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Abstract
The penetration of Distributed Energy Resources (DERs) in distribution networks is
expected to rise significantly due to the electrification of the transport sector, solar
photo-voltaic installations and growth in small scale storage and generation. Also,
several existing loads can be converted into Demand Response (DR) units and the
total share of DR as a subset of DERs is projected to be large; especially flexibil-
ity from Thermostatically Controlled Loads (TCLs) is cast to provide a substantial
part of the total DR-based flexibility in distribution networks. The increased partic-
ipation of DERs in power system operations can pose an array of challenges to the
Distribution System Operator (DSO), but may also be perceived as an opportunity
to leverage the embedded flexibility to meet network constraints. This requires new
operational methods as the distribution networks are currently passive, and with lit-
tle possibility of active control which is mostly limited to voltage control based on
historical data and crude forecasts. Optimizing low-voltage distribution feeders is
complex due to the non-convex nature of power flows and leads to optimality and
pricing issues in market-based settings. This is addressed through the use of convex
relaxation techniques in this thesis.

The power transfer through distribution networks will see drastic increases due
to non-controllable Renewable Energy Source (RES) power in-feed (mostly Photo-
Voltaic (PV) in urban distribution systems) and increased energy demand caused by
Electric Vehicle (EV) charging loads and electrification of building heating and cool-
ing. In order for the DSO to use TCL-based DR units to mitigate congestion issues
caused by this increased energy transfer, the complex physical properties and limita-
tions of these TCL-based DR units have to be incorporated into a market compatible
framework. This thesis proposes a novel setting of using asymmetric block offers to
embed the limitations of TCL-based DR into market compatible structures. This pro-
posal coupled with the modeling of the network through convex conic programming
leads to an efficient and cost-effective framework to use DR units and other DERs to
mitigate congestion, and thus can decrease the cost of energy delivery and operation
of the distribution network.

One of the issues requiring higher amounts of available flexibility in the power
system is the increasing penetration of renewable energy sources such as wind- and
solar-based generation and the accompanying stochastic generation profiles. The very
nature of renewable energy sources requires a large amount of flexibility due to fore-
cast errors and intermittent generation. Organizing the flexibility properly in the

ix
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day-ahead stage can help the steady and economic supply of energy. The growing
need for flexibility has lead to the proposal of market designs that enable aggregated
DERs to provide ancillary services to the Transmission System Operator (TSO), how-
ever this may pose a series of challenges to the DSO. At the same time proposals for
market-based approaches to be employed by the DSO are receiving growing support
and recognition. Coordinating the various proposed local markets with wholesale en-
ergy and TSO-level flexibility markets is a daunting task, as the size of the problem
is immense and coordination requirements are complex. In the future there may be
different market platforms available for DERs which they can use to increase their
profits and the inherent economic incentives will aid their proliferation. In order to
be efficient, those market-based methods have to be developed such that they provide
a clear and transparent stimulus to all involved agents. Creating these market-based
methods is also difficult due to the conflicting objectives of agents, and thus the
complexity of sharing resources needs to be addressed by clearly defined hierarchical
or distributed system organization. Taking on a hierarchical setup, this thesis pro-
poses a construct to include coordination between local markets and wholesale in the
scheduling stage.

Another challenge that needs to be addressed by future market platforms and
their coordination is that electricity markets are designed to be operated determinis-
tically, i.e. they do not take into account the growing share of uncertain generation
in the scheduling stages. This can lead to high costs in the balancing stage when the
intermittent production of renewable energy sources becomes apparent. The incorpo-
ration of uncertainties in market-based settings may in the future lead to improved
dispatch, however the ideal stochastic dispatch is not implemented in wholesale mar-
kets for several reasons. For example, it violates several market desirable properties
such as revenue adequacy and cost recovery of agents. In order to improve the un-
certainty aware dispatch in the scheduling stage, this thesis proposes a design that
defines interface variables between the forward trading wholesale and DSO-level mar-
kets. This is shown to approximate the ideal stochastic dispatch. By finding optimal
exchange characteristics of local DSO-level markets with wholesale energy markets
the TSO-DSO coordination of DER flexibility is enabled in the scheduling stage and
thus decreases the expected cost of operating the power system. For given values
of these “coordination variables” the DSO-level markets are independently imposing
caps on the quantity bids of DERs in the wholesale markets. The potential benefit of
this pre-qualification on the social welfare of the overall system is quantified and com-
pared to other coordination schemes. By coordinating local markets the uncertainty
awareness of the day-ahead dispatch is increased, while maintaining the current se-
quential dispatch of scheduling and balancing, thus preserving the market desirable
properties of deterministic markets. A further advantage of this optimal coordination
scheme is the non-iterative solution strategy, i.e. the market operators do not need
to exchange multiple messages.



Resumé
Andelen af distribuerede energikilder i distributionsnettet forventes at stige betydeligt
som følge af elektrificering af transportsektoren, solcelle installationer og vækst i små
energilager og små generatorer. Flere eksisterende strømforbrugere kan konverteres
til “Demand Response” (DR) enheder, og den samlede andel af DR enheder (som
er en delmængde af distribuerede energikilder) forventes at være stor; særlig fleksi-
bilitet fra termostat kontrollerede strømforbrugere kommer til at udgøre en væsentlig
del af den samlede DR baserede fleksibilitet i distributionsnettet. Den øgede delt-
agelse af distribuerede energikilder i el systemet kan føre til en række udfordringer
for el distributions netværks operatøren, men kan også ses som en mulighed for at
udnytte den medfølgende fleksibilitet til at overholde netværksbegrænsninger. Dette
kræver nye driftsmetoder, da distributionsnetværket i øjeblikket er passivt, med få
muligheder for aktive målinger og kontrol. De er begrænset til spændingskontrol
baseret på historiske data og prognoser af forbrugsmønstre. De få aktive kontrolme-
toder er ikke optimeret med hensyn til tab eller omkostninger og forbedrer derfor
ikke systemets sociale velfærd. Hvis det nuværende paradigme for driften af distribu-
tionssystemer opretholdes, vil det i sidste ende føre til store investeringer i sjældent
anvendt infrastruktur. Dette skyldes, høje spids-belastningsstrømme som følge af
den høje andel af distribuerede energikilder. Der findes flere forslag til at anvende
informations- og kommunikationsteknologier for at forbedre den koordinerede brug
af distribuerede energikilder på distributions netværks niveau. Selv om dette kan
være teknisk muligt, er den optimale anvendelse af disse distribuerede energikilder
besværligt og kræver avanceret modellerings teknikker. For tiden er der meget debat
omkring hvilke paradigmer der skal bruges for at øge tilgængeligheden af fleksibilitet
af små distribuerede energikilder. En af de udfordringer der kræver store mængder af
fleksibilitet i el systemet, er den stigende andel af vedvarende energikilder som vind- og
solbaseret strøm produktion og de medfølgende stokastiske produktions profiler. De
vedvarende energikilders opførsel kræver stor fleksibilitet på grund af begrænset præ-
cision af produktionsudsigterne og sporadisk produktion. Planlægning af fleksibilitet
med avanceret metoder kan sikre den stabile og økonomiske bæredygtige forsyning af
energi.

For at distributions netværks operatøren skal kunne anvende termostat baserede
DR enheder til at øge den mulige tilslutnings mængde af distribuerede energikilder i
nuværende netværk, skal de komplekse fysiske egenskaber og begrænsninger indarbe-
jdes i et markedskompatibelt program. Denne afhandling præsenterer en ny metode
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ved brug af asymmetriske blok tilbud for at medregne begrænsningerne af termostat
baseret DR enheder. Samlet kan disse nye asymmetriske blok tilbud være kompatible
med markeds clearing metoder. Denne kombination med modelleringen af netværket
fører til en omkostningseffektiv ramme for anvendelse af DR enheder og andre dis-
tribuerede energikilder. Dette kan reducere omkostningerne ved energiforsyningen og
drift af distributionsnetværket og øge mængden af mulig tilslutnings kapacitet.

Det voksende behov for fleksibilitet i nettet har ført til forslag af nye markedsde-
signs, der gør det muligt at aggregere distribuerede energikilder for at tilbyde services
til transmissionssystemoperatøren. Dog kan dette føre en række udfordringer for dis-
tributions netværks operatøren. Samtidigt er der mange forslag til at implementere
markedsbaserede tiltag for at yde services på distributions niveau. Koordinering af
disse foreslåede lokale markeder med eksisterende energi markeder og transmissions
niveau fleksibilitetsmarkeder er en svær opgave, da størrelsen af problemet er enormt
og koordineringsbehovene er komplekse. I fremtiden kan der være forskellige marked-
splatforme til rådighed for distribuerede energikilder, som de kan bruge for at øge
deres profit, og de tilhørende økonomiske incitamenter kan føre til vækst af denne
teknologi. For at være effektive skal disse markeds baserede metoder udvikles således,
at de giver en klar og gennemsigtig stimulans til alle involverede deltagere. Oprettelse
af disse markedsbaserede metoder er også vanskelig på grund af de komplekse fysiske
egenskaber af el-netværk der skal modelleres og af spil mellem deltagere. Derfor skal
delingen af ressourcer behandles mellem forskellige markeder defineres gennem en hi-
erarkisk eller distribueret systemorganisation. Ved at bruge en hierarkisk opsætning
foreslår denne afhandling en konstruktion til at koordinere mellem lokale markeder
og energi markeder i planlægningsfasen.

En anden udfordring, der skal løses af fremtidige markedsplatforme og koordiner-
ingen af disse, er at el markederne er beregnet til at operere deterministisk, dvs. de
tager ikke højde for den stigende andel af usikker generation pga. vind og sol energi
i planlægningsfasen. Dette kan medføre høje omkostninger i real tids balanceringen,
når den tilfældige produktion af vedvarende energikilder bliver tydelig. Inkorporering
af usikkerheder i markedsbaserede metoder kan i fremtiden føre til forbedret plan-
lægning. Men den ideelle stokastiske model implementeres ikke i energi markeder
af flere grunde. Eksempelvis bryder det flere vigtige egenskaber, såsom at summen
af alle handler dækker omsætningerne og omkostningsgenvinding af deltagere. For
at forbedre den usikkerhedsbevidste planlægning i markederne foreslår denne afhan-
dling et design, der definerer grænseflade variabler mellem grossistmarkederne og
markeder på DSO-niveau. Dette kan tilnærme den ideelle stokastiske planlægning.
Ved at finde optimale interaktions karakteristika af lokale DSO markeder med en-
grosenergimarkeder er TSO-DSO-koordinationen gjort muligt og reducerer dermed
de forventede omkostninger ved driften af el-systemet. For givne værdier af disse
“ koordinerings variabler ” sætter DSO niveau markederne selvs en begrænsning på
mængden af energi som distribuerede energikilder må handle på engrosmarkederne.
Den potentielle fordel ved denne præ-kvalifikation bliver kvantificeret og sammen-
lignet med andre koordineringsordninger. Ved at koordinere lokale markeder øges
usikkerhedsbevidstheden af den daglige planlægning, samtidig med at den nuværende
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sekventielle opdeling af markeder opretholdes. Derved bevares de nødvendige egen-
skaber markederne. En yderligere fordel ved denne optimale koordination er den
ikke-iterative løsningsstrategi, dvs. markedsoperatørerne behøver ikke at udveksle
meddelelser eller information om priser flere gange.
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CHAPTER 1
Introduction

1.1 Background
The future of power systems is highly challenged with the aim to change to a carbon-
free and Renewable Energy Source (RES) based system. The move towards more RES
and away from centralized power plants in the energy mix means that the dispatcha-
bility of generation decreases [1], [2]. This is caused by the fact that the generation
output of RES is subject to external factors determined by the weather and therefore
stochastic in nature. Consequently, it introduces variability and uncertainty in the
planning process, both for short- and long-term decisions. Additionally, the electrifi-
cation of other sectors such as transport and heating will increase the total demand
for electric energy and further heighten variability and uncertainty of the real-time
power balance. Ensuring the economic, safe and steady supply of energy is of utmost
importance to the end-user, which contrasts with the stochastic nature of RES en-
ergy production. The ever increasing RES penetration is therefore challenging the
economic and secure operation of the electric power system under the current oper-
ating paradigms. For example, in Denmark the total yearly energy output of wind
power in the years 1990 to 2015 has increased from below 1TWh to 14TWh, while the
yearly power consumption has remained almost constant between 30TWh to 35TWh
in the same period [3].

The research to enable increased RES penetration to lower emissions in the electric
power system has many facets. One theme that has increasingly found support is to
leverage the flexibility1 of DERs to offset the imbalance caused by stochastic RES
production. The term “DER” encompasses a large variety of technologies, such as
domestic heat pumps, rooftop solar Photo-Voltaics (PVs), battery storage, small-scale
distributed generation which are all connected to distribution networks [6] and thus
located close to end-users. The system operators can potentially use DERs to meet
various needs such as balancing, congestion management or voltage profile corrections
if their flexibility is made available.

The owners of DERs must have a clear motivation to cooperate with system op-
erators and be aware of their investment opportunities in this technology in order to
facilitate the meaningful deployment. The economic incentives through the liberal-

1The taxonomy of flexibility within power systems is not entirely unified. For a review of DER
types and sources of flexibility see [4]. Also [5] provides an overview of how Distributed Energy
Resources (DERs) can provide value in smart grids.

1
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ization of electricity markets are an enabling factor to motivate the proliferation of
DERs [7]. Entry barriers are being continuously reduced so that ever smaller units
are able to participate in trading on existing market platforms and new emerging
market designs [8]. Heightened participation in markets will increase competition
which can ensure the affordable supply of electricity, assuming efficient and well de-
signed markets. However, designing meaningful remuneration mechanisms to spur
the investments in DERs is very challenging, due to the potentially vast number of
participants and uncertainty of future policy of system operation. Furthermore, mov-
ing energy trading into the new domain of small-scale DERs requires new modeling
techniques due to different physical properties of distribution networks [9].

Some of the major challenges that are appearing due to increasing RES and DER
penetration and electrification of ever more systems, are the high variability of power
production & consumpion, high peak loads and thus transfer of more energy through
distribution networks if loads are uncontrolled, and bi-directional power-flows in radial
feeders. Therefore, the operation of the distribution networks will have to undergo
major changes to increase the hosting capacity of DERs in a cost-efficient way. The
networks which have been previously safeguarded by over-sizing of components, may
in the future need to be much more actively managed by exploiting flexibility of new
technologies. It is recognized by the research community that the intelligent use of
DERs can defer grid investments [10]–[12], and uncover hidden flexibility in the power
system. In general, the passive operation of distribution grids may lead to expensive
investment into rarely used infrastructure. This is mainly due to the peak loading
situations that cannot be controlled or mitigated in passive distribution feeders and
it is one of the issues that current research is addressing.

When integrating RESs in the power system and offsetting their variable produc-
tion using DERs, several problems can be identified. Firstly, it requires a rethinking
of the Distribution System Operators (DSOs) role in power systems which does not
currently partake actively in scheduling energy or activation of flexibility. Secondly,
the use of DERs to meet various grid constraints has to be combined with the lib-
eralized energy markets which were designed in a time when RES penetration was
lower and of less concern and are mainly targeted at large power plants and wholesale
of energy. Thirdly, the conflicting objectives of different stakeholders is important
to recognize and has to be addressed in future power systems, in order to resolve
conflicts and guarantee efficient use of resources.

1.2 Research questions
The aim of this thesis is to propose novel ways of integrating DERs in power system
operations to (i) increase the loadability of distribution systems and defer infrastruc-
ture investments, (ii) enhance the use of DERs to offset unpredictable production
of RESs, and (iii) explore frameworks for different operators to simultaneously use
DER flexibility through market compatible approaches. To achieve these goals, the
research of this thesis is focused on market-based solutions built upon mathematical
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tools and optimization techniques. Further, the focus of the conducted research is
concerned with the short-term operational aspects of increasing RES and DER pene-
tration. The long-term planning of infrastructure and expensive investment in RES
and DERs is viewed as outside the scope, however it is important to note that the
improved short-term operations of networks will also influence the economics of long-
term investment plans. Especially the scheduling of the day-ahead markets and their
outcomes up until the real-time stage where the actual delivery of energy takes place
is the topic of the current research. The first part of the work takes the view of a
DSO, that wishes to use market-based operational planning to mitigate congestion
issues. This may be more economical for the operator than network upgrades. This
part of the work takes the Day-Ahead (DA) market outcomes as given inputs which
influence the operational tasks of the DSO. The second part of the work is directed
at the use of DER flexibility in a coordinated manner. It assumes that the DSO and
Transmission System Operator (TSO) both have an interest in using the same flexible
resources to optimize their systems. The research objectives are grouped into the two
following main questions.

I. How can complicated demand response technical properties be included
by the DSO for congestion management in a precise and effective economic
dispatch mechanism?

A large amount of the available DER penetration is expected to be in the form of
demand response [7], [9], [13], [14], which can be classified into three groups depending
on their operational capabilities [15], [16]; These are (i) curtailable loads, i.e. loads
that are partially or entirely reducing consumption, (ii) deferrable loads, i.e. the
loads can be shifted to other hours typically in the same day such as charging of
electric vehicles, and (iii) Thermostatically Controlled Load (TCL), meaning the
power consumption change is subject to an immediate reaction after the change in
the opposite direction. The phenomenon in the last demand response type is termed
the rebound effect (also referred to as kick-back effect) [17]–[19]. A large amount of
the available loads that are possible to use as Demand Response (DR) are TCLs and
thus subject to the rebound effect. For example, supermarket refrigeration [17], [20]–
[22] or heat-pumps with thermal storage [23]–[26] are identified as possible sources of
DR. If not considered properly in a dispatch of DRs, the rebound effect may cause
unforeseen problems or lead to sub-optimality of market clearing algorithms.

Since DR units often will be connected to the distribution grid, the DSO may
have an interest in using them in future market-based methods for congestion man-
agement. This requires the accurate modeling of the underlying distribution network
with details such as voltage magnitudes, active and reactive power flows. These mod-
els should be sufficiently accurate, transparent, computationally efficient and achieve
well defined results. The last issue pertains to the use of convex models, as this
property leads to the provable convergence to globally optimal solutions. However,
the nature of power flows is non-convex and therefore the used convex models must
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sufficiently approximate this system to yield feasible and cost-efficient results. A
number of works have used linear models [27]–[30] which are simple but efficient ap-
proximations for the power flow. Recently, the use of convex relaxation through conic
programming is improving the power system modeling [31]–[36] which can improve
the dispatch and control of DR resources in distribution networks. The choice of mod-
eling frameworks will impact the use of demand response and other DERs. In light
of the complicated nature of DR interactions with markets and network modeling of
distribution network, this thesis seeks transparent models for decision making by the
DSO while inherently taking into account the rebound effect.

II. How can the scheduling of DERs be coordinated in day-ahead between
TSO and DSOs in a practical framework to counter uncertainty of inter-
mittent RES generation?

The DERs connected to distribution grids may not only be used by DSOs to mitigate
congestion or voltage issues. Demand response usually provides a cheaper alternative
to classical means of providing balancing power [17], [37]. To decrease cost the TSO
may in the future choose to use aggregated DERs for balancing, while DSOs and
Balance Responsible Partys (BRPs) seek to use the same resources to meet other
goals. Conflicts may therefore arise when DERs connected to distribution networks
are providing services to the TSO if it causes operational issues to the DSO. Co-
ordination of DSO and TSO actions are therefore pertinent and can be achieved at
multiple temporal or organizational levels, i.e. either the scheduling or the activation
of energy and reserves in system wide or local organizational structures.

In a holistic market view, a market clearing that includes DERs may be very
intricate due to large number of offers and competing incentives of participants, mar-
ket operators and system operators [38]–[41]. If on the other hand, the needs of the
TSO and DSOs are completely separately handled, and coordination is not taken into
account, it may result in counteracting control actions that lead to sub-optimal oper-
ation of the power system. It is an ongoing research question how the responsibilities
should be distributed among TSO and DSOs and how their access to resources can be
coordinated in liberated markets. The emphasis should be put on socially responsible
models for coordinating the different system operators, such that the available DER
flexibility can contribute to improve the social welfare of the system. Several research
works have been published to show methods of coordinating the use of DER flexibil-
ity by the TSO and DSOs [38], [41]–[51]. These works have addressed coordination
in the real-time activation of DER flexibility, or are not congruent with scheduling
under current European sequential market clearing frameworks. In order to motivate
the implementation of coordination schemes, this thesis seeks a framework that is
scalable and adaptable to the energy trading floors in operation today while taking
into account the forecasting uncertainty of intermittent RES production. Therefore,
the conducted research investigates the optimality conditions in the scheduling stage
by modeling the sequential and hierarchical structures of the different trading floors
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and proposes novel methods to achieve optimal coordination.

1.3 Scientific contributions
Much recent research has been done in proposing frameworks for DERs to be sched-
uled such that voltage violations and congestion can be mitigated and thus aid the
DSO in system operation. One way to schedule DERs for the DSO is to use price-
based approaches, where the DER is offering its services in a market or mechanism as
an individual profit maximizers [28], [29], [52]. Another possibility is for the DERs to
be rewarded with incentives such as proposed in [29], [53], [54] if they are aiding the
operator in avoiding contingencies. For a comprehensive overview of congestion man-
agement in distribution feeders see [55] or [56]. However, none of the previous works
in congestion management have modeled the inherent rebound effect of TCL-based
demand response units. The modeling of the rebound effect can be quite challenging
due to the inter-temporal coupling of power injections that they create. One method
is to use dynamic programming [57] in order to capture inter temporal coupling of
power injections. Dynamic programming is however not a compatible method for
market clearing. In [58] it was proposed to use asymmetric block offers, a novel type
of market offer, to a-priori model rebound effect in the market clearing process. In
[58] the TSO balancing market was considered, and no analysis of the power flow
model was included.

A first contribution of this PhD thesis is therefore the development of a novel con-
gestion management method which leverages the underlying flexibility of DR units
with an inherent rebound effect. Demand response units that must rebound after
activation, are units that can only provide up- or down-regulation power with the
constraint that they need to rebound in the opposite direction in a following time
period. This kind of behaviour is expected from TCL-based DR units, such as su-
permarket refrigeration or building temperature control. [Paper A] introduces a
market mechanism, where aggregators can offer the flexibility of DR units with re-
bound effect to the DSO in the form of asymmetric block offers. The DR units offer
their services in the form of these offers which consist of two parts, a response and a
rebound. Each of these parts is either a load increase or decrease, and it is the respon-
sibility of the DR unit or aggregator to make sure that they are physically feasible
for the underlying load. The advantage of these asymmetric block offers is that the
offer, and thereby the market clearing mechanism, is inherently taking into account
the physical characteristics of the DR units and that they are transparent and easy to
understand to the system operators. The relation of the power flows and congestion
in distribution networks is complicated, as they can be caused by both voltage level
violations and thermal line flow limits. The non-convexity of these relations further
complicates modeling and thus market-based methods to mitigate them.

A second contribution of [Paper A] is to make a comparative analysis of different
Optimal Power Flow (OPF) models in radial distribution networks and their impact
on the dispatch of asymmetric blocks offers from the TCL-based DR units. Three
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different models are implemented, each with increasing complexity and thus precision.
Since any market-based mechanism needs to be able to be executed within a limited
time-frame, computational burden and precision of the underlying physical model are
generally counterbalancing each other and a trade-off needs to be made. Therefore,
the most precise models may not necessarily be the right choice to be implemented
practically. In recent years, a lot of contributions with convex relaxations of the
non-convex AC power flow equations have been made [31], [32], [55], [59]. For radial
distribution feeders, especially the convex branch flow formulation through Second-
Order Cone Programs (SOCPs) is gaining more support [60]. The SOCP models can
however be challenging to solve and therefore linear and sequential linear program-
ming models are also considered. The results provided in [Paper A] provide an
analysis of the re-dispatch outcomes when using these different power flow models,
including convex relaxations, in connection with the asymmetric block offers.

The rapid increase of RES penetration leads to an increased need for balancing
and other ancillary services due to intermittent of power injections. Since many re-
search works suggest that aggregated DERs should be offered to system operators to
provide these services [4], [9], [37], new models need to be developed to make this pos-
sible and at the same time be easily adaptable by system operators. DERs that are
activated by the TSO as fast acting reserves may lead to congestion issues and voltage
problems that the DSO cannot handle, if not managed properly. The connection of
distributed generation can cause and array of issues to the DSOs [61], [62] and this
may be magnified if they respond to unpredictable price signals from the TSO. The
coordinated use of flexibility stemming from DERs is therefore pertinent, however
there are a host of challenges relating to this. The low-voltage networks operated by
DSOs are of massive size themselves, and the TSO does not take into account dis-
tribution grids when optimizing power flows. An integrated co-optimization of DSO
and TSO networks is unlikely to be implemented in practice due to the sheer size of
the problem [45], [46] and policy driven issues [63]. Therefore, a promising alternative
is to optimize power flows in a decentralized fashion that respects operational regions
of different system operators. Also, privacy concerns exist, which may dissuade the
TSO and DSOs from sharing all information about their operating domains with each
other. Much work has been done in proposing various ways of using DER flexibility
in DSO-level markets to provide congestion management [29], [64]–[68]. However, it
is not clear how DSO-level markets can provide access to the TSO to share these
resources. DERs participating in balancing markets of the TSO, without any con-
trol or oversight may be an untenable position for any DSO. Further, the objectives
of DSOs and TSOs when using the same resources may be contradictory and there-
fore any coordination must take into consideration the objectives the different agents.
New market players called “aggregators” enable to pool DER into packages and thus
lower the barrier for market participation of small DER units. This development may
increase the DER quantity on markets and thus the need for coordination. Previous
works on TSO-DSO coordination have focused on the activation of DERs close to
real-time [41], [42], [44], [45], [49], [50]. However, the bulk of the energy is traded in
day-ahead markets and premiums are usually applied by the providers of balancing



1.4 Organization 7

power when moving closer to real time. Therefore, the research conducted in [Paper
B] has focused on building a framework for quantifying gains from coordination built
on top of existing day-ahead markets, which may be realized via local flexibility mar-
kets. Further, the policy changes required by proposing decentralized market clearing
may be too drastic changes for system operators that prefer smaller changes to the
operational policies [45], [46]. The work conducted in [Paper B] is concerned with
the issue of coordinated use of energy and flexibility from DERs by TSO and DSOs
in the day-ahead stage, considering incremental changes to current market clearing
procedures. The paper introduces a novel way of considering prices and flow limits at
the interface between different system domains. In order to achieve an equilibrium
between the different trading floors which will increase system social welfare, these
“coordination variables” are then optimized respecting hierarchical system operation.
An approach based on game theory is applied, in order to frame the interactions of
different trading floors, both local and system wide markets. The resulting model
is a leader-follower type game (Stackelberg game), that captures the hierarchical na-
ture of the interactions of agents and temporally spaced (sequential) trading floors.
This setup is making it possible to reveal the optimal prices for arbitrage trading
between different system operators’ domains with respect to the social welfare of the
system. The setup is implemented as a bi-level optimization problem whit a stochas-
tic scenario-based approach to capture uncertainty of RES production. This in effect
uncovers the highest possible system-wide social-welfare increase that coordination
may achieve if local markets are employed by DSOs.

The scientific contributions of both [Paper A] and [Paper B] are providing paths
of integrating DERs into proposed and existing market platforms while taking into
account the specifics of modeling power flows in low-voltage distribution networks.
The modeling aspect is one part that makes this class of power system optimiza-
tion particularly hard, since the non-convexities of AC power flows are usually more
important to take into account than in high-voltage transmission networks.

1.4 Organization
The thesis consists of two main parts. Part I is a report that summarizes the work
that was carried out for this thesis. It consists of Chapters 2 through 6. Chapters 2
and 3 present the theoretical background on TSO-DSO coordination methods and the
modeling used in the applied research. Specifically, Chapter 2 is a review on current
Nordic electricity markets, proposed market-based solutions for DSOs and frameworks
for TSO-DSO coordination. Chapter 3 delivers the mathematical background and
presents different optimization models, which can be used to model power flows and
clear markets on DSO-level. Chapters 4 and 5 present the main findings developed
in this thesis to enhance the DER participation in markets based on [Paper A] and
[Paper B], respectively. Chapter 6 draws conclusions from the presented research
and discusses its applicability to current and future power systems. Also, future
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critical research directions are outlined to direct the reader towards unsolved aspects
in the avenue of market-based methods for the coordinated use of DERs.

Part II consists of all the papers that were written and submitted for publication.
The papers can be found in the annex of this thesis. The papers that were produced
for this thesis are the following:

[Paper A] “Congestion Management in Distribution Networks With Asymmet-
ric Block Offers” – This is a journal article submitted to the IEEE Trans-
actions on Power Systems in August 2018 with reviews received in December
2018. It was resubmitted in January 2019 and is currently in the second round
of reviews.

[Paper B] “TSO-DSO Coordination via Optimizing Interface Capacity Limits” –
This is a journal article submitted to the IEEE Transactions on Power systems
and currently undergoing review.

The following papers were written during this PhD but are not actively contribut-
ing towards the thesis and are not included in Part II:
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CHAPTER 2
TSO-DSO coordination

of flexible resources
The liberalization of the electricity sector was started in Europe in the 90s with the
splitting up of vertically integrated utilities [69], [70]. A major change was the intro-
duction of forward trading markets for wholesale of electricity. Liberalized electricity
markets are justified by the notion that free markets increase competition and thus
work to reduce cost [71], [72]. In theory, this ultimately leads to end-user prices
that more closely reflect the actual price of energy production, transmission and dis-
tribution. Electricity markets have been evolving ever since, and are under constant
change as new innovations in market design are introduced as well as adapting to new
technologies. Recently, through the increase in Renewable Energy Sources (RESs)
penetration, the uncertainty of the real-time production in the system has increased,
and is challenging the deterministic market approaches used to trade wholesale energy.
In figure 2.1 the past and forecast yearly production from different energy sources in
Denmark is shown. This graph illustrates the fast growth of especially wind power
in Denmark, while at the same time conventional large power stations are reducing
their output or are being outright shut down. This requires a rethinking of current
deterministic market structures that can reap the benefit of enhanced interactions of
RES and Distributed Energy Resources (DERs). However, this involves the changing
of the operational aspects of several agents in the power systems.

In this chapter, the currently existing Nordic electricity markets are described, and
proposed methods to include the Distribution System Operators (DSOs) in markets
are summarized as well as TSO-DSO coordination schemes. Specifically, in Section 2.1
the challenges on market integration of DERs are summarized. Section 2.2 introduces
the reader to current Nordic market designs and discusses future design challenges.
In Section 2.3 the proposals for DSO-level market-based methods are reviewed briefly,
and future issues that have not been addressed by current literature are discussed.
Finally, in Section 2.4 the connection between TSO and DSOs is discussed, and
proposals of TSO-DSO coordination are presented.

9
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Figure 2.1: Energy production by source in Denmark, historical and forecast [3].

2.1 On the market integration of small flexible
resources

The connection of ever more RESs (as evidenced in figure 2.1) to the power system
poses a series of new challenges. One of the big issues of increasing RES penetration
is the stochastic nature of the power injection and the resulting balancing needs
to the Transmission System Operator (TSO). In the power system where it is of
essence to maintain a stable frequency which is strongly correlated to the generated
and consumed power [73], the balancing of intermittent RES generation becomes a
problem [2]. For the DSO, the increasing DER penetration can lead to congestion
problems due to limited hosting capacity of current distribution feeders [74] and many
distribution feeders will not be able to handle reverse power flows due to limited
capability of protection equipment and voltage regulators [75].

The annual addition of DER capacity expected to be connected in the United
States is shown in figure 2.2. This historical and predicted deployment data brings to
attention the acceleration of DER deployment. In addition to distributed generation,
the increase of electric vehicle charging load and demand response will accelerate in
the next years. Ultimately, it will lead to a higher average load, but particularly the
peak loading will increase drastically if the power injections/load patterns are allowed
to be uncontrolled. The increasing penetration of DERs provides an opportunity to
use their inherent flexibility to balance out the stochastic RES production [12], [43],
[58]. Therefore, an increasing number of DERs is expected to participate in ancillary
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services markets on TSO level [12]. Also, the share of DERs in day-ahead and intra-
day markets will increase as new market models develop and requirements for DERs
to take part in economic dispatch are created. For example, demand response units
can be used for balancing power provision [58] and distributed battery storage can be
used for arbitrage trading to flatten out the fluctuating prices due to variable wind
power in-feed [37], [76].

Different market opportunities lie on the DSO level. The DSOs may wish to use
the flexibility of DERs such as demand response for congestion management and
voltage control. Currently, there are no commercial DSO-level markets to use DER
flexibility [43], but there have been some demonstration projects involving actual dis-
tribution grids. For example, the EcoGrid 2.0 project in Denmark has demonstrated
a DSO mid-term market for demand response [78]. An issue at the moment is the lack
of clear policies in most European countries to allow the DSO to procure flexibility
from local DERs. However, there are already discussions on European level proposing
paths to establish local flexibility markets [63], [79]. Another demonstration project
is the SmartNet project, which has studied trans-European TSO-level markets and
their coordination with DSO-level markets [80], [81].

In the past RES-based DERs, for example roof top Photo-Voltaic (PV) generation
has been subject to advantageous policies. In many countries, distributed PVs are
exempt from taking part in the economic dispatch and are being rewarded with
highly incentivised feed-in tariffs [82], [83]. Similarly, RES sources connected directly
to transmission grids have not been participating in balancing responsibilities either,
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Figure 2.2: Annual additions in DER capacity to the distribution power systems in
the United States [77].
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which inflates their actual value to society [84], [85]. A phase-out of this incentive
scheme is anticipated in the future forcing RES to some extent to participate in the
dispatch on the same grounds as other loads and generators [86], [87]. In practice,
DERs will be clustered in groups by new market players, the so-called load and/or
generation aggregators. This construct has several advantages. Firstly, aggregated
DERs will have larger volumes that will allow to pass market entry barriers. Secondly,
it will decrease the market clearing complexity because clustered offers are decreasing
the number of single offers/bids. Thirdly, single DER owners such as residential
battery storage may not be willing to have an active market role and thereby they
can delegate their market participation strategy. The clustering of small units has
been designated under various terms in the literature, one recurring theme is the
idea of “virtual power plants” (VPP) where the aggregators control a series of DERs
and other resources in a coordinated manner to offer services similar to centralized
power plants [2], [10], [88], [89]. Some other options for RES and DERs to respect
dispatching and taking part in wholesale markets is to establish local energy markets
[90], energy communities or peer-to-peer markets [91] that in a coordinated manner
interact with wholesale markets on a higher level (national or even cross-boarder).

The increased participation of DERs in markets will have several remarkable ef-
fects on existing markets. In general, the participation of RES in the day-ahead
markets decreases the spot price of electricity because RES have a very low marginal
cost of production1. Distributed solar PV proliferation will further push this de-
velopment, especially in countries that have good meteorological and geographical
prerequisites for solar power. Also, the flexibility of DERs such as demand response
and storage will shift the flexibility patterns in the power system. This means that
ancillary services, such as real-time balancing of power can in the future be realized in
a distributed manner reducing reliance on large centralized power plants [63]. Until
now it is mainly large spinning reserves and reserve generation capacity in centralized
power plants that is responsible for primary frequency control and real-time balancing
of power2.

For the DSO the development of increased DER dispatchability and controllabil-
ity means that active management of DERs can be an attractive solution to mitigate
congestion and voltage issues. However, the frameworks that allow such an active
management of DERs are currently a topic of active research [56]. The liberaliza-
tion of DSO-level operations is projected to provide tools to cope with the increased
transfer of power through distribution networks and help the proliferation of DERs
[14]. Local market models are not only a dynamic method for the DSO to manage

1Often they will offer their production at zero or evenat negative prices due to incentives [83] in
order to be certain of being dispatched. The market clearing price will be determined by the highest
accepted offer.

2The terminology on “balancing power” is not entirely streamlined in the literature, which is a
major problem as there may be variations on terms that can pertain to the same function. In the
Nordic countries the term “regulating power” is mostly preferred. Other types of balancing alike
services are sometimes called “frequency restoration reserves” or “frequency containment reserves”
ect. We do not discuss the function of inertia by rotating masses, which is aiding frequency and
power balance in actual real-time.
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its networks, but they are also incentivising the deployment and investments into
smart grid technology. For example in [26] it is concluded that the current policies in
German distribution systems are hardly able to give good returns on investments of
domestic heat pumps with thermal storage. It is there argued that the policies should
enable more dynamic real-time pricing that reflect the current operating conditions
of the network in order to promote economic signals to invest in heat storage. In
[92] the effect of local pricing measures on the behaviour of distributed heat pumps is
modeled together with the power injections of distributed PV. Similarly, an analysis
on the economic viability of battery storage in distribution grids is carried on in [76].

The discussion above highlights some of the benefits of DER integration in markets
and the creation of new markets tailored for DSO and DER applications. However,
several new problems arise in this avenue of research. For example, the competing ob-
jectives of DERs to maximize profit in energy wholesale markets, the TSOs objective
to balance the grid and ensure safety and stability margins, and the DSOs objective
to mitigate congestion can be hard to align properly. Consider this simple circular
example: The use of DERs for grid balancing by the TSO can cause congestion issues
to the DSO, who will then activate other DERs to mitigate this congestion which
again causes imbalance to the TSO. This situation has already been reported by
DSOs today, when the TSO is activating combined heat and power plants connected
to distribution grids [93]. To resolve these issues many works are discussing the coor-
dination of DSO and TSO use of DERs. This coordination can also be coupled with
the wholesale of energy from DERs to increase social welfare to the end-user.

In the next section, a short review of existing Nordic electricity markets is pre-
sented in order to give some background on the underlying mechanisms that current
research is trying to amend to accommodate DERs and increasing RES penetration
in the energy mix.

2.2 Nordic electricity markets
The Nordic wholesale electricity markets are operated by an independent market
operator, which is distinct from the TSO. The Nordic market operator is Nordpool
which operates the day-ahead market, and the intra-day market. These are also
known as the spot-market and the ELBAS market [94]. The majority of the energy
is traded in the day-ahead market. Additionally, the Nordic TSOs operate a joint
regulating energy market which is used to correct any imbalances that arise due to
deviations from the day-ahead and intra-day schedules. In this section, mainly the
Nordic market architecture will be presented so that the reader can better comprehend
the coordination schemes that are presented in the subsequent sections; we will also
touch upon differences to other European markets or United States markets so that
the reader will be informed of particular design choices. However, we will not in depth
describe these other market designs and architectures. For a more comprehensive
description of the United States market architecture see [95].
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2.2.1 Existing markets
The Nordic market clears the day-ahead market in a zonal fashion, where day-ahead
prices are uniform across an entire zone. The zones can incorporate large geographical
areas. For example, Denmark is split into two pricing zones DK-east and DK-west3.
On the other hand, the US day-ahead markets adopt a Locational Marginal Pricing
(LMP) method, where the prices can differ between neighbouring transmission nodes.
The Nordic market regulations prohibit the use of LMPs [14]. Trading between zones
is also possible but is limited by the TSOs before Balance Responsible Partys (BRPs)
submit their bids to day-ahead markets [96]. A schematic of the different markets up
to and after actual delivery of energy is given in figure 2.3. The day-ahead markets
and intra-day markets are used to trade energy, where the intra-day market closes 60
minutes before the delivery hour. All market bids have to go through a BRP, which
is responsible towards the TSO to maintain balance (i.e. balancing responsible).
The BRP can also participate in the regulating market4, which is run by the TSO.
Activation of regulating power has to happen within a specified time-frame, usually
no later than 15 minutes [88] before actual delivery. After the actual delivery of
power, the TSO collects metering data and calculates the deviations of BRPs from
their schedules and the activated up- and down regulation. This determines the
real-time price, which is used to collect payments from BRPs that deviated from
their schedules and then payments to the activated regulating offers are made. Every
market participant has to provide their offers/bids through a BRP. The interaction of
BRPs with their customer is beyond this thesis, however many large scale producers
or aggregators register as BRPs themselves if they have enough capacity to act as
such.

The Nordic market setup does not include any grid model in any of the above
mentioned markets and therefore the actual nodal power flows are not taken into
account when clearing the markets. It is solely the responsibility of the TSO that
the voltage and line loading constraints are respected at real-time, which is done by
activating different regulating offers. This may lead to sub-optimality with regards to
cost but is a result of the current policies. Further the activation and reservation of
reserves are split up, such that the outcome may be sub-optimal as well. In contrast,
the US market design solves this by having an integrated day-ahead auction for both
reserve reservation and energy with LMP pricing. This may however result in vastly
different prices across small geographic areas and can be perceived as “unfair” by
some market participants that reside in weak areas of the grid.

The current market design philosophy does not take into account the low-voltage
networks of the DSO, neither in Europe nor in the US markets. This means that
the DSOs main avenue is grid reinforcement by long-term planning. However, grid
expansion is a costly undertaking especially in urban areas with underground cables.
To a minor degree DSOs are able to pre-qualify the participation of larger distribution
network connected dispatchable generators, such as combined heat and power plants,

3The TSO in Denmark (Energinet) labels them DK-1 and DK-2
4It may be called the ”balancing service provider” when referring to the regulating market.
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Figure 2.3: Schematic of the Nordic market design philosophy.

which participate in TSO balancing or ancillary services markets [80]. There are also
instances of DSOs operating small scale distributed generation or battery storage [97],
however this may in the future be against market regulations as the system operators
are not supposed to own and operate generation that competes with market-based
mechanisms [98]. It is often argued that the DSO should operate local flexibility
markets instead of investing in its own hardware for flexibility provision [11], [63].
The DSO may only in exceptional instances operate its own storage facilities and
may not participate in any outside markets in order gain a profit [76]. However it
is clear that any DSO controlled storage units would be distorting any markets that
provide similar services in a local area. Ropenus et al. [98] suggest that the DSO
should be allowed to offer incentives to DERs to connect at high benefit locations [86].
In Section 2.3 some of the market-based proposals in the literature for DSO network
support will be discussed.

Day-ahead market: The Day-Ahead (DA) market in the Nordic region is oper-
ated by NordPool which clears an integrated market for 13 European countries. The
market is split into different pricing zones which are more or less static depending
on the country. For example Denmark uses two static pricing zones, where in Nor-
way zones can be reconfigured dynamically using market splitting [99]. The trading
between pricing zones is limited by Available Transfer Capacitys (ATCs) which are
determined before market participants submit their offers for generation and bids for
consumption. If the ATCs between zones are achieved (i.e. at ATC capacity) the
zones are split into different pricing zones. In the US the markets use a different
pricing strategy termed LMP, where every node can have a different price based on
congestion in single transmission lines. Further, US markets also clear a unit com-
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mitment problem in the day-ahead market, which allows for reservation of capacities
in the day-ahead stage. This co-optimizes energy and reserve capacities at the cost
of introducing binary non-convexities.

Intra-day markets: The intra-day market is cleared by the market operator and
changes the energy consumption schedule of the BRPs. The BRPs are here able to
readjust their consumption or production profiles up to 60 minutes before the delivery
hour. This may be necessary for the BRPs if the uncertainty of the forecast in the
day-ahead stage was high and updated forecasts for consumption or RES generation
are available. Compared to the day-ahead market and the regulating market only
small amounts of energy are traded in the intra-day market in the Nordic region [88].
An example of an intra-day market with high trading volumes can be found in Spain
[100], which can be attributed to specific regulations which incentivize trading closer
to real-time. For example in Spain, the balance responsibility is given also to RES
operators, where other countries have regulations that may exempt them from this.
For an overview of intra-day market liquidity and market design see [101].

Ancillary services markets: The TSO or multiple TSOs in cooperation can op-
erate ancillary services markets. These account for a large part of the transacted
energy and include the regulating and balancing power market5. The TSO is directly
responsible for real-time balancing of production and demand, and uses market-based
methods for the procurement of balancing needs. In the regulating power market the
generators and flexible demands can submit their bids for up- and down-regulations
through their BRPs. The TSO can activate those bids to balance out any imbalances
that may occur due to deviations from the day-ahead and intra-day market outcomes.
For an overview of European balancing markets and different design choices see [103].
In 2018 five Nordic TSOs from Finland, Sweden, Norway, Åland and Denmark have
agreed to implement a common balancing power market [104]. Generally, the regu-
lating markets are trading energy (MWh) with a resolution of 15 min to 1 hour, but
other design choices exist.

Capacity markets: Some TSOs implement reserve capacity markets, where re-
serves can be booked in the form of capacity bids (MW). Capacity markets can be
long-term markets as proposed in the French capacity market [105], where monthly
auctions are held to award reserve capacity contracts that have to be able to deliver
within a very short time-frame. In US markets reserve capacity is usually cleared
through co-optimization with energy, while in Europe the capacity markets are cleared
independently from energy markets. The trend of RES reducing the clearing price in
energy markets due to their low marginal costs, may cause large centralized power

5Here the Energinet Terminology is used, where the regulating market is the pre-delivery bidding
market and the balancing market is the post-delivery settlement market. Other TSOs may reverse
this terminology. Unification of terminology is expected in the future due to streamlining by the
pan-European TSO network ENTSO-E [102]
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plants to be unable to recover their investment costs by being uncompetetive. They
may however be needed as reserve capacity units to be able to balance intermittent
RES production. The problem of cost recovery may be exaggerated if there are
price caps on ancillary services that should otherwise remunerate capacity availabil-
ity through activation payments. This issue is termed the missing money problem
which may affect investment decisions of generators [106]. Therefore, the capacity
markets are being designed such that capacity can be rewarded, whether energy is
delivered or not. Some works argue that capacity markets are the main solution to
ensuring reserve capacity availability, e.g. [107]. Others argue that the opposite may
be true and the answer is well designed energy and ancillary services markets, e.g.
[106], [108].

2.2.2 Design challenges
Currently, Nordic and also European electricity market designs are missing specific
features that limit the optimal use of RES generation and DERs. First, the clearing
of the day-ahead market happens without taking into account the uncertainties of the
renewable energy sources or varying demand. This means that the day-ahead stage
is a purely deterministic problem that is myopic with regard to real-time outcomes.
Second, the underlying grid structure of the power system is not taken into account
when clearing the market. This means that trades which are physically impossible to
fulfill can happen. Third, the optimization of power flows, which is done by the TSO
does not take into account the network topology of any DSOs, which means that high
DER dispatching by the TSO can create problems at DSO level.

In figure 2.4 some of the shortcomings of current markets are illustrated. Figure
2.4a shows how the DA market clearing process is handled, where different pricing
zones can be utilized. Within the pricing zones, no network constraints are modeled
for the DA market. The DA market agent clears the market with the bids and offers
from loads and generators which can also be located at DSO network level. The
capacity between two neighbouring zones is the ATC, which determines how much
energy can be transacted between different pricing zones. If the ATC is reached in
the day-ahead market clearing, the zones will be split up and the clearing price in the
neighbouring zones will be different. When moving to the real-time operation of the
grid, the TSO can operate ancillary services markets to optimize the power flows in
the grid, but still not taking into account the DSO level networks. This is illustrated
in figure 2.4b where the DSO networks are connected to the transmission system with
dashed lines.

The day-ahead market does only take into account the real power injections at
the Point of Common Coupling (PCC) of any DSOs, because reactive power flows are
not considered at any market stage. This is illustrated in figure 2.4c, where the green
lines represent the active power constraints that can be inferred from the loads and
DERs at the distribution level. However, reactive power also plays an important role
in distribution networks to regulating the voltage level. The reactive power injection
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(a) The day-ahead market only takes into ac-
count flow between pricing zones, even if flow
between zones exists over multiple links.

(b) Real-time OPF by TSO does not take into
account the flow to the DSO.

(c) Actual feasible space of power injections
into DSO network and the assumed con-
straints in the DA-market where no reactive
power constraints are set.

(d) The stochastic feasible space of a DSO in
real-time. The stochastic production of PV
in a distribution network is influencing the
feasible injection region.

(e) The day-ahead market is deterministic
and finds a single clearing price λDA at which
all trades are paid.

(f) Real-time OPF by TSO does not take
into account the flow to the DSO (Source:
adapted from [109]).

Figure 2.4: Depiction of Nordic electricity market design specifics. The day-ahead
markets are myopic with respect to real-time outcomes and network
power flows in real-time. Further the DSO networks are not included
in the optimization problems of the TSO in real-time.

can also influence the feasible space of the active power injections, which is shown by
the dashed line. When moving to the real-time operation, the feasible power injection
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at the PCC can be seen to be influenced by fluctuating RES. This is depicted in figure
2.4d where the feasible space is connected with a probability of actually being feasible.
Therefore, any active dispatch of DER should take into consideration the uncertainty
that may arise from forecast errors.

The successively higher costs of generators is called the “merit order curve” which
is the reason for the underlying stair shape of the offer curve as illustrated in figure
2.4e. Usually only linear cost offers are allowed, but generators can submit several
blocks of offers in order to approximate their internal unit commitment constraints
[110]. In contrast the US type markets allow for unit commitment constraints to
be incorporated directly in the market clearing which however leads to binary non-
convexities in the market clearing. The advantage of having a deterministic market
with convex cost functions is that a single market clearing price λDA can be found and
the merit order of offers will be respected. Furthermore, the deterministic markets
fulfill the desirable qualities of revenue adequacy and cost recovery. Revenue adequacy
means that the payments collected from the demands cover all the payments made
to generators at the cleared quantity and clearing price. Under cost recovery it is
established that all market participants will be paid at minimum at their marginal
offer6.

The variable RES production can cause imbalances at the real-time stage, which
is not taken into account when clearing the day-ahead market because it is purely de-
terministic. There is a wide field of publications that describe uncertainty estimation
methods to make decisions in electricity market to improve the day-ahead dispatch;
an overview can be found in [111]. The ideal situation when clearing the day-ahead
market would be to clear the market with a stochastic optimization problem which
takes into account uncertainties of RES. Under this regime however, the cost recovery
and revenue adequacy are only fulfilled in the expectation and not in the realization of
specific scenarios in real-time [112]. This is one of the reasons that the Nordic market
designs are deterministic, although this is a myopic choice. The resulting deviation
of real-time prices is shown in figure 2.4f, where the fluctuating prices are caused by
intermittent RES generation in real-time. In the future, a larger share of electric
vehicles may also increase the uncertainty due to charging and the corresponding
intermittent load profiles may cause price deviations in a similar manner.

2.3 Market-based solutions for a DSO
DSO-level market methods are an ongoing research topic due to the hastily changing
nature of distribution networks and their merits for increasing the hosting capacity
of DERs. Some countries and researchers have even adapted terminology for the
changing role of the DSO; for example, in the United Kingdom, the term “Distribu-
tion Network Operator” is used to represent classic operators of passive distribution
networks. The term “Distribution System Operator”, is meant to highlight the more

6In fact only the marginal producer will be paid at the offer price.
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active involvement of the system operator in controlling DERs, similar to a TSO.
Other sources use the term “Active Distribution Network Management (ADNM)” to
describe the growing active role of the DSO. In essence the creation of local markets
or market-based methods is used to increase the DER hosting capacity in distribu-
tion networks, which can be very limited for passive networks [74], [75]. Common to
most approaches is that they model the network and apply mathematical program-
ming methods or other modeling techniques to optimize use of existing infrastructure
through market-based operations or by offering incentive programs.

2.3.1 Current responsibilities of a DSO
DSOs are the system operators of medium- to low-voltage networks that distribute
energy at customer level. In most cases the DSO is in effect a monopoly7 with the
objective to minimize the cost of energy delivery to the customer while ensuring
adequate safety margins of the loading of components. In addition to operating the
networks (cables, transformers etc.), the DSO is the operator of the customer side
meters. In the case of small residential customers, the customer side meters are
read manually in long intervals for yearly settlement purposes. For larger industrial
customers hourly remote metering has been available in most European countries
for some years now8. The roll-out of smart meters to all customers is expected to be
finished in 2020 in Denmark [113], which will enable more effective monitoring, control
and metering of flexible loads and DERs. Further, the integration of Information and
Communications Technology (ICT) in the distribution network will improve access to
information and can enable enhanced coordination of local resources with the system
operators.

The specifics of metering and ICT technology that enable coordinated usage of
DERs are outside the scope of this thesis. For the remainder of the thesis it is therefore
assumed to be possible to control single DERs at low-voltage level at whichever time-
resolution is necessary9. However, it is important to understand that smart meters
and ICT technology are an important enabler and prerequisite for DSO smart grid
functionality and the specifics of different technologies are an active area of research.
This thesis is more concerned with modeling and optimization techniques that can
be studied in a decoupled manner of the underlying technology that is applied.

There is a clear distinction between the duties that fall to the TSO and the duties
that fall to the DSO. In current Nordic settings, the DSO is solely responsible for

7Monopoly is meant in the sense that there usually is only one distribution grid which transports
energy to customers. In Denmark as well as other European countries, the state regulates the earnings
of DSOs, as is the case with other state sanctioned monopolies. Often the DSO will be owned directly
or indirectly by the state, municipalities or customers.

8customers with an annual consumption above 100,000 kWh must have smart meters for hourly
settlements [88].

9The current generation of smart meters being deployed in Denmark are unsuited for live control
of DERs and are designed for remote hourly settlement. It is expected that the next generation
meters will start being deployed in the near future [114].



2.3 Market-based solutions for a DSO 21

the safe operation of distribution hardware and the safe supply of energy to the
customers. This means that line thermal loading and over- and under-voltages are
the main concerns of the DSO. Therefore congestion management is a widely studied
topic in DSO networks [29], [56]. In contrast the TSO is mainly focused on stability
issues and contingency planning such as frequency stability, voltage stability, N − 1
contingencies and angle stability [73], and congestion plays a smaller role than in DSO
networks. Further it is the TSO which is responsible for the real-time balancing of
the network and therefore has to have sufficient reserve capacity in order to balance
any deviation of the power schedules from the BRPs.

