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Abstract—The paper characterizes dynamics and modelling of a 

Lithium-ion battery. Theoretical formulation and literature 

review are combined to derive the necessary battery 

characterization. The three main dynamics for modeling the 

battery are: direct-current electrical equivalent circuit, state-of-

charge (SOC) and thermal dynamic. Furthermore, the capacity 

fade caused by degradation is considered as a fourth dynamic. 

Degradation is considered as the sum of calendar aging and 

cycling loss dynamics. The modeling procedure has general 

validity and can be used for different battery chemistries by 

changing specific parameters. The model is tailored for a 40 

kWh Lithium Nickel Manganese Cobalt (NMC) Oxide battery, 

which is currently used in the Nissan LEAF 2018. Considering a 

user driving 45 km/day and the temperature of the years 2017 

and 2018 in Denmark, the battery capacity fade is found to be 

between 2 and 5% of the battery capacity after two years of use. 

Degradation is highly dependent on the average level of SOC 

during the years.  

Index Terms--Electric Vehicles, NMC Batteries, Thermo-

Electrical Model, Capacity Fade. 

I. INTRODUCTION  

The battery is the key for the electrification of the transport 
sector. A battery pack is composed of modules of cells, which, 
depending on the electric vehicle (EV) model, are differently 
organized into the battery pack. In literature many authors 
modelled the characteristics of EV batteries with different 
main interests. In [1] the authors focused on the dynamic 
characteristics of the battery pack during charging and 
discharging, in [2] the thermal model for the pouch Lithium 
ion battery cells was developed based on experimental 
analyses, in [3]–[5] the authors focused on calendar aging and 
cycling loss characterization. In [4], [6] the authors analyzed 
the calendar and cycling loss related to vehicle-to-grid (V2G) 
services. This paper aims at modelling the battery of an EV 
from the electrical circuit representation to the thermal 
characterization, including the capacity fade description. The 
authors aim at modeling the battery of an EV to analyze the 
degradation of the battery in different scenarios. The model is 
of high importance for the EV users, which should know how 
their battery is going to perform during its lifetime. At the 

same time, a good understanding of the different degradation 
mechanisms enables the EV owner to minimize the 
degradation by adjusting the usage pattern. The storage model 
consists of three dynamics: state-of-charge (SOC), 
electrochemical model and thermal characterization. The 
battery pack is made of cells in series and parallel to achieve 
the wanted voltage and energy capacity. The thermal dynamic 
of a single cell can be modeled in a straightforward way. 
However, in a battery pack, the thermal characteristic of the 
individual cells depends on the location and temperature of the 
neighboring cells which increase the modelling complexity. A 
fourth dynamic is the capacity fade of the battery, which is the 
sum of calendar aging and cycling losses. The capacity fade is 
described in detailed in the paper and it is implemented on the 
model for degradation analyses.  

This paper is organized as follows. In Section II a battery 
model overview, with theoretical electro and thermal 
characterization, is provided. Section III describes in detail the 
electrochemical dynamics. Thermal modeling is discussed in 
Section IV, while degradation is discussed in Section V. 
Section VI analyzes the performance of the model considering 
an average EV user behavior and Section VII concludes the 
article with the main outcomes. 

II. BATTERY MODEL OVERVIEW 

The battery is characterized by three main dynamics: SOC, 
electrochemical conversion and thermal dynamics. These 
three dynamics are related to three main variables: SOC, 
temperature and voltage, see Figure 1. The three dynamics can 
be briefly described as: 

 The Direct Current (DC) electrical equivalent circuit 
is used to model the battery current, voltage and 
internal electrical resistance. 

 The thermodynamics describes the temperature of the 
battery as it is heated up by joule losses as a function 
of the current and the internal resistance and when it 
releases heat to environment as a function of the 
outside temperature and the thermal resistance. 



 

 The SOC describes the energy content at the battery at 
the specific time where 0%=empty and 100%=full. 
The energy charged or discharged is divided with the 
remaining battery capacity to calculate the change in 
SOC. 

