load shedding lgk ∈ RH+ and wind spilling wk ∈ RZ+
in order to guarantee feasibility of the problem for any realization of the uncertainty. The cost of real-time

adjustments stems from the same type of quadratic cost function as described in Section 3.2. Moreover,

the constraints are described in model (1), while we have included the last three constraints restricting the

load shedding of electricity and natural gas to the nodal demand and wind spilling to the actual wind power

realization. The actions of load shedding are penalized by č� c in the objective function, while wind spilling

is considered cost-free. Since the chance constraints are replaced with hard constraints, there will be no

out-of-sample violation and the analysis is focused on the realistic cost that is calculated by

R̂i =
1

N ′

N ′∑

k=1

(
Tr(p̂k

i> diag(αx)p̂ik) + β>x p̂
i
k + Tr(ĝk

i> diag(αy)ĝik) + β>y p̂
i
k + č>lek + č>lgk

)
,

where p̂ik = X̂ie + ∆pk and ĝik = Ŷ ie + ∆gk are the actual real-time electricity and natural gas production

levels. The realistic cost is estimated over the 100 datasets by taking the average

R̂ =
1

100

100∑

i=1

R̂i.

Figure 12 presents the realistic cost R̂ for models DRCC and GCC as a function of the ε. It can be observed

that DRCC outperforms GCC for all values of ε illustrating that the DRCC provides more efficient first-stage

decisions. Moreover, the reported R̂ decreases with a decrease of ε since less costly real-time adjustments are

activated due to increased robustness. The solution of DM is the same as in the case of GCC for ε = 0.5,

which is the case with the higher R̂.

We report the computational performance for the case with ε = 0.1, while the solution times obtained for

other values of ε are similar. Model DRCC is solved in 35 sec on average and for GCC the average solution

time is 1.5 sec. Finally, DM is solved in 0.3 sec on average.
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Figure 12. Average realistic cost R̂ as a function of safety factor ε for DRCC and GCC.

7. Conclusion

This paper proposed a distributed and data-driven approach to obtain the electricity and natural gas

systems dispatch with high shares of stochastic production from renewable energy sources. More specifi-

cally, we formulate the problem in a distributionally robust optimization framework and provide a tractable

reformulation by assuming that only the first and second moments of the uncertain parameter are known.

The distributed algorithm was developed based on ADMM, which permits to optimally solve the original

centralized model in a distributed fashion, and only the natural gas consumption of GFPPs needs to be

shared between the two operators. In contrast to other techniques used to deal with uncertainty, such as

stochastic programming and robust optimization, the proposed dispatch model can accomodate uncertainty

both efficiently and in a transparent manner, since only the mean and covariance matrix need to be shared

between the system operators. More importantly, the mean and covariance matrix can be inferred from the

available historical data that can be considered publicly available. Our numerical study showed that the

ADMM algorithm converges to the global optimum solution after a small number of iterations. Moreover, we

demonstrated that the distributionally robust model outperforms a chance constrained approach that assumes

Gaussian distribution of forecast errors and a deterministic model. We performed an out-of-sample evaluation

on a projected operation and illustrated that the proposed model results in robust solutions even for large

safety factors, while it attains a projected cost that is close to the costs obtained by the model that assumes

Gaussian uncertainty and the deterministic model. In the realistic operation, the lowest out-of-sample system

cost is also obtained by the proposed distributionally robust model.

For future work, a more accurate modeling of the natural gas flow can be considered; however, the convex-

ity of the final problem would need to be preserved to guarantee the convergence of the distributed algorithm.

Additionally, a formulation with joint chance constraints can provide additional insights on how the safety

factor affects the solutions. Removing the system coordinator by utilizing a decentralized algorithm would

allow a direct communication between the system operators and thus is an interesting direction to be ex-

amined. Another future direction is to utilize alternative ambiguity sets that permit the reformulation of

the distributionally robust problem, such as an ambiguity set based on the Wasserstein metric. Finally, an

interesting direction is to examine a similar distributed problem where each one of the agents (e.g. system

operators) has a different belief on the ambiguity set.
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Appendices

A. Nomenclature

In Table 5, we present the symbols used in the original paper and the description for each one of them.

Table 5. Nomenclature
Symbol Description

X Matrix for conventional power plants dispatch combining the first-stage decisions and affine policy for the second-stage adjustments

Y Matrix for natural gas producers dispatch combining the first-stage decisions and affine policy for the second-stage adjustments

F Matrix for natural gas flow combining the first-stage decisions and affine policy for the second-stage adjustments

C Matrix for fuel consumption of GFPPs combining the first-stage decisions and affine policy for the second-stage adjustments

Λ Dual variable of coupling constraint

µ Mean power production of stochastic producers

ζ Random parameter with zero mean

ξ Vector containing random parameter ζ for the formulation of actual value of decision variables X, Y , C and F

µ0 Mean value of random parameter ζ

Σ0 Covariance matrix of random parameter ζ

W Diagonal matrix containing the capacity of stochastic producers

Q PDTF matrix

B Mapping of various components on the natural gas system

X Maximum power production of conventional power plants

X Minimum power production of conventional power plants

Y Maximum production of natural gas producer

Y Minimum production of natural gas producer

f Capacity limit of transmission line

q Capacity limit of pipeline

Φ Power conversion factor

d Electricity demand

h Natural gas demand

ε Safety factor of chance constraint

α, β, γ Cost coefficients of quadratic objective functions

ρ Penalty parameter for ADMM algorithm

R Primal residual for ADMM algorithm

S Dual residual for ADMM algorithm

N Number of sample data in the training dataset

N ′ Number of realizations in the testing dataset

P True probability distribution of random variable ζ

P Ambiguity set

η Threshold to check the convergence of ADMM algorithm

A sketch of the matrix utilized for the restriction to linear decision rules, which contains both the day-

ahead dispatch and the factors for the real-time adjustments. For instance, we provide the form of matrix

X ∈ RG×(Z+1) with 3 power plants and 3 stochastic producers, thus the dimension of the matrix is 3× 4:

X =



x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34




More specifically, vector [x11, x21, x31] denotes the day-ahead dispatch of the 3 power plants and the

following matrix 

x12 x13 x14

x22 x23 x24

x32 x33 x34




contains the affine policies of the corresponding adjustments for each power plant and for each stochastic

power producer.
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