2.3.2 Existing proposals for DSO-level market-based solutions
Proposed market designs for DSOs are similar to existing TSO-level ancillary services
markets in many aspects, but differ in certain ways to meet the specific DSO require-
ments. As mentioned, the DSO is mainly concerned with equipment safeguarding
such as thermal line ratings and voltage issues and therefore the markets or market-
based methods have to reflect these requirements.

Since the equipment rating is an important cost factor in distribution networks,
the power flows of the network have to be taken into account when operating a DSO
market. The power flows in an electric network are governed by the physical prop-
erties described by Kirchhoff and Ohms law. Also, because virtually all distribution
systems are alternating current (AC) networks, the physical particularities caused
by alternating currents have to be taken into account. Therefore AC power flow is
suitable, which is a set of non-linear equations taking into account the underlying
physical properties of the network. A market clearing method can be cast as an op-
timization problem, thus the AC power flow model has to be incorporated into an
optimization model if the market clearing is to take into account the full network
properties. The resulting model is dubbed the AC optimal power flow (AC-OPF)
model. The full AC-OPF model may often not be a very practical model due to
non-convexities induced by the quadratic relations of currents, voltages and angles,
and thus several simplifications and altercations (through convex relaxation) can be
used with yielding very precise results as presented in the next chapter [31], [32].

DSO level markets can be formulated as optimization problems or more specifi-
cally as Optimal Power Flow (OPF) models and thus take into account the network
properties of distribution grids. If current day-ahead markets are assumed, the DSO
market-based methods need to take into account the outcomes of the wholesale day-
ahead market. This can be done either ex-ante (before day-ahead market clearing)
or ex-post (after day-ahead market clearing). Ex-ante methods are agnostic about
day-ahead market outcomes but uncertainty modeling can be used to improve the
expected gains of those methods.

One ex-ante market-based method is the dynamic tariff method [29] in which
the DSO calculates in-feed tariffs at different network points with an OPF model
and publishes them to the DER aggregators before day-ahead market clearing. The
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dynamic tariff is based on the LMP strategy also used in US style markets. The
dynamic tariff method is a price-based market-based method, because it prices the
use of network capacity to the end-user. It does not require a separate market as
the tariffs are added to the spot price of the day-ahead market. Regulations may
limit the use of this method under European laws, due to non-discriminatory rules
on geographic locations in the networks of market participants [115]. To circumvent
these regulatory obstacles, the similar dynamic power tariff [116] has been prescribed
which prices feed-in power. Instead of price-based methods similar incentive based
methods [54], [117], [118] can be used that are compatible with European regulations.

The Flexibility Clearing House (FLECH) is another proposal where the DSO uses
ex-ante methods [64], [119]. In the FLECH architecture, the DSO clears a day-ahead
market for flexibility capacity or energy within its domain, which it then activates in
real-time to mitigate congestion. The cleared flexible capacity can also be offered to
the TSO to help real-time balancing if it is not used by the DSO and there are no
grid constraints limiting the use.

A different DSO market structure is presented in [65] where the DSO operates its
own retail market and buys power on the wholesale day-ahead market. This market
design philosophy has the DSO take on the role of energy retailer towards the end-
user, which is quite different from today’s energy retailers. Currently energy retailers
are buying energy through BRPs at the day-ahead spot market and are therefore
separate actors not connected to the DSO. The market design in [65] is termed a
transactive market due to the DSO transacting energy from wholesale markets to
customers. The main idea of this approach is to decentralize retail markets into local
distribution areas, where the DSO is interacting with wholesale markets on behalf
of prosumers or energy retailers. The policy to implement this scheme is however
not entirely clear, especially within European settings, as the DSO is not allowed to
profit from trading energy under current regulation. Trading of energy and profiting
from this is currently limited to the energy retailers that operate without geographic
restrictions across entire trading zones, which would obviously be different for a DSO
that engages in energy trading. For a bibliographical review of transactive methods
see [120]. In [90] the effects of local energy markets on system prices are analyzed
and framed as a transactive market concept.

2.3.3 Challenges of existing proposals for DSO-level
market-based solutions

The above mentioned market-based mechanisms or market designs for DSO conges-
tion management show some drawbacks to key aspects of modern power systems with
high RES and DER penetration.

A large part of the flexibility that can be leveraged for congestion management is
expected to be based on Demand Response (DR) [14], [56]. DR consists of flexible
loads that can change their consumption behaviour with the aim to participate in
markets [15]. The aggregated use of DR is expected to have a large enough impact
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to compete with conventional generation in terms of quantity. The operation of DR
is often very cheap due to its low marginal costs. Understanding the DR operational
properties is relevant to achieve well dimensioned local DSO markets. For example,
it is important to understand the underlying physics of the DR units so that the
bidding format reflects the value that they bring to the market [37]. Additionally,
understanding which factors motivate the deployment of DR technology can help
proliferation. Participation and sufficient market liquidity is important in order for
the system to be operated with good reliability [8], [11]. However, proliferation of
residential DR is a topic with many facets and analyzing them may bring better un-
derstanding and helps rapid deployment [26]. For example, some works try to price
end-user discomfort of residential DR units [89], [121]. This is sometimes described
by disutility functions that quantify end-user discomfort when their appliances are
not operating at the desired set-points due to DR participation [122], [123]. For ex-
ample, this can be an air-conditioning unit in a residential building that changes the
room temperature from the desired set-point by a few degrees in order to reduce con-
sumption in a period. However, this is difficult to align with markets and settlement
prices because quantifying user discomfort may not be straight forward. In [14] the
regulatory issues of integrating demand response in a European setup are analyzed.
Further [9] analyzes the techno-socio-economic barriers of DR deployment from a
owner perspective and argues that uncertainty of cost-recovery is hindering invest-
ments. Understanding the motivation of residential DR and appropriate modeling
techniques to understand DR behaviour and physical characteristics are also impor-
tant as analyzed in [13]. Network modeling issues in connection with DR deployment
are discussed in [124]. Therefore, the design of efficient and meaningful markets is an
important aspect, both to the system operator and to the prosumer10. It can also be
mentioned that non-technical social related barriers can hinder the participation in
markets if they are opt-in for residential users [114].

Many DR units can be scheduled without any direct discomfort to the user, which
could be the case for Thermostatically Controlled Loads (TCLs) with heat storage
capacity [58]. Some examples for this are large refrigeration units in supermarkets,
water heating systems with heat pumps and insulated storage [26], industrial cooling
systems etc. Common to these TCL-based DR units is that they will have to increase
their consumption after a decrease due to the need to return to their base-line tem-
perature settings. This phenomenon in DR units is termed the rebound which can
cause overload problems if not taken into account in DR scheduling [23]. In figure
2.5 an example load profile of a DR unit with rebound is depicted. Here the DR is
activated at some time-stage to reduce its power consumption, which is followed by
an increase in a subsequent time period. This is one of the internal DR characteristics
that is important to understand in local markets with high penetration of DERs. If
the DSO market method relies on DR units with non-negligible rebound, a congestion
management mechanism may fail if it does not take into account the rebound. On

10Prosumer is a portmanteau that is used to highlight that distribution level consumers may also
have small scale generation, and can therefore act as both producer and consumer.
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Figure 2.5: Unintended rebound effect of demand response unit.

the background of DR units with inherent rebound effect, we examine in [Paper A]
how a market clearing mechanism for DSO use which inherently takes into account
the rebound can be designed. We find this work that the a congestion management
mechanism dispatches DR with rebound effect has high sensitivity to the used system
constraints, and therefore the rebound effect is important to model precisely.

Another shortcoming of current proposals for DSO market-based methods is that
they fail to quantify their impact on total system welfare if they operate uncoordinated
with other markets, which is linked to the real-time usage of TSO level networks. In
[41], [42] the impact of coordination between DSO markets and TSO markets in
real-time is analyzed. Gaming behaviour in local markets is another issue, which
in [38] is analyzed as the efficiency of local markets given coordination with global
markets and whether it is in fact correct to model local markets as maximizing social
welfare. Since most of the DSO market methods usually take up capacity of local
DERs, they block capacity that may otherwise be used by TSOs or other DSOs,
BRPs or aggregators. The total system social welfare is usually not accounted for
by current design proposals for DSO-level markets and this should be kept in mind
when designing coordination schemes. Also, the real-time operation of the network
may be subject to uncertain behaviour of RES on either TSO or DSO side, which
can be harder to mitigate if flexible capacity has been locked up in a DSO day-ahead
schedule for congestion management.

2.4 Interactions of TSO and DSOs
This section discusses the interplay of DSO- and TSO-level markets for flexibility
procurement from a system view-point. The entire power system can be viewed as
a decentralized system, where the market operators, the TSO and the DSOs concur-
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rently act to operate it according to their own performance metrics. As proposed by
other works [11], [38], [48], [64], [119] the DSOs may operate independent flexibility
markets in the day-ahead stage, in order to reserve capacity in DERs which it can
later activate to mitigate congestion. The interactions of TSO and DSOs are an
ongoing research subject when different markets and interests for use of DERs exist.

Specifically, we will shortly discuss the implications of decentralization pertaining
to TSO-DSO coordination. Subsequently, a short summary of casting decentralized
system coordination as hierarchical or distributed coordination will be discussed.

2.4.1 Decentralization of system operations
The current discussion at EU level about the future role of the DSO emphasizes
a decentralized design philosophy in operating the power system [86]. In a decen-
tralized power system the operational aspects happen in (local) markets or control
structures, and outcomes of these local operations are only shared with the local
and upstream agents. Decentralized system architectures have some favorable prop-
erties, such as scalability and information privacy and separation. These are valuable
properties in power systems, as the integration of DERs complicates system opera-
tion and thus scalable operational paradigms are necessary to facilitate large scale
deployment. However, decentralized systems have to embed some methods to share
resources, which otherwise would inflate the possibility of single actors within each
decentral market to employ market power if there is low market liquidity. Also in-
ternal balancing resources might be paid too much and over-utilized due to possible
gains that are not realized when spatial smoothing of uncertain production can be
taken into account [125].

There are separated duties between the different agents, which jointly work to
operate the power system. In this case the wholesale market operator, the TSO and
the DSOs form a distributed entity to operate the power system through different
markets and control actions. The duties are separated by geographical and functional
schemes among those three agents, which thereby determine the nature of their in-
terplay. Depending on the future shaping of policies and implementation of local
markets, the relation between the agents may lead them to compete for resources.

Hierarchical or distributed decentralization

In the avenue of decentralized systems, there are two ways of framing the relation
between different agents, namely hierarchical organization or distributed organiza-
tion11. In the first structure, the hierarchical, agents (for example TSO or DSO) per-
form their own operations independently and serially while the top of the hierarchy

11The taxonomy of distributed systems with regards to power systems is not very well established
but an attempt to unify language usage is made in [126]; One take-away of [126] is that hierarchical
and distributed decentralization are orthogonal concepts. This means that a decentralized system
may be realized as a hierarchy that may or may not be distributed and, vice versa a distributed
system may or may not be hierarchical.
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is determining the initial set-points of lower level agents. In the field of hierarchical
system structures, the interplay is most properly modeled by leader-follower type
games, also named Stackelberg games [44], [127]–[129]. Current market structures
with the day-ahead spot market and balancing markets in real-time can be viewed
as an open-loop hierarchical optimization problems, thus constituting a sequential
(time separated) hierarchical structure. Currently the day-ahead market and real-
time balancing are sequential and hierarchical, meaning that the day-ahead stage is
not taking into account the uncertainty of variables but simply using a point forecast.
In the case where the leaders in hierarchical structures take into account the reaction
of the followers by modeling their behaviour, the hierarchical structure becomes a
closed loop problem, where the leaders optimize their own metric being aware of fol-
lowers possible actions. For example, considering a day-ahead market with stochastic
information about the real-time outcomes of uncertain variables could be framed as
a hierarchical closed loop problem, with the day-ahead market as a leader. Another
example can be the activation of distributed reserves, where the local DSO has the
first pick rights and anticipates the actions of a TSO that also accesses those reserves
[41]. Another prominent use of hierarchical optimization is to analyze the optimal
coordination outcome when an idealized oversight authority can allocate exchange
prices to different agents [96], [130].

In contrast, distributed optimization structures are horizontal where agents are
not sorted by any hierarchy, such that their interactions more closely resemble peers
that interact with each other without centralized controllers. Such a distributed
structure can be used to describe agents that manage their domains simultaneously,
such as neighbouring regional system operators [46], [125]. Distributed systems can
converge to the same set-point or objective metric as their centralized counterparts, if
the distributed agents share the same objective function or metric and their commu-
nication is complete and adequate. In the case of differing objectives, the distributed
system operation may be subject to gaming strategies, which are difficult to math-
ematically analyze [131]. Distributed system designs are for example peer-to-peer
energy networks where agents communicate with each other to trade energy [11],
[132], [133]. When gaming strategies in distributed systems appear, the existence
and uniqueness of equilibrium points are often hard to prove. The case of distributed
operations within TSO-DSO coordination has been analyzed with a Generalized Nash
Equilibrium (GNE) approach in [41], [44].

The solution strategy of both distributed and hierarchical systems can be imple-
mented as GNE [44], [134]. While this may be over complex for simple interaction
mechanisms it can capture complex interactions between competing objectives in dis-
tributed or hierarchical system structures. In the case of gaming behaviour, the use
of GNE modeling, though computationally complex, can often shed light on complex
behaviour of agents and thus help to implement policies that are useful to society.
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2.4.2 Relation of decentralized operation to local DSO markets
In this thesis we study hierarchical markets, where the DSO may opt to reserve
capacity from DERs before they can participate in the wholesale markets. In [Paper
A], the hierarchy is an open-loop process, where the DSO is choosing an activation
scheme of DR units after the wholesale market has been cleared. The concept of
a DSO level market is expanded in [Paper B] to a closed-loop hierarchy, which is
analyzed with an idealized oversight authority that is regulating the interplay between
DSO and TSO to exchange flexibility capacity in the day-ahead stage. These flexible
resources are then activated in a perfectly coordinated real-time stage. The results
in [Paper B] show how local flexibility markets can approximate integrated central
market settings, thus approximating market completeness in a global fashion.

Market completeness is the concept where all assets have a price for every possi-
ble outcome of uncertainties [135]. This means that constraints in the optimization
problems should be valued at a single price available to all agents. No practical mar-
ket is entirely complete, but most literature assumes market completeness as part of
the social welfare maximization assumptions. In contrast, an incomplete market has
price gaps that arise due to imperfect coordination between different markets, and
therefore lead to sub-optimality in trading resources. The lack of arbitrage trading
options is one source of market incompleteness [125], [135]. In practice, the degree of
market completeness is often discussed when proposing new market designs.

Recently, with the proposals of ever more decentralized systems to schedule energy
and capacity in power systems, the concept of allowing market incompleteness has
emerged for TSO-DSO coordination [43] and also for peer to peer markets [91]. As
we show in [Paper B], the hierarchical organization of markets can lead to optimal
outcomes for the full system social welfare. However, this is an idealized situation
which is meant as a guideline for future design and implementation of coordination
policies. In general, for practical coordination schemes the question arises to which
extent market incompleteness, and therefore sub-optimality should be accepted.

2.4.3 Existing proposals for coordination
The design philosophy of current markets has to a large extent been inspired by tra-
ditional central power plants that need to be planned and scheduled in the day-ahead
stage with lead-times of 12 to 36 hours. Also the traditional vertical operation of
power systems has influenced the market design. This has lead to the implemen-
tation of the day-ahead market as a forward trading spot market, where today the
majority of energy is traded. Also, the majority of the flexibility has traditionally
been provided by large centralized power plants in the form of excess generation
capacity.

In contrast, the flexibility of future power systems is in large part expected to
be located at the low-voltage level in the form of demand response and other DERs.
Further, decentralized generation in distribution networks is expected to inject large
amounts of energy, in the form of rooftop solar PV or residential battery storage
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facilities etc. The DSO may therefore consider to use local flexibility, in order to
avoid overloading the low-voltage distribution feeders [56].

Coordination between TSO and DSO can happen in the various time-stages of ex-
isting and proposed markets. The traffic light concept has been proposed in several
independent works to coordinate the DSO with different markets [8], [63], [93], [136]–
[138]. This concept has the DSO acting with oversight authority on DERs participat-
ing in different markets that schedule or activate reserves and/or energy and defines
different operating conditions according to traffic light colours (i.e. a normal state
without interference, an alert state where the DSO restricts certain trades or actively
re-dispatches, and an emergency state where trading is suspended). For example,
the day-ahead market which in Europe is cleared independently of system operators
can be used for coordination, if the DSO regulates the participation in the market.
The prime objective for the DSO is congestion management, while for the TSO it is
balancing power and congestion management [8]. When flexible resources are used
to respond to the uncertainty of RES, it is logical to expect that the coordination
should happen as close to real-time as possible, when a large part of the uncertainty
has been removed due to better short term forecasts [17]. However, the bulk of en-
ergy is traded in the day-ahead market, and some degree of coordination early on can
decrease the expected costs of operating the power system [63]. This argument can
be amended by the fact that moving closer to real-time the prices increase for energy
and balancing capacity [96].

Below some recent coordination proposals are presented with explanations and
comments. The terminology used here is not based on any consensus, rather it is
used as a reference within this thesis. There exists little to no consensus on specific
terminology related to TSO-DSO coordination. The closest to a consensus would
be the presented schemes of the SmartNet project [80] of which some terminology is
adapted here and has also been used in other publications. Rather than presenting
new terminology or accept a consensus, it is here the main target to collect and ex-
plain some schemes to give the reader some background knowledge and to contrast
the different proposed schemes. A comprehensive overview of different coordination
mechanisms between TSOs and DSOs can be found in [63], where also the coordi-
nation methods are compared to methods of coordination between different TSOs.
Coordination among several TSOs becomes important when access to balancing ca-
pacity and ancillary services connected to neighbouring TSOs and/or pricing zones
is enabled. Many of the current TSO-TSO coordination schemes have been used as
inspiration for new TSO-DSO coordination proposals.

• Centralized common TSO-DSO market: This coordination structure has
been proposed by Caramanis et. al. [46], which requires an integrated clearing
and activation of energy and reserves. Essentially it amounts to co-optimization
when scheduling both transmission and distribution level networks, and there-
fore is a very complicated and large problem to solve. The main scientific con-
tributions in [46] is (i) to include extra variables for the flow of reserve power
when scheduling it, such that activation of it always becomes feasible and, (ii)
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to decompose the problem into localized problems that communicate with each
other in an iterative manner to achieve global optimality. This scheme can bring
the total system social welfare close to the global optimum if the communica-
tion between the decentralized market agents is adequate. The decentralization
methods that have been proposed are consensus based algorithms based on the
alternating direction method of multipliers. These methods are in turn derived
from Lagrangian relaxation techniques and the market agents need to exchange
dual variables (prices) to update each other on the desired set-points. With
modern consensus based algorithms the dual variable updates can happen asyn-
chronously.

• Decentralized common TSO-DSO market: The DSO and TSO both oper-
ate their own flexibility markets, while there are cost functions at the interface
to share flexibility. In the day-ahead stage, coordination could happen like
in [48], which modelled a cooperative game through Shapley-value allocations
when the DSO and TSO reserve flexibility. The coordination in real-time is
more problematic, as the feasibility of power flows has to be ensured all the
time. Therefore, the DSOs must calculate a feasible space for power flows at
the interface with the TSO. The DSO has to do this before the clearing of the
TSO balancing market and therefore the DSO is agnostic about realization of
uncertain variables. One method is for the DSO to provide the market clearing
agent a “residual supply function” with prices for different adjustments of the
energy flow at the interface for real power as was done in [139]. The shared
functions should be linearized around the operating point. The residual supply
function can be extended by incorporating reactive power flow at the interface,
which amounts to providing the TSO balancing market with a two-dimensional
feasible space with different prices for flow adjustments [49]. An extension of
this is to incorporate the probabilities of the underlying feasible injection region
by stochastic optimization [50]. This will allow the injection region to be always
feasible under different realizations of uncertain variables.

• Trade permission system: The main idea for coordinating here is to have
a centralized market which collects bids and offers from both TSO and DSO
connected units. Coordination is achieved by the DSO blocking any trade that
is infeasible within its own network, which is achieved through forecasting by the
DSO. This scheme is labeled “centralized ancillary services market” in the case
of referring to real-time coordination under this scheme and is used within the
SmartNet project. The scheme works for both the day-ahead market trading,
where the DSO can block bids and offers that violate its network constraints, or
for the balancing procurement in the ancillary services market of the TSOs. The
DSO must ex-ante calculate the power flow in its system taking into account
the uncertain nature of uncontrolled loads and PV generation, and then limit
the offers and bids of flexible loads and generators to the global markets. This
scheme is closely related to the notion of a traffic light concept.



30 2 TSO-DSO coordination of flexible resources

• Local flexibility market: Under this scheme the DSO operates separate mar-
kets to provide services for itself from units either connected to its own domain
while also having the option to contract offers from the TSO domain. There are
different views on what responsibilities should be given to the DSO. For exam-
ple, in some works it has been proposed that the DSO becomes responsible for
balancing power such that it will operate an ancillary services market similar
to the TSO. Other works are however more adherent to the current structure
where the DSO markets are solely for congestion management and the TSO re-
mains the balancing regulator. In the SmartNet project, this scheme is coined
“local ancillary services market”, which clears different markets at TSO and
DSO level, depending the imbalance location. This scheme can be very difficult
to control due to contradicting objectives and possibly gaming behaviour by
the TSO and DSO. For example, DSO connected units participate in a TSO
ancillary services market without coordination with the DSO, or vice-versa if
the DSO procures services from TSO connected units. A series of papers have
analyzed the gaming behaviour that may occur between TSO and DSO through
non cooperative games cast as GNE problems [41], [42], [140].

If the responsibility of the DSO is only congestion management, like it is the case
today, the local DSO markets are merely used to reschedule flexible units such
that line rating will not be violated. This can be done ex-ante market clearing,
in order to reserve some flexibility for a re-dispatch after market clearing. The
issue is then, how flexible units prioritize the participation in DSO or TSO
markets. Local flexibility markets can have issues with coordination both at
the day-ahead stage and the real-time stage.

• Shared balancing responsibility: The term stems from the SmartNet project
and may also be understood as “local units for local markets”. The scheme al-
lows flexibility of DSO connected resources only to be available to the DSO and
TSO connected resources only to be available to the TSO. This coordination
scheme takes advantage of the fact that the only thing the DSO and TSO need
to agree on is the power flow in the interface. Once the interface flows are fixed,
each system operator needs to balance its own network with respect to its own
network constraints. One option is to calculate the interface flows from the
day-ahead market and then not allowing the interface flow to change in sub-
sequent flexibility or ancillary services markets. Under this scheme the global
system optimality is hard to achieve, if the day-ahead dispatches are not coor-
dinated well. For example, using the outcomes of interface flows inferred from
current forward markets (day-ahead and intra-day markets) where all units par-
ticipate equally without restrictions, there will not be any coordination leading
to global sub-optimality. The shared balancing responsibility is the only coor-
dination scheme where the TSO has no access to DERs in the DSO networks.
This may limit the usefulness of this approach, however it is very practical as
there is a clear distinction between the areas of responsibility. Also, the DSO
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becomes responsible for real-time balancing of its own network, and therefore
has to mimic the TSO when operating its networks.

The above mentioned different coordination schemes have applications in different
temporally spaced markets. The time-frame of coordinating the networks and thus
the connected units is important, and therefore we here highlight the differences
between real-time and day-ahead coordination. In figure 2.6 a schematic of possible
coordination time stage is presented. The DSO can either coordinate in the day-
ahead stage when the spot-market is cleared, or in real-time when the TSO is using
flexibility to balance the production and consumption. As mentioned earlier, the spot
market is not taking into account the uncertainty of any RES or loads, mainly due
to pricing and regulation issues. Therefore the temporal coordination of day-ahead
and real-time markets is not used for wholesale markets. However, the DSO is not
limited by the same regulations and can therefore clear a day-ahead flexibility market
with stochastic information and coordinate with the day-ahead wholesale markets or
day-ahead scheduling of reserves. For example, the DSO can limit the day-ahead
sale of energy by DERs in the wholesale market in order to leave ample capacity
to react to real-time fluctuations in production and consumption. In real-time, the
DSO can coordinate the activation of flexibility with the TSO according to the above
mentioned schemes.

Figure 2.6: Time frame of coordination methods. The day-ahead spot market is
myopic with respect to uncertainties in real-time. Therefore the line
from Spot market to TSO is dashed. In contrast the DSO can use
stochastic information to plan the day-ahead dispatch.





CHAPTER 3
DSO-level optimal

power flow methods
The physical properties governing the power system can have implications to the
market outcomes of electric energy markets. Currently energy wholesale markets
are cleared with deterministic views on outcomes of uncertain variables, such as the
intermittent Renewable Energy Source (RES) production, and without information
regarding nodal power flows. The power flows are later optimized by the system
operators if there is need for corrections. Therefore, the Optimal Power Flow (OPF)
models have implications with relation to the activation of reserves and balancing
offers close to the real-time stage for the Transmission System Operator (TSO). The
Distribution System Operator (DSO) may also choose to use these models to optimize
the power flows in its network, whether it is regarding capacity allocation or activation
of flexible resources either in day-ahead or other time stages.

This chapter reviews the mathematical models used to model network properties,
that will later be used in connection with market based methods to exploit potential
flexibility of Distributed Energy Resource (DER).

3.1 Original optimal power flow models
The relation of currents, voltages and power in an AC power-system is described by
a set of non-convex equations. This is due to the sinusoidal nature of the voltages
and currents. The relation can be stated in the form of quadratic equations, and thus
the full AC-OPF model is a non-convex Quadratically Constrained Program (QCP)
model [141].

3.1.1 Short detour into graph theory and network representation
The power flow models can be stated in two equivalent ways, the Bus Injection Model
(BIM) or the Branch Flow Model (BFM) depending on which variables are chosen to
represent the model. As the name suggests, in BIM the main variables represent nodal
power injections and nodal voltages. In contrast in BFM, the variables represent line
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flows of apparent power and currents. Because the models represent the same systems,
they are equivalent, however their difference in notation give them different qualities
in analyzing power flows. For a comprehensive description of the two models and
proof of equivalence between them we refer the reader to [142]. We will here give a
short summary of the particularities of the two models .

Consider first the BIM. Let the network be represented by an undirected graph
G̃ = (N , L̃), where N is the set of vertices (nodes) and L̃ ⊆ N ⊗ N is the set of all
edges (lines). Here ⊗ denotes the Cartesian product of the sets of all nodes N . The
graph is undirected which means (n,m) ∈ L̃ if and only if (m,n) ∈ L̃. For a line
l that connects node n to m we write l = (n,m) ∈ L. The notation l ∈ n ∼ m is
used to denote the set of all lines from node n. We use l = (n,m) and l ∈ n ∼ m
interchangeably to denote a link. In BIM, all variables are indexed by n ∈ N while
the weights (impedances in the case of power systems) belonging to edges L̃ are
undirected, i.e. Znm = Y −1

nm , being the impedance in line l = (n,m) and Znm = Zmn.
We also write Zl and Yl for the line impedance and admittance respectively.

In contrast, the BFM adopts a representation that pertains to a directed multi-
graph G = (N ,L) and all flow variables are directed. Specifically, L ⊆ N ⊗ N and if
(n,m) ∈ L then (m,n) /∈ L. We use (n,m) and l ∈ n → interchangeably, to denote a
line from node n. The line ending in node n is (m,n) = l ∈→ n. We will also use the
notation n ∼ m in relation to BFM to denote either (n,m) or (m,n) as it is mostly
unambiguous what is meant. Any variables that describe line-flow are not necessarily
undirected, meaning that pl = pnm ̸= pmn = pl′ . In BFM the line flows are the
main variables which are directed depending on which end of the line is assumed the
sending end (i.e. sending end power is not equal to receiving end power because of
losses).

3.1.2 Mathematical representation

The full non-convex QCP-OPF model can be written in set notation in quite compact
form. The objective function f(Ξ) is not explicitly defined here. We use Ξ to denote
the variables in the optimization problem. These consist of active power variables,
reactive power variables and voltages, Ξ = {p, q, v}. Many possible choices exist
for the objective function including generation cost minimization, loss minimization,
social welfare maximization etc. The generic OPF model is given in model (3.1) in
complex set notation. Here we use the BIM model, which we augment with a variable
for active and reactive power line flow pl and ql, thus using a hybrid BIM. This is
possible as the two models are equivalent as shown in [142]. These “flow” variables
can however easily be substituted away by combining equations (3.1b) with (3.1c)
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and (3.1d), which yields a pure BIM.

min
Ξ∈X

f(Ξ) (3.1a)

s.t. sl = vn (v∗
n − v∗

m)Y ∗
nm, ∀l = (n,m) ∈ L, (3.1b)∑

l∈n∼m

pl = pn, ∀n ∈ N , (3.1c)∑
l∈n∼m

ql = qn, ∀n ∈ N , (3.1d)

Pn ≤ pn ≤ Pn, ∀n ∈ N , (3.1e)
Qn ≤ qn ≤ Qn, ∀n ∈ N , (3.1f)

p2
l + q2

l ≤ F
2
l , ∀l ∈ L, (3.1g)

V n ≤ |vn| ≤ V n, ∀n ∈ N , (3.1h)
sl = pl + jql, ∀l = (n,m) ∈ L. (3.1i)

Note here that OPF problem (3.1) does not have any notation for the current. The
problem covers the power flows completely by modeling active, reactive power in-
jections and complex voltages. Later we will convert to the BFM where modeling
current is appropriate, as will be shown in section 3.3.1. Here v is a complex column
vector with entries vn which are variables for the voltage phasor at each node n. The
line admittance is Ynm for a line l = (n,m) ∈ L.

Parameters with overlines and underlines denote upper and lower bounds, re-
spectively. The nodal voltages are linked to line flows in (3.1b) through the line
admittance, where v∗

n denotes complex conjugate voltage at node n. Nodal power in-
jections and the line flow are related in (3.1c) and (3.1d) for active and reactive power
respectively. The box constraints (3.1e) and (3.1f) limit active and reactive power
injections. The apparent line flow limit is F l, which limits the active and reactive
line flows in constraint (3.1g). The constraint in (3.1h) limits the voltage to upper
and lower bounds, while (3.1i) is the apparent power flow in a line and j =

√
−1.

Lets denote the feasible set of optimization (3.1) as X ; this set is non-convex
because of constraint (3.1a). This constraint is a quadratic constraint due to the
multiplication of voltages on the right-hand side. The convex relaxation techniques
that we use later in the form of conic optimization are finding lower bounds to problem
(3.1) by optimizing over the convex hull of X [143].

The constraints (3.1b) through (3.1d) can be reformulated using the admittance
matrix of a transmission or distribution network. The definition of the admittance
matrix is:

Ynm =


−Ynm, if n ̸= m and n ∼ m,∑

m∼n Ynm, if n = m,

0, otherwise.
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The voltage vector can then be related to the real and reactive power injections by
the following equation:

pn + jqn = diagn(vv∗Y∗), ∀n ∈ N ,

where diagn(·) is the nth diagonal entry of a matrix and Y∗ denotes the hermitian
(complex) transpose. Using the admittance matrix instead of (3.1b),(3.1c) and (3.1d)
in (3.1) is fully equivalent. If this notation is used it will give the pure BIM instead
of the hybrid model we present in (3.1).

The formulation in (3.1) is a steady state approximation of real power systems,
as it omits things such as phase-imbalance, transformer tap-positions, harmonics,
dynamics, load- and generator-models to name a few [141]. However, this model
even due to its seemingly simplicity is NP-hard [144], [145]. This means there is
no performance guarantee for any known algorithm to converge to a global optimal
solution.

3.1.3 Voltage polar coordinate representation
The model in (3.1) is written in voltage-rectangular complex notation. This can be
very beneficial for short-hand notation, however a more intuitive notation from the
power-systems perspective, can be the voltage polar notation. In this way, a sense
of voltage angles is maintained which can help understanding the nature of active-
reactive power flows and their relation to sinusoidal voltages and currents of AC
power transmission. This notation also removes the use of complex notation in favor
of phase angles and magnitudes. The complex voltage is rewritten using v = |v|ejθ,
where | · | denotes magnitude and θ is the phase angle of the voltage phasor. The
voltage-polar coordinate system OPF is achieved by replacing constraint (3.1b) with
the following two constraints:

pl = Gl|vn|2 − |vn||vm| (Gl cos (θn − θm) −Bl sin (θn − θm)) , ∀l ∈ L, (3.2a)
ql = Bl|vn|2 − |vn||vm| (Gl sin (θn − θm) +Bl cos (θn − θm)) , ∀l ∈ L. (3.2b)

Here, clearly the constraints in (3.2) are also non-convex due to sinusoidal relations
of power flows and voltage angles.

3.2 Linear approximations
In the literature, the linear power flow approximation is generally denoted as the
DC-OPF, however this is a bit of a misdemeanor, as DC power transmission still
contain losses and voltages which are non-convex and omitted in the linear OPF.
The linear OPF is achieved by setting all voltages in the system to one per-unit,
and assuming that conductances Gl are negligible compared to the susceptances Bl.
Furthermore it will be assumed that the angle differences θn − θm are small, such
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that sin (θn − θm) ≈ θn −θm. It will be assumed that the active power flows are large
compared to reactive power flows, therefore all reactive power flow are removed.

The result is the following approximation:

min
Ξ

f(Ξ) (3.3a)

s.t.
∑

n

pn = 0, (3.3b)

pl = Bl(θn − θm), ∀l = (n,m) ∈ L, (3.3c)∑
l∈n∼m

pl = pn, ∀n ∈ N , (3.3d)

Pn ≤ pn ≤ Pn, ∀n ∈ N , (3.3e)
|pl| ≤ F l, ∀l ∈ L. (3.3f)

It can be noticed that the model ignores the losses in the system as (3.3b) forces the
sum of all injections to equal to zero. The line flow in (3.3c) is a first order Taylor-
series approximation of the sinusoidal term in (3.2a). Further, the model omits the
reactive power flows and injections. This linear model has been shown to give a good
approximation where active power losses and voltages are not too important, as is
often the case in high-voltage transmission system. Because of its tractability it is
often used by TSOs to optimize power flows.

A different method of representing the linear OPF can be achieved by applying
power transmission distribution factors as first presented in [146]. This way, the angle
variables θn disappear, and the injections are related to line flows through shift factors.
Using the power transmission distribution factors may result in a model with slightly
less computational burden due to the reduced number of variables.

3.2.1 Decoupled linear power flow

The decoupled power flow is the linear power flow approximation given in (3.3) with
an additional linear approximation of the reactive power flow. It is called decoupled
because the reactive power flow is not linked to the active power flow. The same
assumptions as in the linear power flow are here made, except that only one of the
multiplicative voltage magnitudes |vn| in equation (3.2) is set to one, instead of both.
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Thus, the decoupled linear power flow is given as:

min
Ξ

f(Ξ) (3.4a)

s.t. ql = Bl (|vn| − |vm|) , ∀l = (n,m) ∈ L, (3.4b)∑
l∈n∼m

ql = qn, ∀n ∈ N , (3.4c)

Q
n

≤ qn ≤ Qn, ∀n ∈ N , (3.4d)
V n ≤ |vn| ≤ V n, ∀n ∈ N , (3.4e)
Equations (3.3b) - (3.3f) (linear Power Flow). (3.4f)

The decoupled linear power flow equations now also maintains a sense of voltage mag-
nitude, the voltage is only dependent on the line susceptance since it is assumed that
lines are lossless. The voltage estimation can be improved for distribution networks,
where it is the case that the reactance is smaller than the resistance (i.e. Xl << Rl) by
including the resistance in the voltage estimation. The simple voltage approximation
that links active and reactive line flow with voltage magnitude is from [147]:

|vm|2 = |vn|2 − 2(Rlpl +Xlql), ∀l ∈ L. (3.5)

It is important to notice that the expression in (3.5) uses squared voltage magnitude.
Therefore, the process to linearize is to replace the squared voltage magnitude with
another variable un = |vn|2. For radial systems the equations (3.4b) can be removed
due radial power flows only having one possible flow path which will be discussed in
the next section.

3.2.2 Network flow in radial systems
In the linear power flow approximation in (3.3) and (3.4), the line flow is governed
by the line susceptance as the dominant factor to define the flow in each line as a
function of nodal injections. This means that the power flow can not just take any
arbitrary path from node n to m but is restricted by an approximation of Ohm’s
law and as such must flow along all possible paths with flow magnitudes according
to the line weight (i.e. susceptance). This model is very useful when the network
is meshed, because there will be several paths from one node to another. However,
in radial networks there is only one possible path between any two arbitrary node
sets. A network is called radial if the undirected graph G that describes its network
is a tree [32], [33], [60]. Most distribution networks are typically radial due to safety
reasons. Because radial (tree) networks are a simplification of general graphs, the
line flow equations can be simplified. Equation (3.3c) and (3.4b) can therefore in the
case of a radial system be simplified into (3.6). This simplification somewhat reduces
computational burden as it removes the voltage angles from (3.3c) and the voltage
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magnitude from (3.4b) and thus reduces the number of variables.

pl′ + pl = 0, ∀l ∈ L, (3.6a)
ql′ + ql = 0, ∀l ∈ L. (3.6b)

The notation pl′ indicates the flow in the line when reversing sending and receiving
end, i.e. l = (n,m) and l′ = (m,n). The flow equations in (3.6) are also called
the network-flow approximation, and have been inspired by the traveling salesman
problem because the power can flow along any possible path between a node set n
and m. If the network-flow model is used for meshed networks, it will result in a
crude approximation of the power flows, however for radial networks it is equivalent
to the linear OPF in (3.3).

To recap, here all the constraints in the radial distribution system linear decoupled
OPF with voltage approximation are collected together.

min
Ξ

f(Ξ) (3.7a)

s.t.
∑

n

pn = 0, ∀n ∈ N , (3.7b)

pl′ + pl = 0, ∀l ∈ L, (3.7c)
ql′ + ql = 0, ∀l ∈ L, (3.7d)∑
l∈n∼m

pl = pn, ∀n ∈ N , (3.7e)

Pn ≤ pn ≤ Pn, ∀n ∈ N , (3.7f)
|pl| ≤ F l, ∀l ∈ L, (3.7g)∑
l∈n∼m

ql = qn, ∀n ∈ N , (3.7h)

Q
n

≤ qn ≤ Qn, ∀n ∈ N , (3.7i)

V 2
n ≤ un ≤ V

2
n, ∀n ∈ N , (3.7j)

um = un − 2(Rlpl +Xlql), ∀l ∈ L. (3.7k)

3.2.3 Linear loss approximation
In the previous section we have shown how to include an approximation for the voltage
magnitude in the linear OPF approximation. An approximation of losses is slightly
more complex, since losses approximately are quadratic to the flow in a line. There-
fore, the approach taken in reference [148], [149] and presented here, incorporates
a sequential linear programming method in which sequential linear cuts are applied
to the optimization problem. This process is depicted also in Fig. 3.1 where three
iterations ν1 through ν3 are shown. For every added cut the approximation becomes
more precise and will usually converge after few iterations. For this procedure the
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Figure 3.1: Loss-cut procedure in sequential linear programming to approximate
losses. Linear loss-cuts are in green; they are added iteratively when
solving the linear OPF model. The blue curve shows the quadratic
relation between line-flows and losses.

whole OPF problem has to be solved iteratively, and for the first iteration there are
no losses. Subsequent iterations then add increasing losses through new linear cuts.

The loss in a line assigned to the node it is connected to can be approximated as:

P loss,fix
n =

∑
l∈n∼m

(
Rlp

2
l

2

)
=

∑
l∈n∼m

Rl

(
θn − θm

Xl

)2

/2, ∀n ∈ N . (3.8)

Here the losses are a quadratic function of the line flows. The procedure used in
references [148]–[150] is then to add half of the losses to the consumption of every
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node connected to the ends of the line. The loss-cut model is given in (3.9):

min
Ξ,y

(ν)
n ≥0

f(Ξ)(ν) −
∑

n

Cyy(ν)
n (3.9a)

s.t.
N∑
n

(
p(ν)

n − ploss(ν)
n − y(ν)

n

)
= 0, (3.9b)

p(ν)
n − ploss(ν)

n − y(ν)
n =

∑
l∈Ln

p
(ν)
l , ∀n ∈ N , (3.9c)

ploss(ν)
n −

∑
l∈Ln

(RlP
fix
lr )p(ν)

l ≥ −P loss,fix
nr , ∀n, r = {1, . . . , ν − 1},

(3.9d)
ploss(ν)

n ≥ 0 ∀n ∈ N , (3.9e)
Equations (3.7c)-(3.7k) (decoupled linear flow), (3.9f)

where r is the index of loss-cuts, and parameter P loss,fix
nr is the fixed loss obtained

from the line flow of the previous iterations by solving (3.8). A slack variable y(ν)
n

is introduced in order to upper bound the losses of the optimization problem; it is
added to the objective function, where it can add virtual losses at a small negligible
profit, in order to avoid adding high artificial losses in the intermediate iterations
before convergence, as detailed in [148]. Furthermore, parameter P fix

lr is the flow in
the line l connecting nodes n and m from the previous iterations. The problem (3.9)
has to be solved iteratively, adding one cut per iteration in (4.9d). The convergence
is reached at iteration ν once

∣∣∣∑n P
loss,fix
n,(r=ν) −

∑
n p

loss,(ν)
n

∣∣∣ ≤ ϵ, where ϵ is a small

tolerance. Note that the optimal value of slack variable y(ν)
n should be zero in the

final iteration.

3.3 Convex relaxations of optimal power flows
The full QCP-OPF problem in (3.1) can be rewritten into a model using matrix
notation by introducing the valid constraint W = vv∗. Substituting, the QCP from
(3.1) is rewritten as:

min
p,q,W

f(Ξ) (3.10a)

s.t. pl + iql = (diagn(W) − Wnm)y∗
nm, ∀l = (n,m) ∈ L, (3.10b)

V 2
n ≤ diagn(W) ≤ V

2
n, ∀n ∈ N , (3.10c)

W ⪰ 0, (3.10d)
rank(W) = 1, (3.10e)
Equations (3.1c) to (3.1g). (3.10f)
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The model in (3.10) is equivalent to the full non-convex QCP problem and it is a non-
convex Semi-Definite Program (SDP) model. Note here, that the notation diagn(W)
indicates the nth entry of the diagonal of matrix W. The notation ⪰ is used in the
sense of eigenvalues, i.e. constraint (3.10d) consitutes that the matrix W shall only
have non-negative eigenvalues. The eigenvalue constraint captures the definition of a
Positive Semi-Definite (PSD) matrix. Therefore, the difference of (3.1) and (3.10) is
that the voltage vector v is replaced with a semi-definite matrix W of rank one. The
only non-convexity in this model is arising from equation (3.10e) – by dropping this
constraint, it effectively becomes a SDP convex relaxation. Solving an OPF model
as a convex SDP was first proposed in [151] and the exactness of the relaxation was
discussed in [31]. This thesis does not use the SDP relaxation, but rather the Second-
Order Cone Program (SOCP) relaxed power flow presented next. This is because it
has been shown that SOCP models are in many circumstances exact relaxations of
the QCP model in (3.1) if the network is radial, and balanced three-phase operation is
considered. For meshed networks or unbalanced three-phase radial systems, the SDP
relaxation is a superior model, however it is much less tractable for large problems
than a SOCP relaxation.

The SOCP relaxation is achieved by further relaxing constraints (3.10d). This
relaxation technique was first proposed for the BIM in [34]. Any convex SDP can be
relaxed to an SOCP by relaxing some of the PSD constraints, as shown in [141, p.
23]. One necessary condition for a PSD matrix is that all the principal minors1 of the
matrix are non-negative. The SOCP power flow model relaxes this constraint only
requiring one-by-one and two-by-two principal minors to be non-negative instead of all
principal minors to be non-negative. Replacing equations (3.10d) with the following
two equations we obtain the SOCP relaxed OPF:

WnmW∗
nm ≤ diag(W)ndiag(W)m,∀l = (n,m) ∈ Ln, (3.11a)

diag(W) ≥ 0. (3.11b)

Note here that the main diagonal of the matrix W is the squared voltage magnitude
of the corresponding node n. With the SOCP relaxation, it can be noted that the
voltage angles are removed. This can be verified by examining the two sides of
constraint (3.11a). The left side is real-valued and thus the voltage angles are not
relevant, and the diagonals of the matrix W on the right hand side will also always be
real-valued. Therefore, the SOCP relaxation is also an angle-relaxation of the QCP
OPF. In [36], an SOCP with an angle approximation is introduced which is relevant
for SOCP power flow models in meshed networks. However, this is then not a convex
relaxation anymore but an approximation, albeit a very precise one.

1A minor is the determinant of a sub-matrix. A principal minor is the determinant if the diagonal
of the sub-matrix coincides with the main diagonal of the full matrix.
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3.3.1 Branch flow models of QCP and SOCP models
In the previous section, the power flow model is centered around nodal power injec-
tions and nodal voltages, and thus called the BIM as discussed in Section 3.1. One
can reformulate the QCP model (3.1) to be expressed in terms of squared current
magnitude and squared voltage magnitude which is termed the BFM.

The voltage angles are not important in radial networks as discussed earlier, since
flows are only able to move through one path between any two nodes. Therefore, the
BFM model for radial networks relaxes the voltages to remove angles to achieve a
simpler notation. The angle relaxed BFM was first described in [152] and called the
DistFlow equations. This simplifies notation for radial distribution systems because
it is a real-valued set of equations with fewer variables due to the discarding of the
angles. For radial networks, the angle relaxed QCP that is described by DistFlow
is equivalent to the full QCP and is also non-convex due to a quadratic equality
constraint.

In (3.12) the angle relaxed BFM is presented.

min
Ξ

f(Ξ) (3.12a)

s.t. p2
l + q2

l = φl|vn|2, ∀l = (n,m) ∈ L, (3.12b)
pl + pl′ = Rlφl, ∀l = (n,m) ∈ L, (3.12c)
ql + ql′ = Xlφl, ∀l = (n,m) ∈ L, (3.12d)
|vm|2 = |vn|2 − 2(Rlpl +Xlql) + (R2

l +X2
l )φl, ∀l = (n,m) ∈ L, (3.12e)

Equations (3.1b) - (3.1h). (3.12f)

Here φl is the squared current magnitude in line l = (n,m). The notation pl′ is the
power flow in the opposing direction of l = (n,m), i.e. l′ = (m,n). Equation (3.12b)
is the apparent power flow that is linked to current magnitude and voltage magnitude.
In (3.12c) and (3.12d), the active and reactive power losses are defined, respectively.
The voltage magnitude is linked to active and reactive line flows in (3.12d).

Convexification of branch flow model

In order to show that (3.12) is actually an angle relaxation of (3.1) we here show how
to derive (3.12e). Using Ohm’s law in complex notation with complex current Il and
line impedance zl the voltage drop from node n to m is given as:

vm = vn − Ilzl, (3.13)

where Il ∈ Z is the complex current in line l. To convexify we take the squared
magnitude of both sides which renders the voltage angles obsolete:

|vm|2 = |vn − Ilzl|2

= |vn|2 − 2Re[v∗
nIlzl] + |Il|2|zl|2

= |vn|2 − 2(Rlpl +Xlql) + (R2
l +X2

l )φl. (3.14)
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This shows that (3.12) is an angle relaxation of (3.1). Therefore, (3.12) is a model
that is real valued and uses the line flows as variables which is a BFM. This model has
been used in literature for distribution systems because it is exact for radial networks.
However, it is still a non-convex model due to (3.1b).

The SOCP branch flow relaxation can be easily derived since the only non-convexity
of (3.12), is equation (3.12b) and (3.1e). Equation (3.12b) is therefore relaxed to a
convex version by replacing = with ≥. The branch flow SOCP can be used with good
results in radial networks, such as distribution networks, where the exactness almost
always holds. The SOCP branch flow model was first presented in [60] and [153] (a
two part article). Only in radial systems with a lot of reverse power flow due to large
DER power injections the SOCP relaxation might not be exact. Sufficient conditions
in order to guarantee the exactness of the solution in radial distribution networks
were investigated in recent years (see [55], [59], [153], [154]), though they often shrink
the feasible space of the solutions such that the outcomes achieve worse objectives.
Alternatively, feasibility recovery of an inexact SOCP relaxation is proposed in [36].
The convex relaxation of (3.12b) is thus:

p2
nm + q2

nm ≤ φnm|vn|2. (3.15)

In order to maintain convexity we introduce a new variable un = |vn|2 to present
squared voltage magnitude. The full SOCP branch flow constraints can now be
collected as:

min
Ξ

f(Ξ) (3.16a)

s.t. p2
l + q2

l ≤ φlun, ∀l = (n,m) ∈ L, (3.16b)
pl + pl′ = Rlφl, ∀l = (n,m) ∈ L, (3.16c)
ql + ql′ = Xlφl, ∀l = (n,m) ∈ L, (3.16d)
um = un − 2(Rlpl +Xlql) + (R2

l +X2
l )φl, ∀l = (n,m) ∈ L, (3.16e)

Vn
2 ≤ un ≤ Vn

2
, ∀l = (n,m) ∈ L, (3.16f)

Equations (3.1c) to (3.1g) (Flow Limits). (3.16g)

The constraint in (3.16b) is an SOCP constraint in hyperbolic form. It can easily
be rewritten into standard SOCP form. An SOCP constraint is also called Lorentz
Cone or ice cream cone is a convex constraint. The standard SOCP constraint form
is as follows:

||Aixi + bi||2 ≤ cT
i xi + di,

where Ai ∈ Rn×m and xi ∈ Rn, bi ∈ Rm, ci ∈ Rn, di ∈ R. Here || · ||2 denotes the
2-norm.
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To show that (3.16b) is actually an SOCP we choose the following values for the
parameters [141]:

A =

 2 0 0 0
0 2 0 0
0 0 1 −1

 , b = [0], c =


0
0
1
1

 , d = [0].

With this choice of parameters we can now write the standard SOCP equation where
un = |vn|2 is the squared voltage magnitude:∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
 2 0 0 0

0 2 0 0
0 0 1 −1




pl

ql

φl

un


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
 2pl

2ql

φl − un

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤


0
0
1
1


T 

pl

ql

φl

un

 . (3.17)

Now it can be easily seen that (3.17) is equivalent to (3.16b).





CHAPTER 4
A local DSO-level

market
In Chapter 3 we collected the background material for Optimal Power Flow (OPF)
modeling in power systems. This chapter is leveraging these techniques and uses the
asymmetric block offers introduced in [58] to present a novel congestion management
tool for the Distribution System Operator (DSO). This chapter is based on the
contributions of [Paper A]. The asymmetric block offers introduce binary variables
which complicate the dispatch problem. Therefore, the impact of three different power
flow models is analyzed in depth, which highlights each of their implications to the
outcomes of the dispatched asymmetric block offers. The benefit of using asymmetric
block offers for congestion management, is that the rebound effect is inherently taken
into account in a market clearing mechanism that can be solved in one shot. Previous
works have used dynamic programming techniques in order to represent the effect
of Thermostatically Controlled Load (TCL)-based Demand Response (DR) rebound
which is difficult to align with classical market clearing mechanisms.

Structure of the chapter: The rest of this chapter is structured as following:
Section 4.1 presents the background for the proposed DSO level flexibility market.
Section 4.2 describes the implementation of asymmetric block offers, and explains the
congestion management mechanism. Section 4.3 proposes the congestion management
method using three different OPF models. Section 4.4 provides results for two case
studies; the first case study is a toy-example and the second case study is using the
IEEE 37-node test feeder.

4.1 Congestion management through asymmetric
block offers

If the Transmission System Operator (TSO) and DSO each have their own area to con-
trol and can access flexibility only from their local domains, as discussed in the Shared
Balancing Responsibility coordination scheme in Chapter 2, the DSO may choose to
re-dispatch local generators and DR units in order to meet grid constraints and avoid
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overloading the thermal line limits. Therefore, the market clearing outcomes from
the Day-Ahead (DA) market are input parameters to the DSO re-dispatch problem
represented in this chapter. A significant part of the flexibility of distribution network
connected Distributed Energy Resources (DERs) is expected to be in the form of DR.
The emergence of Information and Communications Technology (ICT), smart meters
and the internet-of-things have the potential to enable control of small scale DERs
and may bring great opportunities to the DSO in the future [9]. If enough DERs are
available to take part in an economic dispatch, the DSO can use them for ancillary
services such as congestion management. This way, peak-load hours on distribution
feeders can be mitigated by peak-shaving and valley filling, thereby flattening out the
daily load profile.

In this chapter we assume a separate market for flexibility on the DSO level,
which is operating ex-post (meaning after clearing) of the day-ahead market. This
way, current market structures are not necessarily changed, as all communication is
uni-directional. This means that the information is going from the market clearing
agent down to TSO and DSO, and the DSO does not need to share any information
with either. In other works it has been proposed that the DSO can share feasibility
maps of injection regions at the Point of Common Coupling (PCC) with either the
TSO or market clearing agent, in order for them to access flexibility that is located
at the DSO level [49], [50].

As discussed in Chapter 2, the rebound effect is caused by the underlying physical
properties of the DR unit (see also [18], [19]) in question. Modeling this has before
been done by dynamic programming [57]. This however requires iterative solution
techniques, that iterate between OPF models and dynamic models to describe DR
behaviour, and is therefore not compatible with any market clearing methods in
operation today.