The battery capacity fade is a function of irreversible 
electrochemical side-reactions [7], which causes the energy 
capacity to decrease. These losses can be divided into calendar 
aging and cycling aging. The first one is function of time, 
temperature and SOC, and it is present even when the battery 
is not used. The second one is the degradation of the battery 
caused by cycling (charging and discharging). It is function of 
temperature, energy throughput in terms of full equivalent 
charge cycles from 0-100% and the C-rate of the current.  

  

Figure 1. Battery model representation. Adapted from [8]. 

III. ELECTROCHEMICAL MODELLING 

A. Battery Characterization 

This paper analyses the battery present in the Nissan 
LEAF 40 kWh, consisting of Lithium Nickel Manganese 
Cobalt Oxide (NMC) prismatic/pouch cells. The cells are 
combined into 24 modules, each one with 8 cells, which are 
grouped into the battery pack, see Figure 2. Figure 3 provides 
the cell and module characterizations. This EV and the battery 
size are chosen because they represent the average storage of 
EVs in a near future, since the battery is able to provide the 
needs of users in various countries [9], [10]. 

 
Figure 2. From the single cell to the battery pack. Adapted from Nissan. 

 

Figure 3. Cell and module characteristics. Adapted from Nissan. 

In the Nissan LEAF 2018 the total number of cells (Ncells) 
is equal to 192, divided into series of 96 cells (NcellsS) and 
parallel (NcellsP) of 2 cells. The battery has a capacity of 40 
kWh, a nominal voltage of the single cell (Vnomcell= 3.65 V) and 
a nominal current capacity (Inomcell= 56.3 Ah). The nominal 
voltage of the battery pack is: 

Vnombatt = Vnomcell × NcellsS = 3.65 V * 96 = 350 V (1) 

The initial current capacity (Ci
batt) of the battery pack is:  

Ci
batt = Ccell × NcellsP = 56.3 Ah × 2 = 112.6 Ah (2) 

This is the initial battery capacity, which over time is reduced 
by degradation, as presented in Section V. 

B. DC electrical equivalent circuit 

     The DC electrical equivalent dynamic is based on 
Ohm’s law. The current (Ibatt) and voltage (Vbatt) of the battery 
are determined solving the system of (3)-(4): 

Vbatt = Voc ─ Ibatt  × Rbatt  (3) 

Pbatt = Vbatt × Ibatt  (4) 

Where Pbatt is the power flowing into the battery, Voc is the 
open circuit voltage and Rbatt the electrical resistance of the 
battery. In this formulation when Ibatt is negative the battery is 
charging and when positive it is discharging. Voc is the sum of 
the open circuit voltage of all the cells (Voccell) in series: 

Voc = Voccell  × NcellsS (5) 

Voccell is function of the SOC of the cell. The SOC of all the 
cells are considered identical as they are assumed to have 
experienced the same amount of degradation. The Voccell-SOC 
relation considered in this paper is the one of a Kokam 53 Ah 
SPLB 120216216 Li-ion NMC pouch cell [11] when the 
temperature is equal to 25 deg. The voltage curve of Kokam 
53 Ah, reported in Figure 4, is used because the open circuit 
voltage and the internal resistance of 56.3 Ah are not publicly 
available. 

 

Figure 4. Experimental Voccell-SOC curves NMC cells. Adapted from [11]. 



 

Lithium ion cells can only be operated safely in a specific 
voltage range from 3-4.2 V, so in the simulation the following 
saturation is considered: 

3 V × NcellsS ≤ Vbatt ≤ 4.2 V × NcellsS  (6) 

Rbatt is found by adding the resistance of the series 
connected cells and calculating the parallel resistance of the 
parallel connected cells. Since we are assuming that all the cell 
resistances are equal; for equal resistances in parallel, the 
expression simplifies to: 

Rbatt = Rcell × NcellsS/NcellsP  (7) 

Rcell here considered is the one of the Kokam 56.3 Ah 
NMC cell [11], which is provided in Figure 5. The figure 
shows Rcell during three different measurements. Rch and Rdisch 
is the resistance derived with pulse power characterization test 
at 25 ºC and C rate of 0.5. A C rate equal to 0.5 implies a 
current flow equal to 50% the nominal. It can be appreciated 
as the direction of the current has no significant influence. 
Temperature on the other hand can affect the internal 
resistance value, but at this stage of the model, 25 ºC is 
considered to be a representative average temperature..  

