Listening Effort and Cognitive Decline: An Exploratory Study Using Pupillometry

Feldman, Alix; Patou, François; Waldemar, Gunhild; Maier, Anja

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Listening Effort and Cognitive Decline: An Exploratory Study Using Pupilometry

Alix Feldman¹, François Patou¹, Gunhild Waldemar², Anja Maier¹
¹Engineering Systems Group, Department of Management, Technology and Economics, Technical University of Denmark – DTU
²The Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen

Background

• Around 50 million people have dementia worldwide with nearly 10 million new cases every year!
• Hearing impairment accounts for 9% of the predictive power of all risk factors associated with the development of dementia¹
• Hearing loss is proposed as a potentially modifiable risk factor for dementia in midlife²
• Even mild levels of hearing loss increase the long-term risk of cognitive decline and dementia in individuals who are cognitively intact but hearing impaired at baseline.²
• The mechanism underlying cognitive decline associated with peripheral hearing loss is not fully clear³
• Research suggests a potential pathway between hearing and cognitive decline, with listening effort, working memory and cognitive load as principal mediators.³

Why measure listening effort?

A growing amount of research is using pupilometry to examine listening effort and indicate the availability or demand on cognitive resources during processing.⁴-⁷ Reports of effortful listening suggest that these difficulties are about more than sounds being too quiet or non-audible. These individuals may need to allocate more cognitive capacity to comprehend, remember and respond to auditory information.⁵ The pupil diameter enlarges with this increased mental effort and reflects the processing demands associated with the task in relation to available cognitive resources.⁶

Objectives

• Determine whether increased listening effort is associated with cognitive function
• Investigate the feasibility of integrating listening effort technology as a predictive tool at point-of-care in dementia and hearing care settings

Research questions

• Is there an association between listening-effort, assessed by pupilometry, and cognitive function?⁶
• Can the use of hearing aids reduce listening effort, and would this translate to improved performance on cognitive tests?⁷
• Could cognitive health management practices be re-designed to account for audiology-related risks of cognitive decline?

What is the intervention?

Subjects

• Two groups of healthy, middle-aged and older individuals (1: aged 60-80, 2: aged 40-60)
• One group of older individuals (aged 60-80) with Mild Cognitive Impairment (MCI)

Eligibility

• Pure Tone Audiometry (PTA), age-matched, to rule out significant hearing loss
• Based on the broad Winblad criteria, control participants have a Mini-Mental State Examination (MMSE) score of 28 or higher

Study 1: Clinical research

• Speech intelligibility and pupil dilation will be measured during a Hearing in Noise test (HINT).
• Cognitive function will be measured using a battery of attentional and memory-based cognitive tests.
• Those who demonstrate high levels of listening effort in noise will be fitted with hearing aids and re-tested on cognitive performance after 3 months of use

Study 2: Integrative care research

• Could basic audiological testing be integrated in the management of cognitive impairment?
• Prototyping the integration of listening effort testing with dementia care professionals

Institutional support:

References


Contact:

Alix Feldman
PhD student
Diplomavej 371, 223
DK-2800
Kgs. Lyngby
Denmark
afeld@dtu.dk
www.es.man.dtu.dk

Study 1 – Clinical research

Subjects

• One group of older individuals (aged 60-80) with Mild Cognitive Impairment (MCI)
• Two groups of healthy, middle-aged and older individuals (1: aged 60-80, 2: aged 40-60)

Eligibility

• Pure Tone Audiometry (PTA), age-matched, to rule out significant hearing loss
• Based on the broad Winblad criteria, control participants have a Mini-Mental State Examination (MMSE) score of 28 or higher

What is the intervention?

Study 1: Clinical research

• Speech intelligibility and pupil dilation will be measured during a Hearing in Noise test (HINT).
• Cognitive function will be measured using a battery of attentional and memory-based cognitive tests.
• Those who demonstrate high levels of listening effort in noise will be fitted with hearing aids and re-tested on cognitive performance after 3 months of use

Study 2: Integrative care research

• Could basic audiological testing be integrated in the management of cognitive impairment?
• Prototyping the integration of listening effort testing with dementia care professionals

Institutional support:

References