Therefore, other alternatives are needed to model rebound effects within market
frameworks, e.g., new offering formats for DR units [37]. One appealing market-
compatible concept is asymmetric block offers [58], which include two parts, response
and rebound. Each part models either load increase or decrease. One can view the
combination of these two parts as a load shifting offer in time, but without a time gap
between response and rebound time periods. We use the concept of asymmetric block
offers, because it allows us to model rebound a priori in our market model without
the need for an iterative clearing process.

The asymmetric block offers1 are binary constructs, meaning that they cannot
be accepted partially. Therefore, the binary variables that determine their activation
increase the computational complexity into being a combinatorial problem that is in
general NP-hard to solve. With modern branch-and-bound or similar algorithms there
have been great improvements in solving discrete problems in recent years however
there exist no proofs of convergence in polynomial time. For an overview of recent

1Adding block offers is common place in European zonal electricity markets, as conventional gen-
erators are allowed to submit different types of block offers to ensure their internal unit commitment
constraints [110].
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advances in combinatorial branch and bound algorithms we refer to [155]. As a way
to analyse the complexity of the presented combinatorial problems, we examine in
this chapter how the changing of the power flow models affect the outcomes and
computational burden and precision of the achieved results. This is done with the
intent of offering a quantitative assessment of different clearing methods to DSOs
that wish to employ asymmetric block offers.

In any DSO-level mechanism involving DR units, it is of importance to model
rebound effect, otherwise it may cause another unforeseen congestion. Also in any
mechanism without modeling rebound effects, DR units may not be optimally sched-
uled to exploit their maximum potential flexibility. In the existing literature on
congestion management2 no work has yet addressed the rebound effect of DR units.
The rebound effect of DR units was modeled for a balancing market without grid
representation in [58], where the concept of asymmetric block offers was introduced.

The following points highlight the contributions of the work presented in this
chapter based on [Paper A]:

1. We develop a re-dispatch mechanism for a DSO as an ex-post congestion man-
agement action, while a-priori accounting for rebound effects of DR units using
asymmetric block offers.

2. We provide a comprehensive analysis to explore how different grid representa-
tions change the re-dispatch outcomes and the computational burden.

3. We develop the following three distribution optimal power flow (OPF) models
in connection to the asymmetric block offers:

• Mixed-integer Linear Program (MILP) model with voltage approximation
(lossless) (similar do LinDistFlow in literature [147], [152])

• MILP model with voltage approximation and nodal distribution of losses
(iterative solving of OPF model required), [148]–[150]

• Mixed-integer Second-Order Cone Program (SOCP) model which is a conic
relaxation of the exact Quadratically Constrained Program (QCP) OPF
formulation [31], [32], [59], [60], [153]. The solutions can be analyzed for
exactness and in such case are AC-feasible [33]. If not, the AC-feasibility
recovery methods have to be employed [36].

4. We analyze the effect of sufficient conditions that guarantee the exactness of
the MI-SOCP solution as presented in [55], [154].

In the results section, it is demonstrated that the MILP models have superior com-
putational performance when compared to the SOCP models, but at the cost of
reduced precision. Particularly in table 4.4 the results are summarized. The voltage
calculation of the MILP models lack precision when compared to the SOCP model

2See [56] for a systematic overview on congestion management in distribution networks.
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and when validated with an ex-post power flow method based on forward-backward
sweep. However, the MILP model with loss approximation gives a reasonably good
approximation of the losses in the lines.

4.2 Congestion management using asymmetric block
offers

Figure 4.1: Two examples of possible asymmetric block offers for a DR unit. Pos-
itive/negative regulating power corresponds to up/down-regulation, re-
spectively. In offer 1 (upper plot), the response part (in blue) provides
up-regulation, i.e., a decrease in load power consumption. Its rebound
(in yellow) corresponds to a subsequent load increase, i.e. down regula-
tion. Further, offer 2 (lower plot) includes down- and up-regulation in
response and rebound parts, respectively. Figure is from [Paper A].

In this section we briefly discuss the details of asymmetric block offers. For a more
in depth explanation see section II of [Paper A].

4.2.1 Asymmetric block offers
Many works have proposed using TCL as DR units [21], [26], [92]. This is possible
because the thermal inertia of buildings, fridges and water heaters to some degree
decouples the use of electric power from the actual utility. This means that the
temperature and the utility to the end-user of the underlying device is not dependent
on continuous power usage and can be dynamically scheduled. With the emergence
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of smart meters and modern ICT technology it is expected that these units can
be aggregated and offered in various electricity markets to exploit their inherent
flexibility.

The asymmetric block offers simply mimic the underlying physical properties of
the underlying load and are transparent and easy to understand to the market clearing
entity. We visualize two asymmetric block offers in figure 4.1, where two examples are
plotted with different order of up- and down-regulation directions. By asymmetric,
it means that they can have different power consumption levels and duration for
response and rebound parts. The asymmetric block offers are indeed the market
offers of DR units or flexibility aggregators in general. Since this chapter looks at
the problem from a DSO perspective, the asymmetric block offers are exogenous, and
their synthesis are out of the scope of this work3.

4.2.2 Pricing the asymmetric block offers
Similar to unit commitment problems used in US-style markets [157], the use of mixed-
integer programming for market clearing poses problems with regards to pricing the
traded products. In general, in market clearing problems that need a single equilib-
rium price at which all trades are paid, the prices are the first-order derivatives of the
energy balance constraints. However, first order derivatives are not defined for the
discontinuities introduced by binary variables. Therefore, the derivatives are most
usually found by fixing the binary variables and solving the resulting continuous prob-
lem. In the case of a generator (in our case DR unit) being the marginal producer,
which is subject to an integer variable, the found prices will not support the costs of
the marginal producer. This problem has been known for a long time in US markets,
which use mixed-integer methods for unit commitment problems. In the case of a
marginal producer that is activated by a binary variable a method to pay this genera-
tor in order not to be paid below the marginal offer needs to be found. One viable way
to guarantee cost recovery is uplift payments [158], which is a framework that makes
sure that all producers are paid at least their offering price. In [159] the differences
of pricing methods for discontinuous problems are discussed, especially the focus is
on convex hull pricing. We do not go more into depth about the pricing mechanisms
in this thesis, but the reader and possible users of asymmetric block offers need to be
aware of the pitfalls of different pricing schemes when non-convexities are present in
the market clearing problem.

4.2.3 Congestion management: framework and assumptions
The market clearing agent for the day-ahead market does not take into concern any
nodal topology and line flow and therefore the outcomes may cause congestion at
DSO level. If congestion has to be mitigated by active control, the DSO may be

3We refer the interested readers to [156] for offering strategy problem of DR units and flexibility
aggregators using asymmetric block offers.
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considering market based methods which use economic incentives to local units to
correct any scheduled congestion. The line congestion may be caused both by thermal
line limits (i.e. the transmitted apparent power) or voltage violations (both over- and
under-voltages can cause congestion). Increasing demand for electrical power is going
to drive congestion issues and the expansion costs are expected to rise above the
costs of using Active Distribution Network Management (ADNM). The use of DR
for congestion management has been identified as a prime mover for ADNM [14]. We
here propose an ex-post local day-ahead market for the DSO which is to be cleared
right after the whole-sale energy market. Since a large volume of the DR units with
rebound characteristics are expected to be located in radial distribution feeders, it is
logical to use their load-shifting potential to resolve local issues.

In this chapter we consider both regular dispatchable generators and DR units
that offer asymmetric block offers. However, we leave out battery storage systems,
which however could be an extension of this work. The PCC is also considered as a
regular generator as the imbalance that is caused there will be offset by the TSO. The
Balance Responsible Party (BRP) and/or aggregator that is responsible for the units
taking part in the local redispatch will have to reimburse the TSO for the imbalance,
and they have to take into account this cost in their offers. The particularities of
the imbalance caused to the TSO and the resulting trading schemes are outside the
scope of this work, but an observation is that the redispatch by a DSO will be small
compared to other trades in TSO-level ancillary services markets.

After collecting the submitted offers, the DSO runs the congestion management
mechanism, whose objective is to meet local constraints at the minimum re-dispatch
cost. The outcomes are accepted offers for up- and down-regulation. Regarding the
potential uncertainty sources, e.g., load and renewable power uncertainties, we as-
sume that they have been already considered during the day-ahead market clearing.
Therefore, the proposed ex-post re-dispatch mechanism does not need to model again
those uncertainties. Moreover, the DSO may be unwilling to collect and manipulate
statistical data in order to model future uncertainties, because in current market
frameworks this duty falls to the market operator. However, the modeling of uncer-
tainty on the dispatch of local generators in a DSO congestion management market
could be an interesting future work.

The DSO-level networks are usually radial and congested lines can only be relieved,
if resources on both sides of the congestion are available for re-dispatch4. This is
because any up-regulation somewhere in the network has to be matched by an equal
down-regulation elsewhere (minus line losses). One important observation is that the
accepted offers for up- and down-regulation should be located on both sides of the
congested line, in order to maintain power balance.

4Since the PCC is always upstream, the downstream units are the most important ones (i.e. as
far away from the PCC as possible).
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4.3 Mathematical model

In this section the mathematical representation of asymmetric block offers is collected,
together with the relevant OPF models from Chapter 3 to offer a complete overview
of the proposed methods.

4.3.1 Mathematical representation of asymmetric block offers

This section provides a modified version of formulations for asymmetric block offers
from [58], yielding a set of mixed-integer linear inequalities. The binary variable odct

governs the activation of every offer d from unit c in time step t. The activation of
a block offer means that the full offer must be activated and therefore the binary
variables are linked across time-steps, which makes this an inter-temporally linked
problem. Therefore, the dispatch problem cannot be trivially decomposed into dif-
ferent time-steps, similar to any problem including ramping constraints or state of
charge modeling for batteries.

Asymmetric block offers beginning with up-regulation response, e.g., Offer 1 in
figure 4.1, are modeled by equations (4.1), while offers beginning with down-regulation
response, e.g., Offer 2 in figure 4.1, are represented by equations (4.2).

These two different kinds of block offers are differentiated by binary parameter Adc.
If Adc is set to 1, it indicates that block offer d of unit c begins with up-regulation, or
to 0 if it begins with down-regulation. The binary variable odct is a decision variable
to activate a given offer d from DR unit c in time step t.

{
rup

dct ≤ P rsp
dc odct, ∀d, c, t, (4.1a)

rdn
dct ≤ P rb

dc odct, ∀d, c, t, (4.1b)
t+T rsp

dc
−1∑

τ=t

rup
dcτ ≥ T rsp

dc P
rsp
dc (odct − odc,t−1), ∀d, c, t, (4.1c)

t+T rsp
dc

+T rb
dc −1∑

τ=t+T rsp
dc

rdn
dcτ ≥ T rb

dcP
rb
dc (odct − odc,t−1), ∀d, c, t ≤ |T | − T rsp

dc , (4.1d)

t+T rsp
dc

−1∑
τ=t

rdn
dcτ ≤ T rb

dcP
rb
dc (1 − (odct − odc,t−1)), ∀d, c, t, (4.1e)

t+T rsp
dc

+T rb
dc −1∑

τ=t+T rsp
dc

rup
dcτ ≤ T rsp

dc P
rsp
dc (1 − (odct − odc,t−1)), ∀d, c, t ≤ |T | − T rsp

dc

}
if Adc = 1.

(4.1f)
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The blocks beginning with down-regulation when Adc = 0 are given in (4.2).{
rdn

dct ≤ P rsp
dc odct, ∀d, c, t, (4.2a)

rup
dct ≤ P rb

dc odct, ∀d, c, t, (4.2b)
t+T rsp

dc
−1∑

τ=t

rdn
dcτ ≥ T rsp

dc P
rsp
dc (odct − odc,t−1), ∀d, c, t, (4.2c)

t+T rsp
dc

+T rb
dc −1∑

τ=t+T rsp
dc

rup
dcτ ≥ T rb

dcP
rb
dc (odct − odc,t−1), ∀d, c, t ≤ |T | − T rsp

dc , (4.2d)

t+T rsp
dc

−1∑
τ=t

rup
dcτ ≤ T rb

dcP
rb
dc (1 − (odct − odc,t−1)), ∀d, c, t, (4.2e)

t+T rsp
dc

+T rb
dc −1∑

τ=t+T rsp
dc

rdn
dcτ ≤ T rsp

dc P
rsp
dc (1 − (odct − odc,t−1)), ∀d, c, t ≤ |T | − T rsp

dc

}
if Adc = 0.

(4.2f)

Conditions (4.1a) and (4.1b) restrict up- and down-regulation rup
dct and rdn

dct to the
prescribed magnitude of response P rsp

dc and rebound P rb
dc , respectively. In (4.1c), the

length of the response, if offer d is activated, is set to the prescribed response time T rsp
dc .

Condition (4.1d) is similar to (4.1c), but for the rebound part of the block offer. Note
that |T | indicates the cardinality of set T . Condition (4.1e) ensures that variable
rdn

dct is 0 during up-regulation. Similarly, condition (4.1f) imposes rup
dct = 0 during

down-regulation. The equations for the block offers beginning with down-regulation
are similar to equations (4.1) and are given in equations (4.2).

In addition to (4.1) and (4.2), a minimum recovery period, if exists, needs to
be enforced. This condition is enforced by (4.3). Parameter T rec

dc corresponds to
the recovery time between the two consecutive asymmetric block offers (not between
response and rebound parts of a block offer). In other words, it enforces the minimum
recovery time between the rebound part of one block and the response part of the
next block.

t+T resp
dc

+T reb
dc +T rec

dc −1∑
τ=t+T resp

dc
+T reb

dc

(1 − odc,τ ) ≥ T rec
dc (odct − odct−1),

∀d, c, t ≤ |T | − (T resp
dc + T reb

dc ) + 1. (4.3)

In (4.4), it is ensured that each DR unit is only able to activate at most one block
offer in any time step: ∑

d

odct ≤ 1, ∀c, t. (4.4)
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The block offers need to be fully dispatched within the planning horizon, such that
no activated offers spill into the next planning horizon. This is enforced in constraint
(4.5).

1 − (odc,t+1 − odct) ≤ 2(1 − odc|T |),
∀d, c, t = |T | − (T resp

dc + T reb
dc ). (4.5)

In total, the collection of equations (4.1) through (4.5) are what is necessary to
describe the behaviour of the desired asymmetric block offers. When included in an
OPF model, these block offers can be dispatched optimally so that any congestion in
the network will be relieved. This is shown in the next section.

4.3.2 OPF revisited and relation to block offers
In Chapter 3 we introduced the different OPF approximation models and also convex
conic relaxations based on the AC-OPF. To quickly recap, a convex relaxation may
provide a lower bound on the cost associated with a non-convex optimization problem.
In the case of a convex relaxation, the duality gap is not necessarily 0, which means
that the outcomes are not fulfilling the constraints of the non-convex problem they
derive from. However, it is usually easy to check whether the outcome of a convex
relaxation model is exact. It turns out that for radial networks, the SOCP-based conic
relaxation is very often exact and even if not, provides very good lower bounds. The
lower bound can be used for feasibility recovery which has been documented in [36].
In contrast, approximations based on linear models can both over- and under-estimate
the variables in question. Most notably, the most common linear OPF models are
omitting line losses. The voltage approximations delivered by decoupled linear power
flow models, can also both over and under estimate the voltages. An in-depth analysis
of the voltage estimation of linear models is presented in [160].

We here assume balanced three-phase systems which simplifies modeling. In the
case of large phase imbalances the SOCP relaxation may not provide reasonable
outcomes and SOCPs are not amenable to modeling three-phase power flows. As
a more complex model the Semi-Definite Program (SDP) relaxation (as shown in
[161]) can be used to model phase imbalance in a convex model, however SDP is a
magnitude more complex to solve than SOCP and mixed-integer SDP solvers are not
very well developed at the moment.

We use three OPF models, but all with the same linear objective function given
in equation (4.6)5. This objective function minimizes the total system cost including

5The use of a linear objective function may have issues regarding uniqueness of the achieved
solution, which has been discussed in [162]. This means that there can be several equivalent solutions
due to the linear cost functions which may cause a divergence in solutions of similar OPF problems
of different agents involved in the clearing of the market. The solution to this is usually to use
quadratic cost functions which we here omit to keep the models as simple as possible.
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load shedding and redispatch costs of regular generators.

min
Ξ

f(Ξ) =
∑

t

[
Cp↑S

t pup,S
t︸ ︷︷ ︸

Cost of pup from TSO

− Cp↓S
t pdn,S

t︸ ︷︷ ︸
cost of pdn to TSO

+ Cq↑S
t qup,S

t︸ ︷︷ ︸
Cost of qup from TSO

− Cq↓S
t qdn,S

t︸ ︷︷ ︸
Cost of qdn to TSO

]
+
∑
n,t

[
CShedsup

nt︸ ︷︷ ︸
Curtailment cost

]
(4.6)

+
∑
i,t

[
Cp↑

it p
up
it︸ ︷︷ ︸

Cost of pup from gen.

− Cp↓
it p

dn
it︸ ︷︷ ︸

Cost of pdn to gen.

+ Cq↑
it q

up
it︸ ︷︷ ︸

Cost of qup from gen.

− Cq↓
it q

dn
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Cost of qdn to gen.

]
+
∑
d,c,t

[
CDR↑

dct rup
dct︸ ︷︷ ︸

Cost of rup from DR

− CDR↓
dct rdn

dct︸ ︷︷ ︸
Cost of rdn to DR

]
where Ξ is the set of optimization variables, including free variables {pnt, qnt, pnmt,
qnmt}, non-negative variables {pup

it , pdn
it , rup

dct, rdn
dct, s

up
nt , pup,S

t , pdn,S
t , qup

it , qdn
it , qup,S

t ,
qdn,S

t , unt}, and the binary variable {odct}.
The common constraints for all three OPF models are given in (4.7). Note that

DRdisp
ct , Ddisp

nt , Sdisp
t and P disp

it are parameters, indicating day-ahead market outcomes.

pnt =
∑

l∈n∼m

plt, ∀n, t, (4.7a)

qnt =
∑

l∈n∼m

qlt, ∀n, t, (4.7b)

pnt =
∑

d,c∈Ln

[
rup
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]
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DRdisp
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]
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]
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(4.7c)
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2
unt, ∀n, t, (4.7d)∑

d

rup
dct ≤ DRdisp

ct , ∀c, t, (4.7e)

pdn
it ≤ P disp

it , ∀i, t, (4.7f)

sup
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d,c∈Ln
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dct − rdn
dct

]
≤ Ddisp

nt +
∑

c∈Ln

DRdisp
ct , ∀n, t, (4.7g)
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it + P disp

it ≤ P cap
i , ∀i, t, (4.7h)
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∑
d

rdn
dct +DRdisp

ct ≤ P cap
ct , ∀c, t, (4.7i)

pup
it ≤ P

up
i , pdn

it ≤ P
dn
i , ∀i, t, (4.7j)

qup
it ≤ Q

up
i , qdn

it ≤ Q
dn
i , ∀i, t, (4.7k)

pup,S
t ≤ P

up,S
, pdn,S

t ≤ P
dn,S

, ∀t, (4.7l)

qup,S
t ≤ Q

up,S
, qdn,S

t ≤ Q
dn,S

, ∀t, (4.7m)
V sq

n ≤ unt ≤ V
sq
n , ∀n, t. (4.7n)

It must be noted that the proposed OPF method with asymmetric block offers should
include (4.1) - (4.7). The net active and reactive power injection at node n is linked
to corresponding flow in line l from node n to m (written as l ∈ n ∼ m) in (4.7a) and
(4.7b). The nodal active power balance is enforced by (4.7c). Note that the last term
of (4.7c) takes into account the shunt conductance of the lines6. The nodal reactive
power balance is enforced by (4.7d), which also takes into account the shunt suscep-
tance of the lines connected to node n. The up-regulation (load decrease) provided
by DR unit c is limited to its scheduled consumption DRdisp

ct in (4.7e). The down-
regulation (generation decrease) provided by generator i is restricted to its dispatch
from the day-ahead market by (4.7f). Constraint (4.7g) limits the curtailed load sup

nt

according to total scheduled consumption of flexible and inflexible loads from the day-
ahead market and provided regulation from DR units. The up-regulation (generation
increase) provided by conventional generator i is limited by (4.7h). Similarly, (4.7i)
restricts the down-regulation (load increase) provided by DR unit c. Constraints (4.7j)
and (4.7k) limit the active and reactive power regulation of conventional generator i
to its maximum capability. Similar constraints are applied to the import/export at
the PCC from transmission level in (4.7l) and (4.7m). Constraint (4.7n) limits the
voltage magnitude to the upper and lower thresholds.

4.3.3 Mixed-integer linear OPF (lossless)
The linear approximation of the AC-OPF which we introduced in Chapter 3, is here
coupled with the asymmetric block offers. It is possible by using this OPF method to
include the line congestion and voltage issues. Similar to LinDistFlow model in [30],
in order to have an approximation of both active and reactive power flow and their
effect on the voltage, the decoupled linear power flow is used. For the radial case, the

6Half of the shunt losses due to shunt admittance of every line connected to node n is subtracted
from that node. In general, shunt conductance of lines is small and can be ignored. However, shunt
susceptance can be significant in underground cables.
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linearized branch flow OPF boils down to problem (4.8):

min
Ξ

f(Ξ) as in (4.6) (4.8a)

s.t.
∑

n

pnt = 0, ∀t, (4.8b)∑
n

qnt = 0, ∀t, (4.8c)

plt + pl′t = 0, ∀l ∈ L, t, (4.8d)
qlt + ql′t = 0, ∀l ∈ L, t, (4.8e)
plt ≤ F l, ∀l, t, (4.8f)
umt = unt − 2 (Rlplt +Xlqlt) , ∀l, t, (4.8g)
(4.1) to (4.5) and (4.7). (4.8h)

Constraints (4.8d), (4.8b) and (4.8c) model the lossless linear power flow. To preserve
linearity, (4.8f) imposes the line capacity limit in terms of active power flow only.
Finally, (4.8g) links the voltage magnitude of two adjacent nodes with impedance and
power flows as a linear approximation. Similar to [30], a variable unt is introduced to
present squared voltage magnitude, such that the model remains linear.

4.3.4 Mixed-integer linear OPF with losses
The losses are modeled by an iterative solution of the linear OPF model which is
similar to the previous model in (4.8). The model is the same as in Chapter 3, and
it is here repeated for the sake of completeness in (4.9). Two new variables are
introduced y

(ν)
nt (a slack variable to ensure upper boundedness of the problem see

[148] for more details) and p
loss(ν)
nt (the nodal distribution of losses).

min
Ξ,y

(ν)
nt ≥0

f(Ξ)(ν) −
∑
nt

Cyy
(ν)
nt (4.9a)

s.t.
∑

n

(p(ν)
nt − p

loss(ν)
nt − y

(ν)
nt ) = 0, ∀t, (4.9b)

p
(ν)
nt − p

loss(ν)
nt − y

(ν)
nt =

∑
l∈n∼m

p
(ν)
lt , ∀n, t, (4.9c)

p
loss(ν)
nt −

∑
l∈n∼m

(Rl P
fix
ltr )p(ν)

lt ≥ −P loss,fix
ntr , ∀n, t, r = {1, . . . , ν − 1},

(4.9d)

p
loss(ν)
nt ≥ 0, ∀n, t, (4.9e)

(4.1) to (4.5), (4.7b) to (4.7n), (4.8c) - (4.8g). (4.9f)
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The parameters that are updated for every iteration are initialized at 0, i.e. P fix
lt,(r=1) =

0 and P loss,fix
nt,(r=1) = 0. After solving the model (4.9), these parameters are updated. The

nodal distribution of losses P loss,fix
ntr is updated with (4.10) and the line flow is set equal

to the flow, i.e. P fix
lt,(r=ν) = pν−1

lt .

P loss,fix
nt =

∑
l∈n∼m

(
Rl p

2
lt

2

)
, ∀n, t. (4.10)

The convergence is reached at iteration ν once
∣∣∣∑nt P

loss,fix
nt,(r=ν) −

∑
nt p

loss,(ν)
nt

∣∣∣ ≤ ϵ,

where ϵ is a small tolerance. Note that the optimal value of slack variable y(ν)
nt should

be zero.

4.3.5 Mixed-integer SOCP-OPF
The mixed-integer SOCP OPF model for radial distribution systems is presented in
(4.11) [141]. It is convex because all inequality constraints are convex and all equality
constraints are affine.

min
Ξ,φlt≥0

f(Ξ) as in (4.6) (4.11a)

s.t. p2
lt + q2

lt ≤ φltunt, ∀l ∈ L, t (4.11b)
plt + pl′t = Rlφlt, ∀l ∈ L, t, (4.11c)
qlt + ql′t = Xlφlt, ∀l ∈ L, t, (4.11d)
umt = unt − 2(Rlplt +Xlqlt) + (R2

l +X2
l )φlt, ∀l ∈ L, t, (4.11e)

p2
lt + q2

lt ≤ F
2
l , ∀l = (n,m) ∈ L, t, (4.11f)

(4.1) to (4.5) and (4.7). (4.11g)

Constraint (4.11b) is the convex relaxation and can be rewritten into standard SOCP
form, as detailed in Chapter 3. Constraints (4.11c) and (4.11d) are the active and
reactive power losses, respectively. Constraint (4.11e) relates the voltage drop to the
power flows and currents. In (4.11f) the line flow limit is enforced.

In our numerical studies, the sufficient conditions introduced in [55] are also added
to (4.11) to ensure zero duality gap (i.e., exactness) of the relaxation in radial net-
works7. These sufficient conditions are given in equations (4.12).

7Without sufficient conditions, the second-order cone constraint (4.11b) might be still binding
in specific cases (e.g., in the case studies of this chapter presented in Section 4.4), but there is no
exactness guarantee in general. In case of inexactness, an ex-post procedure for feasibility recovery
is required. In [36] it is shown how to recover the angles from the SOCP relaxation for a meshed
network. This method can be transferred to radial systems without loss of generality.
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The additional sufficient conditions to be included in the MI-SOCP OPF model
are listed below8:

ŝlt = snt +
∑

l∈n∼m

ŝlt, ∀l, t, (4.12a)

v̂nt − v̂mt = 2Re(Zlŝlt), ∀l, t, (4.12b)
Re(Zlŝlt) ≤ 0, ∀l, t, (4.12c)
v̂nt ≤ V

sq
n , ∀n, t, (4.12d)

where ŝlt = p̂lt+jq̂lt is a linear approximation of the complex line flows slt = plt+jqlt,
and Zl = Rl − jXl is the complex conjugate line impedance. snt = pnt + jqnt is the
complex nodal apparent power injection. Besides, v̂nt is a linear approximation of the
squared nodal voltage. These sufficient conditions are quite mild, as long as there is
no combined active and reactive reverse power flow on any line. The main condition
is (4.12c), which can be interpreted as: The reverse power flow can be either active
or reactive but not both9. In other words the active and reactive reverse power flow
(which is the power flow toward the PCC) can not simultaneously be positive.

4.4 Case studies
We here present the illustrative case study using a small 6 bus radial network, and
results from using a 37 bus IEEE network with DR units using asymmetric block
offers. All cases are implemented in the GAMS language10 and solved with CPLEX
version 12.8. All the solved optimization problems are mixed-integer problems, which
can benefit from some degree of parallelization. The used solver (CPLEX) allows the
parallelization on multicore CPUs, where we used 7 cores.

4.4.1 Illustrative example
In figure 4.2 the diagram of the illustrative case study is illustrated, which is used to
introduced the congestion management mechanism. This feeder contains three DR
units (c1 to c3) and two local conventional generators (i1 and i2). The line connecting
nodes 3 and 4 is likely to be congested due its limited capacity (40 kVA).

All lines have the same physical properties, with a resistance of 0.001 p.u., re-
actance of of 0.0005 p.u. and shunt conductance and susceptance of 0.1 p.u. The

8Note that these conditions guarantee achieving the exactness, but at the cost of shrinking the
feasible space, and potentially increasing the system cost and usually the computational burden.

9We found that due to numerical issues with the used solver, convergence is achieved much faster
if the right-hand side of equation (4.12c) is replaced with a small positive number, i.e. Re(Zlŝlt) ≤ κ
where 0 < κ << 1. This will not affect the tightness of the achieved solution in any significant way
if κ is sufficiently small.

10https://www.gams.com/
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Figure 4.2: Illustrative example: 6-node radial feeder diagram. Taken from [Paper
A].

Resource∗ Up offer price Down offer price
[¢/(kW-30min)] [¢/(kW-30min)]

Regular Generators i 35 10
TSO 21 19
DR units c 25 16
∗We assume the same prices for active and reactive regulation offers.
These prices are constant over time.

Table 4.1: The prices for up- and down-regulation offers provided by TSO and local
DERs for both the Illustrative example and the Case Study.

day-ahead dispatches are given in in the appendix of [Paper A]. The day-ahead dis-
patch is set such that there will be congestion in the time steps 12 through 26, out
of 40 time steps.

Each local generator can provide active power up- and down-regulation up to 80
kW, and reactive power up- and down-regulation up to 30 kVAr. These limits for
TSO are 100 kW and 30 kVAr. Each of the three DR units is offering four different
asymmetric block offers (d1 to d4) as given in table 4.2. The prices that the DR units
and regular generators, as well as the TSO offer to the market are given in table
4.1. We assume that DR units are unable to provide reactive power regulation. The
upper and lower bounds of the nodal voltage magnitudes are set to 0.9 and 1.1 p.u.,
respectively. The voltage drop in this test case is very high, such that any differences
between the three OPF models will be highlighted.

4.4.2 Results obtained from MILP-OPF (lossless)
Losses are not accounted for and therefore the outcomes are always neutral with
respect to the consumed energy (i.e. summing up all re-dispatches always sums to 0).
The regulation sources located at the PCC side of the congested line are TSO, DR
unit c1 and local generator i1 (the so-called upstream sources), while the opposite
side contains generator i2, DR units c2 and c3 (downstream sources). The outcomes
of the proposed DSO-level congestion management mechanism based on MILP-OPF
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DR unit Offer P rsp
dc P rb

dc T rsp
dc T rb

dc Adc

c1

d1 13 17 13 9 1
d2 17 13 9 13 0
d3 10 10 20 21 1
d4 17 10 9 20 0

c2

d1 17 8 9 29 0
d2 8 17 29 9 1
d3 13 15 13 11 1
d4 15 13 11 13 0

c3

d1 12 15 15 11 1
d2 15 12 11 15 0
d3 11 13 18 14 1
d4 13 11 14 18 0

Table 4.2: Illustrative Example: The asymmetric block offers provided by DR units.

(lossless) is depicted in figure 4.3a. The total re-dispatch cost of the system, i.e., the
value of objective function (4.6), is $45.35.

4.4.3 Results obtained from iterative MILP-OPF with losses
The iterative problem (4.9) converges in the fourth iteration for the illustrative exam-
ple. In table 4.3 the data for each iteration of the loss-cut procedure is given, where
it can be noted that the first iteration has zero losses and also the same cost as the
lossless MILP presented above.

The congestion mechanism outcomes based on this iterative OPF problem is given
in figure 4.3b. Compared to figure 4.3a (the MILP-OPF without losses), we observe
three main differences: i) a different asymmetric block offer from the down-stream DR
unit c2 is accepted, ii) due to active power losses11, the total up- and down-regulations
at each time step are not equal anymore, iii) the total re-dispatch cost of the system
increases by $48.34 (an increase of 106%).

4.4.4 Results obtained from MI-SOCP OPF
The SOCP problem is given in equations (4.11) and is fundamentally different to the
previous two linear approximations. The SOCP model is a convex relaxation, which
models both active and reactive power losses.

Here, we provide results obtained from MI-SOCP OPF with and without enforcing
the sufficient conditions for exactness in (4.12). The active power re-dispatch results
are given in figures 4.3c and 4.3d for cases with and without the sufficient conditions,

11The reactive power losses are not modeled, but will be taken into account in MI-SOCP OPF
model.
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(a) MILP-OPF, lossless (total re-dispatch
cost: $45.35)
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(b) MILP-OPF with losses (total re-dispatch
cost: $93.69)
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(c) MI-SOCP OPF with sufficient conditions
(total re-dispatch cost: $122.59)
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(d) MI-SOCP OPF without sufficient condi-
tions (total re-dispatch cost: $92.24)

Figure 4.3: Illustrative example: Optimal active power regulation obtained from
different congestion management mechanisms proposed. From [Paper
A].

Cut Cost [$] ploss,fix Up Bnd Low Bnd Loss CPU Time [s]
1 45.20 0.46 175.91 0.00 0.000 0.577
2 87.97 0.14 185.64 163.10 0.046 0.686
3 93.37 0.15 188.27 188.24 0.152 0.749
4 93.38 0.15 188.28 188.28 0.152 0.842

Table 4.3: The iteration statistics for the Loss Cut procedure.

respectively. For the same two cases, figure 4.4a depicts the reactive power re-dispatch
results. There are three important observations to highlight.

First, the re-dispatch outcomes without sufficient conditions are found to be bind-
ing in 4.11b, which means that the convex relaxation is exact, and the solution
achieved is AC feasible. The validation results that will be provided in section 4.4.5
also confirm the exactness. However, note that this is case-specific, and in general,
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(a) Optimal reactive power regulation obtained
from the congestion management mechanism
based on MI-SOCP OPF
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(b) Active and reactive power flow over the line
from node n2 to node n3

Figure 4.4: Illustrative example: SOCP outcomes with and without sufficient con-
ditions (upper plots: without sufficient conditions; lower plot: with
sufficient conditions). From [Paper A].

there is no guarantee achieving the exact solution from this relaxed OPF model with-
out enforcing the sufficient conditions.

Second, the active power re-dispatch outcomes and the total re-dispatch cost ob-
tained from MI-SOCP OPF model without sufficient conditions in figure 4.3d are sim-
ilar to those obtained from the MILP-OPF model with losses in figure 4.3b. However,
the voltage profile obtained in the MILP-OPF model with losses is not as accurate
as the one in the MI-SOCP OPF model, as it will be demonstrated in section 4.4.5.

Third and last, the system cost when adding the sufficient conditions in this case
is $122.59, which is due to the shrinking of the feasible space by the used sufficient
conditions. The main idea of these sufficient conditions is to avoid simultaneous
reverse active and reactive power flows, as demonstrated in figure 4.4b for a sample
line. In the upper plot of this figure (without sufficient conditions) it can be noticed
that there is reverse active and reactive power flow in the time-steps from 12 to
26, which is the period with congestion. In contrast, the lower plot shows the same
situation with the sufficient conditions, where there is only reverse active power in the
same period. This shrinking of the feasible space requires more expensive generators
to be dispatched. Therefore, it is logical to first check the exactness of the results
obtained by MI-SOCP OPF model without sufficient conditions, and then to add
those conditions if necessary.
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4.4.5 Ex-post numerical validation of results from the illustrative
case study

We use a forward-backward sweep algorithm to numerically validate the outcomes of
the three different OPF methods. This way, we numerically determine the voltage
profiles at non-slack nodes (i.e., n2 to n6 as PQ nodes), and compare them with those
achieved from the OPF models. Figure 4.5 illustrates the voltage profile of node n6
achieved from each OPF model and forward-backward sweep validation12. Based on
the validation, as expected, the MI-SOCP OPF model provides the most precise out-
comes. The error is 0.0001% for the voltage of the worst node (n6) when comparing
the voltage profile obtained by forward-backward sweep validation method with that
obtained from the MI-SOCP OPF model. This error in MILP-OPF models without
and with losses is 2.4% and 0.55%, respectively. As another important observation,
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Figure 4.5: Illustrative example: Voltage profile at node n6 achieved by OPF models
and forward-backward sweep validation (first plot: MILP-OPF lossless;
second plot: MILP-OPF with losses; third plot: MI-SOCP OPF with-
out sufficient conditions; fourth plot: MI-SOCP OPF with sufficient
conditions). From [Paper A].

12Node n6 is selected since it is at the end of the feeder and thus is expected to have the most
critical voltage profile.
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the voltage profiles obtained by the two MILP-OPF models are within the allowable
bounds, however when verifying them with forward-backward sweep validation, it
becomes apparent that the voltage constraints are violated in some time steps. How-
ever, this is not the case for the voltage profiles obtained from MI-SOCP OPF model
with and without sufficient conditions, which verifies their solution is AC feasible and
exact.

4.4.6 Case study: IEEE 37-node test feeder
In this case study, we use the IEEE 37-node test-feeder [163], with the according
diagram given in figure 4.6. All three-phase line impedances and loads are transformed
into single phase equivalents, and transformers are removed where necessary. The load
data profiles are generated with 30-minute time resolution, yielding a time horizon
with 48 time steps. Load curves are given in the online appendix of paper [Paper
A], which is also available in part II of this thesis. Five conventional generators and
four DR units are located at different nodes. The line capacity between nodes 2 and
3 is limited to 1000 kVA, such that it will be congested during the peak load hours.

For computational performance analysis, we consider two cases, namely Cases
A and B, with different number of offers per DR unit and thus different number
of binary variables in the OPF models. In Case A, each DR unit submits three
asymmetric block offers, while it is 8 offers in Case B. In particular, Case A ends up
to mixed-integer models with 576 binary variables, while Case B contains 1536 binary
variables.

Figure 4.8 presents the voltage profile in Case A for the worst node achieved from
the three OPF models and the forward-backward sweep validation. Similar to our
results in the illustrative example, MI-SOCP OPF provides more precise outcomes
than the other two MILP models. More specific results on the redispatch of generators
and DR units are available in the appendix of [Paper A] which is attached to this
thesis.

We find that the asymmetric block offers dispatched for the DR units are the same
for the MILP model with losses and the SOCP model without sufficient conditions.
Also the active power losses for these two models are very similar, while the computa-
tional time of the iterative MILP model with losses is much lower than for the SOCP
model. The total re-dispatch cost, total active and reactive power losses and CPU
times13 among the three OPF models are given in Table 4.4. In particular, note that
this table includes the results obtained from the MI-SOCP OPF with and without
sufficient conditions. Similar to the illustrative example in the previous section, the
MI-SOCP OPF model without sufficient conditions is found to be binding in the
second-order cone constraint (4.11b). This implies that the solution of the MI-SOCP
OPF model in this specific case study is exact and thus AC feasible. In Case A, com-
pared to the MI-SOCP OPF without sufficient conditions, the MILP-OPF with loss

13Hardware used: Huawei XH620 V3 with two Intel Xeon Processors 2650v4 (12 core, 2.20GHz),
256 GB memory, FDR Infiniband, 480 GB-SSD disk
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Figure 4.6: The diagram for the IEEE 37-node test feeder with local generators and
DR units. Note: The node numbers have been changed compared to
the original test case in [163]. From [Paper A].

approximation underestimates the total active power losses and the total re-dispatch
cost by 8.7% and 12.3%, respectively. These underestimations in Case B are 8.0%
and 13.0%, respectively. When adding sufficient conditions to the MI-SOCP OPF
model, the system cost increases significantly. The reason for this cost increase is that
the sufficient conditions shrink the feasible space, and consequently, some expensive
up-stream generators (closer to the PCC) are re-dispatched. This conic model as the
most accurate mechanism among the three models requires more CPU time than the
other two MILP mechanisms. The increase in CPU time by increasing the number
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No. of MILP MILP MISOCP MISOCP
Result Case binaries lossless w. loss w. suff. w/o. suff.
Re-dispatch cost [$]

A 576

1694 2486 5115 2836
Active loss [kWh] N/A 1454 2819 1593
Reactive loss [kVArh] N/A N/A 1913 1379
CPU time [s] 9 72.9 513 288
Re-dispatch cost [$]

B 1536

1594 2371 5007 2725
Active loss [kWh] N/A 1478 2783 1607
Reactive loss [kVArh] N/A N/A 1896 1384
CPU time [s] 34 209 12478 1381

Table 4.4: Case study: Outcomes of the three proposed congestion management
mechanisms and their CPU times for Cases A and B.

of binary variables, especially in MI-SOCP OPF model with sufficient conditions, is
significant. The CPU time increase is less significant when no sufficient conditions
are enforced. In order to get a better insight into the increase in CPU time versus the
amount of binary variables in the MI-SOCP OPF model with sufficient conditions,
we plot the CPU time as a function of numbers of time steps and asymmetric block
offers in figure 4.7.
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Figure 4.7: Case study: CPU time for the MI-SOCP OPF model with sufficient
conditions as function of time steps and total number of block offers.
(Note: this is a linear interpolation between at 24, 35 and 48 time steps,
and 12, 16, 20 and 32 offers). From [Paper A].
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Figure 4.8: Case study (Case A): Voltage profile at node n32 achieved by OPF
models and forward-backward sweep validation (first plot: MILP-OPF
lossless; second plot: MILP-OPF with losses; third plot: MI-SOCP
OPF without sufficient conditions; fourth plot: MI-SOCP OPF with
sufficient conditions). From [Paper A].





CHAPTER 5
TSO-DSO coordination

through interface
variables

In Chapter 4 a local DSO market for congestion management was proposed. The
proposal especially focused on the use of Thermostatically Controlled Load (TCL)-
based Distributed Energy Resources (DERs) to participate in a redispatch of the
wholesale market outcome. Therefore, the wholesale market outcomes in the previous
chapter were input parameters. Now, we propose to analyze the coupling between
wholesale and flexibility markets of the TSO and DSO and therefore the Day-Ahead
(DA) market outcomes are now variables. The contents of this chapter are based on
[Paper B] which is attached at the end of this thesis.

The rest of the chapter is structured as follows: Section 5.1 introduces the pro-
posed coordination which is modeled as a hierarchical system due to the hierarchical
nature of both the TSO-DSO interactions induced by local markets and the sequen-
tial nature of DA market and real-time markets caused by the temporal separation.
Section 5.2 provides the required preliminaries, positions the work relative to other
works in the literature, and elaborates on the notion behind the proposed coordination
method. Section 5.3 explains the structure of the underlying optimization problem.
Section 5.4 describes the implementation of Benders’ decomposition approach, and
provides two benchmark models. In Section 5.5, a case study based on a modified
IEEE 24-node network is carried out.

5.1 Introduction to the proposed coordination method
The zonal day-ahead markets in Europe are purely economical dispatch models and do
not consider any network constraints or uncertainty of forecasts such as intermittent
power generation Renewable Energy Source (RES). The TSO uses ancillary services
markets to balance RES production, which is the main concern in systems with high
penetration of wind and solar power. In the future small scale units such as DERs

71
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Figure 5.1: Schematic of the proposed method for an example: In the left situa-
tion, the day-ahead flow from DSO1 to DSO2 contributes to congestion
at the TSO level. In the right situation, restricting the coordination
variables for DSO2 prevents congestion at the TSO level, avoiding ex-
pensive correction actions. In other potential examples, the congestion
may happen in DSO level or both TSO and DSO levels, and then co-
ordination at the interface of DSO1 or at the interface of both DSOs
might be needed. From [Paper B].

may participate in the balancing markets. At the same time many proposals are
being made such that the DSO can use DERs to mitigate congestion [11], [64], [68].

This leads to the issue of how multiple agents such as TSO and DSOs can share
the same resources. The activation of these flexible resources in real-time can be
coordinated as proposed by [41], [42], [44], [49], [50] through various different coordi-
nation schemes. In Section 2.4.3, we summarize the main notions of the previously
proposed coordination schemes. The effect of coordination in the DA stage while
also coordinating in real-time has however not been addressed by these works so far.
However, TSO-DSO coordination scheme in the day-ahead stage may allow for lower
overall cost of system operation. Following this thread, as illustrated in Fig. 5.1, we
propose to treat the interface characteristics between TSO and DSOs as coordination
variables in the day-ahead stage. In this work we identify coordination variables as
being prices of interchange in the Point of Common Coupling (PCC)1 and capacity
limits in the interface. The following coordination variables are used:

• πPCC,DA
e is the day-ahead price of energy exchange at the PCC of distribution

feeder e. The practical interpretation of this exchange variable is subject to the
specific design choices of the local forward DSO markets in question. We only
assume that the local forward trading markets maximize social welfare and have
stochastic information about real-time outcomes. Therefore, practical meaning
of πPCC,DA

e may be different whether the local market is an energy market or
a flexibility capacity only market.

1We use interface and PCC interchangeably. It refers to the line (transformer) that connects the
DSO domain with the TSO domain.
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• π
↑/↓P CC
e is the expected real-time price of balancing energy at feeder e. These

may be interpreted as the prices the DSO has to pay if activating flexibility
outside its own domain.

• fe/fe
is the upper/lower bound for the allowed apparent power exchange in

the PCC in the DA stage. Note, that in real-time the physical capacity has
to be respected, while in the DA stage the optimal value is a purely economic
construct. They may be interpreted as the maximal amount of hedging the
DSO is allowed to trade in forward markets with resources outside of its do-
main. Again, the physical interpretation of these variables are specific to the
practical implementation of local forward markets that are considered, and here
are abstract constructs to consider for the DSO.

It is important to note that the creation of local markets will work to separate
pricing zones and depending on the arbitrage trading opportunities, there may be
a disconnect in the value of energy. The above described coordination variables are
exactly the interface prices used for arbitrage trading between the pricing zones and
the allowed cross border trading. We introduce a new agent, the “PCC optimizer”
who is tasked with the maximization of total system social welfare, i.e. both the TSO
network and all DSOs connected to it. The PCC optimizer is finding the optimal
value of the above variables, which eventually are treated as exogenous parameters
by the corresponding DSO. It is assumed here that the DSO before the clearing of
the day-ahead market is clearing a flexibility market of its own. This could be in the
form of capacity reservations within DERs connected to its domain, which can be
later activated in order to mitigate any congestion that may arise. The specifics of
the DSO market are however not influencing the work at hand as we assume efficient
markets and ignore any specific design choices that might influence the outcome.
Of course, the presented models can be adjusted to accommodate different market
designs. In fact, the presented models are meant to be used as proxy models for the
implementation of practical coordination in the day-ahead stage, and therefore we
also assume that the PCC optimizer can have perfect information. Ultimately we
also assume perfect coordination in real-time.

The research contributions of the work in this chapter are the following:

1. We show through hierarchical coordination that a framework built around cur-
rent European market clearing methods for coordination of local markets with
global markets (i.e. wholesale) can improve system social welfare. The hierarchy
is cast as a Stackelberg game with the PCC optimizer as leader who is respon-
sible for setting the coordination variables. The PCC optimizer anticipates the
optimal response of the DSO and subsequent DA and Real-Time (RT) markets.
The coordination is achieved through the day-ahead scheduling of flexibility.
In contrast to other works such as [41], [44], [49], [50] which address real-time
activation of reserves, we therefore show the benefits of coordination in the
day-ahead forward trading markets.
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2. We show that the functioning of the proposed PCC optimizer can be imple-
mented as a bi-level optimization problem. Under an assumption of information
symmetry between PCC optimizer and DSOs, we are even able to simplify the
proposed bi-level structure. We decompose the proposed bi-level problem using
a Benders’ decomposition algorithm to ease computational burden. The side
benefit of this decomposition is that it avoids solving a mixed-integer second-
order cone program, and separates it to a mixed-integer linear problem and a
set of Second-Order Cone Program (SOCP) (one per scenarion ω).

5.2 Notion behind the proposed coordination method
We assume that local markets are a necessity in the future, as the engagement of
end-users and the deployment of DERs rise. The specifics of local markets are out of
the scope of this work, as we consider idealized local markets that are designed to be
efficient. Also, the ongoing research into these local markets is very diversified and
little consensus is currently available due to the missing policy in the area. To men-
tion a few specific recent proposals, there are centralized DSO operated markets such
as [48], [64], [65], [68], [119] where the DSO is the market operator. More recently
works focused on decentralized local markets are based on peer-to-peer structures or
community based mechanisms such as [11], [133] have been published (for a review see
[8], [91]). An integral part of this work is that the DERs should be able to participate
in local and global markets2. If all DERs participating in a local Distribution Sys-
tem Operator (DSO) market also bid in global markets, the DSO market effectively
reduces to a pre-qualification of bids of the local DERs to global markets3. Therefore
in the current proposal the DSO is able to reserve capacity in DERs or equivalently
to constrain bids of DERs to global markets.

The interface characteristics of local and global markets naturally have an impact
on the equilibrium points of the total system, and therefore we opt to use them for
TSO-DSO coordination. As discussed earlier these coordination variables are the
prices and capacity limits available for trading. The main question is how to design
those coordination variables to maximize the system social welfare.

The PCC optimizer is modeled as a Stackelberg game which respects the paradigm
of a two-stage market clearing including local DSO markets, i.e. first the DSO clears a
market with local resources and then the DA market and a series of RT re-dispatches4

are made to meet network constraints. The PCC optimizer is the leader, while the
DSO-market, DA and RT markets are the Stackelberg followers. The modeling of the
PCC optimizer as a bi-level optimization problem has been inspired by recent works
such as [96] where the optimal interface limits for trading between zonal day-ahead
markets are found through bi-level modeling. Another inspiring work is [130], where
the optimal allocation of reserves is analyzed through a bi-level approach.

2By global, we refer to day-ahead pool and TSO-level flexibility markets.
3Alternatively, this can be seen as reserving flexibility in the DERs by the DSO
4This includes any mechanism that changes the day-ahead dispatches.
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Figure 5.2: Process structure of the proposed coordination scheme involving opti-
mization of coordination variables through the proposed PCC optimizer.
The RT model is in reality encompassed by several steps, which are uni-
fied into one simplified model. For a relevant survey of RT markets,
see [8]. Symbol e is an index for all DSOs connected to the underlying
TSO. Symbol ω is an index for all uncertainty scenarios in the DA stage,
which realize in the RT stage. From [Paper B].

The interactions of agents and markets are schematically illustrated in Fig. 5.2,
and explained below by four steps:

1. Before DA market clearing, the PCC optimizer determines the coordination
variables at each interface. Its objective is to maximize total system social
welfare, including all DSO networks and the TSO network.

2. Given the coordination variables set by the PCC optimizer in step 1 and before
DA market-clearing, each DSO (indexed by e) puts a cap on the production/-
consumption quantity that each DER located at its domain can offer/bid in
the DA market. We refer to this stage as DSO’s pre-qualification. Note that
DERs can participate in DA market through aggregators/Balance Responsible
Partys (BRPs).
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3. Given the quantity offers/bids of DER aggregators from step 2, the DA market
is cleared.

4. Before RT there may be a series of re-dispatches, which we model as premiums
applied to the day-ahead prices. The PCC optimizer and the DSO model the
RT stage with uncertainty with the same representative scenarios.

The PCC optimizer in step 1 is the leader which anticipates the moves of the follow-
ers. The presented method is minimally invasive if implemented within the current
European market architecture and allows for one shot coordination, i.e. non-iterative
and unidirectional.

We assume that renewable production is the only source of uncertainty. The
production of each RES r is capped by an uncertain parameterWRT

rω that is dependent
on scenario ω (i.e., RES generation can be freely spilled as required). The rest of
modeling assumptions are listed in appendix B.1.

5.3 PCC optimizer: Proposed bi-level model
The Stackelberg game can be expressed as a bi-level optimization program as in (5.1)
for which a graphical representation is given in figure 5.3a.

max
ΞPCCO

e

SWDA −
∑

ω

ϕω∆CostRT
ω (5.1a)

s.t. p̃DA
g , p̃DA

d ∈ arg
(

(B.1)e | ΞPCCO
e

)
, ∀e, (5.1b)

SWDA, p̂DA
g , p̂DA

d ∈ arg
(

(5.3) | p̃DA
g , p̃DA

d

)
, (5.1c)

∆CostRT
ω ∈ arg

(
(5.4)ω | p̂DA

g , p̂DA
d

)
, ∀ω ∈ Ω, (5.1d)

where ΞPCCO = {fe, fe
, πPCC,DA

e , π↑PCC
e , π↓PCC

e } are the coordination variables of
the PCC optimizer. The nomenclature for this chapter is given in the front matter
of this thesis.

The upper level objective function in (5.1a) is the leader objective that maximizes
the social welfare SWDA of the day-ahead market minus the expected cost of the real-
time re-dispatch which is

∑
ω ϕω∆CostRT

ω . Note that ϕω represents the probability of
scenario ω ∈ Ω which is the set of representative scenarios. Here we assume that the
scenarios are externally defined and shared by the PCC optimizer and the DSO. The
lower level problems in (5.1b), (5.1c) and (5.1d) are respectively the optimization
problems of the DSO, the DA and the RT markets. Particularly, the lower-level
problem in (5.1b) which is given in (B.1) in appendix B.2 is a stochastic market to be
cleared by the DSO, which takes into account uncertainty in real-time. The outcome
of the local DSO markets (one for every DSO indexed by e) are the caps p̃DA

g , p̃DA
d

which are applied to every DER participating in the DA market.
The problem in (5.1) can be challenging due to especially the lower level problem

of the DSO market in (5.1b). This is because the DSO market is modelled as a
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PCC Optimizer:
Upper-level problem (5.1a)

DSO Markets
(one per DSO e)
SOCP (B.1) in
Appendix B.2

DA Market
LP (5.3)

RT Market
(one per

scenario ω)
SOCP (5.4)

ΞPCCO

p̃DA
g and p̃DA

d

SW
D

A

p̂DA
g and p̂DA

d

∆Cost RT
ω

(a) Structure of the original bi-level problem (5.1).
Note that LP and SOCP stand for linear problem
and second-order cone problem, respectively.

PCC Optimizer:
Upper-level problem (5.2a) - (5.2c)

DA Market
Linear problem (5.3)

RT Market
(one per

scenario ω)
SOCP (5.4)

p̃
DA

g

an
d p̃

DA
d

SW
DA

p̂DA
g and p̂DA

d

∆Cost RTω

(b) Structure of the reduced bi-level prob-
lem (5.2). This problem is equivalent to the
original bi-level problem (5.1) illustrated in
Fig. 5.3a assuming information symmetry be-
tween the PCC optimizer and the DSOs.