  

Figure 5. Resistance of the single-cell Li-ion battery from open circuit 

voltage tests at 25 degrees. Adapted from [11] 

C. State-of-charge (SOC) dynamic 

The SOC is found by integrating the the current flowing in 
the battery over time: 

Ibatt = Cbatt × dSOC/dt (8) 

Where SOC(0)=SOC0 

 SOC(t) = ∫Ibatt/Cbatt dt (9) 

Cbatt decreases over time and it is here calculated by 
subtracting the calendar loss and cycle loss from the initial 
capacity: 

Cbatt = Ci
batt  (Qcal + Qcycle) / 100 × Ci

batt (10) 

With Qcal the calendar loss and Qcycle the cycling loss in 
percent of the initial capacity, as presented in Section V. 

IV. THERMAL MODELLING 

A. Equivalent dynamic 

The thermal dynamic model defines the inner temperature 
of the battery (Tbatt). Tbatt is function of the outside temperature 
(Tout) and the joule losses (Pj) of the battery. The lumped 
capacitance thermal network of the battery and its 
environment are defined as in (11):  

Cth dTbatt/dt = 1/Rth × (Tout  Tbatt) + Pj (11) 

In this formulation the cabin and outside temperatures are 

considered the same. In case of a deeper detailed model, two 

levels of heat would be: the heat dissipating from the cell to 

the pack and the heat dissipating from the pack to the out 

door. Thus cabin and outside temperatures are different as in 

(12) [4]: 

1/Rth × (Tout  Tbatt ) = 1/Rth × (Tout  Tcab) + 1/Rth × (Tcab  Tbatt ) (12) 

The joule losses generated by the battery are as in (13): 

Pj = I2
batt × Rbatt (13) 

Cth is the thermal capacitance of the battery, Rth is the 
thermal resistance of the battery.  

B. Thermal capacitance 

The thermal capacitance of the cell and of the entire 
battery (Cth) are defined in (14)-(15): 

Cthcell = cPcell × mcell (14) 

Cthbatt = cPbatt × mbatt (15) 

First in (14) the Cthcell is derived for the single cell, where 
cPcell is the specific heat capacity at constant pressure of the 
single cell. cP of a cell is defined as the sum of the heat 
capacity of each cell components [2][12]. The cells are 
grouped into modules and the modules form the battery pack, 
with a minimization of the surrounding materials to maximize 
the thermal losses. It is therefore assumed the same heat 
capacity for the single cell as for the whole battery and with 
mbatt the battery weight, the Cthbatt is determined in (18). The 
cP of a NMC Lithium ion pouch cell is found to be in the 
range 700-1300 J/(kg K) [2], [13], [14].  

In [13], the cP = 1100 J/(kg K) is considered for a 53 Ah 
NMC pouch cell. Due to the unknown volume of each 
component of the battery, the specific heat capacity of the 
entire battery is considered to be the same of the single cell. 
The present battery has 24 modules, each one of 8.7 kg with a 
total battery weight of: 

mbatt = 8.7 kg × 24 = 208.8 kg  (16) 

The Cth is thus: 



 

Cth = 1100 J/(kg K) × 208.8 kg =229680 J/K  (17) 

C. Thermal resistance 

Considering a single pouch cell, the heat transfer is 
usually considered only in the z-axis direction, due to the fact 
that through x- and y- axes the cell would dissipate much less 
than in z-axis. The thermal resistance on the z-axis is: 

Rthcell = (thickcell/2) / (2 × Scell × k) (18) 

With thickcell the thickness of the cell and k the heat 
transfer coefficient of the single cell. For the considered 
NMC cell the thermal resistance is: 

Rthcell = (0.00791 / 2) / (2 × 0.261 × 0.261 × 0.48)  (19) 

Rthcell = 0.073 K/W (20) 

Differently from the electrical resistance, the thermal 
resistance is not only function of the series and parallel 
between the cells, but also of the cells disposition in the 
modules/battery pack. In this model it is assumed that the 
temperature of the entire pack is homogeneous. 

 

Figure 6. a. Battery pack modules disposition. b. Battery pack simplification 

for heat transfer analysis. 

