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Abstract. This paper provides enhancements to normal behaviour models for monitoring major wind
turbine components and a methodology to assess the monitoring system reliability based on SCADA data and
decision analysis. Typically, these monitoring systems are based on fully data-driven regression of damage
sensitive-parameters. Firstly, the problem of selecting suitable inputs for building a temperature model of
operating main bearings is addressed, based on a sensitivity study. This shows that the dimensionality of
the dataset can be greatly reduced while reaching su�cient prediction accuracy. Subsequently, performance
quantities are derived from a statistical description of the prediction error and used as input to a decision
analysis. Two distinct intervention policies, replacement and repair, are compared in terms of expected
utility. The aim of this study is to provide a method to quantify the bene�t of implementing the online
system from an economic risk perspective. Under the realistic hypotheses made, the numerical example
shows for instance that replacement is not convenient compared to repair.

1. Introduction
The signi�cant maintenance cost associated with failures of large wind turbine (WT) components
calls for improved operation and maintenance (O&M) decision support systems. Such systems
are increasingly drawing the attention of operators, especially in the o�shore sector [1].
Maintenance actions are necessary to ensure a certain level of reliability of a machine throughout
its lifetime. Maintenance strategies can be broadly categorised into corrective and preventive
[2, 3]. The second type can in turn be divided into scheduled and condition based maintenance
(CBM), with the latter being a predictive policy. CBM is helpful to avoid early replacement of
healthy components while identifying critically worn-out components. Wind energy, especially
o�shore, is still a maturing industry and the scenario around CBM poses some new and
unique challenges. The lack of extensive datasets containing run-to-failure data often does
not allow the adoption of supervised learning techniques [4]. Moreover, realistic physics-based
deterioration models are not generally available due to the complexity of the machine behaviour
under operation and its dependence on multiple physical variables. To deal with this problem
some studies have suggested to derive a fully data-driven normal behaviour model (NBM) of
speci�c damage-sensitive features [5]. This process refers to building a model characterizing
the behaviour of a system directly from measured data. Such NBMs are regularly used to
detect anomalies in wind turbine behaviour, as demonstrated in [6,7]. Since the model variables
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are typically continuous, prediction models are based on linear or nonlinear regression. This
approach seems to be well tailored for main components, thanks to its simplicity of application
with regards to the data requirements and scalability [8]. From an operator’s perspective it is
important to understand the economic bene�t of implementing predictive systems. This can
be achieved by de�ning a performance measure to quantify the reliability of early detection
warnings, followed by a cost-bene�t analysis. Often, when dealing with rare events, a su�cient
number of failure observations is not available and thus not allowing to establish performance
statistics, as for instance used in [8]. Hence, this indicates the need for alternative metrics.
In the present study, the lead time to failure events against the probability of false alarms
(PFA) is analysed, in order to assess the system performance from an economic perspective.
Considerations about the nature of failure are taken into account to identify suitable detection
thresholds. A case study of main bearing failures from an onshore wind farm is carried out and
analysed. The system output is condensed into a scalar anomaly measure to track the component
deterioration. Furthermore, a sensitivity study selecting the most important input variables is
carried out, in order to enhance NBM. Each section explains the methodology adopted and uses
information previously derived. From section 3 on, results are presented in a progressive order
without a dedicated result section. The paper concludes with a discussion on the contribution
and future research in the area.

2. Model
The analytical model used herein has the structure of a hierarchical NBM between input vectors
x and output ŷ. For modelling the main bearing temperature in the form ŷ = g(�(x)) + e, a
generalised linear model (GLM) with mean �, a Gaussian error distribution ei � N (0; �e;i) and
an identity link function g(�) is used [9], so that, for the ith output variable, g(�i) = �i = E(ŷi),
where E is the expected value operator. The model is expressed in scalar form as

E(ŷi) = �̂0i +
KX

j=1

�̂ijxj + ei; (1)

where �̂ is assumed to be �̂ � N (��; ��) , with �� and �� being respectively mean and standard
deviation of the model parameters andK the number of explanatory variables, or covariates. The
error between the model output ŷ and the measurements y has zero mean, and the appearance
of bias indicates deviation from the normal behaviour. The parameter estimation is based on
a least-squares optimization with a least absolute shrinkage and selection operator (Lasso) [10].
This regularisation method uses a penalisation on the L1 norm, and is an e�ective technique
for subset selection in high dimensional multivariate models. The Lasso solves the following
optimisation problem, where the penalisation parameter � is introduced:

�̂lasso(�) = arg min
�̂�

ky � x�̂�k22 + � k�̂�k1 ; (2)

where x is the vector of model covariates and � is the penalisation parameter. The remaining
terms are the same as in Eq.1. Lasso is applied here by virtue of its ability to achieve high
prediction quality with the minimum number of covariates. The relative importance of covariates
is measured for the training with the coe�cient of determination (R-squared), and for the
predictions with the mean absolute error (MAE) and root mean squared error (RMSE). In this
manner, the herein used techniques have practical utilization.



3

1234567890 `'ªº

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 032005  doi :10.1088/1742-6596/1037/3/032005

3. Training
A set of SCADA data from an onshore wind farm with more than 10 turbines is available over
a period of 5 years. During this period 3 turbines, WT1, WT2 and WT3, experienced main
bearing failures. This component has been identi�ed in previous studies as one of the most
critical WT components in terms of failure frequency and downtime [11]. The full SCADA
dataset consists of 74 channels given as 10 minutes average values. Operational data only are
selected from the dataset by removing unnecessary observations, corresponding to power less or
equal than zero as well as measurement errors.

The training dataset is built by selecting normal behaviour data from 6 turbines including the
3 having experienced failures. In these latter, NBM data are selected until 6 months before the
failure event, in order to not introduce degradation information into the training dataset. From
the selected training pool of normal behaviour data, random down-sampling is applied in order
to reduce its size while conserving the variability of the data coming from di�erent turbines
and their operational conditions. In total, N = 3 � 105 samples are employed for training,
corresponding to the equivalent of 6 years of data from 1 turbine. All the SCADA variables
are normalised between 0 and 1. The turbine validation demonstrates that the NBM has more
universal applicability and ensures that the failure detection does not rely on conditions speci�c
to the turbines that have experienced the event. The GLM was trained with a 10-fold cross
validation.

4. Variable Selection and sensitivity study
Model reduction is an important step in improving the model speed and usability when dealing
with large datasets. Although the GLM is computationally e�cient, reducing the number of
covariates will lead to further bene�ts as it will reduce the data storage requirements and data
processing. A certain degree of model reduction is ensured by the Lasso approach, as the
penalization function leads to some model coe�cients being reduced towards zero, which allows
their elimination from the model. This is performed through a variable importance analysis
by comparing the standardised coe�cient magnitudes for each input variable obtained through
the estimation process. The model predicts the main bearing temperature using the full set
of variables in the SCADA dataset. The 15 most important variables obtained are displayed
in Fig.1. Blue colour indicates a positive e�ect on the model result, which means that with
increasing values for the coe�cient of this covariate the model response also increases. Red bars
indicate the inverse relationship.

Interestingly, the �rst top 10 covariates are temperature measurements, which may suggest
a correlation between abnormal bearing temperature rise, which eventually leads to failure,
and high operational demand, as shown in Fig.1. Rising brake temperature, lower external
temperature and lower non-drive-end (NDE) generator bearing temperatures contributed to the
increasing main bearing temperature. At �rst glance, this might seem contradictory. However,
lower external temperatures are usually related to higher wind speeds, which a�ect the failure
bahaviour of certain components [12,13]. At this step, further analysis could be carried out such
as Chi-square tests or ANOVA, in order to further reduce the number of input parameters, [14].

Fig.2 displays the model RMSE, the MAE and R-squared performance metrics as function
of the number of model covariates. To obtain the �gure, the model is �rst trained using the full
set of variables, then retrained subsequently by adding one variable at the time from the most
important to least important variable to establish the variable importance. The x-axis indicates
the number of input covariates ordered according to the standardized model coe�cients from
the most important (number 1) to the least important variable (number 74). Including more
covariates to a model implies higher model complexity and longer model evaluation times. Thus,
a compromise between the number of model covariates and model accuracy has to be found. It
is shown in the graph that by including the 15 most important covariates the R-squared reaches
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Figure 1: Top-15 standardised regression coe�cient with respect to main bearing temperature
from Lasso
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Figure 2: The R-squared of the model and the prediction errors MAE and RMSE using di�erent
numbers of inputs.

a value of approximately 0.91, along with a su�ciently low prediction error.