Figure 5.3: Structure of two equivalent bi-level problems. From [Paper B].

stochastic market with nodal representation of the AC power flow in real time (the
convex SOCP relaxation from Chapter 3 is used). Therefore solving the DSO market
in this bi-level problem requires solving KKTs of an SOCP. The following proposition
allows us to reduce the computational burden.

Proposition 1: Redundancy in the Karush Kuhn Tucker (KKT) conditions of
the lower level problem of the DSOs in (5.1b) with respect to the KKTs lower level
problem (5.1c) and (5.1d) allow to remove the DSO level market and maintain an
equivalent model.

Proof of proposition 1: The KKT conditions can be used to analyze the redun-
dancy. For all three lower level problems the KKTs are presented in appendix B. All
the lower level problems are explicitly convex and have non-empty interior. There-
fore Slater’s condition is fulfilled and strong duality holds and the KKT conditions
constitute optimality. Due to redundancy in these first order optimality conditions,
the whole DSO market problem can be removed. For a full proof see the appendix
B.5
Due to proposition 1, the bi-level problem (5.1) with three lower-level problems re-
duces to an equivalent bi-level problem with two lower-level problems as illustrated
in Fig. 5.3b. The equivalent model is given by (5.2):

max
p̃DA

g ,p̃DA
d

SWDA −
∑

ω

ϕω∆CostRT
ω (5.2a)

s.t. 0 ≤ p̃DA
g ≤ P g, ∀e, g ∈ GD

e , (5.2b)
0 ≤ p̃DA

d ≤ P d, ∀e, d ∈ DD
e , (5.2c)

SWDA, p̂DA
g , p̂DA

d ∈ arg
(

(5.3) | p̃DA
g , p̃DA

d

)
, (5.2d)

∆CostRT
ω ∈ arg

(
(5.4)ω | p̂DA

g , p̂DA
d

)
, ∀ω ∈ Ω. (5.2e)

Now, the PCC optimizer directly imposes the caps on quantity bids/offers of local
DERs through upper-level constraints (5.2b) and (5.2c). An important observation
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with regards to proposition 1 is that the set of representative scenarios must be shared
by the PCC optimizer and the DSO, as both are stochastic problems. This assumption
is named information symmetry, and can cause complex gaming behaviours if not
fulfilled (see for example [164] for a theoretical discussion of this class of problems).

5.3.1 DA market-clearing formulation
The DA market problem is solved as a pool, without modeling the network constraints.
We only consider a single pricing zone here, although there may be several pricing
zones separated by Available Transfer Capacity (ATC)s as explained in Chapter 2
[96]. The DA market problem is given in (5.3) where the variables from the PCC
optimizer p̃DA

g and p̃DA
d are treated as parameters.

max
p̂DA

g ,p̂DA
d

,sDA,wDA
r

SWDA =
∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g

− V OLL sDA − πR
∑

r

wDA
r (5.3a)

s.t.
∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r

wDA
r + sDA = 0, (5.3b)

P g ≤ p̂DA
g ≤ p̃DA

g , ∀e, g ∈ GD
e , (5.3c)

P g ≤ p̂DA
g ≤ P g, ∀g ∈ GT, (5.3d)

P d ≤ p̂DA
d ≤ p̃DA

d , ∀e, d ∈ DD
e , (5.3e)

P d ≤ p̂DA
d ≤ P d, ∀d ∈ DT, (5.3f)

0 ≤ wDA
r ≤ WDA

r , ∀r ∈ R, (5.3g)

0 ≤ sDA ≤
∑

d

p̂DA
d . (5.3h)

The system power balance is ensured by (5.3b) while the dispatched power quantities
for demands d, generators g and RES r are enforced by (5.3c) through (5.3h). The
load not served sDA is limited by the total load in (5.3h). Note that the caps are only
applied to DSO connected units in (5.3c) and (5.3e).

5.3.2 RT re-dispatch formulation
We model the uncertainty in real-time as a redispatch problem in (5.4), which con-
siders a full nodal power flow. For the DSO level lines, a SOCP power flow is used,
which models active and reactive line flows as well as losses. It is a convex relaxation
as discussed in Chapter 3 and thus constitutes a lower bound. For the transmission
network a linear power flow is here deemed sufficient like suggested in [46]. This is
an approximation and also called the DC power flow. The problem is solved once for



5.3 PCC optimizer: Proposed bi-level model 79

every scenario ω. The premiums that are applied over the DA market offers are π↑/↓

in the objective function.

min
ΞRT

ω

∆CostRT
ω

=
∑
g∈G

(
πDA

g

(
pRT

gω − p̂DA
g

)
+ π↑

gp
↑
gω + π↓

gp
↓
gω

)
+
∑
d∈D

(
πDA

d

(
p̂DA

d − pRT
dω

)
+ π↑

dp
↑
dω + π↓

dp
↓
dω

)
+
∑

r

(
πR
(
wRT

rω − wDA
r

)
+ π↑Rw↑

rω + π↓Rw↓
rω

)
+ V OLL

∑
n∈N

sRT
nω (5.4a)

s.t. pRT
lω = Bl (θnω − θmω) , ∀l ∈ LT, (5.4b)
pRT

lω ≤ Sl, ∀l ∈ LT, (5.4c)
pRT

gω = p̂DA
g + p↑

gω − p↓
gω, ∀g ∈ G, (5.4d)

wRT
rω = wDA

r + w↑
rω − w↓

rω, ∀r ∈ R, (5.4e)
pRT

dω = p̂DA
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dω, ∀d ∈ D, (5.4f)∑
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∑
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pRT
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∑
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wRT
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pRT
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∑
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qRT
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qRT
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lω vRT
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pRT 2
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qRT
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nω ≤ V
2
n, ∀e, n ∈ (N D

e ∪ nHV
e ), (5.4n)

0 ≤ wRT
rω ≤ WRT

rω , ∀r ∈ R, (5.4o)
P g ≤ pRT

gω ≤ P g, ∀g ∈ G, (5.4p)
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P d ≤ pRT
dω ≤ P d, ∀d ∈ D, (5.4q)

Q
g

≤ qRT
gω ≤ Qg, ∀g ∈ GD

e , (5.4r)

Q
d

≤ qRT
dω ≤ Qd, ∀d ∈ DD

e , (5.4s)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀n ∈ N , (5.4t)

[
p↑

gω, p
↓
gω

]
≥ 0, ∀g, (5.4u)[

p↑
dω, p

↓
dω

]
≥ 0, ∀d, (5.4v)[

w↑
rω, w

↓
rω

]
≥ 0, ∀r, (5.4w)

where ΞRT
ω = {pRT

gω , pRT
dω , wRT

rω , p↑
gω, p↓

gω, p↑
dω, p↓

dω, w↑
rω, w↓

rω, sRT
nω , s

q,RT
nω , qRT

gω , q
RT
dω ,

pRT
lω , qRT

lω , θnω, φ
RT
lω , vRT

nω } is the variable set of (5.4).
Constraint (5.4b) is the DC power flow approximation in the transmission network,

while (5.4c) is transmission line power transfer capacity. Constraints (5.4d)-(5.4f) link
the day-ahead dispatch and the re-dispatch to the actual power output/consumption
of each conventional generator and RES, and final consumption of each demand. The
nodal active power balance in both TSO and DSO levels is enforced by (5.4g), while
the nodal reactive power balance in the DSO level is imposed by (5.4h). Important
to note here is that we do not model reactive power in the transmission system due
to the DC power flow approximation.

The SOCP constraint (5.4i) enforces the relation between current and voltage
magnitude and apparent power flow and is a convex relaxation of an equality con-
straint. The SOCP constraint in (5.4j) is enforcing the thermal line rating of the
distribution level lines. The SOCP Branch Flow Model (BFM) model used here was
discussed in detail in Chapter 3, where its relation to the original non-convex AC
model is described.

Active and reactive power losses in distribution network are modeled in (5.4k)
and (5.4l), respectively. The nodal voltage magnitudes are related to the apparent
power flows by constraint (5.4m). The constraints (5.4n) through (5.4t) are lower and
upper bounds for the control variables, while (5.4u) - (5.4w) declare non-negativity
conditions for some variables.

The problem of the real-time re-dispatch in (5.4) solves a centralized nodal power
flow in both distribution and transmission networks. It is therefore not a practical
model because no centralized authority has access to all this information and TSO
and DSOs are not likely to share this information. Instead works like [45], [46] have
proposed decentralized versions that can be solved without sharing specific network
related information in real-time. The implementation of such a model is however
outside the scope of the work in this chapter. We justify the use of such a centralized
model through the purpose of this work, which is to examine day-ahead coordination
while assuming perfect information and perfect real-time coordination.
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5.4 Solution strategy and benchmarks
This section explains the solution strategy of the bi-level problem in (5.2). From a
modeling perspective the simplest way of solving such a bi-level structure is to replace
the lower level problems by the KKTs; this process is however computationally heavy
due to the complementarity constraints in the resulting Mathematical Program with
Equilibrium Constraints (MPEC). Therefore, the bi-level structure is decomposed
per scenario for the lower level problem defined by (5.4).

5.4.1 Benders’ decomposition
Here we present the Benders’ decomposition approach used to solve the stochastic
bi-level problem in 5.2. The implementation of especially (5.2e) is problematic since
this is an SOCP that can be hard to solve as KKTs. The decomposition technique is
presented in appendix A. The master problem at iteration (i) is (5.5).

max
ΞMP(i)

SWDA(i)
−
∑

ω

ϕωψ
(i)
ω (5.5a)

s.t. (5.2b) − (5.2c) (5.5b)
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∈ (5.3) (5.5c)
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ω ≥ ψmin, ∀ω ∈ Ω, (5.5d)

ψ(i)
ω ≥ ∆CostRT(m)

ω

+
∑
g∈G

α(m)
gω

(
p̂DA(i)

g − p̂DA(m)

g

)
+
∑
d∈D

α
(m)
dω

(
p̂DA(i)

d − p̂DA(m)

g

)
+
∑
r∈R

α(m)
rω

(
wDA(i)

r − wDA(m)

r

)
, ∀m ∈ {1, . . . , i− 1}, ω, (5.5e)

where the variables are ΞMP(i) = {p̂DA(i)

g , p̂DA(i)

d , sDA(i) , wDA(i)

r , p̃DA(i)

g , p̃DA(i)

d , ψ(i)
ω }.

Due to (5.5c) the master problem (5.5) is also a bi-level problem. The master problem
is a proxy problem of the original problem (5.2) that also maximizes the expected
social welfare, with the distinction that the real time cost ∆CostRT

ω has been replaced
by the auxiliary linear benders cut variable ψ(i)

ω . The cuts are given in (5.5e) and
are found from the outcomes of the sub-problem that is presented next. The bi-level
structure of (5.5c) is replaced by the KKTs of (5.3), which are given in appendix B.3.
The complementarity conditions can be resolved using a mixed-integer approach using
the Big-M method [165].

After solving the master problem, the DA dispatches are used in the sub-problem
which is given in (5.6). Because we incorporate load-shedding as slack variables in
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the real-time re-dispatch, the sub-problems are always feasible and we do not need
any feasibility cuts in the master problem. There is one sub-problem per scenario.

min
ΞRT(i)

ω

∆CostRT(i)

ω (5.6a)

s.t. ∆CostRT(i)

ω ∈ (5.4)ω (5.6b)

p̂DA(i)

g = p̂DA,fixed(i)

g , : α(i)
gω, ∀g ∈ G, (5.6c)

p̂DA(i)

d = p̂DA,fixed(i)

d , : α(i)
dω, ∀d ∈ D, (5.6d)

wDA(i)

r = wDA,fixed(i)

r , : α(i)
rω, ∀r ∈ R. (5.6e)

Note that the equations in (5.6c) through (5.6e) are used to fix the DA dispatches
from the master problem and find the according sensitivities αω. The sub-problem is
also a bi-level problem due to (5.6b). As discussed in appendix A, the subproblem can
be made into a single level by observing that the objective function of the lower level
problem in (5.6b) is the same as (5.6a). Therefore the subproblem bi-level structure
can be omitted and substituted by (5.7c).

min
ΞRT(i)

ω

∆CostRT(i)

ω (5.7a)

s.t. (5.4b)ω − (5.4w)ω, (5.7b)
(5.6c) − (5.6e). (5.7c)

The iterative Benders’ decomposition algorithm finds the optimal solution of the bi-
level problem (2) with a level of accuracy ϵ if a lower bound LB(i) = SWDA(i)

−∑
ω ϕωψ

(i)
ω and an upper bound UB(i) = SWDA(i)

−
∑

ω ϕω∆CostRT(i)

ω converge to
within a predefined discrepancy ϵ ≥ UB(i) − LB(i) at iteration (i).

5.4.2 Two benchmark models
We use two benchmark models to asses the relative performance of the proposed PCC
optimizer scheme. These two models are respectively the uncoordinated sequential
case of clearing the day-ahead and real-time markets, and the perfectly coordinated
case found through co-optimization.

The perfect coordination given by co-optimization is used as an upper bound on
the social welfare as no method can outperform such a scheme. The deterministic
clearing of the DA market serves as a lower bound. In (5.8) the model used for the
perfect coordination is presented. This is essentially a stochastic dispatch model with
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full information of all uncertainties in the DA stage.

max
p̂DA

g ,p̂DA
d

,sDA,wDA
r ,ΞRT

SWDA −
∑

ω

ϕω∆CostRT
ω (5.8a)

s.t. (5.3b) − (5.3h), (5.8b)
(5.4b)ω − (5.4w)ω. (5.8c)

This perfect (full) coordination is however quite impractical as it requires TSO and
DSOs to solve a common single problem, and all information is packed into one
optimization problem, which quickly becomes intractable for larger systems.

To obtain the lower bound which is given by the uncoordinated case, we consider
a model with no coordination, and solve DA and RT models sequentially. This means
that first the DA market (5.3) is cleared without imposing any caps on the quantity
bids/offers of DSO-level DERs. Then, the real-time re-dispatch problem (5.4) is
solved independently with the DA market outcomes for each scenario separately (i.e.
in a deterministic manner). The sum of the achieved surplus from the DA market
and the expected cost of real-time re-dispatch is the result of the uncoordinated case.

5.5 Case study
All the models discussed in the previous section are implemented in Matlab with CVX
and solved with Mosek 8.0.5

The convergence of the Benders decomposition is set to be achieved if the upper
and lower bound of the benders decomposition are within a relative gap of 0.1%.

We use a modified IEEE 24-node reliability test system [166] to model the trans-
mission network. This test system is augmented with the addition of five radial
distribution feeders that replace loads at nodes 6, 13, 15, 18 and 19. In total, 39.3%
of the total system load is now placed in radial distribution feeders, while the re-
mainder is connected to the transmission network. The according network diagram
is given in Fig. B.1 in appendix B. We add 7 wind farms to the system, where 3 of
them are in the “south” of the network, 4 more in the “north”. One of the “north-
ern” wind farms is connected to a DSO feeder (DSO 3). These wind farms are the
sole sources of uncertainty in the day-ahead stage, and they are correlated by their
physical distances to each other. The calculation of the co-variance matrix is given in
appendix B.6. We assume a Gaussian distribution of the uncertainty of the forecast
power production. The forecasts and the variances are given in table B.1, while the
physical coordinates of the wind farms are given in table B.2 in the appendix. Due
to the physical distances all the northern and southern wind farms are weakly corre-
lated, while the they are strongly correlated within the northern and southern area
respectively.

5Hardware used: Huawei XH620 V3, 2x Intel Xeon Processor 2650v4 (12 core, 2.20GHz), 256
GB memory, 480 GB-SSD disk.
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Figure 5.4: The expected social welfare as a function of wind power penetration
obtained from the proposed coordination model (PCC optimizer) and
the two benchmark models. The 0.2 quantile and 0.8 quantile are also
depicted. The colored dots indicate the level of congestion in the trans-
mission network as the probability of at least two lines being congested
in RT. The results are from out-of-sample testing with 200 scenarios
that are distinct from the 12 in-sample scenarios.

CPU times [s]
Initial Master

Average Average master in last Average
subproblem master problem iteration #Iterations

0.31 0.54 0.67 0.91 29.5

Table 5.1: Computational burden of the Benders multi-cut solution strategy. Note:
We average for all solved instances of increasing wind penetration.

The scenarios are found through random sampling of the Gaussian mixture model
that is a result of the predefined forecast co-variances and means. We sample 12
in-sample scenarios that are used to find the set-points through the proposed models,
while we validate the outcome with 200 new out-of-sample scenarios.
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The PCC optimizer problem with the benders decomposition is solved on average
within 14 minutes with the 12 in-sample scenarios, when averaging over 24 increasing
name-plate capacities of the wind farms. The name-plate capacity of the wind-farms
are scaled linearly in order to get insight on the effects of increasing average wind
power penetration. The 12 in-sample scenarios are solved in parallel on a multi-core
CPU. The average CPU times for master- and sub-problems and the average number
of iterations are given in table 5.1.

5.5.1 Coordination under increasing wind power penetration
Due to increasing reliance on RES in the power system, we here examine the relation
of the social welfare and increasing the wind penetration under the proposed PCC op-
timizer and the 2 benchmark models. To achieve this, the nameplate capacity of the 7
wind farms described above is increased step-wise. The wind power penetration is the
total wind power forecast in DA divided by the total load bids, i.e.,

∑
r W

DA
r /

∑
d P d.

The results of this study are summarized in figure 5.4, where both mean and inter-
quantile range6 of the 3 models are given. These results are from the out-of-sample
validation using 200 samples that are different from the in-sample scenarios. The
heat-map that is shown by the dots along the mean of the three curves in figure 5.4
indicate the “congestion level”, which we here define as the probability of at least
two lines being congested in the TSO network in real-time. This plot highlights the
efficiency of the proposed PCC optimizer versus the two benchmark models, and
shows the relation of the social welfare to the congestion while increasing wind power
penetration.

With increasing wind power penetration it can be seen that there is a strong
connection of social welfare and grid congestion. The slope of social welfare increase
changes at around 50% for all three models, which is the point where some conges-
tion is to be expected in real-time. The PCC optimizer is in between the perfect
coordination and the un-coordinated benchmark. The perfectly coordinated bench-
mark performs better than the PCC optimizer as it can optimally exploit flexibility
of the TSO connected resources as well as DSO connected resources, while the PCC
optimizer only improves the coordinated use of DSO connected resources. In the de-
terministic market dispatch model (the lower benchmark), the social welfare begins
to decrease after 70% wind penetration, which is due to the models inability to handle
forecast errors. The balancing measures therefore become increasingly costly, as this
model will mainly dispatch wind power in the day-ahead stage as it is very cheap,
but real-time balancing costs cannot be anticipated. On the other hand, the stochas-
tic dispatch model is able to perfectly handle the anticipated uncertainty, and will
not see decreasing social welfare with increasing wind power penetration. The PCC
optimizer is able to handle the uncertainty better than the deterministic dispatch
model.

60.2 and 0.8 quantiles are used
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5.5.2 Physical capacity of the interface and coordination
outcomes

In this section the relation of the actual real-time power flow in the interface (PCC)
of the DSOs and the dispatched power in the day-ahead stage is examined. To this
end, the power-flow in the PCC of a sample DSO (DSO 3) incurred by the day-ahead
dispatch is plotted in figure 5.5a for the three different dispatch models and for in-
creasing wind penetration. The blue shaded bars indicate day-ahead dispatches for
the three different models, while the black bars in the center show the expected real-
time outcomes after the re-dispatch measures of balancing markets. The uncertainty
of the real-time flow is given as inter-quantile ranges with red whisker-plots and the
physical limit of the PCC is given by the green line. This plot brings to attention that
the PCC optimizer power flow in the day-ahead stage does not necessarily respect
the physical capability of the interface. This is possible, as we define the upper-level
variable pertaining to the tradable day-ahead quantities of the PCC optimizer fe/fe
to be purely economic parameters, which do not get limited by the physical capacity
of the interface. This is an important result for practical design policies for TSO-
DSO coordination in the day-ahead stage, when defining trading quantities between
markets. This should be interpreted as the following: In order to achieve optimal
coordination between local markets and global day-ahead markets, the physical ca-
pacity of the PCC does not need to be strictly enforced, as the arbitrage trading
options to hedge against future uncertainty would be limited and thus reduce total
system social welfare.

(a) The power flow in the PCC of DSO 3 (con-
nected to n19) incurred by the DA dispatches
and the resulting RT power flows. These re-
sults are obtained from the proposed coordi-
nation method (PCC optimizer) and the two
benchmark models.

DSO feeder 1
DSO feeder 2
DSO feeder 3
DSO feeder 4
DSO feeder 5
Social Welfare

(b) The optimal caps of PCC optimizer on the
quantity bid of aggregate flexible loads in dif-
ferent feeders as a function of the physical ca-
pacity of PCC of DSO 1 (note: the wind pen-
etration is fixed to 25%).

Figure 5.5: Results pertaining to the capacity of the PCC. It shows the importance
of having accurate information about the physical capacity.
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Another interesting measure to better understand the coupling of day-ahead coor-
dination and is the sensitivity of the caps versus the physical capacity of the interface.
In figure 5.5b we demonstrate the optimal caps on the loads in all the distribution
feeders when varying the physical capacity of the interface between DSO 3 and the
TSO. This shows the highly non-linear connection of the applied caps and the physi-
cal properties of the network. Also, the influence of one DSO’s network parameters
on the optimal settings of other DSOs is interesting. The interface capacity of DSO
3 not only affects the optimal caps for DSO 3, but also for DSO 1. Moreover, the
installation of higher interface capacity does not affect the social welfare after around
300 MW capacity, for this example. In relation to practical coordination schemes, the
sensitivity of the underlying network data used to find coordination variables should
be analyzed, as this may have a strong effect on the achieved social welfare.





CHAPTER 6
Conclusions and

future perspectives
In this thesis, numerous aspects of market-based coordination of Transmission Sys-
tem Operator (TSO)- and Distribution System Operator (DSO)-level networks are
addressed, such that the connected resources are used to optimality. Furthermore, it
is examined how the flexibility may be shared among system operators through day-
ahead scheduling mechanisms. It is expected that the share of Distributed Energy
Resource (DER) capacity in power consumption is increasing, and tapping into the
resources of these units is promising to deliver large amounts of hidden flexibility. As
Information and Communications Technology (ICT) functionality in the power sys-
tem increases, the controllability of ever smaller units can accelerate the proliferation
of DERs. However, the mathematical models that enable their effective use are often
complicated and good understanding of DER inter-operability with markets is perti-
nent to an effective usage of flexibility. The coupling of different market platforms is
a promising method of increasing the reach of DER flexibility, however scalability is
a major obstacle to system wide coordination. Therefore, the methods applied in this
thesis were developed with the computational aspect in mind. Similarly to the com-
putational scalability, the policy shaping of future DER integration will influence the
design of market-based methods and the viability of different coordination schemes.
An ongoing theme throughout the thesis has therefore been in aligning the proposals
with existing policy and foreseeable policy changes. The policy changes are expected
to be step-wise incremental so that tasks of system operators, may be expanded grad-
ually to approximate ideal coordination. This approach is aimed to make the system
operators overcome difficulties of adapting to new operational paradigms and increase
the smart use of flexible resources.

6.1 Discussion and conclusions of scientific
contributions

The main scientific contributions of this thesis are within the area of DER flexibil-
ity usage, and improve the state of the art of the existing literature in a number
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of ways. We applied mathematical modeling methods to reveal the interactions of
DERs and system operators through market-based approaches and thus improve the
usage of flexibility. The two main research questions have led to novel methods for
DSOs to include Thermostatically Controlled Load (TCL)-based demand response in
a market-based re-dispatch to mitigate congestion, and the day-ahead coordination
of hierarchical market structures imposed by local DSO markets. In the introduction
we specified two specific research questions, and we will here conclude the developed
methods in regard to these questions.

I. How can complicated demand response behaviour be included by the
DSO for congestion management in a precise and effective economic dis-
patch mechanism?

In [Paper A] we model the power flow through three different power flow models,
while all of them account for both active and reactive power flow and voltages, only
two of them account for losses. This is done in order to optimize the dispatch of
asymmetric block offers that accurately model the underlying physical properties of
TCL-based demand response. It is expected that large parts of the available DER
flexibility is going to be TCL-based, such as heating and refrigeration and thus the
backbone of DSO-level flexibility. The asymmetric blocks are currently the most
transparent and market compatible way of representing the rebound effect caused by
the TCL-based demand response. This rebound effect is due to a payback in a time
period after the demand response units change their power consumption behaviour.
This payback effect or rebound is needed in order to return to the baseline setting of
the underlying load, such as returning to a temperature setting in a heat storage or
the like. The main drawback of the asymmetric block offers is that they introduce new
binary variables and thus can be difficult to handle within complex power flow mod-
els. The resulting combinatorial models are analyzed with respect to computational
burden and precision of the outcomes.

The first two of three power flow models we analyzed are mixed-integer linear
models, where one of the models approximates active power losses in a sequential
linear programming approach while the other model is a lossless approximation. The
last model is a mixed-integer Second-Order Cone Program (SOCP) model which is
the most precise choice of the three models, that is able to capture losses for both
active and reactive power. This model is a convex relaxation by optimizing over the
convex hull of the non-convex solution space of the original quadratic optimization
problem. The computational burden of the models are increasing quickly with the
complexity, and as expected it is found that the mixed-integer SOCP model has
the largest computational burden connected to it. The influence of active power
losses has a big effect on the outcomes of the dispatched block offers and therefore
both the SOCP and sequential Mixed-integer Linear Program (MILP) model with
loss approximation achieve similar dispatches of the asymmetric block offers within
our various case studies. The voltage approximation in the MILP model with losses
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is however less precise and may lead to voltage violations in highly stressed feeders.
Further, the MILP model does not incorporate the losses caused by reactive power and
thus underestimates the re-dispatch costs slightly. The mixed-integer SOCP model,
being a relaxation rather than an approximation, can deliver insightful information on
the redispatch outcomes and can be checked for AC feasibility very quickly and easily.
The relaxation gap will in many circumstances be zero and therefore precise and AC
feasible, as was the case in the applied case studies. Additionally we examine the effect
of some sufficient conditions for exactness on the SOCP model and deduce that they
both shrink the feasible space and increase computational burden thus limiting their
practical usability. The sufficient conditions we use are prohibiting the simultaneous
reverse active and reactive power flow and are thus not appropriate if the distribution
network is exporting energy to the transmission network or can expect reverse power
flows in some of the lines. In general, the sufficient conditions may increase the costs
of re-dispatching if reverse power flow is allowed, however they can be useful if the
direction of the power flows is only allowed in the forward direction. Presently, many
distribution feeders are only able to handle forward power flows due to limitations
on safety equipment and voltage regulators, that are not designed to be compatible
with reverse power flows.

The proposed re-dispatch mechanism solves the issue of using TCL-based demand
response with high rebound effect in a DSO congestion management mechanism. The
findings have implications to the used modeling accuracy required by a market-based
solution for congestion management. Especially in distribution networks where volt-
age levels are often an issue for the DSO, the precision of the modeling method is
paramount and the more precise dispatch methods via convex relaxation may be
needed in order to ensure a feasible dispatch. As a general comment, the modeling
of losses should be required in any circumstance to ensure the correct dispatch of
asymmetric block offers and an analysis of the bounds of the voltage approximation
in the case of linear approximations should be made.

II. How can we coordinate the scheduling of DERs in day-ahead between
TSO and DSOs in a practical framework to counter uncertainty of inter-
mittent RES generation?

The modeling approach in [Paper B] follows the hierarchical nature of proposed
DSO-level markets, where the DSO is able to clear a day-ahead market for flexibility
in advance of the wholesale day-ahead market which is cleared on a global level. This
hierarchical relationship is modelled as a Stackelberg game, where the DSO markets
are interfaced with the remaining markets through interface variables that are con-
trolled by the PCC optimizer. The PCC optimizer is a new virtual agent with the
objective to maximize the total social welfare, and we assume in the models that it
has access to perfect information about the TSO- and DSO-level networks as well
as the market floors and the upcoming bids/offers to them. We study this idealized
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situation to show the benefits of this type of coordination and infer recommendations
for future day-ahead coordination schemes.

Our findings have implications for designing practical schemes to use this avenue
of TSO-DSO coordination, in two ways: The first key finding is that the optimal
PCC capacity in the day-ahead stage is related to, but not limited by the physical
capacity of the underlying hardware. This means that the capacity limitation in the
forward trading market may be viewed as a purely economic construct, that limits
the amount of arbitrage trading that the units connected to the DSO-level markets
are allowed to trade in the day-ahead stage with outside resources. If this limitation
is set too tight, the social welfare may be reduced due to decreased possibilities of
local markets to hedge against future uncertainty. Naturally, the physical limit of
the PCC has to be taken into account in real-time. Thus, any practical scheme to
coordinate local DSO-level markets with global markets should take as guideline the
physical PCC capacity but must not be limited by it.

Our second finding is that the optimal caps for one feeder can depend in a non-
obvious way on the physical capacity of another feeder or the physical capacity of
the transmission network. This is important to highlight as the results of practical
coordination schemes should have either access to high quality network data or at
least implement a sensitivity analysis of the coordination outcomes with respect to
the network data to reveal which areas of the network have high influence on the
social welfare.

A third general finding of the PCC optimizer method is that there exists a math-
ematical equivalence of global and local stochastic markets. Therefore the inclusion
of local stochastic markets in a deterministic global trading setup can approach the
stochastic ideal dispatch that is used as a benchmark here and in many other works.
This is only true if the markets are well coordinated as per the PCC optimizer, and
the access to information is sufficient and symmetrical between different agents.

We use optimal real-time coordination to frame the differences in day-ahead dis-
patch coordination between local and global markets. However, in a practical setup,
the real-time coordination may be even harder than practical day-ahead coordination
due to the short time horizon between dispatching and activation. Therefore our find-
ings in Chapter 5 are congruent to future real-time coordination methods, because the
day-ahead coordinated dispatch may make it easier to achieve feasibility in real-time
and reduces the amount of re-dispatch actions that are necessary in real-time. As a
general point, the inclusion of day-ahead coordination is complementary to real-time
coordination.

The TSO-level network parameters in the case study in Section 5.5 have a large im-
pact on the achieved improvements that are made by coordination in day-ahead. We
notice that the congestion in the transmission network in our case study is the factor
that works to distinguish the features of different day-ahead coordination schemes. If
the transmission system is naturally partitioned in pricing zones which are well sized
with respect to the expected network loading, the outcomes of the coordination will
show smaller improvements than we document in the current case study. However,
highly stressed transmission networks that have large unevenly distributed wind gen-
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eration and pricing zones that are not fit well to the expected network loading will
more likely benefit from coordination with local markets. This is due to the fact, that
the local DSO markets are able to use stochastic information to hedge against future
uncertainty.

Any real-time coordination method that increases the system social welfare may
overestimate improvements if compared under uncoordinated day-ahead dispatches.
Therefore, the presented results also have implications to the future design of real-
time coordination schemes. Further, coordination in day-ahead will generally heighten
social welfare as premiums are applied closer to real-time; improving coordination in
the day-ahead stage will reduce the needed amount of real-time re-dispatching, thus
working to reduce prices to end-users.

6.2 Future work and research paths to improve the
contributions

In this thesis, through the conducted research, a series of research questions that may
be addressed in the future have appeared. As the presented work has involved both
electricity markets and system operation with respect to underlying technologies, the
questions are ranging over a variety of topics. These are topics related to diverse
subjects such as the modeling of systems and technologies, policy on market design
and bidding structures, agent representation through game theoretic concepts and
mathematical/computational implementations and tractability.

We present the flexibility of TCL-based demand response units through asymmet-
ric block offers that can be traded in a day-ahead market for congestion management.
This representation is easy to understand and can by a simple extension of current
bidding formats unlock extra flexibility to the DSO or other system operators and
agents when trading in forward markets. However, the simplified representation of
demand response through these block offers may be somewhat restrictive when the
real-time activation of single demand response units has to be analyzed. The flexi-
bility aggregators may be overly conservative in designing these block offers, in order
to avoid penalties on balancing markets if the demand response units are not per-
forming according to the block offers. The accurate real-time modeling of TCL-based
demand response is most accurately done through partial differential equations or
other non-convex modeling approaches as the underlying system is more complex
than the asymmetric block offers can capture. However, incorporating this into real-
time control leads to both tractability, optimality and pricing issues due to these
non-convex models. The more accurate modeling of demand response units could
become highly important in real-time when no constraints are allowed to be violated.
Especially, if small scale power systems are to be operated in island mode or in micro-
grids that rely heavily on demand response this real-time precision could become
important. Any practical implementation would have to trade of the optimality and
pricing issues with precision and tractability.
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In the used models for the distribution networks and the demand response units,
we only consider the electricity networks. However, the co-modeling of several energy
carrier networks such as the gas and the heating network as well as the electricity
network has become an important topic in the literature. Many types of DERs may
be at intersections of energy networks, and thus be able to participate not only in
electricity markets but also in the trading of heat and/or gas. Congestion management
mechanisms with DERs that are at the intersection of energy networks would unlock
additional flexibility, if the market clearing was aware of the heat and/or gas markets
and adequate coordination schemes should be identified. Naturally, co-optimization
is always a challenge just as the case of co-optimizing TSO- and DSO-level networks.
Therefore any practical market coordination should happen through the exchange of
adequate signals to enable soft coordination. The existing proposals for local energy
communities or peer-to-peer energy trading systems in the literature could benefit by
being able to trade across different energy carriers while intertwining these markets
with flexibility needs of system operators.

The proposed coordination scheme for day-ahead coordination of TSO- and DSO-
level networks via interface coordination variables is analyzed with perfect real-time
coordination. Naturally, any practical real-time coordination method will perform
worse than our model. Therefore, in the future it may be adequate to analyse the
interplay between real-time and day-ahead coordination of distribution and transmis-
sion networks. The globally optimal coordination of TSO- and DSO-level networks is
an unrealistic position, due to separation of responsibilities and knowledge between
DSO and TSO. This highlights the need for some afterthought when implementing
policies on coordination: Which time stage or which combination of day-ahead and
real-time coordination is appropriate? To answer this question, a theoretical analysis
of real-time coordination schemes in conjunction with day-ahead coordination should
be done. This approach needs to take into account the possibility of gaming between
agents and should be modeled via non-cooperative game theory. Also, the expecta-
tion of perfectly rational decisions in local markets may be inadequate to model the
behaviour of local agents. Thus, the study of bounded rationality of local agents may
be needed to increase the effectiveness of real-time coordination and its connection
to day-ahead coordination.

In the work presented in Chapter 5 one of the main contributions was the PCC
optimizer as an oversight authority that can define the interface prices and tradable
quantity that will maximize system wide social welfare. The implemented approach
is based on stochastic optimization through scenario representation, a technique that
can require large computing power if large numbers of representative scenarios are
needed. Therefore, depending on the size of the problem and the uncertainty that
is being modelled, this technique can become intractable even when considering ad-
vanced scenario reduction techniques. Recently, the trend in power system literature
is to model uncertainty through chance-constrained programming. The use of chance-
constraints can generalize stochastic programs and has been shown to achieve good
results for modeling of uncertainties. A prominent feature of chance-constrained
programming is that it can model the underlying uncertainty without using any sce-
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narios and may therefore result in a more tractable model. The prerequisite for
chance-constraints to be tractable is that an analytical representation of the chance-
constraint can be derived; this has been shown to be possible if the uncertainty of
the random parameter follows a unimodal distribution and the distribution is known.
Usually, the tractable formulations require to model every chance-constraint by itself
leading to single chance-constraints (i.e. the violation probability of a constraint can
only be verified for single constraints and not jointly). In order to model joint vio-
lation probabilities there exist a series of approximations that have been presented
in the literature, such as the Bonferroni approximation. Another challenge with
chance-constrained programming that has been cited often is that the distribution of
the underlying uncertainty is known, and therefore as opposed to scenario based pro-
gramming the system cannot easily be modelled through data from observations. This
topic has been addressed through the use of distributionally robust chance-constraints,
where the chance constraints are modelled over a group of probability distributions
that are approximating the used data for uncertainty. Here, a popular metric for ap-
proximating the probability distributions is the Wasserstein metric (or earth-movers
metric) that can be used to fit a series of probability distributions to uncertainty
data. As a final remark on this topic, it has been proposed for other types of mar-
ket coordination schemes that chance-constrained programming approaches to find
coordination variables may be more tractable than scenario based optimization, and
therefore this would be an interesting avenue of research for TSO-DSO coordination
in the future.

The future of local markets are highly uncertain, but the focus toward more decen-
tralization is sparking debate over the nature of these markets. The published works
on TSO-DSO coordination make various assumptions on the nature of local DSO-
level markets and congestion management mechanisms, and these choices have an
impact on the efficacy and design of TSO-DSO coordination schemes. Our approach
to modeling day-ahead coordination has been to assume generic DSO-level markets
for flexibility procurement with the aim to maximize social welfare. However, recently
a series of works have suggested implementation of local energy markets, for example
through local energy communities or peer-to-peer markets. The nature of these mar-
kets and their ability to maximize social welfare will have an effect on the practical
TSO-DSO coordination schemes. Therefore, an in depth analysis of the impact of
different local market designs and the ability to coordinate these with global markets
would be of future interest to the research community.

Closely related to the notion of local markets and their design, is the availability
of information on uncertain parameters. Different agents within local trading areas
may have access to different information on sources of uncertainty. This may enable
them to make better forecasts, while it is not always in their interest to keep this
information private. There have been a series of publications on cooperative game
theory, where it is shown that it may be in the interest of some agents to share
specific information with other agents. The notion of imperfect information would
also alter our proposal for modeling the PCC optimizer, as there may be the option to
model information asymmetry between the PCC optimizer and local agents, such as
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the DSO. In the future, it may even be conceived that there are markets for trading
information on uncertainties, and therefore the pricing of and modeling of information
skewness should be theoretically analysed. In the end, a proper understanding of the
value of information and sharing of such could enable better coordination between
trading floors and agents leading to more secure and economic operation of the power
system.

As a final remark, the use of ever more data mining and digitization in the energy
system, leads to vast amounts of available data. This may be used in the future to
achieve better understanding of interactions of small scale systems within the power
system and enable local markets to be more efficient. However, classical optimization
theory and uncertainty modeling and prediction may be on the edge of computational
tractability when trying to incorporate these vast amounts of data. Therefore the use
of machine learning and efficient data base generation techniques to make informed,
fast and reliable decisions is a promising future research path. These data driven
methods may be the gate openers to create efficient operational models to achieve
improved coordination between different trading floors and enhance the integration
of high shares of renewable energy.



APPENDIX A
Decomposition of
bi-level stochastic

optimization problems
As mentioned in Chapter 2, the studied problems for coordination in this thesis
are of hierarchical nature, and thus can be modelled by Stackelberg games. In this
appendix we provide a solution technique for a bi-level problem if the lower level
problem is subject to uncertain parameters. This solution technique is based on a
stochastic Benders decomposition method. Bi-level optimization consists of nested
optimization problems, where the outermost problem (upper level) is describing the
leaders actions while taking into consideration reactions of followers in the nested
optimization problems (lower levels). The leaders and followers variables are separate,
and the follower is subject to the decisions of the leaders variables.

Here we assume a Stackelberg leader with the objective function f(Ξup) and a
Stackelberg follower with the optimization problem in (A.1).

min
Ξlo

g(Ξup,Ξlo) (A.1a)

s.t. li(Ξlo,Ξup) ≤ bi + ξi,∀i = {1, . . . , k} (A.1b)

Here, the variable collection in Ξup is representing the upper level variables of the
Stackelberg leader, while Ξlo represents the lower level variables of the follower. For
the follower the leader variables Ξup are input parameters. The optimization problem
is subject to k constraints and parameter bi is subject to a random disturbance ξi, mak-
ing the follower problem a non-deterministic problem. In general, non-deterministic
optimization problems are intractable and have to be rewritten into a deterministic
counterpart to be tractable. Here we use a scenario based stochastic optimization
procedure.

Therefore, the follower problem is written as a stochastic optimization problem
with representative scenarios for the uncertain variables. These stochastic Stackelberg
games are most commonly cast as stochastic bi-level optimization problems in the
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form of (A.2).

min
Ξup

f(Ξup ∈ X) + Eω

[
gω(Ξup,Ξlo

ω )
]

(A.2a)

s.t. h(Ξup) ≤ a (A.2b)(
Ξlo

ω

)
∈ arg

{
min
Ξlo

gω(Ξup,Ξlo
ω ) (A.2c)

s.t. li(Ξup,Ξlo
ω ) ≤ biω,∀i

}
∀ω (A.2d)

Here the notation Eω [·] is used to represent the mathematical expectation over
the representative scenarios ω ∈ Ω of an uncertainty set and,

biω ∼ bi + ξi

is the set of representative scenarios to the random disturbance ξi. The straight for-
ward way to solve this type of bi-level problem is to replace the lower level optimization
problem by its Karush Kuhn Tucker (KKT) conditions that yield an equivalent single
level problem with complementarity constraints, also called Mathematical Program
with Equilibrium Constraints (MPEC). An MPEC is a mathematical optimization
problem with an embedded optimization problem represented by the KKT conditions.
The KKT conditions are optimality conditions if the problem is strictly convex and
strong duality holds [143].

Benders decomposition

A stochastic bi-level problem as the generic example in A.2 can be decomposed by
scenario by applying Benders decomposition, and thereby decomposing the problem
into one master-problem and several sub-problems (one per scenario). The Benders
decomposition approach for stochastic two-stage problems was first introduced in
[167] for a problem with fixed recourse, and later used for problems with continuous
recourse in [168]. This approach is amenable to bi-level problems as in (A.2) and is
presented in e.g. [169].

When fixing the upper level variables that appear in the lower level problems, the
sub-problem for scenario ω at iteration (i) becomes

min
Ξlo

ω

g(i)
ω (Ξup,Ξlo

ω ) (A.3a)

s.t. Ξup
ω = Ξup,(i)

ω : (α(i)
ω ) (A.3b)

gω(Ξup,Ξlo
ω ) ∈ (A.1), (A.3c)

where Ξup,(i) are the fixed upper level variables from the master problem. Here
the sub-problem in (A.3) is still a bi-level problem due to (A.3c). The constraint
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(A.3b) is the fixed upper level variables from the leader and the according sensitivity
α

(i)
ω . In the special case, where the objective function of (A.3) and (A.1) are the same,

the bi-level structure can simply be omitted. This yields the sub-problem in (A.4).

min
Ξlo

ω

g(i)
ω (Ξup,Ξlo

ω ) (A.4a)

s.t. Ξlo
ω = Ξlo,(i)

ω : (α(i)
ω ) (A.4b)

l(Ξup,Ξlo
ω ) ≤ bω (A.4c)

With the sub-problem as in (A.4), the master problem can be solved with Ben-
ders cuts derived from the sensitivities of the sub-problem. The master problem for
iteration (i) is given in (A.5).

min
Ξup,(i)

f(Ξup)(i) +
∑

ω

ϕωψ
(i)
ω (A.5a)

s.t. h(Ξup) ≤ a (A.5b)
ψ(i)

ω ≥ ψmin, ∀ω ∈ Ω (A.5c)
ψ(i)

ω ≥ g(m)
ω (Ξup,Ξlo

ω ) + α(m)
ω (Ξup,(i) − Ξup,(m)),

∀m ∈ {1, . . . , i− 1}, ω (A.5d)

Here the constraint in (A.5d) are the Benders optimality cuts. A multicut version
is here shown, where several cuts are added per iteration, which is an approach that
has been used much with multistage stochastic programs. The objective function
now minimizes the expected value of the auxiliary Benders cut variable ψ(i)

ω . This is
done by multiplying it with the according probability ϕω, which yields the expected
value. In general with Benders decomposition like this, there may arise problems with
feasibility in some iterations when the sub-problems become infeasible. There exist
several methods such as replacing the optimality cuts in infeasible iterations with
feasibility cuts or making the sub-problems always feasible by adding slack variables.
The details of these methods will not be discussed further but the interested reader is
referred to [170]. In Chapter 5, we apply this Benders decomposition where we have
always feasible sub-problems thus omitting the use of feasibility cuts.

The upper bound of the Benders decomposed problems in iteration (i) is found
as:

UB(i) = f(Ξup(i)) −
∑

ω

ϕωg
(i)
ω (Ξup,Ξlo

ω ) (A.6)

The lower bound in iteration (i) is found via:

LB(i) = f(Ξup(i)) −
∑

ω

ϕωψ
(i)
ω (A.7)

The iterative solution procedure is converged if the upper and lower bound come to
within a small predefined residual ϵ > UB(i) − LB(i).





APPENDIX B
Assumptions and

additional models for
proposed TSO-DSO

coordination
This appendix is an extension of Chapter 5 and contains additional modeling assump-
tions. Further, the models of the local DSO markets are presented as well as KKT
conditions of all models in chapter 5.

B.1 Modeling assumptions for the PCC optimizer
We collect here all modeling assumptions made. We make no specific assumptions to
the design of the local DSO markets that are employed. It is merely assumed that
these markets are efficient and work to maximize social welfare. Therefore the model
in B.1 is a generic market model that we cast as a stochastic optimization problem
that maximizes expected social welfare.

Renewable production is the only source of uncertainty. The production of each
renewable energy source (RES) r is capped by an uncertain parameter WRT

rω that is
dependent on scenario ω (i.e., RES can be freely spilled as required). The DA market
is deterministic, and the offer of each RES is assumed to be the expected value of its
production. The price offer of each RES, i.e., πR, is assumed to be zero in the DA
stage.

Although stochastic market-clearing setups depend on the used scenarios and a
thorough definition of who generates them is usually pertinent, we here consider
them as an external parameter. A scenario generation method, which correlates
geographically close renewable sources is used – more information can be found in
section B.6 of this appendix.
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The RT market is assumed to be any market that changes the DA dispatch. This
re-dispatch is assumed to incur an additional cost, due to premiums charged by the
market participants. The premiums do not have to be symmetric, such that up- and
down-regulation can have different costs.

We take the same view on network modeling as [46], that the meshed HV trans-
mission network is adequately modeled by linear power flow approximations, while
the radial LV distribution feeders are best represented by a convex relaxation of the
AC power flow equations. Specifically, in this paper a second-order cone program
(SOCP) will be used, as explained in more detail in section 5.4.

Ramping constraints, energy storage and other inter-temporal couplings are ig-
nored. Also, binary variables such as the commitment status of conventional genera-
tors are ignored, such that both DA and RT market-clearing problems are convex.

In order to be able to calculate the RT re-dispatch cost, topology information of
both TSO and DSO networks is necessary. Both TSO and DSOs may be unwilling
to share data about their network topology. It is assumed that this information is
available to the PCC optimizer, which is a reasonable assumptions as we are exam-
ining the best possible outcome. Decentralized optimization such as the proposals in
[46] and [45] may in the future make it easier to coordinate in RT without sharing
specific network-related proprietary information.

B.2 DSO market lower-level problem
The DSO pre-qualification optimization problem has both constraints from the DA-
market and the scenarios for the Real-time realization. Every DSO has its own
separate problem such that Coste contains one value for every DSO e. The day
ahead market is cleared for each distribution network separately, where the day ahead
market has no nodal information. The real time realization is a stochastic SOCP
problem.

max
ΞE

SWe =
∑

d∈DD
e

πDA
d p̃DA

d −
∑

g∈GD
e

πDA
g p̃DA

g

− V OLLDA
e sDA

e −
∑

r∈RD
e

πRwDA
r − πPCC,DA

e pPCC,DA
e

−
∑

ω

ϕω

[ ∑
g∈GD

e

(
πDA

g (pRT
gω − p̃DA

g ) + π↑
gp

↑
gω (B.1a)

+ π↓
gp

↓
gω

)
+
∑

d∈DD
e

(
πDA

d (p̃DA
d − pRT

dω )

+ π↑
dp

↑
dω + π↓

dp
↓
dω

)
+
∑

n∈ND
e

V OLLRT
n sRT

nω

+ πPCC,DA
e (pPCC,RT

eω − pPCC,DA
e )
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+ π↑P CC
e p↑P CC

eω + π↓P CC
e p↓P CC

eω

+
∑

r∈RD
e

(
πR(wRT

rω − wDA
r ) + π↑Rw↑

rω + π↓Rw↓
rω

) ]
subject to:
DA-level constraints:∑
g∈Ge

p̃DA
g −

∑
d∈DD

e

p̃DA
d +

∑
r∈RD

e

wDA
r + sDA

e

+ pPCC,DA
e = 0, : (λDA

e ) (B.1b)
P g ≤ p̃DA

g ≤ P g, ∀g ∈ GD
e : (ςDA−

g , ςDA+
g ) (B.1c)

P d ≤ p̃DA
d ≤ P d, ∀d ∈ DD

e : (ςDA−
d , ςDA+

d ) (B.1d)
0 ≤ wDA

r ≤ WDA
r , ∀r ∈ RD

e : (ι−r , ι+r ) (B.1e)
f

e
≤ pPCC,DA

e ≤ fe, : (ρDA−
e , ρDA+

e ) (B.1f)

0 ≤ sDA
e ≤

∑
d

pDA
d , : (ΥDA−

e ,ΥDA+
e ) (B.1g)

Real-time constraints:
pRT

gω = pDA
g + p↑

gω − p↓
gω, ∀ω, g ∈ GD

e , : (ζp
gω) (B.1h)

pRT
dω = pDA

d − p↑
dω + p↓

dω, ∀ω, d ∈ DD
e , : (ζp

dω) (B.1i)
wRT

rω = wDA
r + w↑

rω − w↓
rω, ∀ω, r ∈ RD

e , : (ζp
rω) (B.1j)∑

g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω + pPCC,RT

eω |n=nLV
e

+ sRT
nω =

∑
l∈n→

pRT
lω −

∑
l∈→n

pRT
lω , ∀ω, n ∈ ND

e : (λp,RT
nω ) (B.1k)

pPCC,RT
eω = pPCC,DA

e + p↑P CC
eω − p↓P CC

eω , ∀ω, : (ζPCC
eω ) (B.1l)∑

g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω + qPCC,RT
eω |n=nLV

e

=
∑

l∈n→

qRT
lω −

∑
l∈→n

qRT
lω , ∀ω, n ∈ ND

e : (λq,RT
nω ) (B.1m)

p
(RT )2
lω + q

(RT )2
lω ≤ φRT

lω vRT
nω , ∀ω, l ∈ LD

e : (γlω) (B.1n)
pRT

lω + pRT
l′ω = Rlφ

RT
lω , ∀ω, l ∈ LD

e : (µp
lω) (B.1o)

qRT
lω + qRT

l′ω = Xlφ
RT
lω , ∀ω, l ∈ LD

e : (µq
lω) (B.1p)

p
(RT )2
lω + q

(RT )2
lω ≤ Sl, ∀ω, l ∈ LD

e : (ηlω) (B.1q)
vRT

mω = vRT
nω − 2(Rlp

RT
lω +Xlq

RT
lω ) + (R2

l +X2
l )φRT

lω ,

∀ω, l ∈ LD
e : (βlω) (B.1r)
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V 2
n ≤ vRT

nω ≤ V
2
n, ∀ω, n ∈ ND

e : (σ−
nω, σ

+
nω) (B.1s)

0 ≤ wRT
rω ≤ WRT

rω , ∀ω, n ∈ Ne : (ν−
nω, ν

+
nω) (B.1t)

P g ≤ pRT
gω ≤ P g, ∀ω, g ∈ Ge : (ςRT −

gω , ςRT +
gω ) (B.1u)

P d ≤ pRT
dω ≤ P d, ∀ω, d ∈ De : (ςRT −

dω , ςRT +
dω ) (B.1v)

Q
g

≤ qRT
gω ≤ Qg, ∀ω, g ∈ Ge : (κRT −

gω , κRT +
gω ) (B.1w)

Q
d

≤ qRT
dω ≤ Qd, ∀ω, d ∈ De : (κRT −

dω , κRT +
dω ) (B.1x)

f
e

≤ pPCC,RT
eω ≤ fe, ∀ω : (ρRT −

eω , ρRT +
eω ) (B.1y)

p↑
gω ≥ 0, ∀ω, g : (ϵp↑

gω), p↓
gω ≥ 0, ∀ω, g : (ϵp↓

gω) (B.1z)
p↑

dω ≥ 0, ∀d, ω : (εp↑
dω), p↓

dω ≥ 0, ∀d, ω : (εp↓
dω) (B.1aa)

p↑P CC
eω ≥ 0, ∀ω, : (ϵ↑P CC

eω ), p↓P CC
eω ≥ 0, ∀ω, : (ϵ↓P CC

eω ) (B.1ab)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀ω, n ∈ ND

e , : (ΥRT −
nω ,ΥRT +

nω ) (B.1ac)

w↑
rω ≥ 0, ∀ω,w : (ϵp↑

rω), w↓
rω ≥ 0, ∀ω,w : (ϵp↓

rω) (B.1ad)

Where ΞE = p̃DA
g , p̃DA

d , pRT
gω , p

↑
gω, p

↓
gω, p

RT
dω , p

↑
dω, p

↓
dω , q

RT
gω , q

RT
dω , s

RT
nω , s

DA
e , wRT

nω , p
RT
lω , qRT

lω , φRT
lω

, vRT
nω , w

DA
e , pPCC,DA

e , pPCC,RT
e , p↑P CC

e , p↓P CC
e , sq,RT

nω are the variables of the DSO-level
combined day-ahead and real-time market clearing.