To determine the thermal resistance of the entire battery 
pack, the shape of the battery, shown in Figure 6a, is 
simplified as in Figure 6b. This simplification is necessary to 
apply to the whole battery the same formulation used for the 
single cell. Differently from the single pouch cell, for the 
battery pack all the three directions z-, y- and x- could be 
relevant in terms of thermal resistance. Therefore the Rthbatt is 
here evaluated for the three axis: 

RthbattZ=(0.136/2)/(2×0.816×1.188×0.48)=0.073 K/W (21) 

RthbattX=(1.188×2)/(4×0.816×0.136×0.48)=5.58 K/W (22) 

RthbattY=(0.816)/(4×1.188×0.136×0.48)=2.63 K/W (23) 

Being RthbattY = 76 × RthbattZ and RthbattX = 36 × RthbattZ, 

similar to the case of the single cell, the total resistance of the 

battery is approximated as well to the RthbattZ. 
Considering the evaluated Cth and Rth, the thermal 

constant is calculated:  

τ = Rth × Cth (24) 

3τ = 3 × Rth × Cth = 3 × 0.0731 × 229680 = 50353 sec (25) 

3τ is equal to 14 hours, time the battery would need for 
going back to 95% of the outside temperature which is 
calculated based on dimension and weight of the considered 
battery. 

V.  DEGRADATION MODELLING 

A. Equivalent Dynamic 

The battery capacity fade, sum of calendar and cycling 
loss, is a function of the thermal and SOC dynamics of the 
battery as shown in:  

  

Figure 7. Battery representation with input data, parameters and output data 

of degradation model. Modified from [10]. 

B. Calendar loss 

The instantaneous calendar loss (Qist
loss) is estimated using 

the fitted Arrhenius equation in (26) [4]: 

Qist
loss(t) = f × exp(Ea/(RT)) × t0.5 (26) 

Where Qist
loss is the percentage of capacity loss induced by 

calendar aging, f is the pre-exponential factor, which is 14876 
day0.5 [4]. Ea is the activation energy equal to 24.5 kJ mol-1. R 
is the gas constant equal to 8.314 J mol-1 K-1. T is the absolute 
temperature in K. 

The accumulated calendar loss is determined as difference 
between the instantaneous calendar loss at time t and at time 

tΔt as in (27). 

Qloss=1/Δt × ∫(Qist
loss(t)  Qist

loss(tΔt))dt =1/Δt × ∫ [f × 
exp(Ea/(RT)) × t0.5]  [f × exp(Ea/(RT)) × (tΔt)0.5]dt

 (27) 

f is defined in [4] as a constant value. Nevertheless, as it 
can be seen in Figure 8 it is not straightforward to describe f 
with a single equation since it is a non-linear function of both 
SOC and temperature. 

Isolating f from (26) into (28), considering t in days: 

f = Qist
loss(t) / (exp(Ea/(RT)) × days0.5) (28) 

the f values are evaluated considering 300 days, T equal to 
25, 40 and 50 ºC, and the Qloss derived from the SOC and 
Figure 8.  



 

 

Figure 8. Relative capacity of the NMC cells in function of the SOC and 

temperature after 10 months lifetime from [3]. 

 

Figure 9. f representation with 300 days, increasing SOC and different 

temperatures. 

For simplicity only the fitting with 25ºC is considered, as 
it has a higher occurrence similar to the outside temperature 
in European countries.  

As seen in Figure 9 it is not possible to make a low order 
representation of f without making a curve for different 
sections of the SOC, thus: 

f25 = 1.0353 × SOC2 + 89.724 × SOC + 1224.6   for SOC≤50%  (29) 

f25 = 10.351 × SOC2 + 1083.6 × SOC + 31447   for 50% ≤SOC<70%   (30) 

f25 = 2.6384 × SOC2  409.55 × SOC + 22035   for 70%≤SOC   (31) 

C. Cycling loss 

The percentage cycling loss is estimated as in (32): 

Qcycle
loss= B1 × exp(B2 × rate) × Ah (32) 

B1 = a × T2 + b × T + c  (33) 

B2 = d × T + e  (34) 