5. Damage detection
The set of covariates obtained in the previous section is selected for building the model and
testing it on the damaged turbines. In the case of a single model output (e.g. inner-ring
temperature), the deviation function is a univariate measure, which is here selected as the
RMSE, namely RMS of 10 consecutive samples of the model residuals, corresponding to an
e�ective operating time �t = 100 minutes. Previous studies e.g. [6], suggested to average the
discordance measure over 3 days in order to reduce the occurrence of false alarms. In the present
study, however, shorter time periods are achieved by applying a low-pass �lter, a centered moving
average, to the model residuals. In Eq.3, the parameter � is the window size of the �lter.
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ef (i) =
1

2� + 1

2�X

j=0

h(e(i+ � � j)) (3)

In this way, a more robust performance is ensured. The raw and �ltered RMSE in normal
behaviour are displayed in Fig.3a, while Fig.3b shows their distributions at di�erent �ltering
levels, where a log-normal distribution is �tted, which is the distribution that resulted in the
best �t. As can be noticed, the uncertainty decreases with the level of �ltering. This information
is useful to quantify the reliability of the monitoring system.
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Figure 3: a) Raw and �ltered RMSE from the normal behaviour dataset. b) Log-normal
distributions of the �ltered RMSE from normal behaviour data.

In general a multivariate discordance metric can be used as degradation function, if for
instance the output set is composed of a correlated set of damage-sensitive features. For instance,
Fig.4 shows the main bearing vertical acceleration RMS, temperature, and tower-top acceleration
RMS in an example case of failure. The interaction between these variables could be exploited
to obtain earlier and more robust predictions. However, this study only focuses on SCADA
data, leaving out the vibration analysis.

0 0.5 1 1.5 2 2.5 3

10 min. intervals 104

0
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0.8

1
Main bear. temperature
Main bear. vibration RMS
Tower-top vibration RMS

Figure 4: Main bearing temperature, acceleration RMS and tower-top acceleration RMS close
a main bearing failure event (WT1).

Fig.5a and 5b show the trend of the �ltered RMSE for the damaged dataset on the three
turbines. The damage progression can be readily identi�ed and an NBM-based alarm is issued
when the failure threshold is crossed.

The lead time is here de�ned as the time lag between the �rst warning issued by the model
and the �rst threshold-based alarm from the SCADA system. The selection of the NBM-based
alarm threshold is a tradeo� between lead time and probability of false alarms (PFA), where
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(a) (b)

Figure 5: a) Filtered RMSE of the damaged (testing) dataset. b) Normalised cumulative RMSE
and alarms issued by threshold-based and NBM-based system (WT2)

for a given reference period the PFA equals the probability of exceeding the threshold under
normal, stationary conditions. The PFA can thus be found as P [RMSE > T ], where T is a
threshold.

6. Decision analysis
The decision analysis has the aim to assess the economic advantage of using the system based
on �eld data. Since the analysis is based on simple cost considerations, it is best suitable for
preliminary assessments. A utility function is derived by associating a cost to a false alarm and
a saving to detecting a failure early. The NBM-based threshold is chosen such that the lead
time is long enough to cover the entire mobilization time, needed for preparing the crew and
hiring the crane vessel. Only consequences associated with direct �nancial losses are considered,
i.e. human injuries, environmental e�ects and similar are not taken into account. The decision
tree is sketched in Fig.6, which shows all possible alternatives originating from an NBM-based
alarm A. In the simplest case, when an alarm is issued, the turbine keeps running and a site
inspection is performed, which can result in false case ( �E) or a true case (E). It is assumed that
the inspections are perfect. As shown in Fig.6, if the inspection reveals a developing failure, an
intervention a is performed, corresponding to a repair r or full component replacement R and
their associated costs. In case of repair Ca = Cr, and in case of replacement Ca = CR. These
two cases are studied separately, as if the adopted policy is constrained to be only one of them.

Figure 6: Decision tree associated to the detection of rare events and corresponding utility
functions for each outcome.