The Lagrangian of above problem is:

Le =
∑

d∈DD
e

πDA
d p̃DA

d −
∑

g∈GD
e

πDA
g p̃DA

g

− V OLLDA
e sDA

e −
∑

r∈RD
e

πRwDA
r − πPCC,DA

e pPCC,DA
e

−
∑

ω

ϕω

[ ∑
g∈GD

e

(
πDA

g (pRT
gω − pDA

g ) + π↑
gp

↑
gω + π↓

gp
↓
gω

)
+
∑

d∈DD
e

(
πDA

d (pDA
d − pRT

dω ) + π↑
dp

↑
dω + π↓

dp
↓
dω

)
+
∑

n∈ND
e

V OLLRT
n sRT

nω

+
∑

r∈RD
e

(
πR(wRT

rω − wDA
r ) + π↑Rw↑

rω + π↓Rw↓
rω

)
+ πPCC,DA

e (pPCC,RT
eω − pPCC,DA

e )

+ π↑P CC
e p↑P CC

eω + π↓P CC
e p↓P CC

eω

]
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− λDA
e

[ ∑
g∈Ge

p̃DA
g −

∑
d∈DD

e

p̃DA
d +

∑
r∈RD

e

wDA
r

+ sDA
e + pPCC,DA

e

]
+
∑

g∈GD
e

[
ςDA−
g

(
P g − p̃DA

g

)
+ ςDA+

g

(
p̃DA

g − P g

)]
−
∑

r∈RD
e

[
ι−r w

DA
r − ι+r (wDA

r −WDA
r )

]
+
∑

d∈DD
e

[
ςDA−
d

(
P d − p̃DA

d

)
+ ςDA+

d

(
p̃DA

d − P d

)]
+ ρDA−

e (f
e

− pPCC,DA
e ) + ρDA+

e (pPCC,DA
e − fe)

−
∑

g∈GD
e

ζp
gω

(
pRT

gω − pDA
g − p↑

gω + p↓
gω

)
−
∑

d∈DD
e

ζp
dω

(
pRT

dω − pDA
d + p↑

dω − p↓
dω

)
−
∑

r∈RD
e

ζp
rω

(
wRT

rω − wDA
r − w↑

rω + w↓
rω

)
−

∑
n∈ND

e ,ω

λp,RT
nω

( ∑
g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω

+ sRT
nω + pPCC,RT

eω |n=nLV
e

−
∑

l∈n→

pRT
lω +

∑
l∈→n

pRT
lω

)
−
∑

ω

ζPCC
eω

(
pPCC,RT

eω − pPCC,DA
e − p↑P CC

eω + p↓P CC
eω

)
−

∑
n∈ND

e ,ω

λq,RT
nω

( ∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

+ qPCC,RT
eω |n=nLV

e
−
∑

l∈n→

qRT
lω +

∑
l∈→n

qRT
lω

)
+

∑
l∈LD

e ,ω

γlω

[
p

(RT )2
lω + q

(RT )2
lω − φRT

lω vRT
nω

]
−

∑
l∈LD

e ,ω

[
µp

lω

(
pRT

lω + pRT
l′ω −Rlφ

RT
lω

)
+ µq

lω

(
qRT

lω + qRT
l′ω −Xlφ

RT
lω

) ]
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+
∑

l∈LD
e ,ω

[
ηlω

(
p

(RT )2
lω + q

(RT )2
lω − Sl

)]
−

∑
l∈LD

e ,ω

[
βlω

(
vRT

mω − vRT
nω + 2(Rlp

RT
lω +Xlq

RT
lω )

− (R2
l +X2

l )φRT
lω

)]
+

∑
n∈ND

e ,ω

[
σ−

nω

(
V 2

n − vRT
nω

)
+ σ+

nω

(
vRT

nω − V
2
n

) ]
−

∑
r∈RD

e ,ω

[
ν−

rωw
RT
rω − ν+

rω

(
wRT

rω −WRT
rω

) ]
+

∑
g∈GD

e ,ω

[
ςRT −
gω

(
P g − pRT

gω

)
+ ςRT +

gω

(
pRT

gω − P g

)]
+

∑
d∈DD

e ,ω

[
ςRT −
dω

(
P d − pRT

dω

)
+ ςRT +

dω

(
pRT

dω − P d

)]
+

∑
g∈GD

e ,ω

[
κRT −

gω

(
Q

g
− qRT

gω

)
+ κRT +

gω

(
qRT

gω −Qg

)]
+

∑
d∈DD

e ,ω

[
κRT −

dω

(
Q

d
− qRT

dω

)
+ κRT +

dω

(
qRT

dω −Qg

)]
+

∑
g∈GD

e ,ω

[
−p↑

gωϵ
p↑
gω − p↓

gωϵ
p↓
gω

]
+

∑
r∈RD

e ,ω

[
−w↑

rωϵ
p↑
rω − w↓

rωϵ
p↓
rω

]
+

∑
d∈DD

e ,ω

[
−p↑

dωε
p↑
dω − p↓

dωε
p↓
dω

]
+
∑

ω

[
−p↑P CC

eω ϵ↑P CC
eω − p↓P CC

eω ϵ↓P CC
eω

]
+
∑

ω

[
ρRT −

eω

(
f

e
−
√
p

(P CC,RT )2
eω + q

(P CC,RT )2
eω

)
+ ρRT +

eω

(√
p

(P CC,RT )2
eω + q

(P CC,RT )2
eω − fe

)]
+

∑
n∈ND

e ,ω

[
−ΥRT −

nω sRT
nω + ΥRT +

nω

(
sRT

nω −
∑

d∈Dn

pRT
dω

)]

− ΥDA−
e sDA

e + ΥDA+
e

(
sDA

e −
∑

d

pDA
d

)
(B.2)



B.2 DSO market lower-level problem 107

The KKT conditions of above problem are (excluding the primal constraints of
B.1):

(p̃DA
g ) : −πDA

g +
∑

ω

ϕωπ
DA
g − λDA

e − ςDA−
g

+ ςDA+
g +

∑
ω

ζp
gω = 0, ∀g ∈ GD

e (B.3a)

(p̃DA
d ) :

∑
ω

(
ζp

dω − ϕωπ
DA
d

)
+ πDA

d + λDA
e

− ςDA−
d + ςDA+

d − ΥDA+
e = 0, ∀d ∈ DD

e (B.3b)
(p↑

gω) : −ϕωπ
↑
g + ζp

gω − ϵp↑
gω = 0, ∀ω, g ∈ GD

e (B.3c)
(p↓

gω) : −ϕωπ
↓
g − ζp

gω − ϵp↓
gω = 0, ∀ω, g ∈ GD

e (B.3d)
(p↑

dω) : −ϕωπ
↑
d − ζp

dω − εp↑
iω = 0, ∀ω, d ∈ DD

e (B.3e)
(p↓

dω) : −ϕωπ
↓
d + ζp

dω − εp↓
dω = 0, ∀ω, d ∈ DD

e (B.3f)
(w↑

rω) : −ϕωπ
↑R + ζp

rω − ϵp↑
rω = 0, ∀ω, r ∈ RD

e (B.3g)
(w↓

rω) : −ϕωπ
↓R − ζp

rω − ϵp↓
rω = 0, ∀ω, r ∈ RD

e (B.3h)
(sDA

e ) : −VOLLe − λDA
e − ΥDA−

e + ΥDA+
e = 0 (B.3i)

(sRT
nω ) : −VOLLn − λp,RT

nω − ΥRT −
nω

+ ΥRT +
nω = 0, ∀ω, n ∈ ND

e (B.3j)
(wRT

rω ) : −ϕωπ
R − ζp

rω −
[
λp,RT

nω

]
nr

+ ν+
rω

− ν−
rω = 0, ∀ω, r ∈ RD

e (B.3k)

(wDA
r ) : −πR +

∑
ω

ϕωπ
R − λDA

e − ι−r

+ ι+r +
∑

ω

ζp
rω = 0,∀r ∈ RD

e (B.3l)

(pRT
gω ) : −ϕωπ

DA
g − ζp

gω − ςRT −
gω + ςRT +

gω

−
[
λp,RT

nω

]
ng

= 0, ∀ω, g ∈ GD
e (B.3m)

(qRT
gω ) : −κRT −

gω + κRT +
gω −

[
λq,RT

nω

]
ng

= 0, ∀ω, g ∈ GD
e (B.3n)

(pRT
dω ) : ϕωπ

DA
d − ζp

dω − ςRT −
dω + ςRT +

dω

+
[
λp,RT

nω − ΥRT +
nω

]
nd

= 0, ∀ω, d ∈ DD
e (B.3o)

(qRT
dω ) : −κRT −

dω + κRT +
dω +

[
λq,RT

nω

]
nd

= 0, ∀ω, d ∈ DD
e (B.3p)

(pRT
lω ) : λp,RT

nω − λp,RT
mω + 2γlωp

RT
lω − µp

lω − µp
l′ω + 2ηlωp

RT
lω

− 2βlωRl = 0, ∀ω, l = (n,m) ∈ LD
e (B.3q)
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(qRT
lω ) : λq,RT

nω − λq,RT
mω + 2γlωq

RT
lω − µq

lω − µq
l′ω + 2ηlωq

RT
lω

− 2βlωXl = 0, ∀ω, l = (n,m) ∈ LD
e (B.3r)

(φRT
lω ) : −γlωv

RT
nω + µp

lωRl + µq
lωXl + βlω(R2

l +X2
l )

= 0, ∀ω, l = (n,m) ∈ LD
e (B.3s)

(vRT
nω ) : −γlωφ

RT
lω − βl′ω + βlω − σ−

nω + σ+
nω

= 0, ∀ω, l = (n,m) ∈ LD
e (B.3t)

(pPCC,DA
e ) : −πPCC,DA

e +
∑

ω

(
ϕωπ

PCC,DA
e + ζPCC

eω

)
− λDA

e − ρDA−
e + ρDA+

e = 0 (B.3u)
(pPCC,RT

eω ) : −ϕωπ
PCC,DA
e −

[
λp,RT

nω

]
nLV

e
− ζPCC

eω

− ρRT −
eω + ρRT +

eω = 0, ∀ω (B.3v)
(qPCC,RT

eω ) : −
[
λq,RT

nω

]
nLV

e
= 0, ∀ω (B.3w)

(p↑P CC
eω ) : −ϕωπ

↑P CC
e + ζPCC

eω − ϵ↑P CC
eω = 0, ∀ω (B.3x)

(p↓P CC
eω ) : −ϕωπ

↓P CC
e − ζPCC

eω − ϵ↓P CC
eω = 0, ∀ω (B.3y)

The complimentarity constraints are as follows:

0 ≤ ςDA+
g ⊥ P g − p̃DA

g ≥ 0, ∀g ∈ GD
e (B.4a)

0 ≤ ςDA−
g ⊥ p̃DA

g − P g ≥ 0, ∀g ∈ GD
e (B.4b)

0 ≤ ςDA+
d ⊥ P d − p̃DA

d ≥ 0, ∀d ∈ DD
e (B.4c)

0 ≤ ςDA−
d ⊥ p̃DA

d − P d ≥ 0, ∀d ∈ DD
e (B.4d)

0 ≤ ι−r ⊥ wDA
r ≥ 0, ∀r ∈ RD

e (B.4e)
0 ≤ ι+r ⊥ WDA

r − wDA
r ≥ 0, ∀r ∈ RD

e (B.4f)
0 ≤ ρDA−

e ⊥ pPCC,DA
e − f

e
≥ 0 (B.4g)

0 ≤ ρDA+
e ⊥ fe − pPCC,DA

e ≥ 0 (B.4h)

0 ≤ γlω ⊥ φRT
lω vRT

nω − (p(RT )2
lω + q

(RT )2
lω ) ≥ 0, ∀ω, l ∈ LD

e (B.4i)

0 ≤ ηlω ⊥ Sl − p
(RT )2
lω − q

(RT )2
lω ≥ 0, ∀ω, l ∈ LD

e (B.4j)
0 ≤ σ−

nω ⊥ vRT
nω − V 2

n ≥ 0, ∀ω, n ∈ ND
e (B.4k)

0 ≤ σ+
nω ⊥ V

2
n − vRT

nω ≥ 0, ∀ω, n ∈ ND
e (B.4l)

0 ≤ ν−
rω ⊥ wRT

rω ≥ 0, ∀ω, r ∈ RD
e (B.4m)

0 ≤ ν+
rω ⊥ WRT

rω − wRT
rω ≥ 0, ∀ω, r ∈ RD

e (B.4n)
0 ≤ ςRT −

gω ⊥ pRT
gω − P g ≥ 0, ∀ω, g ∈ GD

e (B.4o)
0 ≤ ςRT +

gω ⊥ P g − pRT
gω ≥ 0, ∀ω, g ∈ GD

e (B.4p)
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0 ≤ ςRT −
dω ⊥ pRT

dω − P d ≥ 0, ∀ω, d ∈ DD
e (B.4q)

0 ≤ ςRT +
dω ⊥ P d − pRT

dω ≥ 0, ∀ω, d ∈ DD
e (B.4r)

0 ≤ κRT +
gω ⊥ qRT

gω −Q
g

≥ 0, ∀ω, g ∈ GD
e (B.4s)

0 ≤ κRT −
gω ⊥ Qg − qRT

gω ≥ 0, ∀ω, g ∈ GD
e (B.4t)

0 ≤ κRT +
dω ⊥ qRT

dω −Q
d

≥ 0, ∀ω, d ∈ DD
e (B.4u)

0 ≤ κRT −
dω ⊥ Qd − qRT

dω ≥ 0, ∀ω, d ∈ DD
e (B.4v)

0 ≤ ρRT −
eω ⊥ pPCC,RT

eω − f
e

≥ 0, ∀ω (B.4w)
0 ≤ ρRT +

eω ⊥ fe − pPCC,RT
eω ≥ 0, ∀ω (B.4x)

0 ≤ ϵp↑
gω ⊥ p↑

gω ≥ 0, 0 ≤ ϵp↓
gω ⊥ p↓

gω ≥ 0, ∀ω, g ∈ GD
e (B.4y)

0 ≤ ϵp↑
rω ⊥ w↑

rω ≥ 0, 0 ≤ ϵp↓
rω ⊥ w↓

rω ≥ 0, ∀ω, r ∈ RD
e (B.4z)

0 ≤ εp↑
dω ⊥ p↑

dω ≥ 0, 0 ≤ εp↓
dω ⊥ p↓

dω ≥ 0, ∀ω, d ∈ DD
e (B.4aa)

0 ≤ ϵ↑P CC
eω ⊥ p↑P CC

eω ≥ 0, 0 ≤ ϵ↓P CC
eω ⊥ p↓P CC

eω ≥ 0, ∀ω (B.4ab)
0 ≤ ΥRT −

nω ⊥ sRT
nω ≥ 0,∀n, ω (B.4ac)

0 ≤ ΥRT +
nω ⊥

∑
d∈Dn

pRT
dω − sRT

nω ≥ 0, ∀n, ω (B.4ad)

0 ≤ ΥDA−
e ⊥ sDA

e ≥ 0 (B.4ae)

0 ≤ ΥDA+
e ⊥

∑
d

pDA
d − sDA

e ≥ 0 (B.4af)

B.3 KKT conditions of day-ahead market
For convenience problem (5.3) is repeated here, with dual varaibles for every con-
straint added.

max
ΞDA

SWDA =
∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g

− V OLLDAsDA − πR
∑

r

wDA
r (B.5a)

subject to:∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r

wDA
r + sDA = 0, : (λT,DA) (B.5b)

P g ≤ p̂DA
g ≤ p̃DA

g , ∀g ∈ GD
e , ∀e ∈ E : (ςT,DA−

ge , ςT,DA+
ge ) (B.5c)

P g ≤ p̂DA
g ≤ P g, ∀g ∈ GT : (σT,DA−

g , σT,DA+
g ) (B.5d)

P d ≤ p̂DA
d ≤ p̃DA

d , ∀d ∈ DD
e , ∀e ∈ E : (ςT,DA−

de , ςT,DA+
de ) (B.5e)



110 B Assumptions and additional models

P d ≤ p̂DA
d ≤ P d, ∀d ∈ DT : (σT,DA−

d , σT,DA+
d ) (B.5f)

0 ≤ wDA
r ≤ WDA

r , ∀r ∈ R : (νT,DA−
r , νT,DA+

r ) (B.5g)

0 ≤ sl,DA ≤
∑

d

p̂DA
d , : (ρT,DA−, ρT,DA+) (B.5h)

p̃DA
g and p̃DA

d is the day ahead dispatch from problem B.1.
The lagrangian of the TSO day-ahead market problem is as follows:

LDA =
∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g

− V OLLDAsDA − πR
∑

r

wDA
r

− λT,DA

∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r∈R

wDA
r + sDA


+

∑
g∈GD

e ,e

[
ςT,DA−
ge

(
P g − p̂DA

g

)
+ ςT,DA+

ge

(
p̂DA

g − p̃DA
g

)]
+
∑

g∈GT

[
σT,DA−

g

(
P g − p̂DA

g

)
+ σT,DA+

g

(
p̂DA

g − P g

)]
+

∑
d∈DD

e ,e

[
ςT,DA−
de

(
P d − p̂DA

d

)
+ ςT,DA+

de

(
p̂DA

d − p̃DA
d

)]
+
∑

d∈DT

[
σT,DA−

d

(
P d − p̂DA

d

)
+ σT,DA+

d

(
p̂DA

d − P d

)]
−
∑
r∈R

[
νT,DA−

r wDA
r − νT,DA+

r

(
wDA

r −WDA
r

)]
− ρT,DA−sDA + ρT,DA+(sDA −

∑
d

p̂DA
d ) (B.6)

The KKTs of the TSO day-ahead market (excluding primal constraints) are:

(p̂DA
g ) : −πDA

g −
[
ςT,DA−
ge − ςT,DA+

ge

]
g∈GD

e

−
[
σT,DA−

g − σT,DA+
g

]
g∈GT

− λT,DA = 0, ∀g ∈ G (B.7a)

(p̂DA
d ) : πDA

d −
[
ςT,DA−
de − ςT,DA+

de

]
d∈DD

e

−
[
σT,DA−

d − σT,DA+
d

]
d∈DT

− ρT,DA+

+ λT,DA = 0, ∀d ∈ D (B.7b)
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(sl,DA) : −V OLLDA − λT,DA − ρT,DA−

+ ρT,DA+ = 0 (B.7c)
(wDA

r ) : −πR − λT,DA

−
[
νT,DA−

r − νT,DA+
r

]
= 0, ∀r ∈ R (B.7d)

The complimentary constraints are:

0 ≤ ςT,DA−
ge ⊥ p̂DA

g − P g ≥ 0 ∀g, e (B.8a)
0 ≤ ςT,DA+

ge ⊥ p̃DA
g − p̂DA

g ≥ 0 ∀g ∈ GD
e , e ∈ E (B.8b)

0 ≤ σT,DA+
g ⊥ P g − p̂DA

g ≥ 0 ∀g ∈ GT (B.8c)
0 ≤ ςT,DA−

de ⊥ p̂DA
d − P d ≥ 0 ∀d, e (B.8d)

0 ≤ ςT,DA+
de ⊥ p̃DA

d − p̂DA
d ≥ 0 ∀d ∈ DD

e , e ∈ E (B.8e)
0 ≤ σT,DA+

d ⊥ P d − p̂DA
d ≥ 0 ∀d ∈ DT (B.8f)

0 ≤ νT,DA−
r ⊥ wDA

r ≥ 0, ∀r ∈ R (B.8g)
0 ≤ νT,DA+

r ⊥ WDA
r − wDA

r ≥ 0, ∀r ∈ R (B.8h)
0 ≤ ρT,DA− ⊥ sl,DA ≥ 0 (B.8i)

0 ≤ ρT,DA+ ⊥
∑

d

p̂DA
d − sl,DA ≥ 0 (B.8j)

B.4 KKT conditions of real-time market
The KKT conditions of the SOCP problem for the real-time re-dispatch are not
actually solved, because the Benders decomposition renders the scenarios solvable as
single problems. However, they are used in a proof of equivalence between the DSO
market and the global DA-RT combination.

The Real-Time problem from (5.4) is repeated here with dual variables added:

min
ΞRT

ϕω(∆CostRT
ω ) (B.9a)

= ϕω

[∑
g∈G

(πDA
g (pRT

gω − p̂DA
g ) + π↑

gp
↑
gω + π↓

gp
↓
gω)

+
∑
d∈D

(πDA
d (p̂DA

d − pRT
dω ) + π↑

dp
↑
dω + π↓

dp
↓
dω)

+
∑
n∈N

V OLLRT
n sRT

nω

+
∑

r

(
πR(wRT

rω − wDA
r ) + π↑Rw↑

rω + π↓Rw↓
rω

) ]



112 B Assumptions and additional models

s.t. pRT
lω = Bl(θnω − θmω), ∀l ∈ LT, : (γT

lω) (B.9b)
pRT

lω ≤ Sl, ∀l ∈ LT, : (ηT
lω) (B.9c)

pRT
gω = p̂DA

g + p↑
gω − p↓

gω, ∀g ∈ G, : (ζp,RT
gω ) (B.9d)

pRT
dω = p̂DA

d − p↑
dω + p↓

dω, ∀d ∈ D, : (ζp,RT
dω ) (B.9e)

wRT
rω = wDA

r + w↑
rω − w↓

rω, ∀r ∈ R, , : (ζp,RT
rω ) (B.9f)∑

g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω + sRT

nω

=
∑

l∈n→

pRT
lω −

∑
l∈→n

pRT
lω , ∀n ∈ N, : (λp,RT

nω ) (B.9g)∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

=
∑

l∈n→

qRT
lω −

∑
l∈→n

qRT
lω , ∀n ∈ ND

e , : (λq,RT
nω ) (B.9h)

p
(RT )2
lω + q

(RT )2
lω ≤ φRT

lω vRT
nω , ∀l ∈ LD

e ∪ le, : (γD,RT
lω ) (B.9i)

pRT
lω + pRT

l′ω = Rlφ
RT
lω , ∀l ∈ LD

e ∪ le, : (µp,RT
lω ) (B.9j)

qRT
lω + qRT

l′ω = Xlφ
RT
lω , ∀l ∈ LD

e ∪ le, : (µq,RT
lω ) (B.9k)

p
(RT )2
lω + q

(RT )2
lω ≤ S2

l , ∀l ∈ LD
e ∪ le, : (ηD

lω) (B.9l)
vRT

mω = vRT
nω − 2(Rlp

RT
lω +Xlq

RT
lω )

+ (R2
l +X2

l )φRT
lω , ∀l ∈ LD

e ∪ le, : (βRT
lω ) (B.9m)

V 2
n ≤ vRT

nω ≤ V
2
n, ∀e, n ∈ ND

e , : (σRT −
nω , σRT +

nω ) (B.9n)
0 ≤ wRT

rω ≤ WRT
rω , ∀r ∈ R, : (νRT −

rω , νRT +
rω ) (B.9o)

P g ≤ pRT
gω ≤ P g, ∀g ∈ G, : (ςRT −

gω , ςRT +
gω ) (B.9p)

P d ≤ pRT
dω ≤ P d, ∀d ∈ D, : (ςRT −

dω , ςRT +
dω ) (B.9q)

Q
g

≤ qRT
gω ≤ Qg, ∀g ∈ GD

e , : (κRT −
gω , κRT +

gω ) (B.9r)

Q
d

≤ qRT
dω ≤ Qd, ∀d ∈ DD

e , : (κRT −
dω , κRT +

dω ) (B.9s)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀n ∈ N, : (ΥRT −

nω ,ΥRT +
nω ) (B.9t)

p↑
gω ≥ 0, , p↓

gω ≥ 0, ∀g, : (ϵ↑,RT
gω , ϵ↓,RT

gω ) (B.9u)
p↑

dω ≥ 0, , p↓
dω ≥ 0, ∀d, : (ϵ↑,RT

dω , ϵ↓,RT
dω ) (B.9v)

w↑
rω ≥ 0, w↓

rω ≥ 0,∀r, : (ε↑,RT
rω , ε↓,RT

rω ) (B.9w)

The Lagrangian of the real-time problem is as follows:
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LRT =
∑

ω

ϕω

[∑
g∈G

(
πDA

g (pRT
gω − pDA

g ) + π↑
gp

↑
gω + π↓

gp
↓
gω

)
+
∑
d∈D

(
πDA

d (pDA
d − pRT

dω ) + π↑
dp

↑
dω + π↓

dp
↓
dω

)
+
∑
n∈N

V OLLRT
n sRT

nω

+
∑
r∈R

(
πR(wRT

rω − wDA
r ) + π↑Rw↑

rω + π↓Rw↓
rω

) ]
+
∑

l∈LT

γT
lω

(
pRT

lω −Bl(θnω − θmω)
)

+
∑

l∈LT

ηT
lω

(
pRT

lω − Sl

)
−
∑
g∈G

ζp
gω

(
pRT

gω − p̂DA
g − p↑

gω + p↓
gω

)
−
∑
d∈D

ζp
dω

(
pRT

dω − p̂DA
d + p↑

dω − p↓
dω

)
−
∑
r∈R

ζp
rω

(
wRT

rω − wDA
r − w↑

rω + w↓
rω

)
−
∑

n∈N,ω

λp,RT
nω

( ∑
g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω

+ sRT
nω −

∑
l∈n→

pRT
lω +

∑
l∈→n

pRT
lω

)
−
∑

n∈N,ω

λq,RT
nω

( ∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

−
∑

l∈n→

qRT
lω +

∑
l∈→n

qRT
lω

)
+

∑
l∈LD

e ∪le,ω

γlω

[
p

(RT )2
lω + q

(RT )2
lω − φRT

lω vRT
nω

]
−

∑
l∈LD

e ∪le,ω

[
µp

lω

(
pRT

lω + pRT
l′ω −Rlφ

RT
lω

)
+ µq

lω

(
qRT

lω + qRT
l′ω −Xlφ

RT
lω

) ]
+

∑
l∈LD

e ∪le,ω

[
ηlω

(
p

(RT )2
lω + q

(RT )2
lω − Sl

)]
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−
∑

l∈LD
e ∪le,ω

[
βlω

(
vRT

mω − vRT
nω + 2(Rlp

RT
lω +Xlq

RT
lω )

− (R2
l +X2

l )φRT
lω

)]
+

∑
n∈ND

e ∪nHV
e ,ω

[
σ−

nω

(
V 2

n − vRT
nω

)
+ σ+

nω

(
vRT

nω − V
2
n

) ]
−
∑

r∈R,ω

[
ν−

rωw
RT
rω − ν+

rω

(
wRT

rω −WRT
rω

) ]
+
∑

g∈G,ω

[
ςRT −
gω

(
P g − pRT

gω

)
+ ςRT +

gω

(
pRT

gω − P g

)]
+
∑

d∈D,ω

[
ςRT −
dω

(
P d − pRT

dω

)
+ ςRT +

dω

(
pRT

dω − P d

)]
+
∑

g∈G,ω

[
κRT −

gω

(
Q

g
− qRT

gω

)
+ κRT +

gω

(
qRT

gω −Qg

)]
+

∑
d∈DD

e ,ω

[
κRT −

dω

(
Q

d
− qRT

dω

)
+ κRT +

dω

(
qRT

dω −Qg

)]
+
∑

g∈G,ω

[
−p↑

gωϵ
p↑
gω − p↓

gωϵ
p↓
gω

]
+
∑

r∈R,ω

[
−w↑

rωϵ
p↑
rω − w↓

rωϵ
p↓
rω

]
+
∑

d∈D,ω

[
−p↑

dωε
p↑
dω − p↓

dωε
p↓
dω

]

+
∑

n∈N,ω

[
−ΥRT −

nω sRT
nω + ΥRT +

nω

(
sRT

nω −
∑

d∈Dn

pRT
dω

)]
(B.10)

The KKT conditions of above Lagrangian are (excluding the primal constraints
of B.9):

(p↑
gω) : ϕωπ

↑
g + ζp

gω − ϵp↑
gω = 0, ∀g ∈ GD

e (B.11a)
(p↓

gω) : ϕωπ
↓
g − ζp

gω − ϵp↓
gω = 0, ∀g ∈ GD

e (B.11b)
(p↑

dω) : ϕωπ
↑
d − ζp

dω − εp↑
iω = 0, ∀d ∈ DD

e (B.11c)
(p↓

dω) : ϕωπ
↓
d + ζp

dω − εp↓
dω = 0, ∀d ∈ DD

e (B.11d)
(w↑

rω) : ϕωπ
↑R + ζp

rω − ϵp↑
rω = 0, ∀r ∈ RD

e (B.11e)
(w↓

rω) : ϕωπ
↓R − ζp

rω − ϵp↓
rω = 0, ∀r ∈ RD

e (B.11f)
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(sRT
nω ) : ϕωVOLLn − λp,RT

nω − ΥRT −
nω

+ ΥRT +
nω = 0, ∀n ∈ N (B.11g)

(wRT
rω ) : ϕωπ

R − ζp
rω −

[
λp,RT

nω

]
nr

+ ν+
rω

− ν−
rω = 0, ∀r ∈ RD

e (B.11h)
(pRT

gω ) : ϕωπ
DA
g − ζp

gω − ςRT −
gω + ςRT +

gω

−
[
λp,RT

nω

]
ng

= 0, ∀g ∈ G (B.11i)

(qRT
gω ) : −κRT −

gω + κRT +
gω −

[
λq,RT

nω

]
ng

= 0, ∀g ∈ GD
e (B.11j)

(pRT
dω ) : −ϕωπ

DA
d − ζp

dω − ςRT −
dω + ςRT +

dω

+
[
λp,RT

nω − ΥRT +
nω

]
nd

= 0, ∀d ∈ D (B.11k)

(qRT
dω ) : −κRT −

dω + κRT +
dω +

[
λq,RT

nω

]
nd

= 0, ∀d ∈ DD
e (B.11l)

(pRT
lω ) : λp,RT

nω − λp,RT
mω +

[
2γlωp

RT
lω − µp

lω − µp
l′ω + 2ηlωp

RT
lω

− 2βlωRl

]
l∈LD

e

+
[
γT

lω + ηT
lω

]
l∈LT

= 0, ∀l ∈ L (B.11m)

(qRT
lω ) : λq,RT

nω − λq,RT
mω +

[
2γlωq

RT
lω − µq

lω − µq
l′ω + 2ηlωq

RT
lω

− 2βlωXl

]
l∈LD

e

= 0, ∀l ∈ L (B.11n)

(φRT
lω ) : −γlωv

RT
nω + µp

lωRl + µq
lωXl + βlω(R2

l +X2
l )

= 0, ∀ω, l = (n,m) ∈ LD
e (B.11o)

(vRT
nω ) : −γlωφ

RT
lω − βl′ω + βlω − σ−

nω + σ+
nω

= 0, ∀ω, l = (n,m) ∈ LD
e (B.11p)

B.5 Proof of proposition 1
Proposition 1: The first order necessary conditions (KKT conditions) of the day-
ahead market and the real-time market combined contain all the KKT conditions of
the DSO market in (B.1) and solving (5.2) is equivalent to solving (5.1).
Proof of propositon 1: Problem (5.3) and (5.4) are explicitly convex. Therefore
their KKT conditions are also optimality conditions. This is the first part of the proof.
The KKT conditions of the DSO market in (B.1) are given in (B.3) and (B.4). The
DSO market is also explicitly convex and the KKT conditions define optimality. The
KKT conditions of the day-ahead market are presented in (B.7) and (B.8). All equa-
tions of (B.3) are contained in either (B.7) or (B.11) with exception of the variables
related to the PCC injections in feeder e. The dual constraints with regards to those
variables are (B.3u) through (B.3y). The PCC prices πPCC,DA

e , π↑P CC
e , π↓P CC

e and



116 B Assumptions and additional models

the PCC flow limits fe, fe
are variables in the upper level problem (5.1) and therefore

constitute slack variables that will not influence the optimality of (B.1). Therefore re-
moving the DSO market lower level problem and solving (5.2) is equivalent to solving
(5.1). This ends the proof.

B.6 Scenario generation
A simple scenario generation method is used for the uncertainties of the wind produc-
tion. The distance of the wind farms are

Drw =
∣∣∣∣∣∣∣∣ xr − xw

yr − yw

∣∣∣∣∣∣∣∣ , ∀r ∈ R,w ∈ R, r ̸= w (B.12)

The co-variance matrix is now given in (B.13).

Σrw = σ2
r + σ2

w

2
e−Drw ,∀r ∈ R,w ∈ R (B.13)

The distributions of the wind generators are thus:

W ∼ Nr(µr,Σrw) (B.14)

Now the scenarios can be drawn by random sampling i.e.

WRT
rω ∼∼ Nr(µr,Σrw) (B.15)

B.7 Modified 24 bus test network
The 24-bus power system – Single area RTS-96 is used here in a modified form. The
mean and variance of the wind power plants in the network are given in table B.1.
The locations of each wind farm is given in table B.2, which is used to claculate the
distance between them as in equation (B.12).

W1 W2 W3 W4 W5 W6 W7
Variance σ2 750 740 760 300 300 300 200

Mean µ 200 200 200 40 40 40 10
Table B.1: The mean of the forecast of the installed RES and variance of the fore-

cast.

B.8 Congestion level
The Congestion level of the colored dots in Fig. 5.4 is here plotted as a line plot in
Fig. B.2. The data for the two plots is the same.
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Figure B.1: Diagram of the 24-bus power system – Single area RTS-96. 5 DSO
feeders have been added, as well as 7 Wind power plants. The loads
from the buses where the DSO feeders are connected have been moved
to the DSO feeders.

W1 W2 W3 W4 W5 W6 W7
X-coordinate 0 0.25 0.5 6 6.25 6.5 6.75
Y-Coordinate 0 0 0 5 5 5 5.2

Table B.2: Georgraphical location of each wind farm.

B.9 Computational performance
Here we show some results pertaining to the Benders decomposition approach that
was presented in section 5.4. In Fig. B.3 we present the convergence of the suggested
multicut benders decomposition for a sample point of wind-penetration.

The upper bound of the benders decomposed problems in iteration (i) is found as:

UB(i) = SWDA(i) −
∑

ω

ϕω∆CostRT(i)
ω (B.16)
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Figure B.2: Probability of at least two transmission lines being congested in RT.

The lower bound in iteration (i) is found via:

LB(i) = SWDA(i) −
∑

ω

ϕωψ
(i)
ω (B.17)

The computational burden of the decomposed problem is analyzed by logging the
time it takes Mosek 8.0 to solve every master-problem and sub-problem for every
scenario. The implementation we use in this paper relies on the CVX plugin for
Matlab, which yields large overhead due to the time it takes to initialize every master-
problem and sub-problem. Therefore the results in table 5.1 only give the time
that the solver actually spent, while the full time including the overhead for the
initialization is about two to four times this number. In the future we wish to use
an implementation that does not rely on CVX which can help solving larger case
studies. The data provided in table 5.1 is the average over all the different wind-
penetration settings of the RES (i.e. it is the average of 24 different wind penetration
settings). Because the sub-problems are independent, and can be solved in parallel,
the number of scenarios do not affect the computational time as long as there are
enough CPU-cores to solve them in parallel.

The number of binary variables in the master-problem depend on the number of
complimentarity constraints in (B.8). Because we choose to solve the complimentarity
constraints with the Big-M approach every one of these constraints uses one binary.
The number of complimentarity constraints in turn depend mainly on the number
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of generators, number of elastic demands and number of RES sources. In the case
study for this work the master problem therefore contains 196 binary variables. As a
result of the benders decomposition the conic constraints have all been moved to the
subproblem, and therefore the master problem is MILP, while the subproblems are
continuous SOCP.

Figure B.3: Convergence of the Benders decomposition upper and lower bound over
the iterations. Note, we minimize −SW, which is equivalent to maxi-
mizing social welfare.





Bibliography
[1] F. Bouffard and D. S. Kirschen, “Centralised and distributed electricity sys-

tems,” Energy Policy, volume 36, number 12, pages 4504–4508, 2008.
[2] J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno, Integrating

renewables in electricity markets - Operational problems, F. S. Hillier, Ed.
Springer, 2014.

[3] Energinet, “Environmental report 2017,” Danish TSO, Frederecia, Tech. Rep.,
2017. [Online]. Available: https://en.energinet.dk/About-our-reports/
Reports/Environmental-Report-2018.

[4] C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric
flexibility from Distributed Energy Resources: A review of incentives for mar-
ket design,” Renewable and Sustainable Energy Reviews, volume 64, pages 237–
247, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.
06.008.

[5] E. Niesten and F. Alkemade, “How is value created and captured in smart
grids? A review of the literature and an analysis of pilot projects,” Renewable
and Sustainable Energy Reviews, volume 53, pages 629–638, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.rser.2015.08.069.

[6] H. Jiayi, J. Chuanwen, and X. Rong, “A review on distributed energy resources
and MicroGrid,” Renewable and Sustainable Energy Reviews, volume 12, pages 2465–
2476, 2008.

[7] M. Behrangrad, “A review of demand side management business models in
the electricity market,” Renewable and Sustainable Energy Reviews, volume 47,
pages 270–283, 2015.

[8] J. Villar, R. Bessa, and M. Matos, “Flexibility products and markets: Liter-
ature review,” Electric Power Systems Research, volume 154, pages 329–340,
2018.

[9] N. Good, K. A. Ellis, and P. Mancarella, “Review and classification of barriers
and enablers of demand response in the smart grid,” Renewable and Sustainable
Energy Reviews, volume 72, pages 57–72, 2017.

[10] D. Pudjianto, C. K. Gan, V. Stanojevic, M. Aunedi, P. Djapic, and G. Str-
bac, “Value of integrating distributed energy resources in the UK electricity
system,” Power & Energy Society General Meeting (PESGM), pages 1–6, 2010.

121

https://en.energinet.dk/About-our-reports/Reports/Environmental-Report-2018
https://en.energinet.dk/About-our-reports/Reports/Environmental-Report-2018
http://dx.doi.org/10.1016/j.rser.2016.06.008
http://dx.doi.org/10.1016/j.rser.2016.06.008
http://dx.doi.org/10.1016/j.rser.2015.08.069


122 Bibliography

[11] T. Morstyn, A. Teytelboym, and M. D. Mcculloch, “Designing decentralized
markets for distribution system flexibility,” IEEE Transactions on Power Sys-
tems, volume to be publ, pages 1–12, 2018.

[12] Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard, “Review
of real-time electricity markets for integrating distributed energy resources and
demand response,” Applied Energy, volume 138, pages 695–706, 2015.

[13] N. O’Connell, P. Pinson, H. Madsen, and M. O’Malley, “Benefits and chal-
lenges of electrical demand response : A critical review,” Renewable and Sus-
tainable Energy Reviews, volume 39, pages 686–699, 2014.

[14] M. Vallés, J. Reneses, R. Cossent, and P. Frías, “Regulatory and market bar-
riers to the realization of demand response in electricity distribution networks
: A European perspective,” Electric Power Systems Research, volume 140,
pages 689–698, 2016.

[15] N. O’Connell, “Approaches for Accommodating Demand Response in Opera-
tional Problems and Assessing its Value,” PhD thesis, Technical University
of Denmark, 2016. [Online]. Available: http : / / orbit . dtu . dk / files /
123041948/phd401%7B%5C_%7DOConnel%7B%5C_%7DN.pdf.

[16] M. Alizadeh, A. Scaglione, A. Goldsmith, and G. Kesidis, “Capturing aggre-
gate flexibility in demand response,” in 53rd Conference on Decision and Con-
trol (CDC), IEEE, 2014, pages 6439–6445.

[17] N. O’Connell, H. Madsen, P. Pinson, M. O’Malley, and T. Green, “Regulating
power from supermarket refrigeration,” in Innovative Smart Grid Technologies
Conference (ISGT), IEEE, 2015.

[18] L. A. Greening, D. L. Greene, and C. Difiglio, “Energy efficiency and consump-
tion - The rebound effect - A survey,” Energy Policy, volume 28, pages 389–
401, 2000.

[19] S. Sorrell and J. Dimitropoulos, “The rebound effect: Microeconomic defini-
tions, limitations and extensions,” Ecological Economics, volume 65, number 3,
pages 636–649, 2008.

[20] N. O’connell, H. Madsen, P. Delff, P. Pinson, and M. O ’malley, “Model iden-
tification for control of display units in supermarket refrigeration systems,”
Technical University of Denmark, Kgs. Lyngby, Tech. Rep. 2, 2014. [Online].
Available: http://orbit.dtu.dk/files/108341957/tr14%7B%5C_%7D02%
7B%5C_%7DOConnell%7B%5C_%7DN.pdf.

[21] N. O’Connell, H. Madsen, P. Pinson, and M. O’Malley, “Modelling and as-
sessment of the capabilities of a supermarket refrigeration system for the pro-
vision of regulating power,” Technical University of Denmark, Kgs. Lyngby,
Tech. Rep., 2014, pages 1–35. [Online]. Available: http://orbit.dtu.dk/
en/publications/modelling- and- assessment- of- the- capabilities-
of - a - supermarket - refrigeration - system - for - the - provision - of -
regulating-power(25f6d19a-7058-4d93-9e60-4a8b2492df31).html.

http://orbit.dtu.dk/files/123041948/phd401%7B%5C_%7DOConnel%7B%5C_%7DN.pdf
http://orbit.dtu.dk/files/123041948/phd401%7B%5C_%7DOConnel%7B%5C_%7DN.pdf
http://orbit.dtu.dk/files/108341957/tr14%7B%5C_%7D02%7B%5C_%7DOConnell%7B%5C_%7DN.pdf
http://orbit.dtu.dk/files/108341957/tr14%7B%5C_%7D02%7B%5C_%7DOConnell%7B%5C_%7DN.pdf
http://orbit.dtu.dk/en/publications/modelling-and-assessment-of-the-capabilities-of-a-supermarket-refrigeration-system-for-the-provision-of-regulating-power(25f6d19a-7058-4d93-9e60-4a8b2492df31).html
http://orbit.dtu.dk/en/publications/modelling-and-assessment-of-the-capabilities-of-a-supermarket-refrigeration-system-for-the-provision-of-regulating-power(25f6d19a-7058-4d93-9e60-4a8b2492df31).html
http://orbit.dtu.dk/en/publications/modelling-and-assessment-of-the-capabilities-of-a-supermarket-refrigeration-system-for-the-provision-of-regulating-power(25f6d19a-7058-4d93-9e60-4a8b2492df31).html
http://orbit.dtu.dk/en/publications/modelling-and-assessment-of-the-capabilities-of-a-supermarket-refrigeration-system-for-the-provision-of-regulating-power(25f6d19a-7058-4d93-9e60-4a8b2492df31).html


Bibliography 123

[22] S. E. Shafiei, H. Rasmussen, and J. Stoustrup, “Modeling supermarket refrig-
eration systems for demand-side management,” Energies, volume 6, number 2,
pages 900–920, 2013.

[23] E. Georges, B. Cornélusse, D. Ernst, V. Lemort, and S. Mathieu, “Residential
heat pump as flexible load for direct control service with parametrized duration
and rebound effect,” Applied Energy, volume 187, pages 140–153, 2017.

[24] Y. Kim and L. K. Norford, “Optimal use of thermal energy storage resources in
commercial buildings through price-based demand response considering distri-
bution network operation,” Applied Energy, volume 193, pages 308–324, 2017.

[25] R. Halvgaard, N. K. Poulsen, H. Madsen, and J. B. Jorgensen, “Economic
model predictive control for building climate control in a smart grid,” in In-
novative Smart Grid Technologies Conference (ISGT), IEEE, 2012, pages 1–
6.

[26] B. Felten and C. Weber, “The value(s) of flexible heat pumps – Assessment of
technical and economic conditions,” Applied Energy, volume 228, pages 1292–
1319, 2018.

[27] R. Li, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing for
optimal electric vehicle charging management,” IEEE Transactions on Power
Systems, volume 29, number 4, page 1866, 2014.

[28] Z. Liu, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing for
optimal electric vehicle charging through chance constrained mixed-integer
programming,” IEEE Transactions on Power Systems, volume 29, number 1,
pages 203–211, 2016.

[29] S. Huang, Q. Wu, S. S. Oren, R. Li, and Z. Liu, “Distribution locational
marginal pricing through quadratic programming for congestion management
in distribution networks,” IEEE Transactions on Power Systems, volume 30,
number 4, pages 2170–2178, 2015.

[30] P. Sulc, S. Backhaus, and M. Chertkov, “Optimal distributed control of reac-
tive power via the alternating direction method of multipliers,” IEEE Trans-
actions on Energy Conversion, volume 29, number 4, pages 968–977, 2014.

[31] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,”
IEEE Transactions on Power Systems, volume 27, number 1, pages 92–107,
2012.

[32] S. H. Low, “Convex Relaxation of Optimal Power Flow—Part i: Formulations
and Equivalence,” IEEE Transactions on Control of Network Systems, vol-
ume 1, number 1, pages 15–27, 2014.

[33] ——, “Convex relaxation of optimal power flow - Part ii: Exactness,” IEEE
Transactions on Control of Network Systems, volume 1, number 2, pages 177–
189, 2014.



124 Bibliography

[34] R. A. Jabr, “Radial distribution load flow using conic programming,” IEEE
Transactions on Power Systems, volume 21, number 3, pages 1458–1459, 2006.

[35] A. Papavasiliou, “Analysis of distribution locational marginal prices,” IEEE
Transactions on Smart Grid, volume 9, number 5, pages 4872–4882, 2017.

[36] L. Halilbasic, P. Pinson, and S. Chatzivasileiadis, “Convex relaxations and
approximations of chance constrained AC-OPF problems,” IEEE Transactions
on Power Systems, volume 34, number 2, pages 1459–1470, 2019.

[37] Y. Liu, J. T. Holzer, and M. C. Ferris, “Extending the bidding format to
promote demand response,” Energy Policy, volume 86, pages 82–92, 2015.

[38] H. Le Cadre, “On the efficiency of local electricity markets,” in International
Conference on the European Energy Market (EEM), IEEE, 2017.

[39] S. Bose, D. Cai, and A. Wierman, “On the role of a market maker in networked
cournot competition,” in 53rd Conference on Decision and Control (CDC),
IEEE, 2014, pages 4479–4484.

[40] Y. Xu, D. Cai, S. Bose, and A. Wierman, “On the efficiency of networked
Stackelberg competition,” in 51st Annual Conference on Information Sciences
and Systems (CISS), Baltimore, USA: IEEE, 2017.

[41] I. Mezghani, A. Papavasiliou, and H. Le Cadre, “A generalized nash equi-
librium analysis of electric power transmission-distribution coordination,” in
e-Energy’18: The Ninth International Conference on Future Energy Systems,
2018, pages 1–20.

[42] A. Papavasiliou and I. Mezghani, “Coordination schemes for the integration
of transmission and distribution system operations,” in 20th Power Systems
Computation Conference (PSCC), IEEE, 2018.

[43] H. Gerard, E. I. Rivero Puente, and D. Six, “Coordination between transmis-
sion and distribution system operators in the electricity sector: A conceptual
framework,” Utilities Policy, volume 50, pages 40–48, 2018.

[44] H. Le Cadre, I. Mezghani, and A. Papavasiliou, “A game-theoretic analysis of
transmission-distribution system operator coordination,” European Journal of
Operational Research, volume 274, number 1, pages 317–339, 2019.

[45] A. Mohammadi, M. Mehrtash, and A. Kargarian, “Diagonal quadratic approx-
imation for decentralized collaborative TSO+DSO optimal power flow,” IEEE
Transactions on Smart Grid, number to be published, 2018.

[46] M. Caramanis, E. Ntakou, W. W. Hogan, A. Chakrabortty, and J. Schoene,
“Co-optimization of power and reserves in dynamic T&D power markets with
nondispatchable renewable generation and distributed energy resources,” Pro-
ceedings of the IEEE, volume 104, number 4, pages 807–836, 2016.



Bibliography 125

[47] A. Saint-Pierre and P. Mancarella, “Active distribution system management
: A dual-horizon scheduling framework for DSO/TSO interface under uncer-
tainty,” IEEE Transactions on Smart Grid, volume 8, number 5, pages 2186–
2197, 2016.

[48] A. Vicente Pastor, J. Nieto Martin, D. W. Bunn, and A. Laur, “Evaluation of
flexibility markets for Retailer-DSO-TSO coordination,” IEEE Transactions
on Power Systems, 2018.

[49] J. P. Silva, J. A. Sumaili, R. J. Bessa, L. Seca, M. A. Matos, V. Miranda,
M. Caujolle, B. Goncer-Maraver, and M. Sebastian-Viana, “Estimating the
active and reactive power flexibility area at the TSO-DSO interface,” IEEE
Transactions on Power Systems, volume 33, number 5, pages 4741–4750, 2018.

[50] D. M. Gonzalez, J. Hachenberger, J. Hinker, F. Rewald, C. Rehtanz, and J.
Myrzik, “Determination of the time-dependent flexibility of active distribution
networks to control their TSO-DSO interconnection power flow,” in 20th Power
Systems Computation Conference (PSCC), IEEE, 2018.

[51] M. Bragin and Y. Dvorkin, “Toward coordinated transmission and distribution
operations,” in Power & Energy Society General Meeting (PESGM), Portland:
IEEE, 2018.

[52] S. Huang, Q. Wu, H. Zhao, and C. Li, “Distributed optimization based dy-
namic tariff for congestion management in distribution networks,” IEEE Trans-
actions on Smart Grid, volume 10, number 1, pages 184–192, 2019.

[53] M. R. Sarker, M. A. Ortega-Vazquez, and D. S. Kirschen, “Optimal coordi-
nation and scheduling of demand response via monetary incentives,” IEEE
Transactions on Smart Grid, volume 6, number 3, pages 1341–1352, 2015.

[54] H. Zhong, L. Xie, and Q. Xia, “Coupon incentive-based demand response:
Theory and case study,” IEEE Transactions on Power Systems, volume 28,
number 2, pages 1266–1276, 2013.

[55] S. Huang, Q. Wu, J. Wang, and H. Zhao, “A sufficient condition on convex
relaxation of AC optimal power flow in distribution networks,” IEEE Trans-
actions on Power Systems, volume 32, number 2, pages 1359–1368, 2017.

[56] R. A. Verzijlbergh, L. J. De Vries, and Z. Lukszo, “Renewable energy sources
and responsive demand. Do we need congestion management in the distri-
bution grid?” IEEE Transactions on Power Systems, volume 29, number 5,
pages 2119–2128, 2014.

[57] F. Sossan, “Indirect control of flexible demand for power system applications,”
PhD thesis, Technical University of Denmark, 2014. [Online]. Available: https:
//core.ac.uk/download/pdf/24847772.pdf.

[58] N. O’connell, P. Pinson, H. Madsen, and M. O’malley, “Economic Dispatch
of Demand Response Balancing Through Asymmetric Block Offers,” IEEE
Transactions on Power Systems, volume 31, number 4, pages 2999–3007, 2016.

https://core.ac.uk/download/pdf/24847772.pdf
https://core.ac.uk/download/pdf/24847772.pdf


126 Bibliography

[59] L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation of optimal
power flow in radial networks,” IEEE Transactions on Automatic Control,
volume 60, number 1, pages 72–87, 2015.

[60] M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexifica-
tion - part i,” IEEE Transactions on Power Systems, volume 28, number 3,
pages 2554–2564, 2013.

[61] E. J. Coster, J. M. Myrzik, B. Kruimer, and W. L. Kling, “Integration is-
sues of distributed generation in distribution grids,” Proceedings of the IEEE,
volume 99, number 1, pages 28–39, 2011.

[62] J. a. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, “Inte-
grating distributed generation into electric power systems: A review of drivers,
challenges and opportunities,” Electric Power Systems Research, volume 77,
pages 1189–1203, 2007.

[63] S. Y. Hadush and L. Meeus, “DSO-TSO cooperation issues and solutions
for distribution grid congestion management,” Energy Policy, volume 120,
pages 610–621, 2018.

[64] C. Zhang, Y. Ding, N. C. Nordentoft, P. Pinson, and J. Østergaard, “FLECH:
A Danish market solution for DSO congestion management through DER flexi-
bility services,” Journal of Modern Power Systems and Clean Energy, volume 2,
number 2, pages 126–133, 2014.

[65] Y. K. Renani, M. Ehsan, and M. Shahidehpour, “Optimal transactive market
operations with distribution system operators,” IEEE Transactions on Smart
Grid, volume 9, number 6, pages 6692–6701, 2018.

[66] S. Huang and Q. Wu, “Real-time congestion management in distribution net-
works by flexible demand swap,” IEEE Transactions on Smart Grid, volume 9,
number 5, pages 4346–4355, 2018.

[67] N. O’Connell, Q. Wu, J. Østergaard, A. H. Nielsen, S. T. Cha, and Y. Ding,
“Day-ahead tariffs for the alleviation of distribution grid congestion from elec-
tric vehicles,” Electric Power Systems Research, volume 92, pages 106–114,
2012.

[68] L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution locational
marginal pricing (DLMP) for congestion management and voltage support,”
IEEE Transactions on Power Systems, volume 33, number 4, pages 4061–4073,
2018.

[69] M. G. Pollitt, “The role of policy in energy transitions: Lessons from the energy
liberalisation era,” Energy Policy, volume 50, pages 128–137, 2012.

[70] D. M. Newbery, “Privatisation and liberalisation of network utilities,” Euro-
pean Economic Review, volume 41, number 3-5, pages 357–383, 1997.

[71] D. Kirschen and G. Strbac, Fundamentals of power system economics. Hobo-
ken, NJ, USA: Wiley, 2004.



Bibliography 127

[72] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn, Spot pricing
of electricity. Springer Science & Business Media, 2013.