Both the pre-exponential factor B1 and exponential factor 
B2 are functions of temperature. The values of a, b, c are 

8.89e6 Ah-1 K-2, 0.0053 Ah-1 K-1 and 0.7871 Ah-1, 
respectively. rate is the equivalent number of cycles, 
calculated as ratio between the discharge current and the 

current capacity: discharge current/(NcellsP × Ccell). Ah is the 
Ah-throughput, which is the integrated absolute value of the 
power. rate and Ah are directly related: in a simulation with a 
time step of 1 s, the ratio between the discharged battery 
current and the battery capacitance is the As (ampere-
second)-throughput or rate. The Ah-throughput is thus the 
ratio between the As-throughput and 3600 sec (rate/3600).  

As for the calendar loss the instantaneous cycling loss is 

depending on the instantaneous temperature and current and 

is then integrated over time. Differently from the calendar 

loss, the cycling loss are equal to zero when there is no 

current flowing. 

VI. TEST CASE RESULTS  

The battery model above-described is implemented in 
Matlab-Simulink and it is tested for a two year period 
simulation considering the average outside temperature of the 
2017 and 2018 in Denmark and an average user driver 
driving 45 km per day [15]. The battery power profile is 
shown in Figure 10 subplot 1 for one day long [6]. Subplot 2 
shows the SOC during the day and subplot 3 compares the 
outside and battery temperatures during the 1st July 2017. The 
initial SOC is equal to 80%. 

 

Figure 10. Power profile, SOC and battery-outside temperatures during the 

1st July 2017. 

The following analysis compares the battery behavior for 
three initial SOC of the battery: 40, 60 and 80%, the rest is 
kept the same. The initial SOC is an important value also 
because it determines the final SOC during the day and the 
average SOC during the year, which in the three cases is 
approx. 40, 60 and 80%. Considering the same 
charging/discharging power profile for the 730 days and the 
outside temperature of the years 2017 and 2018, see Figure 
11, calendar aging and cycling loss are provided in the two 
subplots of Figure 12.  

The capacity fade during a two-year period spans between 
2.46 and 5.35% depending on the initial SOC, where most is 
due to calendar aging. With an initial capacity of 112.6 Ah, a 
user that drives 45 km/day will have a battery capacity 
decreased to 106.6 Ah with 80% SOC, 109.1 with 60% and 



 

109.4 with 40%, as shown in Figure 12. The calendar losses 
drive the total loss, even though they are independent on the 
battery usage.  

 

Figure 11. Comparison outside and battery temperature during two-year 

period 2017-2018. 

As in previous analyses the calendar loss are found to be 
approx. 3-5% after one year period [3], [6], [16]. The calendar 
loss is much higher for SOC above 70%, than for 40% and 
60%. This is related to the capacity loss formulation derived 
from Figure 8. For what concern the cycling loss, the cycles 
are a small value, due to the considered use of the battery, as 
just driving. Moreover the battery is large compared to the 
energy requirement and the EV is idle most of the time. Thus, 
for this application it is intuitive that the calendar aging is the 
most relevant loss.  

 

Figure 12. Calendar and cycling loss in percentage, subplot 1 and 2 

respectively. Capacity degradation in Ah during two year period. 

VII. CONCLUSION 

The present work focused on the development of a model 
of a storage system for electrical studies in the Matlab-
Simulink environment. The battery was modelled considering 
electrical and thermal characterization for the entire battery, 
based on literature and review. The storage model was 
realized and described in order to provide general validity, 
even though, in the present study it was tailored for a specific 
battery chemistry and size. Capacity aging and cycling loss 
were modelled on a theoretical formulation base. Considering 
the temperature profile of years 2017 and 2018 in Denmark 
and a user driving 45 km per day, the total capacity loss during 
two years was found to be 2-5% of the initial capacity, 

depending on the initial SOC of the battery. Based on the 
findings the authors claim that cycling is a small part of the 
losses of the battery, this induces to think that grid services, 
which would cause more cycling of the battery, could not 
cause significant additional wear on the battery life. Future 
work will consider real test measurements on a battery of the 
modelled EV to validate the electro-thermal parameters and to 
perform capacity fade investigations. 
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