Adaptive RT for H&N Cancer: The Usefulness of Deformable Image Registration

Behrens, C.F.; Eiland, R.B.; Sjöström, D.; Maare, C.; Paulsen, Rasmus Reinhold; Samsøe, E.

Publication date: 2012

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Adaptive RT for H&N cancer: The usefulness of deformable image registration

C. F. Behrens*, R. B. Eiland¹, D. Sjöström¹, C. Maare¹, R. R. Paulsen², and E. Samsøe¹
¹Copenhagen University Hospital, Herlev, Denmark.
²Technical University of Denmark, Kgs. Lyngby, Denmark.
*Corresponding author: cibe@heh.regionh.dk

PURPOSE/OBJECTIVES
To carry out geometric and dosimetric evaluation of adaptive H&N IMRT based on a deformable image registration algorithm.

MATERIALS/METHODS
- Planning CT: pCT
- Rescan CT: ReCT
- Cone beam CT: CBCT

pCT was deformed to match the CBCT resulting in deformed structures and deformed CT: dCT

Deformable image registration (Varian SmartAdapt v11)
Dose calculation: AAA (Varian Eclipse)

RESULTS

Geometric results
Relative volume differences between dCT and ReCT, CMS (Center of Mass shifts) and DSC (Dice Similarity Coefficient)

\[DSC = \frac{2(V_{ReCT} \cap V_{dCT})}{V_{ReCT} + V_{dCT}} \]

<table>
<thead>
<tr>
<th>Structure</th>
<th>Relative volume difference [%]</th>
<th>CMS [cm]</th>
<th>DSC [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTV-T(5)</td>
<td>1.9 (9.5; 62.1)</td>
<td>0.25 (0.11; 0.73)</td>
<td>0.71 (0.59; 0.86)</td>
</tr>
<tr>
<td>CTV-T(5)</td>
<td>1.6 (-6.3; 8.9)</td>
<td>0.36 (0.14; 0.38)</td>
<td>0.86 (0.75; 0.93)</td>
</tr>
<tr>
<td>GTV-N dxt(4)</td>
<td>-15.7 (-66.7; 31.3)</td>
<td>0.19 (0.14; 0.35)</td>
<td>0.72 (0.53; 0.79)</td>
</tr>
<tr>
<td>CTV-N dxt(4)</td>
<td>6.2 (-16.8; 17.1)</td>
<td>0.15 (0.13; 0.20)</td>
<td>0.86 (0.85; 0.91)</td>
</tr>
<tr>
<td>GTV-N sin(4)</td>
<td>4.6 (-17.1; 50.0)</td>
<td>0.28 (0.12; 0.52)</td>
<td>0.64 (0.46; 0.76)</td>
</tr>
<tr>
<td>CTV-N sin(4)</td>
<td>7.6 (-18.5; 137.6)</td>
<td>0.40 (0.08; 0.57)</td>
<td>0.80 (0.55; 0.91)</td>
</tr>
<tr>
<td>Parotid dxt(7)</td>
<td>-12.1 (-28.2; 18.8)</td>
<td>0.30 (0.20; 0.50)</td>
<td>0.78 (0.71; 0.83)</td>
</tr>
<tr>
<td>Parotid sin(7)</td>
<td>-13.8 (-25.1; 18.5)</td>
<td>0.33 (0.18; 0.56)</td>
<td>0.76 (0.69; 0.79)</td>
</tr>
<tr>
<td>Spinal cord(7)</td>
<td>-24.4 (-30.6; 30.4)</td>
<td>0.45 (0.07; 1.0)</td>
<td>0.73 (0.62; 0.78)</td>
</tr>
</tbody>
</table>

Dosimetric results

<table>
<thead>
<tr>
<th>Conformity measure</th>
<th>pCT [%]</th>
<th>dCT [%]</th>
<th>ReCT [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI (Conformity Index)</td>
<td>1.3 (1.0; 1.3)</td>
<td>1.3 (1.2; 1.4)</td>
<td>1.5 (1.1; 1.9)</td>
</tr>
<tr>
<td>LCF (Lesion Coverage Fraction)</td>
<td>1.0 (0.95; 1.0)</td>
<td>0.95 (0.94; 0.99)</td>
<td>0.96 (0.94; 1.0)</td>
</tr>
<tr>
<td>NTOF (Normal Tissue Overdosage Fraction)</td>
<td>0.19 (0.04; 0.20)</td>
<td>0.26 (0.14; 0.29)</td>
<td>0.32 (0.13; 0.49)</td>
</tr>
</tbody>
</table>

\[CI = \frac{V_{95}}{V_{PTV}}, \quad LCF = \frac{V_{PTV_{95}}}{V_{PTV}}, \quad NTOF = \frac{V_{95_{subPTV}}}{V_{95}} \]

\[V_{95} = \text{Volume covered by the 95\% isodose} \]
\[V_{PTV} = \text{Volume of the PTV} \]
\[V_{PTV_{95}} = V_{95} \cap V_{PTV} \]
\[V_{95_{subPTV}} = V_{95} \setminus V_{PTV} \]

CONCLUSIONS
Deformable image registration may be used as a tool for evaluating the need for replanning. However, deformed structures should, at this point, not replace manually delineated structures.

List of patients indicating at which fraction the CBCT and ReCT were acquired.