[73] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control.
McGraw-Hill New York, 1994.

[74] M. Rossi, G. Viganò, and D. Moneta, “Hosting capacity of distribution net-
works: Evaluation of the network congestion risk due to distributed genera-
tion,” in International Conference on Clean Electrical Power (ICCEP), IEEE,
2015, pages 716–722.

[75] R. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of
distributed resources impact on power delivery systems,” IEEE Transactions
on Power Delivery, volume 23, number 3, pages 1636–1644, 2008.

[76] B. Bocker, S. Kippelt, C. Weber, and C. Rehtanz, “Storage valuation in con-
gested grids,” IEEE Transactions on Smart Grid, volume 9, number 6, pages 6742–
6751, 2018.

[77] Federal Energy Regulatory Commission, “Distributed energy resources: Tech-
nical considerations for the bulk power system,” Federal Energy Regulation
Comission, Tech. Rep. February, 2018, pages 0–46. [Online]. Available: https:
//www.ferc.gov/CalendarFiles/20180215112833-der-report.pdf.

[78] E. G. Consortium, EcoGrid 2.0 website. [Online]. Available: http : / / www .
ecogrid.dk/ (visited on April 20, 2018).

[79] E. Comission, Proposal for a regulation of the european parliament and of the
council on the internal market for electricity, Brussels, 2016. [Online]. Available:
https://eur- lex.europa.eu/resource.html?uri=cellar:d7108c4c-
b7b8 - 11e6 - 9e3c - 01aa75ed71a1 . 0001 . 02 / DOC % 7B % 5C _ %7D1 % 7B % 5C &
%7Dformat=PDF.

[80] H. Gerard, E. Rivero, and D. Six, “Basic schemes for TSO-DSO coordination
and ancillary services provision,” Tech. Rep., 2016, page 98.

[81] S. Consortium, SmartNet project, 2019. [Online]. Available: http://smartnet-
project.eu/ (visited on January 2, 2019).

[82] W. E. Mabee, J. Mannion, and T. Carpenter, “Comparing the feed-in tariff
incentives for renewable electricity in Ontario and Germany,” Energy Policy,
volume 40, number 1, pages 480–489, 2012.

[83] L. Deng, B. F. Hobbs, and P. Renson, “What is the cost of negative bidding by
wind? A unit commitment analysis of cost and emissions,” IEEE Transactions
on Power Systems, volume 30, number 4, pages 1805–1814, 2015.

[84] L. Vandezande, L. Meeus, R. Belmans, M. Saguan, and J. M. Glachant, “Well-
functioning balancing markets: A prerequisite for wind power integration,”
Energy Policy, volume 38, number 7, pages 3146–3154, 2010.

https://www.ferc.gov/CalendarFiles/20180215112833-der-report.pdf
https://www.ferc.gov/CalendarFiles/20180215112833-der-report.pdf
http://www.ecogrid.dk/
http://www.ecogrid.dk/
https://eur-lex.europa.eu/resource.html?uri=cellar:d7108c4c-b7b8-11e6-9e3c-01aa75ed71a1.0001.02/DOC%7B%5C_%7D1%7B%5C&%7Dformat=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:d7108c4c-b7b8-11e6-9e3c-01aa75ed71a1.0001.02/DOC%7B%5C_%7D1%7B%5C&%7Dformat=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:d7108c4c-b7b8-11e6-9e3c-01aa75ed71a1.0001.02/DOC%7B%5C_%7D1%7B%5C&%7Dformat=PDF
http://smartnet-project.eu/
http://smartnet-project.eu/


128 Bibliography

[85] L. Hirth and I. Ziegenhagen, “Balancing power and variable renewables: Three
links,” Renewable and Sustainable Energy Reviews, volume 50, pages 1035–
1051, 2015.

[86] P. Van Den Oosterkamp, P. Koutstaal, A. Van Der Welle, J. De Joode, J.
Lenstra, K. Van Hussen, and R. Haffner, “The role of DSOs in a Smart Grid
environment,” European Comission, Amsterdam/Rotterdam, Tech. Rep., 2014.
[Online]. Available: https://ec.europa.eu/energy/sites/ener/files/
documents/20140423%7B%5C_%7Ddso%7B%5C_%7Dsmartgrid.pdf.

[87] L. Martini and A. Iliceto, “Renewable Integration: An Opinion from the Euro-
pean Perspective ‘In My View’,” IEEE Power and Energy Magazine, volume 16,
number 6, pages 112–110, 2018.

[88] B. Biegel, L. H. Hansen, J. Stoustrup, P. Andersen, and S. Harbo, “Value of
flexible consumption in the electricity markets,” Energy, volume 66, pages 354–
362, 2014.

[89] A. Mnatsakanyan and S. W. Kennedy, “A novel demand response model with
an application for a virtual power plant,” IEEE Transactions on Smart Grid,
volume 6, number 1, pages 230–237, 2015.

[90] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. M.
Almeida do Vale, “Local energy markets: Paving the path towards fully transac-
tive energy systems,” IEEE Transactions on Power Systems, pages 1–8, 2018.

[91] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin, “Peer-to-
peer and community-based markets: A comprehensive review,” Renewable and
Sustainable Energy Reviews, volume 104, pages 367–378, 2019.

[92] B. Felten, J. Raasch, and C. Weber, “Photovoltaics and heat pumps - Limita-
tions of local pricing mechanisms,” Energy Economics, volume 71, pages 383–
402, 2018.

[93] D. Consortium, DREM project website, 2019. [Online]. Available: https://
drem.dk/ (visited on January 2, 2019).

[94] Nordpool website, 2019. [Online]. Available: https://www.nordpoolgroup.
com/ (visited on March 1, 2019).

[95] H.-p. Chao and H. G. Huntington, Designing competetive electricity markets,
13th edition. Springer Science & Business Media, 2013.

[96] T. V. Jensen, J. Kazempour, and P. Pinson, “Cost-optimal ATCs in zonal elec-
tricity markets,” IEEE Transactions on Power Systems, volume 33, number 4,
pages 3624–3633, 2018.

[97] S. Nykamp, T. Rott, N. Dettke, and S. Kueppers, “The project ‘ElChe’ Wet-
tringen: storage as an alternative to grid reinforcements - Experiences, benefits
and challenges from a DSO point of view,” in International ETG Congress,
Bonn: VDE Verlag, 2015, pages 521–526.

https://ec.europa.eu/energy/sites/ener/files/documents/20140423%7B%5C_%7Ddso%7B%5C_%7Dsmartgrid.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/20140423%7B%5C_%7Ddso%7B%5C_%7Dsmartgrid.pdf
https://drem.dk/
https://drem.dk/
https://www.nordpoolgroup.com/
https://www.nordpoolgroup.com/


Bibliography 129

[98] S. Ropenus, H. K. Jacobsen, and S. T. Schröder, “Network regulation and
support schemes - How policy interactions affect the integration of distributed
generation,” Renewable Energy, volume 36, number 7, pages 1949–1956, 2011.

[99] V. Grimm, A. Martin, M. Weibelzahl, and G. Zöttl, “On the long run effects
of market splitting: Why more price zones might decrease welfare,” Energy
Policy, volume 94, pages 453–467, 2016.

[100] J. P. Chaves-Ávila and C. Fernandes, “The Spanish intraday market design:
A successful solution to balance renewable generation?” Renewable Energy,
volume 74, pages 422–432, 2015.

[101] C. Weber, “Adequate intraday market design to enable the integration of wind
energy into the European power systems,” Energy Policy, volume 38, number 7,
pages 3155–3163, 2010.

[102] ENTSO-E, ENTSO-E website, 2019. [Online]. Available: https://www.entsoe.
eu/about/inside-entsoe/objectives/.

[103] F. Ocker, S. Braun, and C. Will, “Design of European balancing power mar-
kets,” in International Conference on the European Energy Market (EEM),
volume 2016-July, IEEE, 2016, pages 1–6.

[104] Energinet, Agreement on future Nordic balancing, 2018. [Online]. Available:
https://en.energinet.dk/About-our-news/News/2018/03/09/Agreement-
on-future-Nordic-balancing.

[105] Réseau de transport d’électricité SA (Rte), “French capacity market - report
accompanying the draft rules,” RTE, Tech. Rep., 2014. [Online]. Available:
https://www.rte-france.com/sites/default/files/2014%7B%5C_%7D04%
7B%5C_%7D09%7B%5C_%7Dfrench%7B%5C_%7Dcapacity%7B%5C_%7Dmarket.
pdf.

[106] D. Newbery, “Missing money and missing markets: Reliability, capacity auc-
tions and interconnectors,” Energy Policy, volume 94, pages 401–410, 2016.

[107] P. L. Joskow, “Capacity payments in imperfect electricity markets: Need and
design,” Utilities Policy, volume 16, number 3, pages 159–170, 2008.

[108] P. Cramton and A. Ockenfels, “Economics and design of capacity markets
for the power sector,” Zeitschrift für Energiewirtschaft, volume 36, number 2,
pages 113–134, 2011.

[109] C. Ordoudis, “Market-based approaches for the coordinated operation of elec-
tricity and natural gas systems,” PhD thesis, Technical University of Denmark,
2018.

[110] G. A. Dourbois, P. N. Biskas, and D. I. Chatzigiannis, “Novel approaches for
the clearing of the european day-ahead electricity market,” IEEE Transactions
on Power Systems, volume 33, number 6, pages 5820–5831, 2018.

[111] A. J. Conejo, M. Carrión, and J. M. Morales, Decision making under uncer-
tainty in electricity markets. Springer, 2010.

https://www.entsoe.eu/about/inside-entsoe/objectives/
https://www.entsoe.eu/about/inside-entsoe/objectives/
https://en.energinet.dk/About-our-news/News/2018/03/09/Agreement-on-future-Nordic-balancing
https://en.energinet.dk/About-our-news/News/2018/03/09/Agreement-on-future-Nordic-balancing
https://www.rte-france.com/sites/default/files/2014%7B%5C_%7D04%7B%5C_%7D09%7B%5C_%7Dfrench%7B%5C_%7Dcapacity%7B%5C_%7Dmarket.pdf
https://www.rte-france.com/sites/default/files/2014%7B%5C_%7D04%7B%5C_%7D09%7B%5C_%7Dfrench%7B%5C_%7Dcapacity%7B%5C_%7Dmarket.pdf
https://www.rte-france.com/sites/default/files/2014%7B%5C_%7D04%7B%5C_%7D09%7B%5C_%7Dfrench%7B%5C_%7Dcapacity%7B%5C_%7Dmarket.pdf


130 Bibliography

[112] J. Kazempour, P. Pinson, and B. F. Hobbs, “A stochastic market design with
revenue adequacy and cost recovery by scenario: Benefits and costs,” IEEE
Transactions on Power Systems, volume 33, number 4, pages 3531–3545, 2018.

[113] S. Zhou and M. A. Brown, “Smart meter deployment in Europe: A comparative
case study on the impacts of national policy schemes,” Journal of Cleaner
Production, volume 144, number 2017, pages 22–32, 2017.

[114] M. Broman Toft, G. Schuitema, and J. Thøgersen, “The importance of fram-
ing for consumer acceptance of the smart grid: A comparative study of Den-
mark, Norway and Switzerland,” Energy Research and Social Science, vol-
ume 3, pages 113–123, 2014.

[115] AF‐Mercados, “Study on tariff design for distribution systems,” European
Comission, Tech. Rep., 2015, pages 1–650. [Online]. Available: https://ec.
europa.eu/energy/sites/ener/files/documents/20150313%20Tariff%
20report%20fina%7B%5C_%7DrevREF-E.PDF.

[116] S. Huang, Q. Wu, M. Shahidehpour, and Z. Liu, “Dynamic power tariff for con-
gestion management in distribution networks,” IEEE Transactions on Smart
Grid, volume 10, number 2, pages 2148–2157, 2019.

[117] S. Huang and Q. Wu, “Dynamic subsidy method for congestion management
in distribution networks,” IEEE Transactions on Smart Grid, volume 9, num-
ber 3, pages 2140–2151, 2016.

[118] S. Weckx, R. D’Hulst, B. Claessens, and J. Driesensam, “Multiagent charging
of electric vehicles respecting distribution transformer loading and voltage lim-
its,” IEEE Transactions on Smart Grid, volume 5, number 6, pages 2857–2867,
2014.

[119] K. Heussen, D. E. M. Bondy, J. Hu, O. Gehrke, and L. H. Hansen, “A clearing-
house concept for distribution-level flexibility services,” in Innovative Smart
Grid Technologies Conference Europe (ISGT), IEEE, 2013, pages 1–5.

[120] Z. Liu, Q. Wu, S. Huang, and H. Zhao, “Transactive energy: A review of state
of the art and implementation,” in PowerTech Conference, Manchester: IEEE,
2017, pages 1–6.

[121] A. Papavasiliou, H. Hindi, and D. Greene, “Market-based control mechanisms
for electric power demand response,” in 49th Conference on Decision and
Control (CDC), IEEE, 2010, pages 1891–1898.

[122] B. Moradzadeh and K. Tomsovic, “Two-stage residential energy management
considering network operational constraints,” IEEE Transactions on Smart
Grid, volume 4, number 4, pages 2339–2346, 2013.

[123] N. Good, E. Karangelos, A. Navarro-Espinosa, and P. Mancarella, “Optimiza-
tion under uncertainty of thermal storage-based flexible demand response with
quantification of residential users’ discomfort,” IEEE Transactions on Smart
Grid, volume 6, number 5, pages 2333–2342, 2015.

https://ec.europa.eu/energy/sites/ener/files/documents/20150313%20Tariff%20report%20fina%7B%5C_%7DrevREF-E.PDF
https://ec.europa.eu/energy/sites/ener/files/documents/20150313%20Tariff%20report%20fina%7B%5C_%7DrevREF-E.PDF
https://ec.europa.eu/energy/sites/ener/files/documents/20150313%20Tariff%20report%20fina%7B%5C_%7DrevREF-E.PDF


Bibliography 131

[124] J. Medina, N. Muller, I. Roytelman, and S. Member, “Demand Response and
Distribution Grid Operations : Opportunities and Challenges,” IEEE Trans-
actions on Smart Grid, volume 1, number 2, pages 193–198, 2010.

[125] S. Delikaraoglou, J. M. Morales, and P. Pinson, “Impact of inter- and intra-
regional coordination in markets with a large renewable component,” IEEE
Transactions on Power Systems, volume 31, number 6, pages 5061–5070, 2016.

[126] X. Han, K. Heussen, O. Gehrke, H. W. Bindner, and B. Kroposki, “Taxonomy
for Evaluation of Distributed Control Strategies for Distributed Energy Re-
sources,” IEEE Transactions on Smart Grid, volume 9, number 5, pages 5185–
5195, 2018.

[127] S. Dempe and J. Dutta, “Is bilevel programming a special case of a mathemat-
ical program with complementarity constraints?” Mathematical Programming,
volume 131, number 1-2, pages 37–48, 2012.

[128] V. V. Kalashnikov, S. Dempe, G. A. Pérez-Valdés, N. I. Kalashnykova, and
J. F. Camacho-Vallejo, “Bilevel programming and applications,” Mathematical
Problems in Engineering, volume 2015, pages 1–17, 2015.

[129] G. Anandalingam and T. Friesz, “Hierarchical optimization: An introduction,”
Annals of Operations Research, volume 34, number 1, pages 1–11, 1992.

[130] V. Dvorkin, S. Delikaraoglou, and J. M. Morales, “Setting reserve requirements
to approximate the efficiency of the stochastic dispatch,” IEEE Transactions
on Power Systems, volume 34, number 2, pages 1524–1536, 2019.

[131] H. Hoschle, H. Le Cadre, Y. Smeers, A. Papavasiliou, and R. Belmans, “An
ADMM-based Method for Computing Risk-Averse Equilibrium in Capacity
Markets,” IEEE Transactions on Power Systems, volume 33, number 5, pages 4819–
4830, 2018.

[132] H. Le Cadre and J. S. Bedo, “Dealing with uncertainty in the smart grid: A
learning game approach,” Computer Networks, volume 103, pages 15–32, 2016.

[133] E. Sorin, L. Bobo, and P. Pinson, “Consensus-based approach to peer-to-peer
electricity markets with product differentiation,” IEEE Transactions on Power
Systems, volume 34, number 2, pages 994–1004, 2018.

[134] F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,” Annals
of Operations Research, volume 175, number 1, pages 177–211, 2010.

[135] Y. Smeers, “Market incompleteness in regional electricity transmission,” Net-
works and Spatial Economics, volume 3, number 2, pages 151–174, 2003.

[136] K. Förderer and H. Schmeck, “Demo abstract : A building energy management
system in the context of the smart grid traffic light concept,” Computer Science
- Research and Development, volume 33, number 1, pages 269–270, 2018.



132 Bibliography

[137] E. Rivero, P. Mallet, E. France, M. Sebastian-viana, J. Stromsather, and M.
Baron, “EVOLVDSO: Assesment of the future roles of DSOs, future Market
Architechtures and Regulatory Frameworks for Network Integration of DRES,”
in 23rd International Conference on Electricity Distribution, CIRED, 2015,
pages 1–5.

[138] Smart Grid Task Force, “Regulatory recommendations for the deployment
of flexibility - EG3 report,” European Regional Development Fund, Brussels,
Tech. Rep. January, 2015, pages 1–94.

[139] Z. Yuan and M. R. Hesamzadeh, “Hierarchical coordination of TSO-DSO eco-
nomic dispatch considering large-scale integration of distributed energy re-
sources,” Applied Energy, volume 195, pages 600–615, 2017.

[140] H. Le Cadre, “On the efficiency of local electricity markets under decentralized
and centralized designs: a multi-leader Stackelberg game analysis,” Central
European Journal of Operations Research, pages 1–32, 2018.

[141] J. A. Taylor, Convex optimization of power systems. Cambridge University
Press, 2015.

[142] B. Subhonmesh, S. H. Low, and K. M. Chandy, “Equivalence of branch flow
and bus injection models,” in Allerton Conference on Communication, Control,
and Computing, Allerton: IEEE, 2012, pages 1893–1899.

[143] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University
Press, 2004.

[144] P. M. Pardalos and S. A. Vavasis, “Quadratic programming with one negative
eigenvalue is NP-hard,” Journal of Global Optimization, volume 1, number 1,
pages 15–22, 1991.

[145] K. G. Murty and S. N. Kabadi, “Some NP-Complete problems in quadratic and
nonlinear programming,” Mathematical Programming, volume 39, number 2,
pages 117–129, 1987.

[146] R. D. Christie, B. F. Wollenberg, and I. Wangensteen, “Transmission manage-
ment in the deregulated environment,” Proceedings of the IEEE, volume 88,
number 2, pages 170–195, 2000.

[147] M. Baran and F. Wu, “Optimal capacitor placement on radial distribution sys-
tems,” IEEE Transactions on Power Delivery, volume 4, number 1, pages 725–
734, 1989.

[148] A. Helseth, “A linear optimal power flow model considering nodal distribution
of losses,” in 9th International Conference on the European Energy Market
(EEM), Florence, Italy: IEEE, 2012, pages 1–8.

[149] T. dos Santos and A. L. Diniz, “A dynamic piecewise linear model for DC
transmission losses in optimal scheduling problems,” IEEE Transactions on
Power Systems, volume 26, number 2, pages 508–519, 2011.



Bibliography 133

[150] B. Eldridge, R. O’Neill, and A. Castillo, “An Improved Method for the DCOPF
with Losses,” IEEE Transactions on Power Systems, volume 33, number 4,
pages 3779–3788, 2018.

[151] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for
optimal power flow problems,” Journal of Electrical Power & Energy Systems,
volume 30, number 6-7, pages 383–392, 2008.

[152] M. E. Baran and F. F. Wu, “Optimal sizing of capacitors placed on a radial
distribution system.,” IEEE Transactions on Power Delivery, volume 4, num-
ber 1, pages 735–743, 1989.

[153] M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexifica-
tion - part ii,” IEEE Transactions on Power Systems, volume 28, number 3,
pages 2567–2572, 2013.

[154] M. Nick, R. Cherkaoui, J. Y. LeBoudec, and M. Paolone, “An exact convex
formulation of the optimal power flow in radial distribution networks including
transverse components,” IEEE Transactions on Automatic Control, volume 63,
number 3, pages 682–697, 2017.

[155] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-
bound algorithms: A survey of recent advances in searching, branching, and
pruning,” Discrete Optimization, volume 19, pages 79–102, 2016.

[156] L. Bobo, S. Delikaraoglou, N. Vespermann, J. Kazempour, and P. Pinson,
“Offering strategy of a flexibility aggregator in a balancing market using asym-
metric block offers,” in 20th Power Systems Computation Conference (PSCC),
IEEE, 2018.

[157] Z. Li and M. Shahidehpour, “Security-constrained unit commitment for simul-
taneous clearing of energy and ancillary services markets,” IEEE Transactions
on Power Systems, volume 20, number 2, pages 1079–1088, 2005.

[158] G. Thompson, C. Li, M. Zhang, and K. W. Hedman, “The effects of extended
locational marginal pricing in wholesale electricity markets,” in 45th North
American Power Symposium (NAPS), IEEE, 2013, pages 1–6.

[159] D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull pricing in
electricity markets: Formulation, analysis, and implementation challenges,”
IEEE Transactions on Power Systems, volume 31, number 5, pages 4068–
4075, 2016.

[160] S. Bolognani and S. Zampieri, “On the existence and linear approximation of
the power flow solution in power distribution networks,” IEEE Transactions
on Power Systems, volume 31, number 1, pages 163–172, 2016.

[161] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power flow
for smart microgrids,” IEEE Transactions on Smart Grid, volume 4, number 3,
pages 1464–1475, 2013.



134 Bibliography

[162] W. Liu and F. Wen, “Discussion on ‘Distribution locational marginal pricing
for optimal electric vehicle charging management’,” IEEE Transactions on
Power Systems, volume 29, number 4, pages 1867–1867, 2014.

[163] D. Subcommittee, 37-bus Feeder, 2000. [Online]. Available: http://sites.
ieee.org/pes-testfeeders/resources/ (visited on April 17, 2018).

[164] V. Dvorkin, J. Kazempour, and P. Pinson, “Electricity Market Equilibrium un-
der Information Asymmetry,” 2019, [Online]. Available: http://pierrepinson.
com/docs/Dvorkinetal2019.pdf.

[165] J. Fortuny-Amat and B. McCarl, “A representation and economic interpreta-
tion of a two-level programming problem,” Journal of the Operational Research
Society, 1981.

[166] C. Ordoudis, P. Pinson, J. M. Morales-González, and M. Zugno, “An updated
version of the IEEE RTS 24-bus system for electricity market and power sys-
tem operation studies,” Technical University of Denmark, Tech. Rep., 2016.
[Online]. Available: http://orbit.dtu.dk/files/120568114/An%7B%5C_
%7DUpdated%7B%5C_%7DVersion%7B%5C_%7Dof%7B%5C_%7Dthe%7B%5C_
%7DIEEE % 7B % 5C _ %7DRTS % 7B % 5C _ %7D24Bus % 7B % 5C _ %7DSystem % 7B % 5C _
%7Dfor%7B%5C_%7DElectricty%7B%5C_%7DMarket%7B%5C_%7Dan....pdf.

[167] J. R. Birge and F. V. Louveaux, “A multicut algorithm for two-stage stochas-
tic linear programs,” European Journal of Operational Research, volume 34,
pages 384–392, 1988.

[168] F. You and I. E. Grossmann, “Multicut benders decomposition algorithm for
process supply chain planning under uncertainty,” Annals of Operations Re-
search, volume 210, number 1, pages 191–211, 2013.

[169] G. K. Saharidis and M. G. Ierapetritou, “Resolution method for mixed integer
bi-level linear problems based on decomposition technique,” Journal of Global
Optimization, volume 44, number 1, pages 29–51, 2009.

[170] A. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decomposition
techniques in mathematical programming: engineering and science applications.
Springer Science & Business Media, 2006.

http://sites.ieee.org/pes-testfeeders/resources/
http://sites.ieee.org/pes-testfeeders/resources/
http://pierrepinson.com/docs/Dvorkinetal2019.pdf
http://pierrepinson.com/docs/Dvorkinetal2019.pdf
http://orbit.dtu.dk/files/120568114/An%7B%5C_%7DUpdated%7B%5C_%7DVersion%7B%5C_%7Dof%7B%5C_%7Dthe%7B%5C_%7DIEEE%7B%5C_%7DRTS%7B%5C_%7D24Bus%7B%5C_%7DSystem%7B%5C_%7Dfor%7B%5C_%7DElectricty%7B%5C_%7DMarket%7B%5C_%7Dan....pdf
http://orbit.dtu.dk/files/120568114/An%7B%5C_%7DUpdated%7B%5C_%7DVersion%7B%5C_%7Dof%7B%5C_%7Dthe%7B%5C_%7DIEEE%7B%5C_%7DRTS%7B%5C_%7D24Bus%7B%5C_%7DSystem%7B%5C_%7Dfor%7B%5C_%7DElectricty%7B%5C_%7DMarket%7B%5C_%7Dan....pdf
http://orbit.dtu.dk/files/120568114/An%7B%5C_%7DUpdated%7B%5C_%7DVersion%7B%5C_%7Dof%7B%5C_%7Dthe%7B%5C_%7DIEEE%7B%5C_%7DRTS%7B%5C_%7D24Bus%7B%5C_%7DSystem%7B%5C_%7Dfor%7B%5C_%7DElectricty%7B%5C_%7DMarket%7B%5C_%7Dan....pdf
http://orbit.dtu.dk/files/120568114/An%7B%5C_%7DUpdated%7B%5C_%7DVersion%7B%5C_%7Dof%7B%5C_%7Dthe%7B%5C_%7DIEEE%7B%5C_%7DRTS%7B%5C_%7D24Bus%7B%5C_%7DSystem%7B%5C_%7Dfor%7B%5C_%7DElectricty%7B%5C_%7DMarket%7B%5C_%7Dan....pdf


Collection of relevant
publications

[Paper A] Congestion Management in Distribution Networks With Asymmetric Block Of-
fers.

[Paper B] TSO-DSO Coordination Via Optimized Interface Capacity Limits

135





[Paper A] Congestion Management in
Distribution Networks With Asymmetric Block

Offers.

Authors:
Alexander Hermann, Jalal Kazempour, Shaojun Huang and Jacob Østergaard
Published as:
Submitted to IEEE Transactions on Power Systems, Submitted August 7th 2018,
Revised Janurary 30th 2019
Note:
The appendix which is published as an electronic companion on GitHub is attached
after the main body of the manuscript. It contains some additional formulae and
additional results.

137



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 1

Congestion Management in Distribution Networks
With Asymmetric Block Offers

Alexander Hermann, Student Member, IEEE, Jalal Kazempour, Senior Member, IEEE,
Shaojun Huang, Senior Member, IEEE, and Jacob Østergaard, Senior Member, IEEE

Abstract—In current practice, the day-ahead market-clearing
outcomes are not necessarily feasible for distribution networks,
i.e, the network constraints might not be satisfied. Hence, the
distribution system operator may consider an ex-post re-dispatch
mechanism, exploiting potential flexibility of local distributed
energy resources (DERs) including demand response (DR) units.
Many DR units have an inherent "rebound effect", meaning a
decrease in power demand (response) must be followed by an
increase (rebound) or vice-versa, due to their underlying physical
properties. A naive re-dispatch mechanism relying on DR units
with non-negligible rebound effect may fail, since those units may
cause another congestion in the rebound period. We propose
a mechanism, which models the rebound effect of DR units
using asymmetric block offers — this way, those units offer their
flexibility using two subsequent blocks (response and rebound),
each one representing the load decrease/increase in a time period.
We demonstrate that though linear approximations of optimal
power flow (OPF) models as potential re-dispatch mechanisms
are more computationally efficient, they can result in a different
dispatch of the asymmetric blocks than an exact convex relaxation
of an AC-OPF model, and therefore, must be used with caution.

Index Terms—Congestion management, demand response, re-
bound effect, asymmetric block offers, convex relaxation.

NOMENCLATURE

Sets and indices
C Set of demand response units c
D Set of offers d of each demand response unit
I Set of distribution-level conventional generators i
Ln Set of all facilities located at node n
N Set of nodes n and j
PCC Point of common coupling, i.e., the node connecting the

distribution and transmission levels
T Set of time steps t and τ
Φn Set of all nodes connected to node n

Free Variables
pnt/qnt Net active/reactive power injection at node n and time step

t (positive for power injection) [kW/kVAr]
pnjt/qnjt Active/reactive power flow from node n to j at time step

t [kW/kVAr]

Non-negative Variables
p
up/dn,S
t Active power up/down-regulation provided by the trans-

mission grid at time step t [kW]
p
up/dn
it Active power up/down-regulation provided by generator i

at time step t [kW]
q
up/dn,S
t Reactive power up/down-regulation provided by the trans-

mission grid at time step t [kVAr]
q
up/dn
it Reactive power up/down-regulation by generator i at time

step t [kVAr]
r
up/dn
dct Active power up/down-regulation provided by demand

response offer d of unit c at time step t [kW]
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sity of Denmark, Kgs. Lyngby 2800, Denmark (email: alherm@elektro.dtu.dk;
seykaz@elektro.dtu.dk; joe@elektro.dtu.dk).

S. Huang is with the University of Southern Denmark, Odense 5230,
Denmark (email: shahu@mmmi.sdu.dk).

suptn Load curtailment at node n and time step t [kW]
vnt Squared voltage magnitude at node n and time step t [p.u.]
ϕnjt Squared current magnitude in line connecting node n to j

[p.u.]

Binary Variables
odct Activation of block d of demand response unit c at time

step t

Parameters
Adc Orientation of offer d of demand response unit c. Equal to

1 if begins with up-regulation, equal to 0 otherwise
Bnj Shunt susceptance of line connecting node n to j [p.u.]
C

p/q,↑/↓S
t Active/reactive up/down-regulation price provided from

transmission level at the PCC at time step t [¢/kWh or
¢/kVArh]

C
DR↑/↓
dct Active power up/down-regulation offer price of demand

response unit c, offer d, time t [¢/kWh]
CShed Cost of load shedding [¢/kWh]
C

p/q,↑/↓
it Active/reactive up/down-regulation offer price of conven-

tional generator i at time step t [¢/kWh or ¢/kVArh]
Ddisp

nt Scheduled active power consumption of all inflexible loads
at node n and time step t from the day-ahead market [kW]

DRdisp
ct Scheduled active power consumption of demand response

unit c at time step t from the day-ahead market [kW]
Gnj Shunt conductance of line connecting node n to j [p.u.]
Fnj Capacity of line connecting node n to j [kVA]
P

up/dn
i Maximum active power up/down-regulation capability of

generator i [kW]
P

up/dn,S Maximum active power up/down-regulation that can be
provided by transmission level [kW]

P
rsp/rb
dc Response/rebound power of offer d of demand response

unit c [kW]
Pdisp
it Dispatched active power production of generator i at time

step t from the day-ahead market [kW]
P cap
ct Maximum active power consumption of demand response

unit c at time step t [kW]
P cap
i Active power capacity of generator i [kW]
Q

up/dn,S Maximum reactive power up/down-regulation that can be
provided by transmission level [kVAr]

Q
up/dn
i Maximum reactive power up/down-regulation capability of

generator i [kVAr]
Qnt Total reactive power consumption at node n and time step

t [kVAr]
Rnj Resistance of line connecting node n to j [p.u.]
Sdisp
t Dispatched import/export of active power from the trans-

mission system at time t from the day-ahead market [kW]
T

rsp/rb/rec
dc Response/rebound/recovery duration of demand response

offer d of unit c [time step]
V

sq
n , V sq

n Upper and lower limits for voltage magnitude squared at
node n [p.u.]

Xnj Reactance of line connecting node n to j [p.u.]

I. INTRODUCTION

IN current zonal electricity markets in Europe, the day-
ahead market does not explicitly take into account the

network constraints within zones. Therefore, the market-
clearing outcomes are not necessarily feasible in terms of grid
constraints. This brings challenges for both transmission and
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distribution system operators (TSO and DSO), who are re-
sponsible for the secure and safe operation of their underlying
systems. To resolve this issue, both TSO and DSO require flex-
ible resources for congestion management and other uses, such
as balancing and frequency control [1]. A significant part of
such flexible resources is expected to be spread in distribution
systems, in the form of distributed energy resources (DERs).
These resources are able to provide flexibility to both TSO
and DSO, and are also allowed to participate in the day-ahead
market through new market players, such as aggregators and
balancing responsible parties. Key is that the TSO and DSO
need to coordinate how to use the DERs, ensuring both have
access to flexible resources while operating their underlying
system in a secure manner [2].

Different schemes have been recently proposed for TSO-
DSO coordination [3]–[6], including suggestions for having
either a common flexibility market for TSO and DSO, or
separated markets. In some of those schemes, a bi-directional
but non-iterative communication between DSO and TSO is
required, in which the DSO shares its feasible region with
the TSO [7]. Some other schemes suggest maintaining the
current uni-directional communication in which the TSO is
not coordinated with the DSO, but the DSO needs ex-post
actions. Ex-post here means that the DSO re-dispatches local
DERs using a bid-based auction with day-ahead dispatches
as inputs. This mechanism uses local flexible resources for
congestion management and resolving nodal voltage issues [8].
The focus of this paper is an ex-post method.

Demand response (DR) units are expected to provide a
large share of the DER penetration in distribution grids.
Many DR units, especially thermostatically controlled loads,
exhibit an inherent rebound (kick-back) effect because of their
underlying physical properties [9]. It means that any load
decrease/increase in a specific time period (response) may be
followed by a load increase/decrease in the subsequent time
period (rebound) [10]. This effect complicates any problem
including DR units, since it makes the future load profile
decision-dependent (i.e. not exogenous anymore). One natural
approach to model rebound effect is dynamic programming,
such that the dispatch of DR unit at time step k affects
load level at time steps t > k [11]. However, dynamic pro-
gramming with iterative solution techniques is not compatible
with existing market-clearing frameworks1. Therefore, other
alternatives are needed to model rebound effects within market
frameworks, e.g., new offering formats for DR units [12]. One
appealing market-compatible concept are asymmetric block
offers [13], which include two parts, response and rebound.
Each part models either load increase or decrease. One can
view the combination of these two parts as a load shifting
offer in time, but without a time gap between response and
rebound time periods. We use the concept of asymmetric block
offers, because it allows us to model rebound a priori in
our market model without the need for an iterative clearing
process. However, these block offers may bring computational
challenges due to additional binary variables required for

1The current markets prefer non-iterative clearing mechanisms with
straightforward, easy-to-implement and transparent clearing mechanisms.

modeling the blocks2. Detailed description of these offers will
be provided in the following section.

There is an extensive literature on congestion management
in distribution networks using DR units - see [8] for a relevant
survey. The two main strategies to reward those units are: i) the
price-based methods [15]–[17], where DR units participate in
any mechanism as individual profit-maximizing players, and
ii) the incentive-based methods, where DR units are paid based
on pre-defined incentive rates [18]–[20]. The key point is that
all these papers ignore the potential rebound effect of DR units,
while this may incur another congestion in the coming time
steps, or overestimate the capability of DR units to effectively
help the DSO with congestion management.

In this paper, the main technical question is: how should an
appropriate DSO-level congestion management mechanism be
implemented, while accurately accounting for rebound effects
of local DR units? This underlying mechanism is to be solved
by the DSO once the day-ahead market is cleared. Therefore,
the day-ahead dispatch of local resources is given, and goal
of the proposed mechanism is to optimally adjust those re-
sources for meeting local distribution network constraints at
the minimum re-dispatch cost. The important constraints to be
fulfilled in the re-dispatch mechanism include nodal voltage
and line flow limits in the distribution network. In addition, it
is of importance to consider power losses in the distribution
grid. This raises another technical question: To what extent
should the distribution grid constraints and losses be taken
into account in the re-dispatch mechanism, and how sensitive
are the re-dispatch results to those considerations?

Our first contribution is to develop a re-dispatch mechanism
for a DSO as an ex-post congestion management action,
while accounting for rebound effects of DR units a priori
using asymmetric block offers. To the best of our knowledge,
[13] is the only paper in existing literature incorporating the
rebound effects in a compatible way into a balancing market
framework. However, it ignores network representation, which
is essential in any distribution-level mechanism, including the
congestion management mechanism in our study. The full
grid representation of a distribution system is a non-convex
problem with optimality and computational challenges. This
becomes worse when adding binary variables due to the rep-
resentation of blocks. Our second contribution is to provide a
comprehensive analysis to explore how different grid represen-
tations change the re-dispatch outcomes and the computational
burden. In particular, to investigate how distribution network
simplifications, as is common in practice, influence the re-
dispatch results, we develop three distribution optimal power
flow (OPF) models. Each model has increasing accuracy. The
more accurate model is indeed the more complex one, which is
computationally more expensive. Accounting for the rebound
effects, two models are mixed-integer linear programming
(MILP) problems (one without and one with loss approxi-
mations), while the last one is a mixed-integer second order
cone problem (MI-SOCP). The latter model is a convex conic
relaxation of the original AC-OPF model, which performs

2Adding block offers is common place in European zonal electricity
markets, as conventional generators are allowed to submit different types of
block offers to ensure their internal unit commitment constraints [14].
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well in radial networks [21], [22]. To ensure exactness of the
convex relaxation we also present some sufficient conditions
for exactness and show some of the implications of using
those conditions [21], [23]. Our study shows that the MILP
models are computationally faster, which makes them suitable
to be used in practice. However, they do not necessarily obtain
identical re-dispatch results to those in the MI-SOCP model,
which solves the problem in our study around 4 to 7 times
slower without sufficient conditions for exactness, and 7 to 60
times slower if those conditions are added. Therefore, MILP
versions of this re-dispatch mechanism are practical but must
be used with caution.

The rest of the paper is structured as following: Section
II describes the implementation of asymmetric block offers,
and explains the congestion management mechanism. Section
III proposes the congestion management method using three
different OPF models. Section IV provides results for two case
studies. Concluding remarks are given in Section V.

II. CONGESTION MANAGEMENT USING ASYMMETRIC
BLOCK OFFERS

This section describes the details of asymmetric block
offers, and the framework of the proposed congestion man-
agement mechanism.

A. Asymmetric Block Offers

Examples of some potential flexible loads that exhibit a
rebound effect are refrigeration units, water heaters and heat
pumps with storage for building temperature control. They
can be used as DR units, by deviating from a base-line
temperature setting and approaching either an upper or a
lower allowable temperature threshold. When the temperature
threshold is reached, DR units have to increase (or decrease)
their power consumption for a period, in order to return to
the base-line setting [9], [10]. The time to reach the upper
or lower temperature thresholds can be found by thermal
modeling of the underlying system. The time period from
DR activation until reaching the temperature threshold is
referred to as response period, while the subsequent time
period until returning to the base-line setting is referred to
as rebound period [13]. An asymmetric block offer models
the response and rebound parts of the DR unit. This type
of offer allows exploiting demand-side flexibility by directly
modeling temporal load shifting in the dispatch mechanism.
These block offers can be designed as shown in Fig. 1, where
two examples are plotted with different order of up- and
down-regulation directions. By asymmetric, it means that they
can have different power consumption levels and duration for
response and rebound parts. The asymmetric block offers are
indeed the market offers of DR units or flexibility aggregators
in general. It is up to the flexibility aggregators to ensure that
the block offers are technically feasible. Since this paper looks
at the problem from a DSO perspective, the asymmetric block
offers are exogenous, and their synthesis are out of the scope of
this paper3. However, in general, these offers can be derived

3We refer the interested readers to [24] for offering strategy problem of
DR units and flexibility aggregators using asymmetric block offers.

Fig. 1. Two examples of possible asymmetric block offers for a demand
response unit. A positive/negative regulating power corresponds to up/down-
regulation, respectively. In Offer 1 (upper plot), the response part (in blue)
provides up-regulation, i.e., a decrease in load power consumption. Its rebound
(in yellow) corresponds to a subsequent load increase, i.e. down regulation.
Further, Offer 2 (lower plot) includes down- and up-regulation in response
and rebound parts, respectively.

by approximation models (e.g. ARMAX model [25]) using
measurement data from thermal test units.

B. Congestion Management: Framework and Assumptions

The outcome of the day-ahead market does not necessarily
respect the DSO-level network constraints. When the day-
ahead market dispatch does not respect the constraints in the
distribution network, the most cost-efficient way is to resolve
these violations locally. Distribution network congestion will
be one of the prime issues in the future, due to increased
line loading, with the expected large scale deployment of
distributed photovoltaic power and battery storage. Often con-
gestion will be coupled with voltage limit violations, therefore
it is also important to model that aspect of the grid. This paper
proposes an ex-post mechanism to be run right after the day-
ahead market, which is performed locally by the DSO. The
DSO uses a market-based solution to determine the optimal
re-dispatch actions, while obtaining the minimum total re-
dispatch cost. According to the market-clearing outcomes, the
DSO pays the DERs. Since the largest volume of the DR
units with rebound characteristics are generally located in
radial distribution feeders, it is logical to use their load-shifting
potential to resolve local issues.

Any DSO-level congestion management mechanism should
take as input the results of the day-ahead market clearing,
as this comprises the power settings of the flexible loads
and distributed generation. The DSO uses these values to
determine whether there are any issues with congestion and/or
voltage limit violations within the distribution network. If any
issues are detected, the DSO requests offers for down- and
up-regulation from the individual DR units, local conventional
generators and flexibility aggregators. These offers can be in
the form of conventional offers by local dispatchable gener-
ators or of asymmetric block offers by local DR units. Also,
the TSO is viewed as a flexibility provider through TSO-level
flexible resources but potentially at a higher cost. However,
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note that the change of the import/export at the PCC4 is limited
by lower and upper bounds (P

dn,S
and P

up,S
). Indeed, the

TSO provides this limited flexibility by activation of reserve
capacity from TSO-level flexible resources without need for
changing the day-ahead market outcomes [5].

After collecting the submitted offers, the DSO runs the con-
gestion management mechanism, whose objective is to meet
local constraints at the minimum re-dispatch cost. In addition,
the outcomes are accepted offers for up- and down-regulation.
Regarding the potential uncertainty sources, e.g., load and
renewable power uncertainties, we assume that they have
been already considered during the day-ahead market clearing.
Therefore, the proposed ex-post re-dispatch mechanism does
not need to model again those uncertainties. Moreover, the
DSO may be unwilling to collect and manipulate statistical
data in order to model future uncertainties, because in current
market frameworks this duty falls to the market operator.

Since the DSO-level network is usually radial, a congested
line can only be relieved, if any resources on both sides of
that line are available for re-dispatch. This is because any
up-regulation somewhere in the network has to be matched
by an equal down-regulation elsewhere (minus line losses).
One important observation is that the accepted offers for up-
and down-regulation should be located on both sides of the
congested line, in order to maintain power balance. The DR
units furthest away from the PCC are the ones that are most
likely to be scheduled, when congestion occurs.

III. MATHEMATICAL MODEL

Section III-A provides the mathematical representation of
asymmetric block offers. Afterwards, Section III-B includes
asymmetric block offers within three proposed OPF models as
alternative congestion management mechanisms with different
levels of complexity.

A. Mathematical Representation of Asymmetric Block Offers

This section provides a modified version of formulations for
asymmetric block offers from [13], yielding a set of mixed-
integer linear inequalities. These conditions will be included in
Section III-B as constraints of OPF models. Asymmetric block
offers beginning with up-regulation response, e.g., Offer 1 in
Fig. 1, are modeled by equations (1), while offers beginning
with down-regulation response, e.g., Offer 2 in Fig. 1, are
represented by equations (11) in the online appendix [26].
These two different kinds of block offers are differentiated
by binary parameter Adc. If Adc is set to 1, it indicates that
block offer d of unit c begins with up-regulation, or to 0 if
it begins with down-regulation. The binary variable odct is a
decision variable to activate a given offer d from DR unit c in
time step t.{

rup
dct ≤ P

rsp
dc odct, ∀d, c, t (1a)

rdn
dct ≤ P rb

dc odct, ∀d, c, t (1b)
t+T rsp

dc −1∑
τ=t

rup
dcτ ≥ T

rsp
dc P

rsp
dc (odct − odc,t−1), ∀d, c, t (1c)

4The point of common coupling, i.e. the transformer substation which
connects the distribution and transmission networks.

t+T rsp
dc +T rb

dc−1∑
τ=t+T rsp

dc

rdn
dcτ ≥ T rb

dcP
rb
dc (odct − odc,t−1),

∀d, c, t ≤ |T |−T rsp
dc (1d)

t+T rsp
dc −1∑
τ=t

rdn
dcτ ≤ T rb

dcP
rb
dc (1− (odct − odc,t−1)),∀d, c, t (1e)

t+T rsp
dc +T rb

dc−1∑
τ=t+T rsp

dc

rup
dcτ ≤ T

rsp
dc P

rsp
dc (1− (odct − odc,t−1)) (1f)

,∀d, c, t ≤ |T |−T rsp
dc

}
if Adc = 1.

Conditions (1a) and (1b) restrict up- and down-regulation rup
dct

and rdn
dct to the prescribed magnitude of response P rsp

dc and
rebound P rb

dc , respectively. In (1c), the length of the response,
if offer d is activated, is set to the prescribed response time
T rsp
dc . Condition (1d) is similar to (1c), but for the rebound part

of the block offer. Note that |T | indicates the cardinality of
set T . Condition (1e) ensures that variable rdn

dct is 0 during up-
regulation. Similarly, condition (1f) imposes rup

dct = 0 during
down-regulation.

In addition to (1) and (11), a minimum recovery period,
if exists, needs to be enforced. This condition is enforced by
(2). Parameter T rec

dc corresponds to the recovery time between
the two consecutive asymmetric block offers (not between
response and rebound parts of a block offer). In other words,
it enforces the minimum recovery time between the rebound
part of one block and the response part of the next block.

t+T resp
dc +T reb

dc +T rec
dc −1∑

τ=t+T resp
dc +T reb

dc

(1− odc,τ ) ≥ T rec
dc (odct − odct−1)

,∀d, c, t ≤ |T |−(T resp
dc + T reb

dc ) + 1. (2)

In (3), it is ensured that each DR unit is only able to activate
at most one block offer in any time step:∑

d

odct ≤ 1, ∀c, t. (3)

The asymmetric block offers also need to be finished before
the end of the planning horizon, such that the whole block offer
is realized before the planning horizon. Condition (4) ensures
that the entire asymmetric block offer is dispatched within
the time horizon considered, e.g., 24 hours. For example,
this constraint makes sure that there is no case in which the
response part is dispatched in the upcoming 24 hours, while
its rebound part is allocated in the beginning hours of the
subsequent day.

1− (odc,t+1 − odct) ≤ 2(1− odc|T |)
,∀d, c, t = |T |−(T resp

dc + T reb
dc ).

(4)

B. Congestion Management Mechanism: OPF Models

Accounting for rebound effect of DR units, this subsection
provides three different alternatives for DSO-level congestion
management, with increasing levels of accuracy and therefore
complexity. The first model is the simplest one, which is
a linear DC-OPF problem for radial distributions systems,
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ignoring losses while decoupling active and reactive power
flows. The second one improves the first model by adding
a loss approximation for active power flows via cuts, but at
the cost of using an iterative process [27], [28]. As the most
accurate alternative among the three OPF models used in this
paper, the third one is an SOCP, which takes into account
losses for both active and reactive power flows5 [29]. All these
three models will be mixed-integer programs due to binary
variables in (1)-(4) and (11).

The objective function of all three OPF models used in this
paper is the same as given in (5). It minimizes the total re-
dispatch cost, which is a linear combination of the costs for
up- and down-regulation6 of active and reactive power from
different sources, i.e. TSO, local conventional generators i,
DR units c and involuntary curtailment of loads.

min
Ξ

f(Ξ) =
∑
t

[
Cp↑S
t pup,S

t︸ ︷︷ ︸
Cost of pup from TSO

− Cp↓S
t pdn,S

t︸ ︷︷ ︸
cost of pdn to TSO

+ Cq↑S
t qup,S

t︸ ︷︷ ︸
Cost of qup from TSO

− Cq↓S
t qdn,S

t︸ ︷︷ ︸
Cost of qdn to TSO

]
+
∑
n,t

[
CShedsup

nt︸ ︷︷ ︸
Curtailment cost

]
(5)

+
∑
i,t

[
Cp↑
it p

up
it︸ ︷︷ ︸

Cost of pup from gen.

− Cp↓
it p

dn
it︸ ︷︷ ︸

Cost of pdn to gen.

+ Cq↑
it q

up
it︸ ︷︷ ︸

Cost of qup from gen.

− Cq↓
it q

dn
it︸ ︷︷ ︸

Cost of qdn to gen.

]
+
∑
d,c,t

[
CDR↑
dct r

up
dct︸ ︷︷ ︸

Cost of rup from DR

− CDR↓
dct r

dn
dct︸ ︷︷ ︸

Cost of rdn to DR

]
where Ξ is the set of optimization variables, including free
variables pnt, qnt, pnjt, qnjt, non-negative variables pup

it , pdn
it ,

rup
dct, r

dn
dct, s

up
nt , p

up,S
t , pdn,S

t , qup
it , qdn

it , qup,S
t , qdn,S

t , vnt, and
binary variables odct.

The common constraints for all three OPF models are
given in (6). Note that DRdisp

ct , Ddisp
nt , Sdisp

t and P disp
it are

parameters, indicating day-ahead market outcomes.

pnt =
∑
j∈Φn

pnjt, ∀n, t (6a)

qnt =
∑
j∈Φn

qnjt, ∀n, t (6b)

pnt =
∑

d,c∈Ln

[rup
dct − r

dn
dct]−

∑
c∈Ln

DRdisp
ct

+
∑
i∈Ln

[
pup
it − p

dn
it + P disp

it

]
(6c)

+
[
Sdisp
t + pup,S

t − pdn,S
t

]
n∈PCC

−Ddisp
nt + sup

nt −
∑
j∈Φn

Gnj
2
vnt, ∀n, t

qnt =
∑
i∈Ln

[
qup
it − q

dn
it

]
+
[
qup,S
t − qdn,S

t

]
n∈PCC

−Qnt +
∑
j∈Φn

Bnj
2
vnt, ∀n, t (6d)

5The original AC-OPF model is a non-convex quadratically constrained
program [29], which can be convexified by relaxing it to either an SOCP or
a semi-definite program. We use the former in this paper.

6The DSO pays for up-regulation, while it is paid by sources providing
down-regulation.

∑
d

rup
dct ≤ DR

disp
ct , ∀c, t (6e)

pdn
it ≤ P

disp
it , ∀i, t (6f)

sup
nt +

∑
d,c∈Ln

[
rup
dct − r

dn
dct

]
≤ Ddisp

nt +
∑
c∈Ln

DRdisp
ct ,∀n, t

(6g)

pup
it + P disp

it ≤ P cap
i , ∀i, t (6h)∑

d

rdn
dct +DRdisp

ct ≤ P cap
ct , ∀c, t (6i)

pup
it ≤ P

up

i , p
dn
it ≤ P

dn

i , ∀i, t (6j)

qup
it ≤ Q

up

i , q
dn
it ≤ Q

dn

i , ∀i, t (6k)

pup,S
t ≤ P up,S

, pdn,S
t ≤ P dn,S

, ∀t (6l)

qup,S
t ≤ Qup,S

, qdn,S
t ≤ Qdn,S

, ∀t (6m)

V sq
n ≤ vnt ≤ V

sq

n , ∀n, t. (6n)

The net active and reactive power injection at node n is linked
to corresponding flow from node n to j in (6a) and (6b). The
nodal active power balance is enforced by (6c). Note that the
last term of (6c) takes into account the shunt conductance
of the lines7. The nodal reactive power balance is enforced
by (6d), which also takes into account the shunt susceptance
of the lines connected to node n. The up-regulation (load
decrease) provided by DR unit c is limited to its scheduled
consumption DRdisp

ct in (6e). The down-regulation (generation
decrease) provided by generator i is restricted to its dispatch
from the day-ahead market by (6f). Constraint (6g) limits the
curtailed load sup

nt according to total scheduled consumption
of flexible and inflexible loads from the day-ahead market and
provided regulation from DR units. The up-regulation (gener-
ation increase) provided by conventional generator i is limited
by (6h). Similarly, (6i) restricts the down-regulation (load
increase) provided by DR unit c. Constraints (6j) and (6k)
limit the active and reactive power regulation of conventional
generator i to its maximum capability. Similar constraints are
applied to the import/export at the PCC from transmission
level in (6l) and (6m). Constraint (6n) limits the voltage
magnitude to the upper and lower thresholds.

1) Mixed-Integer Linear OPF (Lossless): The lossless
mixed-integer linear OPF is the simplest approximation of the
power flow for radial distribution systems used in this paper.
It is possible by using this OPF method to include the line
congestion and voltage issues. Similar to LinDistFlow model
in [30], in order to have an approximation of both active and
reactive power flow and their effect on the voltage, a decoupled
linear power flow is used. The advantage of this approach is
that it is computationally simple and well known. For the radial
case, the linearized branch flow OPF boils down to problem
(7):

min
Ξ

f(Ξ) as in (5) (7a)

subject to:

7Half of the shunt losses due to shunt admittance of every line connected
to node n is subtracted from that node. In general, shunt conductance of lines
is small and can be ignored. However, shunt susceptance can be significant
in underground cables.
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pnjt = −pjnt, qnjt = −qjnt, ∀n, j ∈ Φn, t (7b)∑
n

pnt = 0, ∀t (7c)∑
n

qnt = 0, ∀t (7d)

pnjt ≤ Fnj , ∀n, j ∈ Φn, t (7e)
vjt = vnt − 2 (Rnjpnjt +Xnjqnjt) ,∀n, j ∈ Φn, t (7f)
(1) to (4), (6) and (11). (7g)

Constraints (7b), (7c) and (7d) model the lossless linear power
flow. To preserve linearity, (7e) imposes the line capacity limit
in terms of active power flow only. Finally, (7f) links the
voltage magnitude of two adjacent nodes with impedance and
power flows as a linear approximation. Similar to [30], a vari-
able vnt is introduced to present squared voltage magnitude,
such that the model remains linear.

2) Mixed-Integer Linear OPF With Losses: The mixed-
integer linear OPF model (7) does not take into account
losses. In order to improve the accuracy of the congestion
management method, it is desirable to model losses, especially
for low-voltage radial systems with relatively large losses. An
approximation of active power losses is slightly more complex,
since losses generally are quadratic to the flow in a line. In
order to keep the model linear, an iterative approach as in
[27] and [28] can be used. For every iteration of solving the
OPF problem a new loss-cut is generated, which approximates
the losses successively. This approach usually converges after
very few iterations. The loss in a line that can be assigned to
a node is approximated by (8) [27]:

P loss,fix
nt =

∑
j∈Φn

(
Rnj p

2
njt

2

)
, ∀n, t. (8)

Here the losses are a quadratic function of the line flows. The
procedure used in [27] is then to add half of the losses to the
consumption of every node connected to the ends of the line.
In order for the losses to be at the lower bound of the loss-
cut at iteration ν, an auxiliary slack variable y(ν)

nt is added to
the objective function, but at a negligible small profit Cy . The
mixed-integer linear OPF problem at iteration ν including the
loss-cuts is given in optimization problem (9):

min
Ξ,y

(ν)
nt ≥0,p

loss(ν)
nt ≥0

f(Ξ)(ν) −
∑
nt

Cyy
(ν)
nt (9a)

subject to:∑
n

(p
(ν)
nt − p

loss(ν)
nt − y(ν)

nt ) = 0, ∀t (9b)

p
(ν)
nt − p

loss(ν)
nt − y(ν)

nt =
∑
j∈Φn

p
(ν)
njt, ∀n, t (9c)

p
loss(ν)
nt −

∑
j∈Φn

(Rnj P
fix
njtr)p

(ν)
njt ≥ −P

loss,fix
ntr

,∀n, t, r = {1, . . . , ν − 1} (9d)
(1) to (4), (6b) to (6n), (7b),(7d), (7e), (7f) and (11) (9e)

where r is the index of loss-cuts, and parameter P loss,fix
ntr

is the fixed loss obtained from the line flow of the previous
iterations by solving (8). Furthermore, parameter P fix

njtr is the

flow in the line connecting nodes n and j from the previous
iterations. The problem (9) has to be solved iteratively, adding
one cut per iteration in (9d). The convergence is reached at
iteration ν once

∣∣∣∑nt P
loss,fix
nt,(r=ν) −

∑
nt p

loss,(ν)
nt

∣∣∣ ≤ ε, where
ε is a small tolerance. Note that the optimal value of slack
variable y(ν)

nt should be zero.
3) Mixed-Integer SOCP-OPF: The mixed-integer SOCP

OPF model for radial distribution systems is presented in (10)
[29]:

min
Ξ,ϕnjt≥0

f(Ξ) as in (5) (10a)

subject to:

p2
njt + q2

njt ≤ ϕnjtvnt, ∀n, j ∈ Φn, t (10b)

pnjt + pjnt = Rnjϕnjt, ∀n, j ∈ Φn, t (10c)
qnjt + qjnt = Xnjϕnjt, ∀n, j ∈ Φn, t (10d)

vjt = vnt − 2(Rnjpnjt +Xnjqnjt) + (R2
nj +X2

nj)ϕnjt

,∀n, j ∈ Φn, t (10e)

p2
njt + q2

njt ≤ F
2

nj , ∀n, j ∈ Φn, t (10f)

(1) to (4), (6) and (11). (10g)

Constraint (10b) is a convex relaxation of a quadratic equality
constraint from the original non-convex AC-OPF problem.
This relaxation is necessary to include the interior space
of the quadratic cone described by this equation to ensure
convexity. Constraints (10c) and (10d) are the active and
reactive power losses, respectively. Constraint (10e) relates the
voltage drop to the power flows and currents. In (10f) the line
flow limit is enforced. In our numerical studies, the sufficient
conditions introduced in [21] are also added to (10) to ensure
zero duality gap (i.e., exactness) of the relaxation in radial
networks8. These sufficient conditions are given in the online
appendix [26]. Note that these conditions guarantee achieving
the exactness, but at the cost of shrinking the feasible space,
and potentially increasing the system cost and usually the
computational burden.

IV. CASE STUDIES

An illustrative example and a larger case study using the
IEEE 37-node test feeder are provided. All cases are imple-
mented in GAMS and solved using CPLEX version 12.8.

A. Illustrative Example

A radial 6-node system is used to introduce the congestion
management mechanism with different OPF models. The
diagram of this feeder is illustrated in Fig. 2. This feeder
contains three DR units (c1 to c3) and two local conventional
generators (i1 and i2). The line connecting nodes 3 and 4
is likely to be congested due its limited capacity (40 kVA).
All line resistances are set to 0.001 p.u. and reactances are
fixed to 0.0005 p.u. In addition, the shunt conductance and
susceptance of all lines are set to be 0.1 p.u. As input

8Without sufficient conditions, the second-order cone constraint (10b) might
be still binding in specific cases (e.g., in the case studies of this paper
presented in Section IV), but there is no exactness guarantee in general. In
case of inexactness, an ex-post procedure for feasibility recovery is required
[31].
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Fig. 2. Illustrative example: 6-node radial feeder.

parameters, the global day-ahead market outcomes are given
in the online appendix [26] (particularly, see Fig. 9 in that
appendix). This figure includes 40 time steps, with resolution
of 15 minutes. These inputs from the day-ahead dispatches
makes the line connecting nodes 3 and 4 overloaded by 23 kVA
throughout the time periods 12 to 26, and the DSO needs to run
the proposed congestion management mechanism to relieve
congestion using local flexible resources (two generators and
three DR units) as well as changing the import/export from/to
the TSO. Each local generator can provide active power up-
and down-regulation up to 80 kW, and reactive power up-
and down-regulation up to 30 kVAr. These limits for TSO
are 100 kW and 30 kVAr. Each of the three DR units is
offering four different asymmetric block offers (d1 to d4) as
given in the online appendix [26] (in particular, see Table II
in that appendix). We assume that DR units are unable to
provide reactive power regulation. The regulation offer prices
of all resources are given in the online appendix C [26]. For
simplicity, we assume zero reactive loads in the illustrative
example, though the large case study includes reactive loads.
The upper and lower bounds of the nodal voltage magnitudes
are set to 0.9 and 1.1 p.u., respectively. The voltage drop in
this test case is very high, such that any differences between
the three OPF models will be highlighted.

1) Results obtained from MILP-OPF (lossless): Since
losses are not accounted for, the regulation sources on the
two sides of the congested line between nodes 3 and 4
are symmetrically9 re-dispatched, in such a way that the
congestion is relieved. The regulation sources located at the
PCC side of the congested line are TSO, DR unit c1 and
local generator i1 (the so-called upstream sources), while
the opposite side contains generator i2, DR units c2 and c3
(downstream sources). The outcomes of the proposed DSO-
level congestion management mechanism based on MILP-OPF
(lossless) is depicted in Fig. 3a. Accordingly, in the time
period with congestion (i.e., from time step 12 to 26), the
downstream sources c2 , c3 and i2 provide up-regulation while
the upstream source with the best offer, i.e., TSO, provides
down-regulation. In this time period, DR unit c2 provides up-
regulation through its rebound block, preceded with a response
(down-regulation) before the congestion period. In contrast,
DR unit c3 provides up-regulation as its response block in
the time period during congestion, and rebounds with down-
regulation after the congestion. The total re-dispatch cost of
the system, i.e., the value of objective function (5), is $45.35.

2) Results obtained from iterative MILP-OPF with losses:
We solve the iterative problem (9), which converges in the
fourth iteration for this illustrative example. The congestion
mechanism outcomes based on this iterative OPF problem is

9At any time step, the total up-regulation is equal to total down-regulation.
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(a) MILP-OPF, lossless (total re-dispatch cost: $45.35)
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(b) MILP-OPF with losses (total re-dispatch cost: $93.69)
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(c) MI-SOCP OPF with sufficient conditions (total re-dispatch cost: $122.59)
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(d) MI-SOCP OPF without sufficient conditions (total re-dispatch cost: $92.24)

Fig. 3. Illustrative example: Optimal active power regulation obtained from
different congestion management mechanisms proposed.

given in Fig. 3b. Compared to Fig. 3a (the MILP-OPF without
losses), we observe three main differences: i) a different
asymmetric block offer from the down-stream DR unit c2 is
accepted, ii) due to active power losses10, the total up- and
down-regulations at each time step are not equal anymore, iii)
the total re-dispatch cost of the system increases by $48.34
(an increase of 106%).

10The reactive power losses are not modeled, but will be taken into account
in MI-SOCP OPF model.
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Fig. 4. Illustrative example: Optimal reactive power regulation obtained from
the congestion management mechanism based on MI-SOCP OPF (upper plot:
without sufficient conditions; lower plot: with sufficient conditions).

3) Results obtained from MI-SOCP OPF: This OPF model
formulated in (10) is more precise than the two previous
OPF models, as it considers both active and reactive power
losses. Besides, voltages are modeled more precisely due to
current magnitude modeling. Here, we provide results obtained
from MI-SOCP OPF with and without enforcing the sufficient
conditions for exactness. The active power re-dispatch results
are given in Figs. 3c and 3d for cases with and without the
sufficient conditions, respectively. For the same two cases, Fig.
4 depicts the reactive power re-dispatch results. There are three
important observations to highlight.

First, the re-dispatch outcomes without sufficient conditions
are found to be binding in (10b), which means that the convex
relaxation is exact, and the solution achieved is AC feasible.
The validation results that will be provided in Section IV.A.4
also confirm the exactness. However, note that this is case-
specific, and in general, there is no guarantee achieving the
exact solution from this relaxed OPF model without enforcing
the sufficient conditions.

Second, the active power re-dispatch outcomes and the total
re-dispatch cost obtained from MI-SOCP OPF model without
sufficient conditions in Fig. 3d are similar to those obtained
from the MILP-OPF model with losses in Fig. 3b. However,
the voltage profile obtained in the MILP-OPF model with
losses is not as accurate as the one in the MI-SOCP OPF
model, as it will be demonstrated in Section IV.A.4.

Third, the total re-dispatch cost obtained from the MI-SOCP
OPF model increases from $92.24 to $122.59 when adding the
sufficient conditions. The reason for this cost increase is that
the sufficient conditions shrink the feasible space. In other
words, the MI-SOCP OPF model with sufficient conditions
determines the exact optimal solution for the AC-OPF problem
with the reduced feasible space. For example, these conditions
avoid having simultaneous reverse active and reactive power
flows, as demonstrated in Fig. 5 for a sample line. In the
upper plot of this figure (without sufficient conditions), there
are simultaneous reverse active and reactive power flows over
the line from time step 12 to 26 (i.e., peak time period),
while it never happens in the lower plot when adding sufficient
conditions. For the same reason, the expensive generator i1 is
re-dispatched when enforcing sufficient conditions (Fig. 3c),
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Fig. 5. Active and reactive power flow over the line from node n2 to
node n3 (upper plot: without sufficient conditions; lower plot: with sufficient
conditions).
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Fig. 6. Illustrative example: Voltage profile at node n6 achieved by OPF
models and forward-backward sweep validation (first plot: MILP-OPF loss-
less; second plot: MILP-OPF with losses; third plot: MI-SOCP OPF without
sufficient conditions; fourth plot: MI-SOCP OPF with sufficient conditions).

while the production of that generator is unchanged in the
case without sufficient conditions, and the TSO provides the
regulation service instead (Fig. 3d). Therefore, it is logical to
first check the exactness of the results obtained by MI-SOCP
OPF model without sufficient conditions, and then to add those
conditions if necessary.

4) Ex-post numerical validation: For given active and
reactive regulation outcomes of flexible resources within the
three different OPF models, we solve a power flow problem
based on a forward-backward sweep method for validation
purposes. This way, we numerically determine the voltage
profiles at non-slack nodes (i.e., n2 to n6 as PQ nodes), and
compare them with those achieved from the OPF models.
Fig. 6 illustrates the voltage profile of node n6 achieved
from each OPF model and forward-backward sweep valida-
tion11. Based on the validation, as expected, the MI-SOCP
OPF model provides the most precise outcomes. The error

11Node n6 is selected since it is at the end of the feeder and thus is expected
to have the most critical voltage profile.
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is 0.0001% for the voltage of the worst node (n6) when
comparing the voltage profile obtained by forward-backward
sweep validation method with that obtained from the MI-
SOCP OPF model. This error in MILP-OPF models without
and with losses is 2.4% and 0.55%, respectively. As another
important observation, the voltage profiles obtained by the two
MILP-OPF models are within the allowable bounds, however
when verifying them with forward-backward sweep validation,
it becomes apparent that the voltage constraints are violated
in some time steps. However, this is not the case for the
voltage profiles obtained from MI-SOCP OPF model with and
without sufficient conditions, which verifies their solution is
AC feasible and exact.

B. Case Study: IEEE 37-Node Test Feeder

For the case study, we use the IEEE 37-node test-feeder
[32], whose diagram is given in the online appendix D [26].
All three-phase line impedances and loads are transformed into
single phase equivalents, and transformers are removed where
necessary. The load data profiles are generated with 30-minute
time resolution, yielding a time horizon with 48 time steps.
The spot loads of the original test case are considered as the
peak load magnitudes, and then the 24-hour load profiles are
normalized based on data for a summer week-day in 2017 for
eastern Denmark sector of the Nordpool market. Load curves
are given in the online appendix D [26]. Five conventional
generators and four DR units are located at different nodes.
The line capacity between nodes 2 and 3 is limited to 1000
kVA, such that it will be congested during the peak load hours.

For computational performance analysis, we consider two
cases, namely Cases A and B, with different number of offers
per DR unit and thus different number of binary variables
in the OPF models. In Case A, each DR unit submits three
asymmetric block offers, while it is 8 offers in Case B. In
particular, Case A ends up to mixed-integer models with 576
binary variables, while Case B contains 1536 binary variables.

Fig. 7 presents the voltage profile in Case A for the worst
node achieved from the three OPF models and the forward-
backward sweep validation. Similar to our results in the
illustrative example, MI-SOCP OPF provides more precise
outcomes than the other two MILP models. Some extra results
are available in the online appendix [26].

The total re-dispatch cost, total active and reactive power
losses and CPU times12 among the three OPF models are
given in Table I. In particular, note that this table includes
the results obtained from the MI-SOCP OPF with and without
sufficient conditions. Similar to the illustrative example in the
previous section, the MI-SOCP OPF model without sufficient
conditions is found to be binding in the second-order cone
constraint (10b). This implies that the solution of the MI-
SOCP OPF model in this specific case study is exact and
thus AC feasible. In Case A, compared to the MI-SOCP
OPF without sufficient conditions, the MILP-OPF with loss
approximation underestimates the total active power losses and
the total re-dispatch cost by 8.7% and 12.3%, respectively.

12Hardware used: Huawei XH620 V3 with two Intel Xeon Processors
2650v4 (12 core, 2.20GHz), 256 GB memory, FDR Infiniband, 480 GB-SSD
disk
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Fig. 7. Case study (Case A): Voltage profile at node n32 achieved by
OPF models and forward-backward sweep validation (first plot: MILP-OPF
lossless; second plot: MILP-OPF with losses; third plot: MI-SOCP OPF
without sufficient conditions; fourth plot: MI-SOCP OPF with sufficient
conditions).

TABLE I
CASE STUDY: OUTCOMES OF THE THREE PROPOSED CONGESTION

MANAGEMENT MECHANISMS AND THEIR CPU TIMES FOR CASES A AND B

MILP MILP MISOCP MISOCP
Result Case lossless w. loss w. suff. w/o. suff.
Re-dispatch cost [$]

A

1694 2486 5115 2836
Active loss [kWh] N/A 1454 2819 1593
Reactive loss [kVArh] N/A N/A 1913 1379
CPU time [s] 9 72.9 513 288
Re-dispatch cost [$]

B

1594 2371 5007 2725
Active loss [kWh] N/A 1478 2783 1607
Reactive loss [kVArh] N/A N/A 1896 1384
CPU time [s] 34 209 12478 1381

These underestimations in Case B are 8.0% and 13.0%,
respectively. When adding sufficient conditions to the MI-
SOCP OPF model, the system cost increases significantly. The
reason for this cost increase is that the sufficient conditions
shrink the feasible space, and consequently, some expensive
up-stream generators (closer to the PCC) are re-dispatched.
This conic model as the most accurate mechanism among
the three models requires more CPU time than the other two
MILP mechanisms. The increase in CPU time by increasing
the number of binary variables, especially in MI-SOCP OPF
model with sufficient conditions, is significant. The CPU time
increase is less significant when no sufficient conditions are
enforced. In order to get a better insight into the increase in
CPU time versus the amount of binary variables in the MI-
SOCP OPF model with sufficient conditions, we plot the CPU
time as a function of numbers of time steps and asymmetric
block offers in Fig. 8.

V. CONCLUSION

This paper proposed a congestion management mechanism
for distributions grids, accounting for potential rebound effect
of demand response units. To this purpose, we incorporated



10 SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS

Fig. 8. Case study: CPU time for the MI-SOCP OPF model with sufficient
conditions as function of time steps and total number of block offers. (Note:
this is a linear interpolation between at 24, 35 and 48 time steps, and 12, 16,
20 and 32 offers.)

asymmetric block offers into the proposed mechanism at the
cost of introducing a set of binary variables, which leads
to increasing computational burden. For this mechanism, we
checked three different OPF models: i) MILP-OPF (lossless)
as the most simplified one, ii) MILP-OPF with loss approxi-
mations, and iii) MI-SOCP OPF as the most accurate one. We
also analyze the performance of MI-SOCP OPF model with
and without including sufficient conditions that guarantee an
exact relaxation (i.e. AC feasible solution). We show that the
outcomes of the proposed mechanism, especially asymmetric
blocks dispatched, are sensitive to the OPF model used,
i.e., the level of network simplifications considered. Among
the three models, the MI-SOCP OPF has the best technical
performance, but at the cost of high computational burden,
especially when adding sufficient conditions for exactness. It
is of our future interest to explore the alternatives to reduce the
computational burden, e.g., using decomposition techniques.
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This appendix is available online at https://github.com/
alherm/asymmetric_block_offers.

APPENDIX A
MATHEMATICAL REPRESENTATION OF ASYMMETRIC

BLOCK OFFERS

This appendix provides the mathematical expression of
the asymmetric block offers beginning with down-regulation,
which is similar to equations (1) but with Adc = 0:{

rdn
dct ≤ P

rsp
dc odct, ∀d, c, t (11a)

rup
dct ≤ P

rb
dc odct, ∀d, c, t (11b)

t+T rsp
dc −1∑
τ=t

rdn
dcτ ≥ T

rsp
dc P

rsp
dc (odct − odc,t−1), ∀d, c, t (11c)

t+T rsp
dc +T rb

dc−1∑
τ=t+T rsp

dc

rup
dcτ ≥ T

rb
dcP

rb
dc (odct − odc,t−1),

∀d, c, t ≤ |T |−T rsp
dc (11d)

t+T rsp
dc −1∑
τ=t

rup
dcτ ≤ T

rb
dcP

rb
dc (1− (odct − odc,t−1)),∀d, c, t

(11e)
t+T rsp

dc +T rb
dc−1∑

τ=t+T rsp
dc

rdn
dcτ ≤ T

rsp
dc P

rsp
dc (1− (odct − odc,t−1)) (11f)

,∀d, c, t ≤ |T |−T rsp
dc

}
if Adc = 0.

APPENDIX B
SUFFICIENT CONDITIONS

The additional sufficient conditions to be included in the
MI-SOCP OPF model are listed below:

ŝnjt = snt +
∑
h:h→n

ŝhnt, ∀n > j ∈ Φn, t (12a)

v̂nt − v̂jt = 2Re(Znj ŝnjt), ∀n > j ∈ Φn, t (12b)

Re(Znj ŝnjt) ≤ 0, ∀n > j ∈ Φn, t (12c)

v̂nt ≤ V
sq

n , ∀n, t, (12d)

where ŝnjt = p̂njt + jq̂njt is a linear approximation of the
complex line flows snjt = pnjt + jqnjt, and Znj = Rnj −
jXnj is the complex conjugate line impedance. snt = pnt +
jqnt is the complex nodal apparent power injection. Besides,
v̂nt is a linear approximation of the squared nodal voltage.
The notation

∑
h:h→n means the sum of all lines originating

in node n. These sufficient conditions are quite mild, as long
as there is no combined active and reactive reverse power flow
on any line. The reverse power flow can be either active or
reactive but not both13.

13We found out that due to numerical issues with the used solver, con-
vergence is achieved much faster if the right-hand side of equation (12c) is
replaced with a small positive number. This will not affect the tightness of
the achieved solution in any significant way.

APPENDIX C
INPUT DATA FOR ILLUSTRATIVE EXAMPLE

This appendix presents the input data for the illustrative ex-
ample (6-node network). As the day-ahead market outcomes,
Fig. 9 illustrates the production schedules of local conventional
generators and the consumption level of DR units. The day-
ahead market outcomes have a peak in power consumption
between hours 12 and 26. The line between nodes 3 and 4
is congested during peak hours. The asymmetric block offers
provided by the three DR units are given in Table II, where
each DR unit offers 4 different blocks to the DSO. The offer
prices for these blocks are constant through time and given
together with the other applicable prices in Table III.

Fig. 9. Illustrative example: The input data, consisting of the day-ahead
market outcomes in terms of active power. This market does not consider
reactive power trading.

TABLE II
ILLUSTRATIVE EXAMPLE: THE ASYMMETRIC BLOCK OFFERS PROVIDED

BY DR UNITS

DR unit Offer P rsp
dc P rb

dc T rsp
dc T rb

dc Adc

c1

d1 13 17 13 9 1
d2 17 13 9 13 0
d3 10 10 20 21 1
d4 17 10 9 20 0

c2

d1 17 8 9 29 0
d2 8 17 29 9 1
d3 13 15 13 11 1
d4 15 13 11 13 0

c3

d1 12 15 15 11 1
d2 15 12 11 15 0
d3 11 13 18 14 1
d4 13 11 14 18 0

TABLE III
THE PRICES FOR UP- AND DOWN-REGULATION OFFERS PROVIDED BY TSO

AND LOCAL DERS FOR BOTH THE ILLUSTRATIVE EXAMPLE AND THE
CASE STUDY.

Resource∗ Up offer price Down offer price
[¢/(kW-30min)] [¢/(kW-30min)]

Gen. i1 and i2 35 10
TSO 21 19
DR units c1 to c3 25 16
∗We assume the same prices for active and reactive regulation offers.
These prices are constant over time.
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TABLE IV
IEEE 37-NODE TEST CASE: THE ASYMMETRIC BLOCK OFFERS PROVIDED

BY DR UNITS

DR unit Offer P rsp
dc P rb

dc T rsp
dc T rb

dc Adc

c1

d1 85 75 12 18 1
d2 72 65 13 17 0
d3 62 53 14 16 1
d4 52 43 15 15 0
d5 44 35 16 14 1
d6 32 23 17 13 0
d7 25 16 18 12 1
d8 14 5.8 19 11 0

c2

d1 91 11.5 18 11 0
d2 84 24.5 17 12 1
d3 76 33.5 16 13 0
d4 66 43.5 15 14 1
d5 56 53.5 14 15 0
d6 46 63.5 13 16 1
d7 36 73.5 12 17 0
d8 20 83.5 11 18 1

c3

d1 83 25.5 12 17 1
d2 75 34.5 13 16 0
d3 63 43.3 14 15 1
d4 53 53.3 15 14 0
d5 43 63.3 16 13 1
d6 33 73.35 17 12 0
d7 23 83.35 18 11 1
d8 13 93.35 19 10 0

c4

d1 102 1.55 18 10 0
d2 92 24.5 17 11 1
d3 82 33.5 16 12 0
d4 75 43.5 15 13 1
d5 65 53.5 14 14 0
d6 52 63.5 13 15 1
d7 45 73.5 12 16 0
d8 35 83.5 11 17 1

APPENDIX D
DATA FOR CASE STUDY: THE IEEE 37-NODE SYSTEM

This appendix gives all the input data for the 37-node case
study of section IV. The offer prices from all DR units, local
conventional generators and TSO are provided in Table III.
All asymmetric block offers by the four DR units are listed
in Table IV. For Case A, the first three offers of each unit are
used, while in Case B all 8 offers for each unit are considered.
Fig. 11a depicts the active power loads at each node of the
system. Fig. 11b shows the reactive power loads at each node.
The dispatch of the local generators and the import from the
TSO at the PCC is given in Fig. 11c.

APPENDIX E
EXTRA RESULTS FOR THE IEEE 37-NODE SYSTEM

In this appendix, some extra results of the congestion
management mechanism obtained from the IEEE 37-node case
study in section IV-B are presented. These results are the re-
dispatch of the local conventional generators, re-dispatch of
import/export from the TSO and the dispatch of the asymmet-
ric blocks.

The results obtained for Case A for all three OPF models
are presented in Fig. 12. Likewise, the optimal results achieved
in Case B for the three OPF models are presented in Fig. 13,
with Fig. 13a showing the re-dispatch outcome for the linear
lossless model, and Fig. 13b showig the re-dispatch for the
linear model with loss approximation, and 13c showing the

Fig. 10. The diagram for the IEEE 37-node test feeder with local generators
and DR units. Note: The node numbers have been changed compared to the
original test case in [32].

re-dispatch for the SOCP model. Comparing the dispatch of
asymmetric blocks from the lossless MILP-OPF model and
the one with loss approximation, it is observed that the same
blocks are dispatched for both Cases A and B. There are minor
differences in the re-dispatch of conventional generators and
the import/export at the PCC due to the active power losses.

The re-dispatch results of the congestion management
mechanism using the MI-SOCP OPF model are given in Fig.
12c and 13c. It is worth noticing that the asymmetric blocks
dispatched in this model are quite different compared to those
in MILP models.
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(a) Active power loads

(b) Reactive power loads.

(c) Day-ahead schedule of the five conventional generators.

Fig. 11. IEEE 37-node case study input data.
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(a) MILP-OPF (lossless)
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(b) MILP-OPF with loss approximation
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(c) MI-SOCP OPF with sufficient conditions.
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(d) MI-SOCP OPF without sufficient conditions.

Fig. 12. IEEE 37-node test case: Re-dispatch outcomes obtained from Case
A with the three different OPF models.
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(a) MILP-OPF (lossless)
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(b) MILP-OPF with loss approximation
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(c) MI-SOCP OPF with sufficient conditions
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(d) MI-SOCP OPF without sufficient conditions.

Fig. 13. IEEE 37-node test case: Re-dispatch outcomes obtained from Case
B with the three different OPF models.
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TSO-DSO Coordination Via Optimized Interface
Capacity Limits

Alexander Hermann, Student Member, IEEE, Tue Vissing Jensen, Member, IEEE,
Jalal Kazempour, Senior Member, IEEE, and Jacob Østergaard, Senior Member, IEEE

Abstract—Proposals for flexibility procurement are envisioning
markets where the transmission system operator (TSO) can
access flexibility of distribution system operator (DSO)-level units
and vice versa, but the coordination between the two is still a
matter of active research. In this paper, we examine day-ahead
coordination through markets. While allowing the DSO to pre-
qualify the participation of distributed energy resources (DERs)
in wholesale markets, we treat prices and import/export limits at
the interface of TSO and DSO as coordination variables in the
day-ahead stage. For given values of these variables, the DSO’s
pre-qualification is done by imposing caps on the quantity bids of
DERs in the wholesale markets. We quantify the potential benefit
of this pre-qualification on the social welfare of the overall system.
The resulting model is a bi-level optimization problem, which is
decomposed to separate the conic modeling of real-time power
flows from the mixed-integer linear formulation of the day-ahead
market problem.

Index Terms—TSO-DSO coordination, DSO market, conges-
tion management, convex relaxation, Stackelberg Game.

I. INTRODUCTION

DUE to organizational and policy driven issues, network
constraint modeling is today left out of European zonal

day-ahead electricity markets. The transmission system op-
erator (TSO) is responsible for the safe operation of the
whole system in transmission level, and interacts with markets
only for flexibility procurement and exchange limits. The
balancing of uncertain production of renewables in real-time
is one of the main issues for the TSO for which distributed
energy resources (DERs) can provide flexibility services [1].
However, DERs will often be located on low-voltage feeders
of the distribution systems. In contrast, the distribution sys-
tem operators (DSOs) currently safeguard their networks by
over-dimensioning components and using uncoordinated local
control. There are several proposals to liberalize the flexibility
procurement, such that the DSO will operate its own local
flexibility market to support network constraints [2]–[4]. In
parallel, several proposals have been made for how TSO and
DSOs can coordinate their real-time dispatch [5]–[7]. Common
to these proposals is that the TSO and DSOs do not coordinate
their flexibility procurement in the day-ahead stage, i.e. they
coordinate only in real-time only, or are not congruent with
current European electricity market regulations.

However, TSO-DSO coordination scheme in the day-ahead
stage may allow for lower overall cost of system operation.
Following this thread, as illustrated in Fig. 1, we propose to
treat the interface characteristics between TSO and DSOs as
‘coordination variables’ in the day-ahead stage. These vari-
ables are (i) prices at the point of common coupling (PCC)1

1‘PCC’ here refers to the node connecting a distribution and transmission
network. We use interface and PCC interchangeably. While prices at the DSO
level are not a feature of current regulation, they are a necessary consequence,
implicit or explicit, of any DSO-level market.

Fig. 1. Schematic of the proposed method for an example: In the left situation,
the day-ahead flow from DSO1 to DSO2 creates congestion at the TSO level.
In the right situation, restricting the coordination variables for DSO2 prevents
congestion at the TSO level, avoiding expensive correction actions. In other
potential examples, the congestion may happen in DSO level or both TSO
and DSO levels, and then coordination at the interface of DSO1 or at the
interface of both DSOs might be needed.

and (ii) the flow capacity limits at the PCC. These variables
enable TSO and DSOs to coordinate on the day-ahead dispatch
of DERs, because they influence the access of a DER in the
DSO’s domain to the TSO’s flexibility markets, and vice versa.
In practice, to coordinate on these variables, there must be
an entity which defines the coordinating variables. We here
examine the potential for coordination under this scheme, and
introduce a new agent to fulfill this function, called the “PCC
optimizer”.

The PCC optimizer seeks to maximize the expected social
welfare of the entire system (including both transmission
and distribution levels, and in both day-ahead and real-
time stages) and optimizes the coordination variables at the
interface before day-ahead market clearing. The optimized
coordination variables at each interface are eventually treated
as exogenous parameters to the corresponding DSO. While
in a practical implementation the PCC optimizer would not
have full access to all information, e.g., market offers, we
examine the idealized situation of perfect information access
and assume an optimal coordination in real-time.

The research contributions of this paper are two-fold: (i) We
propose a PCC optimizer who determines a set of interface
prices and power flow capacity limits, leading the DSO to in-
dependently impose caps on quantity bids of DERs connected
to its domain before day-ahead market clearing. This optimally
restricts the participation of DERs in day-ahead markets, and
effectively enables TSO-DSO coordination ex-ante (i.e., before
day-ahead market clearing). It is also in line with the proposed
market designs for DSO flexibility procurement. In contrast to
other works such as [5]–[8], we design coordination in the day-
ahead stage. (ii) We show that the functioning of the proposed
PCC optimizer can be implemented as a bi-level problem,
and under an assumption of information symmetry between
PCC optimizer and DSOs, we are even able to simplify the
proposed bi-level structure. We decompose the proposed bi-
level problem using a Benders’ decomposition algorithm to
ease computational burden. A benefit of this decomposition
is that it avoids solving a mixed-integer second-order cone



2 SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS

program, and separates it to a mixed-integer linear problem
and a set of second-order cone problems (SOCP).

The paper is structured as follows: Section II provides the
required preliminaries, positions our work relative to other
works in the literature, and elaborates on the notion of the
proposed coordination method. Section III explains the PCC
optimizer and the structure of the underlying optimization
problem. Section IV describes the Benders’ decomposition
approach, and defines two benchmark models. In section V,
a case study based on a modified IEEE 24-node network is
carried out. Section VI summarizes the findings and discusses
their influence on potential practical coordination schemes.

II. BACKGROUND AND PROPOSED METHOD

A. On the need for TSO-DSO coordination

The large-scale integration of DERs, which is expected in
the future, will increase the power being transferred through
low-voltage networks and therefore a coordinated use of flexi-
bility is pertinent [1], [9]. Through aggregators and balancing
responsible parties (BRPs), DERs will be able to participate
in day-ahead and ancillary services markets2 to smooth out
system imbalances for the TSO or to support network con-
straints by the DSO or the TSO. The inconsistencies between
day-ahead dispatching and flexibility procurement on both
TSO and DSO sides will pose major challenges. Coordination
methods are one way of optimizing the concurrent use of
flexible resources.

The low-voltage (LV) distribution network is itself a system
of massive scale such that co-optimization of high-voltage
(HV) and LV resources is likely to be computationally in-
tractable. One reason for this is that including LV networks
introduces a series of issues that are complicated to model. For
example, in addition to congestion, LV networks are prone to
over and under-voltage issues which are more prominent than
in HV transmission networks. Besides, the active and reactive
power losses play a more prominent role in LV distribution
systems due to a higher R/X ratio of cables. Further, the TSO-
DSO role separation is, in a European context, often strictly
enforced, such that each entity has limited information about
the others’ network, further restricting co-optimization.

The creation of local DSO-level flexibility markets is meant
to address these issues, though their coordination with day-
ahead and TSO-level flexibility markets is an open question.

B. Existing proposals for the TSO-DSO coordination

Previous works have focused on the TSO-DSO coordination
in the real-time activation stage only [5], [6], [8], [10], [11].
However, in most countries the bulk of electricity is traded
in the day-ahead market, and therefore, this paper aims at
quantifying the possible cost-savings through TSO-DSO co-
ordination based on day-ahead market bids. Any coordination
that is included in the day-ahead stage is expected to increase
the social welfare of the whole system, as a premium on energy
is usually applied when moving closer to real-time. In [9],
an integrated method for dispatching both active and reactive

2We use ancillary services markets and flexibility markets interchangeably.
The ancillary services markets operated by TSO exist today, but it is still an
area of active research for DSOs. See [1] for a comprehensive review.

power and reserves is presented. However, this method is not
compatible with current European zonal markets since it relies
on co-optimization of energy and reserve as well as a nodal
pricing approach.

Another recent proposal is that the DSO constrains the
quantity bids of local DERs (or their aggregations) to other
markets in order to meet local grid constraints. For example,
[10] proposes a DSO-level ancillary services market. This is
a framework where the DSO constrains the participation of
local DERs in the day-ahead pool and the TSO-level flexibility
market. Also, the European SmartNet project [12] and the
Danish DREM project [13] have proposed several methods
where the DSO constrains bids of DERs.

Another potential coordination method proposed in [9] and
[14] is to co-optimize TSO and DSO operation, but using
distributed optimization techniques. However, this leads to
an iterative market-clearing process and does not comply
with current market regulations. If such a co-optimization
has to be avoided, an exchange of messages between TSO
and DSO needs to happen. One possible method is for the
DSO to forecast the grid loading and to share the feasible
injection region at the interface with the TSO, as in [5],
[6], [11]. This method requires the market-clearing agent to
incorporate the feasible region of every DSO, which it may
be unwilling to do due to the large scale of the market-
clearing problem. Sharing the feasible space, also requires
bi-directional exchanges of messages because first the DSO
must receive information about prices at the interface, and
subsequently communicate the feasible space to the TSO (or
the market-clearing responsible).

C. Notion behind the proposed coordination method

The DSO-level congestion management can be achieved
by establishing a local DSO market, such that the DSO can
include the local grid constraints directly in this market [2].
However, DERs or DER aggregators are expected to partici-
pate in both local and global3 markets. If a DER participates in
a local DSO market only, it will reduce its ability for revenue,
reducing social welfare of the overall system [7]. If all DERs
participating in a local DSO market also bid in global markets,
the DSO market effectively reduces to a pre-qualification of
bids of the local DERs to global market. We thus propose to
employ a TSO-DSO coordination method where the DSO can
systematically constrain the quantity bids of DERs, and more
generally aggregators taking part in the day-ahead markets.

In this setup with local DSO markets, the PCC characteris-
tics (i.e., the prices and capacity limits at each PCC) naturally
have an impact on the corresponding DSO market outcomes.
This leads to the following question: how to determine the
optimal values for these PCC characteristics that maximize
the social welfare of the whole system? This motivates us to
consider the PCC characteristics as coordination variables. In
effect, optimizing these variables will lead to better coordina-
tion between the TSO and DSOs in the day-ahead stage. For
this, the PCC optimizer which determines the optimal values
of coordination variables in the interfaces, is introduced.

3By global, we refer to day-ahead pool and TSO-level flexibility markets.
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Fig. 2. The conceptual passing of information between different markets and
agents involved in the coordination via the proposed PCC optimizer. The RT
model is in reality encompassed by several steps, which are unified into one
simplified model. For a relevant survey of RT markets, see [1]. Symbol e is
an index for all DSOs connected to the underlying TSO. Symbol ω is the
index for uncertainty scenarios in the DA stage, which realize in RT.

The PCC optimizer is modeled as a Stackelberg game,
which respects the paradigm of a two-stage market clearing,
i.e. the day-ahead (DA) market and a series of real-time (RT)
re-dispatches4 to meet network constraints. The PCC optimizer
is the leader, while the DA and RT markets are the Stackelberg
followers. The modeling of the PCC optimizer as a bi-level
optimization problem has been inspired by recent works such
as [15], where the optimal interface limits for trading between
zonal day-ahead markets are found through bi-level modeling,
and [16], where the optimal allocation of reserves is analyzed
through a bi-level approach.

The interactions of agents and markets are schematically
illustrated in Fig. 2, and explained below by four steps:

1) Before DA market-clearing, the PCC optimizer deter-
mines the coordination variables at each PCC, i.e., prices
and flow capacity limits. Its objective is to minimize the
total expected cost (or maximize the total expected social
welfare) of the whole system, containing TSO and all
DSOs’ domains, and including both DA and RT stages.

2) Given the prices and power flow limits at interfaces set by
the PCC optimizer (step 1) and still before DA market-
clearing, each DSO (indexed by e) puts a cap on the
production/consumption quantity that each DER located
at its domain can offer/bid in the DA market. We refer to
this stage as DSO’s pre-qualification. Note that DERs can
participate in DA market through aggregators and BRPs.

3) Given the quantity offers/bids of DER aggregators (step
2), the DA market is cleared.

4) Following the DA market in step 3, there are a series
of RT or near RT corrections, both by the TSO and
DSOs. We unify the modeling of all of these RT markets
into a stochastic model, where premiums are applied to
changing the DA dispatches.

Note that step 1 is the action of leader while anticipating the
reactions of sequential followers in steps 2-4. The proposed

4This includes any mechanism that changes the day-ahead dispatches.

method is uni-directional in message exchanges because the
PCC optimizer needs only to send the interface characteristics
to the DSO. There is no requirement that the DSO needs to
send any cost curves or feasibility regions to the DA market-
clearing agent.

We assume that renewable production is the only source of
uncertainty. The production of each renewable energy source
(RES) r is capped by an uncertain parameter WRT

rω that is
dependent on scenario ω (i.e., RES can be freely spilled as
required). A full list of modeling assumptions is given in
online Appendix A [17].

III. PCC OPTIMIZER: PROPOSED BI-LEVEL MODEL

A diagram of the proposed bi-level structure is shown in
Fig. 3a, and its mathematical model is given by (1):

max
ΞPCCO

e

SWDA −
∑
ω

φω∆CostRT
ω (1a)

s.t. p̃DA
g , p̃DA

d ∈ arg
(

(9)e | ΞPCCO
e

)
,∀e (1b)

SWDA, p̂DA
g , p̂DA

d ∈ arg
(

(3) | p̃DA
g , p̃DA

d

)
(1c)

∆CostRT
ω ∈ arg

(
(4)ω | p̂DA

g , p̂DA
d

)
,∀ω ∈ Ω, (1d)

where ΞPCCO
e = {fe, fe, π

PCC,DA
e , π↑PCC

e , π↓PCC
e } is the

variable set of the PCC optimizer, which are indeed the
coordination variables. A nomenclature is available in Table I.

The upper-level objective function (1a) maximizes the DA
social welfare SWDA minus the expected RT cost. The
incurred re-dispatch cost in RT under each scenario ω is
∆CostRT

ω , while φω is the corresponding probability of that
scenario. This objective function is constrained by three lower-
level problems (1b), (1c) and (1d). For given values for co-
ordination variables (i.e, the upper-level variables in ΞPCCO),
constraint (1b) provides a pre-qualification, i.e., it clears the
local market for each DSO e and obtains the dispatch of
each local generator p̃DA

g and each load demand p̃DA
d . The

conditional symbol ‘|’ indicates that the DSO market outcomes
depend on coordination variables. Each DSO market in (1b)
is a stochastic market, accounting for potential realizations
of uncertain parameters in real time. The full mathematical
model for each DSO market is given by (9) in the online
appendix [17]. The optimal dispatch of each local load and
generator in DSO markets (i.e., p̃DA

g and p̃DA
d ) are then treated

as caps on quantity bids of these local DERs in the day-ahead
market. Given these caps, lower-level problem (1c) clears the
DA market, whose formulation is given in (3). Eventually,
for given DA dispatches (i.e., p̂DA

g and p̂DA
d ), the lower-level

problem (1c) clears the RT market under each scenario. The
corresponding clearing problem is given in (4).

Solving bi-level problem (1) is difficult, especially because
we model the DSO markets in the lower-level constraint (1b)
using a SOCP. The following proposition allows to reduce this
bi-level problem.

Proposition 1: The collection of the first order optimality
conditions associated with the DA market-clearing problem
(1c) and the RT market-clearing problem (1d) contains all
optimality conditions of the local DSO markets (1b). There-
fore, solving the reduced bi-level problem (2) is equivalent to
solving the original bi-level model (1).
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TABLE I
NOMENCLATURE

Indices and sets:
d ∈ D Index for demands
e ∈ E Index for distribution feeders
g ∈ G Index for conventional generators
n,m ∈ N Indices for nodes in both DSO and TSO networks
l ∈ L Index for lines; l = (n,m)
r ∈ R Index for renewable energy sources (RES)
ω ∈ Ω Index for renewable power scenarios
Subsets and special labels:
Dn, Gn, Rn Set of assets located at node n
DD

e ⊂ D Set of demands connected to distribution feeder e
DT ⊂ D Set of demands connected to the transmission grid
GD

e ⊂ G Set of generators connected to distribution feeder e
GT ⊂ G Set of generators connected to the transmission grid
LD
e ⊂ L Set of lines in distribution feeder e

LT ⊂ L Set of lines in transmission grid
ND

e ⊂ N Set of nodes in distribution feeder e
NT ⊂ N Set of nodes in transmission grid
→ n Set of lines ending at node n
n→ Set of lines originating at node n
nHV
e ∈ NT Node at HV-side of the PCC of feeder e
nLV
e ∈ ND

e Node at LV-side of the PCC of feeder e
le PCC of feeder e connecting HV- and LV-side nodes
l′ = (m,n) Line in the opposing direction of line l
Variables of the PCC optimizer:
fe/fe Upper/lower limit on import/export of apparent power at

the PCC of feeder e [MVA]
πPCC,DA
e Day-ahead price at the PCC of feeder e [$/MWh]
π
↑/↓PCC
e Regulating offer markup for up/down-regulation at the

PCC of feeder e in real time [$/MWh]
Variables at the day-ahead stage:
p̃DA
g/d

Active power dispatch of DSO-level generator g / demand
d in the local DSO market. This value is treated as a cap
on the quantity bid to the DA market [MW]

p̂DA
g/d

Active power dispatch of generator g / demand d in the
DA market [MW]

sDA Total active power load curtailed [MW]
wDA

r Active power dispatch of RES r [MW]
Variables at the real-time stage under scenario ω:
p
↑/↓
gω Active power up/down-regulation of generator g [MW]
p
↑/↓
dω Active power up/down-regulation of demand d [MW]
pRT
gω /q

RT
gω Final active/reactive production of generator g, i.e, its

dispatch in DA plus the regulation in RT [MW/MVAr]
pRT
lω /qRT

lω Final active/reactive power flow across line l, i.e, the flow
dispatched in DA plus the regulation in RT [MW/MVAr]

sRT
nω Total active power load curtailed at node n [MW]
sq,RT
nω Total reactive power load curtailed at node n [MVAr]
θRT
nω Voltage angle at TSO-level node n [rad]
w

↑/↓
rω Active power up/down-regulation of RES r [MW]

wRT
rω Final active power production of RES r [MW]

vRT
nω Squared voltage magnitude at DSO-level node n [p.u.]
ϕRT
lω Squared current magnitude flow in DSO-level line l [p.u.]

Parameters:
P g/d, P g/d Upper/lower active power limit for output of generator g

and consumption of demand d [MW]
Qg/d, Qg/d

Upper/lower reactive power limit for output of generator
g and consumption of demand d [MVAr]

Rl/Xl/Sl Resistance/reactance/flow limit of line l [p.u.]/[MVA]
V n, V n Upper/lower limit for voltage magnitude of node n [p.u.]
V OLL Value of lost load [$/MWh]
WDA

r Power forecast of RES r in the DA stage [MW]
WRT

rω Power generation of RES r in RT under scenario ω[MW]
πDA
g/d

Marginal offer/bid price of generator g / demand d in the
DA stage [$/MWh]

πR Offer price of RES (assumed to be zero) [$/MWh]
π
↑/↓
g/d

Regulating offer markup in RT for up/down-regulation of
generator g / demand d [$/MWh]

π↑/↓R Up/down-regulation offer of RES in RT [$/MWh]

PCC Optimizer:
Upper-level problem (1a)

DSO Markets
(one per DSO e)

SOCP (9) in
Appendix A

DA Market
LP (3)

RT Market
(one per

scenario ω)
SOCP (4)

Ξ
PCCO

p̃DA
g and p̃DA

d

SW
D

A

p̂DA
g and p̂DA

d

∆Cost RTω

(a) Structure of the original bi-level problem (1). Note that
LP and SOCP stand for linear problem and second-order cone
problem, respectively.

PCC Optimizer:
Upper-level problem (2a)-(2c)

DA Market
Linear problem (3)

RT Market
(one per scenario ω) SOCP (4)

p̃
D
A
g

an
d p̃

D
A
d

SW
D
A

p̂DA
g and p̂DA

d

∆Cost R
Tω

(b) Structure of the reduced bi-level problem (2). This problem
is equivalent to the original bi-level problem (1) illustrated
in Fig. 3a assuming information symmetry between the PCC
optimizer and the DSOs.

Fig. 3. Structure of two equivalent bi-level problems

Proof of proposition 1: See online appendix E [17].
Therefore, the original bi-level problem (1) with three lower-
level problems reduces to an equivalent bi-level problem
with two lower-level problems as illustrated in Fig. 3b. The
equivalent model is given by (2):

max
p̃DA
g ,p̃DA

d

SWDA −
∑
ω

φω∆CostRT
ω (2a)

s.t. 0 ≤ p̃DA
g ≤ P g ∀e, g ∈ GD

e (2b)

0 ≤ p̃DA
d ≤ P d ∀e, d ∈ DD

e (2c)

SWDA, p̂DA
g , p̂DA

d ∈ arg
(

(3) | p̃DA
g , p̃DA

d

)
(2d)

∆CostRT
ω ∈ arg

(
(4)ω | p̂DA

g , p̂DA
d

)
,∀ω. (2e)

Now, the PCC optimizer directly imposes the caps on quantity
bids/offers of local DERs through upper-level constraints (2b)
and (2c). Note that the simplification achieved by using
proposition 1 is only possible if the PCC optimizer and the
local DSO markets have information symmetry. This means
that they must hold the same beliefs about the distribution
of uncertain variables and use the same set of representative
scenarios. The next two subsections present the DA and RT
market-clearing problems.

A. DA market-clearing formulation

The linear problem (3) clears the DA market, whose ob-
jective function is the social welfare maximization. Following
the European zonal DA markets, this market is a pool, in-
cluding bids and offers of all agents in TSO and DSO levels,
without modeling network constraints. However, the network
constraints will be considered later in the RT stage. Note
that the caps on quantity bids of DSO-level generators and
demands, i.e., p̃DA

g and p̃DA
d , are treated as parameters in (3),

while they are decision variables for the PCC optimizer in (2).

max
p̂DA
g ,p̂DA

d ,sDA,wDA
r

SWDA =
∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g
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− V OLL sDA − πR
∑
r

wDA
r (3a)

s.t.
∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r

wDA
r + sDA = 0 (3b)

P g ≤ p̂DA
g ≤ p̃DA

g , ∀e, g ∈ GD
e (3c)

P g ≤ p̂DA
g ≤ P g, ∀g ∈ GT (3d)

P d ≤ p̂DA
d ≤ p̃DA

d , ∀e, d ∈ DD
e (3e)

P d ≤ p̂DA
d ≤ P d, ∀d ∈ DT (3f)

0 ≤ wDA
r ≤WDA

r , ∀r ∈ R (3g)

0 ≤ sDA ≤
∑
d

p̂DA
d . (3h)

Constraint (3b) enforces the global power balance, consider-
ing all generators and demands in both TSO and DSO levels.
Constraints (3c) through (3h) are bounds on the power quan-
tities dispatched. The caps p̃DA

g and p̃DA
d are only enforced

for DSO-level generators and demands in (3c) and (3e). In
contrast, the dispatch of TSO-level generators and demands is
restricted by their real capacity in (3d) and (3f).
B. RT re-dispatch formulation

For each potential scenario ω in RT, problem (4) re-
dispatches the generators and demands in both TSO and
DSO levels considering the full nodal power flow. For the
distribution networks, a convex relaxation of AC power flow
is employed, ending up to a SOCP. This model allows for
taking into account the reactive power flows over lines, active
and reactive power losses and nodal voltage magnitudes in
the distribution networks. In contrast, for the transmission
network, a linearized approximate power flow model is used,
discarding the reactive power flows, active and reactive power
losses and nodal voltage magnitudes. The objective function
formulates the re-dispatch cost under the underlying scenario,
where a premium on up- and down-regulation costs is being
minimized.

min
ΞRT

ω

∆CostRT
ω = V OLL

∑
n∈N

sRT
nω

+
∑
g∈G

(
πDA
g

(
pRT
gω − p̂DA

g

)
+ π↑gp

↑
gω + π↓gp

↓
gω

)
+
∑
d∈D

(
πDA
d

(
p̂DA
d − pRT

dω

)
+ π↑dp

↑
dω + π↓dp

↓
dω

)
+
∑
r

(
πR
(
wRT

rω − wDA
r

)
+ π↑Rw↑rω + π↓Rw↓rω

)
(4a)

s.t. pRT
lω = Bl (θnω − θmω) , ∀l ∈ LT (4b)

pRT
lω ≤ Sl, ∀l ∈ LT (4c)

pRT
gω = p̂DA

g + p↑gω − p↓gω, ∀g ∈ G (4d)

wRT
rω = wDA

r + w↑rω − w↓rω, ∀r ∈ R (4e)

pRT
dω = p̂DA

d − p↑dω + p↓dω, ∀d ∈ D (4f)∑
g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω + sRT

nω

=
∑
l∈n→

pRT
lω −

∑
l∈→n

pRT
lω , ∀n ∈ N (4g)∑

g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

=
∑
l∈n→

qRT
lω −

∑
l∈→n

qRT
lω , ∀e, n ∈ ND

e (4h)

pRT2

lω + qRT2

lω ≤ ϕRT
lω vRT

nω , ∀e, l ∈ (LD
e ∪ le) (4i)

pRT2

lω + qRT2

lω ≤ S2
l , ∀e, l ∈ (LD

e ∪ le) (4j)

pRT
lω + pRT

l′ω = Rl ϕ
RT
lω , ∀e, l ∈ (LD

e ∪ le) (4k)

qRT
lω + qRT

l′ω = Xl ϕ
RT
lω , ∀e, l ∈ (LD

e ∪ le) (4l)

vRT
mω = vRT

nω − 2(Rl p
RT
lω +Xl q

RT
lω )

+ (R2
l +X2

l )ϕRT
lω , ∀e, l ∈ (LD

e ∪ le) (4m)

V 2
n ≤ vRT

nω ≤ V
2

n, ∀e, n ∈ (ND
e ∪ nHV

e ) (4n)

0 ≤ wRT
rω ≤WRT

rω , ∀r ∈ R (4o)

P g ≤ pRT
gω ≤ P g, ∀g ∈ G (4p)

P d ≤ pRT
dω ≤ P d, ∀d ∈ D (4q)

Q
g
≤ qRT

gω ≤ Qg, ∀g ∈ GD
e (4r)

Q
d
≤ qRT

dω ≤ Qd, ∀d ∈ DD
e (4s)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀n ∈ N (4t)

p↑gω ≥ 0, ∀g, p↓gω ≥ 0, ∀g (4u)

p↑dω ≥ 0, ∀d, p↓dω ≥ 0, ∀d (4v)

w↑rω ≥ 0, ∀r, w↓rω ≥ 0, ∀r, (4w)

where ΞRT
ω = {pRT

gω , pRT
dω , wRT

rω , p↑gω , p↓gω , p↑dω , p↓dω , w↑rω,
w↓rω, sRT

nω , s
q,RT
nω , qRT

gω , q
RT
dω , pRT

lω , q
RT
lω , θnω, ϕ

RT
lω , v

RT
nω } is the

variable set of (4). Constraint (4b) uses the lossless linear
representation of power flow to determine the active power
flow across lines in the TSO level, while (4c) imposes the
transmission line capacity limits. Constraints (4d)-(4f) deter-
mine the final active power production (i.e., DA dispatch plus
the RT regulation) of each conventional generator and RES,
and final consumption of each demand. The nodal active power
balance in both TSO and DSO levels is enforced by (4g),
while the nodal reactive power balance in the DSO level is
imposed by (4h). The second-order cone constraints (4i) and
(4j) enforce the capacity of distribution lines. Note that (4i) is
an equality constraint in the original AC power flow model,
but it is relaxed here to achieve convexity. An exact conic
relaxation in radial systems can be ensured by adding sufficient
conditions, but at the cost of potential sub-optimality and
increased computational burden [18] – it is outside the scope
of this work. Active and reactive power losses in distribution
network are modeled in (4k) and (4l), whereas nodal voltage
magnitudes are calculated by (4m). Constraints (4n) through
(4t) impose lower and upper bounds for different variables,
while (4u)-(4w) declare non-negativity conditions.

Because (4) solves a centralized optimal power flow prob-
lem with all nodes in both transmission and distribution
networks, it is not practical to implement this problem in
reality. Several other works have shown how this problem
can be decomposed into separate problems, which are more
manageable for large cases [9], [14]. The implementation and
discussion of such a distributed problem is however considered
outside the scope of this paper.
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IV. SOLUTION STRATEGY AND BENCHMARKS

A. Benders’ decomposition

The most common way to solve bi-level problem (2) is
to replace lower-level problems (2d) and (2e) by their KKT
optimality conditions, which is computationally expensive
especially for large case studies. Also, since (4) in lower-
level problem (2e) is a SOCP, it is a challenge to deal with
complementarity conditions in such a problem. Therefore, we
use a decomposition technique to decompose (2) to a set of
smaller problems, also avoiding to solve KKTs of a SOCP. We
use a multi-cut Benders’ decomposition method by choosing
DA dispatch decisions p̂DA

g , p̂DA
d and wDA

r as complicating
variables [19]. By fixing these variables, the original bi-level
problem (2) decomposes into a master problem for the PCC
optimizer and a set of sub-problems for RT re-dispatch under
each scenario. The master problem at iteration (i) is presented
by (5) below:

max
ΞMP(i)

SWDA(i)

−
∑
ω

φωψ
(i)
ω (5a)

s.t. (2b)− (2c) (5b)

SWDA(i)

∈ (3) (5c)

ψ(i)
ω ≥ ψmin, ∀ω ∈ Ω (5d)

ψ(i)
ω ≥ ∆CostRT(m)

ω +
∑
g∈G

α(m)
gω

(
p̂DA(i)

g − p̂DA(m)

g

)
+
∑
d∈D

α
(m)
dω

(
p̂DA(i)

d − p̂DA(m)

g

)
+
∑
r∈R

α(m)
rω

(
wDA(i)

r − wDA(m)

r

)
,

∀m ∈ {1, . . . , i− 1}, ω, (5e)

where variable set ΞMP(i)

includes p̂DA(i)

g , p̂DA(i)

d , sDA(i)

,
wDA(i)

r , p̃DA(i)

g , p̃DA(i)

d and ψ
(i)
ω . Note that (5) is still a bi-

level problem, whose lower-level problem is (5c). Similar to
objective function of the non-decomposed bi-level problem,
i.e., (2a), objective function (5a) maximizes the social welfare
in DA minus the expected re-dispatch cost in RT. Here, the
latter is represented by auxiliary variable ψ(i)

ω . This variable
is constrained by a lower bound in (5d) to avoid unbounded
solution in the initial iteration, and by multiple cuts in (5e), one
per scenario. Note that (m) is an index for previous iterations,
and all symbols with superscript (m) are parameters whose
values come from the solution of master and sub-problems in
the previous iterations. In particular, α(m)

gω , α(m)
dω and α(m)

rω are
sensitivities, and their values are obtained from sub-problems
in the previous iterations. Note also that this bi-level problem
can be solved by replacing the lower-level problem (3) in (5c),
which is a linear problem, by its KKT conditions as given in
the online appendix [17]. After linearizing the complementar-
ity conditions using a Big-M method [20], master problem (5)
boils down to a mixed-integer linear problem.

For given values for complicating variables obtained from
master problem (5), each sub-problem (6), one for each sce-
nario, re-dispatches the whole system to offset the renewable
power imbalance under the corresponding scenario.

min
ΞRT(i)

ω

∆CostRT(i)

ω (6a)

s.t. ∆CostRT(i)

ω ∈ (4)ω (6b)

p̂DA(i)

g = p̂DA,fixed(i)

g , : α(i)
gω ∀g ∈ G, (6c)

p̂DA(i)

d = p̂DA,fixed(i)

d , : α
(i)
dω ∀d ∈ D, (6d)

wDA(i)

r = wDA,fixed(i)

r , : α(i)
rω ∀r ∈ R. (6e)

Note that each sub-problem (6) at iteration (i) is also a bi-
level problem, whose lower-level is SOCP (4) in (6b). The dual
variables α(i)

gω , α(i)
dω and α(i)

rω are defined for every conventional
generator, demand and RES, which are used to construct cuts
(5e) in the master problem. One important observation is that
the objective function in (6) is the same as in (4). Therefore,
the bi-level structure of (6) can be eliminated, and each sub-
problem reduces to a single-stage SOCP as below:

min
ΞRT(i)

ω

∆CostRT(i)

ω s.t. (4b)ω − (4w)ω and (6c)− (6e). (7)

The iterative Benders’ decomposition algorithm finds the
optimal solution of the bi-level problem (2) with a level of
accuracy ε if a lower bound LB(i) = SWDA(i)

−
∑

ω φωψ
(i)
ω

and an upper bound UB(i) = SWDA(i)

−
∑

ω φω∆CostRT(i)

ω

converge to within a predefined discrepancy ε ≥ UB(i)−LB(i).

B. Two benchmark models

To assess the performance of the proposed coordination
scheme based on optimizing the interface characteristics, we
define here two benchmarks, one is an ideal benchmark
providing an upper bound for the expected social welfare of
the whole system, and the other one provides a lower bound.

For an upper bound (ideal benchmark), we consider a full
coordination between TSO and DSOs such that both have
full information of RT scenarios in the DA stage. This ideal
benchmark is indeed a co-optimization problem formulated as
a SOCP in (8).

max
p̂DA
g ,p̂DA

d ,sDA,wDA
r ,ΞRT

SWDA −
∑
ω

φω∆CostRT
ω (8a)

s.t. (3b)− (3h) and (4b)ω − (4w)ω. (8b)

This perfect (full) coordination is however quite impractical as
it requires TSO and DSOs to solve a common single problem,
and all information is packed into one optimization problem,
which quickly becomes intractable for larger systems.

To obtain the lower bound, we consider a model with no
coordination, and solve DA and RT models sequentially. This
means that we first solve DA market (3) without imposing any
cap on the quantity bids/offers of DSO-level DERs. Then, we
solve the RT problem (4) for each scenario separately, i.e., in
a deterministic manner. We then calculate the resultant total
mean social welfare.

V. CASE STUDY

The proposed bi-level problem (2) with a solution strategy
relying on multi-cut Benders’ decomposition as explained in
the previous section is implemented in Matlab using CVX and
solved with MOSEK 8.0. The Benders’ decomposition is set



HERMANN et al.: TSO-DSO COORDINATION VIA OPTIMIZED INTERFACE CAPACITY LIMITS 7

Fig. 4. The expected social welfare as a function of wind power penetration
obtained from the proposed coordination model (PCC optimizer) and the two
benchmark models. The 0.2 quantile and 0.8 quantile are also depicted. The
colored dots indicate the level of congestion in the transmission network as
the probability of at least two lines being congested in RT. The results are
from out-of-sample testing with 200 scenarios.

to converge if the upper and lower bounds come to within a
relative gap of 0.1%. A speed-up is achieved by solving the
sub-problems, one per scenario, in parallel5.

A modified version of the IEEE 24-node reliability test
system [21] is used. The network is extended with the addition
of five radial distribution feeders, which replace the loads at
nodes 6, 13, 15, 18 and 19. In total, 39.3% of the total system
load is now placed in radial distribution feeders, while the
remainder is connected to the transmission network. A diagram
of the total network is given in the online appendix [17]. The
system is also equipped with seven additional wind farms,
which are the sole source of uncertainty in the system. In
order to have some congestion in the network, the capacity
of three transmission lines 3-24, 9-11 and 10-12 is reduced to
180 MW, 140 MW and 130 MW, respectively.

The scenarios for the seven wind farms are generated by
random sampling from a Gaussian mixture model, where the
co-variances are based on the geographical distance of the
wind farms to each other. For a more in-depth description
of the scenario generation method, we refer to the online
appendix [17]. From the scenarios generated, we first pick 12
in-sample scenarios to solve the proposed bi-level model, and
then use an out-of-sample validation using 200 scenarios. For
the study in section V-A, the model (2) using decomposition
is solved on average within 14 minutes; for more information
on computational performance see appendix I in [17].

A. Coordination under increasing wind power penetration

In order to examine the improvement of the social welfare
achieved by the proposed TSO-DSO coordination scheme
based on PCC optimizer, we simulate the system with in-
creasing wind power penetration. We do this by uniformly
scaling the nameplate capacity of each of the seven wind
farms, thereby increasing the wind power penetration. We
define the wind power penetration as the total forecasted
available wind power in DA divided by the total load bids,
i.e.,

∑
rW

DA
r /

∑
d P d.

5Hardware used: Huawei XH620 V3, 2x Intel Xeon Processor 2650v4 (12
core, 2.20GHz), 256 GB memory, 480 GB-SSD disk.

Fig. 5. The power flow in the PCC of DSO 3 (connected to node 19) incurred
by the DA dispatches and the resulting RT power flows. These results are
obtained from the proposed coordination method (PCC optimizer) and the
two benchmark models (i.e., full coordination and no coordination).

As the results of the out-of-sample simulation, Fig. 4
presents the expected (mean) social welfare obtained from the
proposed coordination method (PCC optimizer) along with the
two benchmark models. The 0.8 quantile and the 0.2 quantile
are also given in this figure to show the spread of each curve
resulting from the uncertainties. It also includes a heat-map
indicating the level of transmission network congestion. We
define “congestion level” as the probability of at least two
transmission lines being congested in RT. There is a strong
connection between the social welfare and wind power pen-
etration. For all three models, the slope of the social welfare
changes at around 50% wind penetration, where the congestion
in the transmission network also starts to affect the system.
Comparing the social welfare obtained in the proposed coor-
dination model (PCC optimizer) versus the two benchmarks,
the PCC optimizer improves the social welfare compared to the
benchmark with no coordination. Naturally, the PCC optimizer
does not perform as well as the ideal benchmark because
the ideal benchmark can take advantage of the TSO-level
resources in the DA market to meet grid constraints, whereas
the PCC-optimizer relies on DSO-level resources only. In
the deterministic dispatch model (uncoordinated benchmark),
social welfare diminshes after 70% wind penetration due to the
system running out of available reserves. This happens because
the DA stage clears the market mostly with wind power as
it is cheap, however the balancing measures in real-time are
costly, reducing overall social welfare. The ideal stochastic
dispatch can mitigate this situation by reducing the cleared
wind power in the day-ahead stage and the social welfare will
not reduce with increasing wind penetration. As evidenced by
Fig. 4 the PCC optimizer manages to partially reduce the need
for expensive balancing actions.

B. Capacity versus optimal PCC

To get insight into the power flow at the PCC resulting from
the proposed coordination model versus the two benchmark
models, Fig. 5 depicts the incurred power flow from the DA
dispatch in the PCC of one of the DSOs, i.e., DSO 3. The black
bars in the center indicate the RT outcome for the power flow
in the PCC which must in all scenarios respect the physical
limit of the PCC. The 0.9 and 0.1 quantile for the RT scenarios
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DSO feeder 1
DSO feeder 2
DSO feeder 3
DSO feeder 4
DSO feeder 5
Social Welfare

Fig. 6. The optimal caps of PCC optimizer on the quantity bid of aggregate
flexible loads in different feeders as a function of the physical capacity of
PCC of DSO 1 (note: the wind penetration is fixed to 25%).

are also given. An interesting observation is that the optimal
PCC optimizer’s outcome does not necessarily respect the
physical capacity in the DA stage, which is seen at the 72.3%
wind penetration case. This is of interest to anyone wishing
to establish a policy that coordinates TSO/DSO network
flexibility, because the import/export limits given to a DSO
must not necessarily respect the physical limits of the PCC in
the DA stage in order to be a good coordination method.

The relation of the optimal caps to the network model is
highly non-linear, as demonstrated in Fig. 6. Here, the physical
capacity of the PCC of DSO 1 is varied, and the resulting
optimal caps are found. This shows that the PCC optimizer is
highly reliant on having access to precise network information,
and that the decisions of one DSO can affect even other DSOs’
optimal dispatch of flexible resources.

VI. CONCLUSION

The optimal day-ahead schedule for DSO-level flexible
resources was modeled through a Stackelberg game, cast as a
bi-level problem. The PCC optimizer acting as a leader in the
game can provide prices at the interface which lead localized
DSO flexibility markets to approximate the stochastic ideal
dispatch. Our findings have implications for designing prac-
tical schemes to use this avenue of TSO-DSO coordination,
in two ways: First, the optimal PCC capacity for coordination
is congruent with, but not limited by, the physical capacity
of the underlying hardware. Thus, any scheme should take as
guideline the physical PCC capacity but must not be limited
by it. Second, the optimal caps for one feeder can depend in a
non-obvious way on the physical capacity of another feeder or
the physical capacity of the transmission network. Therefore,
when considering to implement a scheme to coordinate day-
ahead dispatches in the manner analyzed here, the sensitivity
of the outcomes with respect to the underlying network data
should be analyzed.

We find that under strong assumptions, such as symmetry
between PCC optimizer and DSO information, a mathematical
equivalence exists between local DSO flexibility markets and
global (stochastic) markets. This makes for an interesting
observation: The implementation of localized DSO markets
can lead to an approximation of the stochastic ideal dispatch,
given an appropriate coordination mechanism.

This work uses optimal real-time coordination to highlight
differences in day-ahead dispatch coordination. However, it
is an unrealistic position, due to separation of responsibilities
and knowledge between DSO and TSO, as evidenced by the
previous works examining methods for real-time coordina-
tion. This highlights the need for some afterthought when
implementing policies on coordination: Which time stage or
which combination of day-ahead and real-time coordination is
appropriate? As a general point, the inclusion of day ahead
coordination is complementary to real-time coordination. Any
real-time coordination method that increases the system social
welfare may overestimate improvements if compared under
uncoordinated day-ahead dispatches. Further, coordination in
day-ahead will generally increase social welfare as premiums
are applied closer to real-time; improving coordination in the
day-ahead stage will reduce the needed amount of real-time
re-dispatching, benefitting end-users.

REFERENCES
[1] J. Villar, R. Bessa, and M. Matos, “Flexibility products and markets: Literature

review,” Electr. Power Syst. Res., vol. 154, pp. 329–340, 2018.
[2] C. Zhang, Y. Ding, N. C. Nordentoft, P. Pinson, and J. Østergaard, “FLECH: A

Danish market solution for DSO congestion management through DER flexibility
services,” J. Mod. Power Syst. Clean Energy, vol. 2, no. 2, pp. 126–133, 2014.

[3] L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution locational marginal
pricing (DLMP) for congestion management and voltage support,” IEEE Trans.
Power Syst., vol. 33, no. 4, pp. 4061–4073, 2018.

[4] T. Morstyn, A. Teytelboym, and M. D. Mcculloch, “Designing decentralized
markets for distribution system flexibility,” IEEE Trans. Power Syst., 2018, to
be published.

[5] J. P. Silva, J. A. Sumaili, R. J. Bessa, L. Seca, M. A. Matos, V. Miranda, M.
Caujolle, B. Goncer-Maraver, and M. Sebastian-Viana, “Estimating the active and
reactive power flexibility area at the TSO-DSO interface,” IEEE Trans. Power
Syst., vol. 33, no. 5, pp. 4741–4750, 2018.

[6] D. M. Gonzalez, J. Hachenberger, J. Hinker, F. Rewald, C. Rehtanz, and J.
Myrzik, “Determination of the time-dependent flexibility of active distribution
networks to control their TSO-DSO interconnection power flow,” in Power Syst.
Comput. Conf. (PSCC), (Dublin, Ireland), Jun. 2018.

[7] I. Mezghani, A. Papavasiliou, and H. Le Cadre, “A generalized Nash equilibrium
analysis of electric power transmission-distribution coordination,” in International
Conference on Future Energy Systems, (Karlsruhe, Germany), Jun. 2018.

[8] H. Le Cadre, I. Mezghani, and A. Papavasiliou, “A game-theoretic analysis
of transmission-distribution system operator coordination,” Eur. J. Oper. Res.,
vol. 274, no. 1, pp. 317–339, 2019.

[9] M. Caramanis, E. Ntakou, W. W. Hogan, A. Chakrabortty, and J. Schoene,
“Co-optimization of power and reserves in dynamic T&D power markets with
nondispatchable renewable generation and distributed energy resources,” Proc.
IEEE, vol. 104, no. 4, pp. 807–836, 2016.

[10] A. Papavasiliou and I. Mezghani, “Coordination schemes for the integration of
transmission and distribution system operations,” in Power Syst. Comput. Conf.
(PSCC), (Dublin, Ireland), Jun. 2018.

[11] Z. Yuan and M. R. Hesamzadeh, “Hierarchical coordination of TSO-DSO
economic dispatch considering large-scale integration of distributed energy re-
sources,” Appl. Energy, vol. 195, pp. 600–615, 2017.

[12] H. Gerard, E. Rivero, and D. Six, “Basic schemes for TSO-DSO coordination
and ancillary services provision,” SMARTNET Deliv. D1.3, 2016.

[13] DSO’s Role in Electricity Market (DREM) Project. [Online]. Available: https :
//drem.dk/ (visited on 12/28/2018).

[14] A. Mohammadi, M. Mehrtash, and A. Kargarian, “Diagonal quadratic approx-
imation for decentralized collaborative TSO+DSO optimal power flow,” IEEE
Trans. Smart Grid, 2018, to be published.

[15] T. V. Jensen, J. Kazempour, and P. Pinson, “Cost-optimal ATCs in zonal electricity
markets,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3624–3633, 2018.

[16] V. Dvorkin, S. Delikaraoglou, and J. M. Morales, “Setting reserve requirements to
approximate the efficiency of the stochastic dispatch,” IEEE Trans. Power Syst.,
2018, to be published.

[17] Online appendix. [Online]. Available: https : / /github.com/alherm/TSO- DSO_
coordination (visited on 12/01/2019).

[18] M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexifica-
tion—part I,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564, 2013.

[19] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decomposition
techniques in mathematical programming: engineering and science applications.
Springer Science & Business Media, 2006.

[20] J. Fortuny-Amat and B. McCarl, “A representation and economic interpretation
of a two-level programming problem,” J. Oper. Res. Soc., 1981.

[21] C. Ordoudis, P. Pinson, J. M. Morales, and M. Zugno, “An updated version of
the IEEE RTS 24-bus system for electricity market and power system operation
studies,” Technical University of Denmark Report, 2016.



HERMANN et al.: TSO-DSO COORDINATION VIA OPTIMIZED INTERFACE CAPACITY LIMITS 9

This appendix is available online at https://github.com/
alherm/TSO-DSO_coordination.

APPENDIX A
MODELING ASSUMPTIONS

We collect here all modeling assumptions made. We make
no specific assumptions to the design of the local DSO markets
that are employed. It is merely assumed that these markets
are efficient and work to maximize social welfare. Therefore
the model in (9) is a generic market model that we cast as
a stochastic optimization problem that maximizes expected
social welfare.

Renewable production is the only source of uncertainty. The
production of each renewable energy source (RES) r is capped
by an uncertain parameter WRT

rω that is dependent on scenario
ω (i.e., RES can be freely spilled as required). The DA market
is deterministic, and the offer of each RES is assumed to be
the expected value of its production. The price offer of each
RES, i.e., πR, is assumed to be zero in the DA stage.

Although stochastic market-clearing setups depend on the
used scenarios and a thorough definition of who generates
them is usually pertinent, we here consider them as an external
parameter. A scenario generation method, which correlates
geographically close renewable sources is used – more in-
formation can be found in section F of this appendix.

The RT market is assumed to be any market that changes the
DA dispatch. This re-dispatch is assumed to incur an additional
cost, due to premiums charged by the market participants. The
premiums do not have to be symmetric, such that up- and
down-regulation can have different costs.

We take the same view on network modeling as [9], that
the meshed HV transmission network is adequately modeled
by linear power flow approximations, while the radial LV
distribution feeders are best represented by a convex relaxation
of the AC power flow equations. Specifically, in this paper a
second-order cone program (SOCP) will be used, as explained
in more detail in section IV.

Ramping constraints, energy storage and other inter-
temporal couplings are ignored. Also, binary variables such as
the commitment status of conventional generators are ignored,
such that both DA and RT market-clearing problems are
convex.

In order to be able to calculate the RT re-dispatch cost,
topology information of both TSO and DSO networks is
necessary. Both TSO and DSOs may be unwilling to share
data about their network topology. It is assumed that this
information is available to the PCC optimizer, which is a
reasonable assumptions as we are examining the best possible
outcome. Decentralized optimization such as the proposals in
[9] and [14] may in the future make it easier to coordinate
in RT without sharing specific network-related proprietary
information.

APPENDIX B
DSO MARKET LOWER LEVEL PROBLEM

The DSO pre-qualification optimization problem has both
constraints from the DA-market and the scenarios for the Real-
time realization. Every DSO has its own separate problem such

that Coste contains one value for every DSO e. The day ahead
market is cleared for each distribution network separately,
where the day ahead market has no nodal information. The
real time realization is a stochastic SOCP problem.

max
ΞE

SWe =
∑

d∈DD
e

πDA
d p̃DA

d −
∑
g∈GD

e

πDA
g p̃DA

g

− V OLLDA
e sDA

e −
∑
r∈RD

e

πRwDA
r − πPCC,DA

e pPCC,DA
e

−
∑
ω

φω

[ ∑
g∈GD

e

(
πDA
g (pRT

gω − p̃DA
g ) + π↑gp

↑
gω (9a)

+ π↓gp
↓
gω

)
+
∑

d∈DD
e

(
πDA
d (p̃DA

d − pRT
dω )

+ π↑dp
↑
dω + π↓dp

↓
dω

)
+
∑

n∈ND
e

V OLLRT
n sRT

nω

+ πPCC,DA
e (pPCC,RT

eω − pPCC,DA
e )

+ π↑PCC
e p↑PCC

eω + π↓PCC
e p↓PCC

eω

+
∑
r∈RD

e

(
πR(wRT

rω − wDA
r ) + π↑Rw↑rω + π↓Rw↓rω

) ]
subject to:
DA-level constraints:∑
g∈Ge

p̃DA
g −

∑
d∈DD

e

p̃DA
d +

∑
r∈RD

e

wDA
r + sDA

e

+ pPCC,DA
e = 0, : (λDA

e ) (9b)

P g ≤ p̃DA
g ≤ P g, ∀g ∈ GD

e : (ςDA−
g , ςDA+

g ) (9c)

P d ≤ p̃DA
d ≤ P d, ∀d ∈ DD

e : (ςDA−
d , ςDA+

d ) (9d)

0 ≤ wDA
r ≤WDA

r , ∀r ∈ RD
e : (ι−r , ι

+
r ) (9e)

f
e
≤ pPCC,DA

e ≤ fe, : (ρDA−
e , ρDA+

e ) (9f)

0 ≤ sDA
e ≤

∑
d

pDA
d , : (ΥDA−

e ,ΥDA+
e ) (9g)

Real-time constraints:
pRT
gω = pDA

g + p↑gω − p↓gω, ∀ω, g ∈ GD
e , : (ζpgω) (9h)

pRT
dω = pDA

d − p↑dω + p↓dω, ∀ω, d ∈ DD
e , : (ζpdω) (9i)

wRT
rω = wDA

r + w↑rω − w↓rω, ∀ω, r ∈ RD
e , : (ζprω) (9j)∑

g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω + pPCC,RT

eω |n=nLV
e

+ sRT
nω =

∑
l∈n→

pRT
lω −

∑
l∈→n

pRT
lω , ∀ω, n ∈ ND

e : (λp,RT
nω )

(9k)

pPCC,RT
eω = pPCC,DA

e + p↑PCC
eω − p↓PCC

eω , ∀ω, : (ζPCC
eω )

(9l)∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω + qPCC,RT
eω |n=nLV

e

=
∑
l∈n→

qRT
lω −

∑
l∈→n

qRT
lω , ∀ω, n ∈ ND

e : (λq,RT
nω ) (9m)

p
(RT )2
lω + q

(RT )2
lω ≤ ϕRT

lω v
RT
nω , ∀ω, l ∈ LD

e : (γlω) (9n)

pRT
lω + pRT

l′ω = Rlϕ
RT
lω , ∀ω, l ∈ LD

e : (µp
lω) (9o)

qRT
lω + qRT

l′ω = Xlϕ
RT
lω , ∀ω, l ∈ LD

e : (µq
lω) (9p)
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p
(RT )2
lω + q

(RT )2
lω ≤ Sl, ∀ω, l ∈ LD

e : (ηlω) (9q)

vRT
mω = vRT

nω − 2(Rlp
RT
lω +Xlq

RT
lω ) + (R2

l +X2
l )ϕRT

lω ,

∀ω, l ∈ LD
e : (βlω) (9r)

V 2
n ≤ vRT

nω ≤ V
2

n, ∀ω, n ∈ ND
e : (σ−nω, σ

+
nω) (9s)

0 ≤ wRT
rω ≤WRT

rω , ∀ω, n ∈ Ne : (ν−nω, ν
+
nω) (9t)

P g ≤ pRT
gω ≤ P g, ∀ω, g ∈ Ge : (ςRT−

gω , ςRT+
gω ) (9u)

P d ≤ pRT
dω ≤ P d, ∀ω, d ∈ De : (ςRT−

dω , ςRT+
dω ) (9v)

Q
g
≤ qRT

gω ≤ Qg, ∀ω, g ∈ Ge : (κRT−
gω , κRT+

gω ) (9w)

Q
d
≤ qRT

dω ≤ Qd, ∀ω, d ∈ De : (κRT−
dω , κRT+

dω ) (9x)

f
e
≤ pPCC,RT

eω ≤ fe, ∀ω : (ρRT−
eω , ρRT+

eω ) (9y)

p↑gω ≥ 0, ∀ω, g : (εp↑gω), p↓gω ≥ 0, ∀ω, g : (εp↓gω) (9z)

p↑dω ≥ 0, ∀d, ω : (εp↑
dω), p↓dω ≥ 0, ∀d, ω : (εp↓

dω) (9aa)

p↑PCC
eω ≥ 0, ∀ω, : (ε↑PCC

eω ), p↓PCC
eω ≥ 0, ∀ω, : (ε↓PCC

eω )
(9ab)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀ω, n ∈ ND

e , : (ΥRT−
nω ,ΥRT+

nω )

(9ac)

w↑rω ≥ 0, ∀ω,w : (εp↑rω), w↓rω ≥ 0, ∀ω,w : (εp↓rω) (9ad)

Where ΞE = p̃DA
g , p̃DA

d , pRT
gω , p

↑
gω, p

↓
gω, p

RT
dω , p

↑
dω, p

↓
dω

, qRT
gω , q

RT
dω , s

RT
nω , s

DA
e , wRT

nω , p
RT
lω , q

RT
lω , ϕRT

lω

, vRT
nω , w

DA
e , pPCC,DA

e , pPCC,RT
e , p↑PCC

e , p↓PCC
e , sq,RT

nω are
the variables of the DSO-level combined day-ahead and
real-time market clearing.

The Lagrangian of above problem is:

Le =
∑

d∈DD
e

πDA
d p̃DA

d −
∑
g∈GD

e

πDA
g p̃DA

g

− V OLLDA
e sDA

e −
∑
r∈RD

e

πRwDA
r − πPCC,DA

e pPCC,DA
e

−
∑
ω

φω

[ ∑
g∈GD

e

(
πDA
g (pRT

gω − pDA
g ) + π↑gp

↑
gω + π↓gp

↓
gω

)
+
∑

d∈DD
e

(
πDA
d (pDA

d − pRT
dω ) + π↑dp

↑
dω + π↓dp

↓
dω

)
+
∑

n∈ND
e

V OLLRT
n sRT

nω

+
∑
r∈RD

e

(
πR(wRT

rω − wDA
r ) + π↑Rw↑rω + π↓Rw↓rω

)
+ πPCC,DA

e (pPCC,RT
eω − pPCC,DA

e )

+ π↑PCC
e p↑PCC

eω + π↓PCC
e p↓PCC

eω

]

− λDA
e

[ ∑
g∈Ge

p̃DA
g −

∑
d∈DD

e

p̃DA
d +

∑
r∈RD

e

wDA
r

+ sDA
e + pPCC,DA

e

]
+
∑
g∈GD

e

[
ςDA−
g

(
P g − p̃DA

g

)
+ ςDA+

g

(
p̃DA
g − P g

)]

−
∑
r∈RD

e

[
ι−r w

DA
r − ι+r (wDA

r −WDA
r )

]
+
∑

d∈DD
e

[
ςDA−
d

(
P d − p̃DA

d

)
+ ςDA+

d

(
p̃DA
d − P d

)]
+ ρDA−

e (f
e
− pPCC,DA

e ) + ρDA+
e (pPCC,DA

e − fe)

−
∑
g∈GD

e

ζp
gω

(
pRT
gω − pDA

g − p↑gω + p↓gω
)

−
∑

d∈DD
e

ζp
dω

(
pRT
dω − pDA

d + p↑dω − p
↓
dω

)
−
∑
r∈RD

e

ζprω
(
wRT

rω − wDA
r − w↑rω + w↓rω

)
−

∑
n∈ND

e ,ω

λp,RT
nω

( ∑
g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω

+ sRT
nω + pPCC,RT

eω |n=nLV
e
−
∑
l∈n→

pRT
lω +

∑
l∈→n

pRT
lω

)
−
∑
ω

ζPCC
eω

(
pPCC,RT
eω − pPCC,DA

e − p↑PCC
eω + p↓PCC

eω

)
−

∑
n∈ND

e ,ω

λq,RT
nω

( ∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

+ qPCC,RT
eω |n=nLV

e
−
∑
l∈n→

qRT
lω +

∑
l∈→n

qRT
lω

)
+

∑
l∈LD

e ,ω

γlω

[
p

(RT )2
lω + q

(RT )2
lω − ϕRT

lω v
RT
nω

]
−

∑
l∈LD

e ,ω

[
µp
lω

(
pRT
lω + pRT

l′ω −Rlϕ
RT
lω

)
+ µq

lω

(
qRT
lω + qRT

l′ω −Xlϕ
RT
lω

) ]
+

∑
l∈LD

e ,ω

[
ηlω

(
p

(RT )2
lω + q

(RT )2
lω − Sl

)]
−

∑
l∈LD

e ,ω

[
βlω

(
vRT
mω − vRT

nω + 2(Rlp
RT
lω +Xlq

RT
lω )

− (R2
l +X2

l )ϕRT
lω

)]
+

∑
n∈ND

e ,ω

[
σ−nω

(
V 2

n − vRT
nω

)
+ σ+

nω

(
vRT
nω − V

2

n

) ]
−

∑
r∈RD

e ,ω

[
ν−rωw

RT
rω − ν+

rω

(
wRT

rω −WRT
rω

) ]
+

∑
g∈GD

e ,ω

[
ςRT−
gω

(
P g − pRT

gω

)
+ ςRT+

gω

(
pRT
gω − P g

)]
+

∑
d∈DD

e ,ω

[
ςRT−
dω

(
P d − pRT

dω

)
+ ςRT+

dω

(
pRT
dω − P d

)]
+

∑
g∈GD

e ,ω

[
κRT−
gω

(
Q

g
− qRT

gω

)
+ κRT+

gω

(
qRT
gω −Qg

)]
+

∑
d∈DD

e ,ω

[
κRT−
dω

(
Q

d
− qRT

dω

)
+ κRT+

dω

(
qRT
dω −Qg

)]
+

∑
g∈GD

e ,ω

[
−p↑gωεp↑gω − p↓gωεp↓gω

]
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+
∑

r∈RD
e ,ω

[
−w↑rωεp↑rω − w↓rωεp↓rω

]
+

∑
d∈DD

e ,ω

[
−p↑dωε

p↑
dω − p

↓
dωε

p↓
dω

]
+
∑
ω

[
−p↑PCC

eω ε↑PCC
eω − p↓PCC

eω ε↓PCC
eω

]
+
∑
ω

[
ρRT−
eω

(
f
e
−
√
p

(PCC,RT )2
eω + q

(PCC,RT )2
eω

)
+ ρRT+

eω

(√
p

(PCC,RT )2
eω + q

(PCC,RT )2
eω − fe

)]
+

∑
n∈ND

e ,ω

[
−ΥRT−

nω sRT
nω + ΥRT+

nω

(
sRT
nω −

∑
d∈Dn

pRT
dω

)]

−ΥDA−
e sDA

e + ΥDA+
e

(
sDA
e −

∑
d

pDA
d

)
(10)

The KKT conditions of above problem are (excluding the
primal constraints of 9):

(p̃DA
g ) : −πDA

g +
∑
ω

φωπ
DA
g − λDA

e − ςDA−
g

+ ςDA+
g +

∑
ω

ζpgω = 0, ∀g ∈ GD
e (11a)

(p̃DA
d ) :

∑
ω

(
ζpdω − φωπ

DA
d

)
+ πDA

d + λDA
e

− ςDA−
d + ςDA+

d −ΥDA+
e = 0, ∀d ∈ DD

e (11b)

(p↑gω) : −φωπ↑g + ζpgω − εp↑gω = 0, ∀ω, g ∈ GD
e (11c)

(p↓gω) : −φωπ↓g − ζpgω − εp↓gω = 0, ∀ω, g ∈ GD
e (11d)

(p↑dω) : −φωπ↑d − ζ
p
dω − ε

p↑
iω = 0, ∀ω, d ∈ DD

e (11e)

(p↓dω) : −φωπ↓d + ζpdω − ε
p↓
dω = 0, ∀ω, d ∈ DD

e (11f)

(w↑rω) : −φωπ↑R + ζprω − εp↑rω = 0, ∀ω, r ∈ RD
e (11g)

(w↓rω) : −φωπ↓R − ζprω − εp↓rω = 0, ∀ω, r ∈ RD
e (11h)

(sDA
e ) : −VOLLe − λDA

e −ΥDA−
e + ΥDA+

e = 0 (11i)

(sRT
nω ) : −VOLLn − λp,RT

nω −ΥRT−
nω

+ ΥRT+
nω = 0, ∀ω, n ∈ ND

e (11j)

(wRT
rω ) : −φωπR − ζprω −

[
λp,RT
nω

]
nr

+ ν+
rω

− ν−rω = 0, ∀ω, r ∈ RD
e (11k)

(wDA
r ) : −πR +

∑
ω

φωπ
R − λDA

e − ι−r

+ ι+r +
∑
ω

ζprω = 0,∀r ∈ RD
e (11l)

(pRT
gω ) : −φωπDA

g − ζpgω − ςRT−
gω + ςRT+

gω

−
[
λp,RT
nω

]
ng

= 0, ∀ω, g ∈ GD
e (11m)

(qRT
gω ) : −κRT−

gω + κRT+
gω −

[
λq,RT
nω

]
ng

= 0, ∀ω, g ∈ GD
e

(11n)

(pRT
dω ) : φωπ

DA
d − ζpdω − ς

RT−
dω + ςRT+

dω

+
[
λp,RT
nω −ΥRT+

nω

]
nd

= 0, ∀ω, d ∈ DD
e (11o)

(qRT
dω ) : −κRT−

dω + κRT+
dω +

[
λq,RT
nω

]
nd

= 0, ∀ω, d ∈ DD
e

(11p)

(pRT
lω ) : λp,RT

nω − λp,RT
mω + 2γlωp

RT
lω − µ

p
lω − µ

p
l′ω + 2ηlωp

RT
lω

− 2βlωRl = 0, ∀ω, l = (n,m) ∈ LD
e (11q)

(qRT
lω ) : λq,RT

nω − λq,RT
mω + 2γlωq

RT
lω − µ

q
lω − µ

q
l′ω + 2ηlωq

RT
lω

− 2βlωXl = 0, ∀ω, l = (n,m) ∈ LD
e (11r)

(ϕRT
lω ) : −γlωvRT

nω + µp
lωRl + µq

lωXl + βlω(R2
l +X2

l )

= 0, ∀ω, l = (n,m) ∈ LD
e (11s)

(vRT
nω ) : −γlωϕRT

lω − βl′ω + βlω − σ−nω + σ+
nω

= 0, ∀ω, l = (n,m) ∈ LD
e (11t)

(pPCC,DA
e ) : −πPCC,DA

e +
∑
ω

(
φωπ

PCC,DA
e + ζPCC

eω

)
− λDA

e − ρDA−
e + ρDA+

e = 0 (11u)

(pPCC,RT
eω ) : −φωπPCC,DA

e −
[
λp,RT
nω

]
nLV
e
− ζPCC

eω

− ρRT−
eω + ρRT+

eω = 0, ∀ω (11v)

(qPCC,RT
eω ) : −

[
λq,RT
nω

]
nLV
e

= 0, ∀ω (11w)

(p↑PCC
eω ) : −φωπ↑PCC

e + ζPCC
eω − ε↑PCC

eω = 0, ∀ω (11x)

(p↓PCC
eω ) : −φωπ↓PCC

e − ζPCC
eω − ε↓PCC

eω = 0, ∀ω (11y)

The complimentarity constraints are as follows:

0 ≤ ςDA+
g ⊥ P g − p̃DA

g ≥ 0, ∀g ∈ GD
e (12a)

0 ≤ ςDA−
g ⊥ p̃DA

g − P g ≥ 0, ∀g ∈ GD
e (12b)

0 ≤ ςDA+
d ⊥ P d − p̃DA

d ≥ 0, ∀d ∈ DD
e (12c)

0 ≤ ςDA−
d ⊥ p̃DA

d − P d ≥ 0, ∀d ∈ DD
e (12d)

0 ≤ ι−r ⊥ wDA
r ≥ 0, ∀r ∈ RD

e (12e)

0 ≤ ι+r ⊥WDA
r − wDA

r ≥ 0, ∀r ∈ RD
e (12f)

0 ≤ ρDA−
e ⊥ pPCC,DA

e − f
e
≥ 0 (12g)

0 ≤ ρDA+
e ⊥ fe − pPCC,DA

e ≥ 0 (12h)

0 ≤ γlω ⊥ ϕRT
lω v

RT
nω − (p

(RT )2
lω + q

(RT )2
lω ) ≥ 0, ∀ω, l ∈ LD

e

(12i)

0 ≤ ηlω ⊥ Sl − p(RT )2
lω − q(RT )2

lω ≥ 0, ∀ω, l ∈ LD
e (12j)

0 ≤ σ−nω ⊥ vRT
nω − V

2
n ≥ 0, ∀ω, n ∈ ND

e (12k)

0 ≤ σ+
nω ⊥ V

2

n − vRT
nω ≥ 0, ∀ω, n ∈ ND

e (12l)

0 ≤ ν−rω ⊥ wRT
rω ≥ 0, ∀ω, r ∈ RD

e (12m)

0 ≤ ν+
rω ⊥WRT

rω − wRT
rω ≥ 0, ∀ω, r ∈ RD

e (12n)

0 ≤ ςRT−
gω ⊥ pRT

gω − P g ≥ 0, ∀ω, g ∈ GD
e (12o)

0 ≤ ςRT+
gω ⊥ P g − pRT

gω ≥ 0, ∀ω, g ∈ GD
e (12p)

0 ≤ ςRT−
dω ⊥ pRT

dω − P d ≥ 0, ∀ω, d ∈ DD
e (12q)

0 ≤ ςRT+
dω ⊥ P d − pRT

dω ≥ 0, ∀ω, d ∈ DD
e (12r)

0 ≤ κRT+
gω ⊥ qRT

gω −Qg
≥ 0, ∀ω, g ∈ GD

e (12s)

0 ≤ κRT−
gω ⊥ Qg − qRT

gω ≥ 0, ∀ω, g ∈ GD
e (12t)

0 ≤ κRT+
dω ⊥ qRT

dω −Qd
≥ 0, ∀ω, d ∈ DD

e (12u)

0 ≤ κRT−
dω ⊥ Qd − qRT

dω ≥ 0, ∀ω, d ∈ DD
e (12v)

0 ≤ ρRT−
eω ⊥ pPCC,RT

eω − f
e
≥ 0, ∀ω (12w)

0 ≤ ρRT+
eω ⊥ fe − pPCC,RT

eω ≥ 0, ∀ω (12x)

0 ≤ εp↑gω ⊥ p↑gω ≥ 0, 0 ≤ εp↓gω ⊥ p↓gω ≥ 0, ∀ω, g ∈ GD
e

(12y)
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0 ≤ εp↑rω ⊥ w↑rω ≥ 0, 0 ≤ εp↓rω ⊥ w↓rω ≥ 0, ∀ω, r ∈ RD
e

(12z)

0 ≤ εp↑
dω ⊥ p

↑
dω ≥ 0, 0 ≤ εp↓

dω ⊥ p
↓
dω ≥ 0, ∀ω, d ∈ DD

e

(12aa)

0 ≤ ε↑PCC
eω ⊥ p↑PCC

eω ≥ 0, 0 ≤ ε↓PCC
eω ⊥ p↓PCC

eω ≥ 0, ∀ω
(12ab)

0 ≤ ΥRT−
nω ⊥ sRT

nω ≥ 0,∀n, ω (12ac)

0 ≤ ΥRT+
nω ⊥

∑
d∈Dn

pRT
dω − sRT

nω ≥ 0, ∀n, ω (12ad)

0 ≤ ΥDA−
e ⊥ sDA

e ≥ 0 (12ae)

0 ≤ ΥDA+
e ⊥

∑
d

pDA
d − sDA

e ≥ 0 (12af)

APPENDIX C
KKTS OF DA MARKET

For convenience problem (3) is repeated here, with dual
varaibles for every constraint added.

max
ΞDA
SWDA =

∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g

− V OLLDAsDA − πR
∑
r

wDA
r (13a)

subject to:∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r

wDA
r + sDA = 0, : (λT,DA)

(13b)

P g ≤ p̂DA
g ≤ p̃DA

g , ∀g ∈ GD
e , ∀e ∈ E : (ςT,DA−

ge , ςT,DA+
ge )

(13c)

P g ≤ p̂DA
g ≤ P g, ∀g ∈ GT : (σT,DA−

g , σT,DA+
g ) (13d)

P d ≤ p̂DA
d ≤ p̃DA

d , ∀d ∈ DD
e , ∀e ∈ E : (ςT,DA−

de , ςT,DA+
de )

(13e)

P d ≤ p̂DA
d ≤ P d, ∀d ∈ DT : (σT,DA−

d , σT,DA+
d ) (13f)

0 ≤ wDA
r ≤WDA

r , ∀r ∈ R : (νT,DA−
r , νT,DA+

r ) (13g)

0 ≤ sl,DA ≤
∑
d

p̂DA
d , : (ρT,DA−, ρT,DA+) (13h)

p̃DA
g and p̃DA

d is the day ahead dispatch from problem 9.
The lagrangian of the TSO day-ahead market problem is as

follows:

LDA =
∑
d∈D

πDA
d p̂DA

d −
∑
g∈G

πDA
g p̂DA

g

− V OLLDAsDA − πR
∑
r

wDA
r

− λT,DA

∑
g∈G

p̂DA
g −

∑
d∈D

p̂DA
d +

∑
r∈R

wDA
r + sDA


+

∑
g∈GD

e ,e

[
ςT,DA−
ge

(
P g − p̂DA

g

)
+ ςT,DA+

ge

(
p̂DA
g − p̃DA

g

)]
+
∑
g∈GT

[
σT,DA−
g

(
P g − p̂DA

g

)
+ σT,DA+

g

(
p̂DA
g − P g

)]
+

∑
d∈DD

e ,e

[
ςT,DA−
de

(
P d − p̂DA

d

)
+ ςT,DA+

de

(
p̂DA
d − p̃DA

d

)]

+
∑

d∈DT

[
σT,DA−
d

(
P d − p̂DA

d

)
+ σT,DA+

d

(
p̂DA
d − P d

)]
−
∑
r∈R

[
νT,DA−
r wDA

r − νT,DA+
r

(
wDA

r −WDA
r

)]
− ρT,DA−sDA + ρT,DA+(sDA −

∑
d

p̂DA
d ) (14)

The KKTs of the TSO day-ahead market (excluding primal
constraints) are:

(p̂DA
g ) : −πDA

g −
[
ςT,DA−
ge − ςT,DA+

ge

]
g∈GD

e

−
[
σT,DA−
g − σT,DA+

g

]
g∈GT

− λT,DA = 0, ∀g ∈ G (15a)

(p̂DA
d ) : πDA

d −
[
ςT,DA−
de − ςT,DA+

de

]
d∈DD

e

−
[
σT,DA−
d − σT,DA+

d

]
d∈DT

− ρT,DA+

+ λT,DA = 0, ∀d ∈ D (15b)

(sl,DA) : −V OLLDA − λT,DA − ρT,DA−

+ ρT,DA+ = 0 (15c)

(wDA
r ) : −πR − λT,DA

−
[
νT,DA−
r − νT,DA+

r

]
= 0, ∀r ∈ R (15d)

The complimentary constraints are:

0 ≤ ςT,DA−
ge ⊥ p̂DA

g − P g ≥ 0 ∀g, e (16a)

0 ≤ ςT,DA+
ge ⊥ p̃DA

g − p̂DA
g ≥ 0 ∀g ∈ GD

e , e ∈ E (16b)

0 ≤ σT,DA+
g ⊥ P g − p̂DA

g ≥ 0 ∀g ∈ GT (16c)

0 ≤ ςT,DA−
de ⊥ p̂DA

d − P d ≥ 0 ∀d, e (16d)

0 ≤ ςT,DA+
de ⊥ p̃DA

d − p̂DA
d ≥ 0 ∀d ∈ DD

e , e ∈ E (16e)

0 ≤ σT,DA+
d ⊥ P d − p̂DA

d ≥ 0 ∀d ∈ DT (16f)

0 ≤ νT,DA−
r ⊥ wDA

r ≥ 0, ∀r ∈ R (16g)

0 ≤ νT,DA+
r ⊥WDA

r − wDA
r ≥ 0, ∀r ∈ R (16h)

0 ≤ ρT,DA− ⊥ sl,DA ≥ 0 (16i)

0 ≤ ρT,DA+ ⊥
∑
d

p̂DA
d − sl,DA ≥ 0 (16j)

APPENDIX D
KKT CONDITIONS OF REAL-TIME MARKET

The KKT conditions of the SOCP problem for the real-time
re-dispatch are not actually solved, because the Benders de-
composition renders the scenarios solvable as single problems.
However, they are used in a proof of equivalence between the
DSO market and the global DA-RT combination.

The Real-Time problem from (4) is repeated here with dual
variables added:

min
ΞRT

φω(∆CostRT
ω ) (17a)

= φω

[∑
g∈G

(πDA
g (pRT

gω − p̂DA
g ) + π↑gp

↑
gω + π↓gp

↓
gω)
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+
∑
d∈D

(πDA
d (p̂DA

d − pRT
dω ) + π↑dp

↑
dω + π↓dp

↓
dω)

+
∑
n∈N

V OLLRT
n sRT

nω

+
∑
r

(
πR(wRT

rω − wDA
r ) + π↑Rw↑rω + π↓Rw↓rω

) ]
s.t. pRT

lω = Bl(θnω − θmω), ∀l ∈ LT, : (γT
lω) (17b)

pRT
lω ≤ Sl, ∀l ∈ LT, : (ηT

lω) (17c)

pRT
gω = p̂DA

g + p↑gω − p↓gω, ∀g ∈ G, : (ζp,RT
gω ) (17d)

pRT
dω = p̂DA

d − p↑dω + p↓dω, ∀d ∈ D, : (ζp,RT
dω ) (17e)

wRT
rω = wDA

r + w↑rω − w↓rω, ∀r ∈ R, , : (ζp,RT
rω ) (17f)∑

g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω + sRT

nω

=
∑
l∈n→

pRT
lω −

∑
l∈→n

pRT
lω , ∀n ∈ N, : (λp,RT

nω )

(17g)∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

=
∑
l∈n→

qRT
lω −

∑
l∈→n

qRT
lω , ∀n ∈ ND

e , : (λq,RT
nω )

(17h)

p
(RT)2
lω + q

(RT)2
lω ≤ ϕRT

lω v
RT
nω , ∀l ∈ LD

e ∪ le, : (γD,RT
lω )

(17i)

pRT
lω + pRT

l′ω = Rlϕ
RT
lω , ∀l ∈ LD

e ∪ le, : (µp,RT
lω ) (17j)

qRT
lω + qRT

l′ω = Xlϕ
RT
lω , ∀l ∈ LD

e ∪ le, : (µq,RT
lω ) (17k)

p
(RT)2
lω + q

(RT)2
lω ≤ S2

l , ∀l ∈ LD
e ∪ le, : (ηD

lω) (17l)

vRT
mω = vRT

nω − 2(Rlp
RT
lω +Xlq

RT
lω )

+ (R2
l +X2

l )ϕRT
lω , ∀l ∈ LD

e ∪ le, : (βRT
lω ) (17m)

V 2
n ≤ vRT

nω ≤ V
2

n, ∀e, n ∈ ND
e , : (σRT−

nω , σRT+
nω )

(17n)

0 ≤ wRT
rω ≤WRT

rω , ∀r ∈ R, : (νRT−
rω , νRT+

rω ) (17o)

P g ≤ pRT
gω ≤ P g, ∀g ∈ G, : (ςRT−

gω , ςRT+
gω ) (17p)

P d ≤ pRT
dω ≤ P d, ∀d ∈ D, : (ςRT−

dω , ςRT+
dω ) (17q)

Q
g
≤ qRT

gω ≤ Qg, ∀g ∈ GD
e , : (κRT−

gω , κRT+
gω ) (17r)

Q
d
≤ qRT

dω ≤ Qd, ∀d ∈ DD
e , : (κRT−

dω , κRT+
dω ) (17s)

0 ≤ sRT
nω ≤

∑
d∈Dn

pRT
dω , ∀n ∈ N, : (ΥRT−

nω ,ΥRT+
nω )

(17t)

p↑gω ≥ 0, , p↓gω ≥ 0, ∀g, : (ε↑,RT
gω , ε↓,RT

gω ) (17u)

p↑dω ≥ 0, , p↓dω ≥ 0, ∀d, : (ε↑,RT
dω , ε↓,RT

dω ) (17v)

w↑rω ≥ 0, w↓rω ≥ 0,∀r, : (ε↑,RT
rω , ε↓,RT

rω ) (17w)

The Lagrangian of the real-time problem is as follows:

LRT =
∑
ω

φω

[∑
g∈G

(
πDA
g (pRT

gω − pDA
g ) + π↑gp

↑
gω + π↓gp

↓
gω

)
+
∑
d∈D

(
πDA
d (pDA

d − pRT
dω ) + π↑dp

↑
dω + π↓dp

↓
dω

)

+
∑
n∈N

V OLLRT
n sRT

nω

+
∑
r∈R

(
πR(wRT

rω − wDA
r ) + π↑Rw↑rω + π↓Rw↓rω

) ]
+
∑
l∈LT

γT
lω

(
pRT
lω −Bl(θnω − θmω)

)
+
∑
l∈LT

ηT
lω

(
pRT
lω − Sl

)
−
∑
g∈G

ζp
gω

(
pRT
gω − p̂DA

g − p↑gω + p↓gω
)

−
∑
d∈D

ζp
dω

(
pRT
dω − p̂DA

d + p↑dω − p
↓
dω

)
−
∑
r∈R

ζprω
(
wRT

rω − wDA
r − w↑rω + w↓rω

)
−
∑

n∈N,ω

λp,RT
nω

( ∑
g∈Gn

pRT
gω −

∑
d∈Dn

pRT
dω +

∑
r∈Rn

wRT
rω

+ sRT
nω −

∑
l∈n→

pRT
lω +

∑
l∈→n

pRT
lω

)
−
∑

n∈N,ω

λq,RT
nω

( ∑
g∈Gn

qRT
gω −

∑
d∈Dn

qRT
dω + sq,RT

nω

−
∑
l∈n→

qRT
lω +

∑
l∈→n

qRT
lω

)
+

∑
l∈LD

e ∪le,ω

γlω

[
p

(RT )2
lω + q

(RT )2
lω − ϕRT

lω v
RT
nω

]
−

∑
l∈LD

e ∪le,ω

[
µp
lω

(
pRT
lω + pRT

l′ω −Rlϕ
RT
lω

)
+ µq

lω

(
qRT
lω + qRT

l′ω −Xlϕ
RT
lω

) ]
+

∑
l∈LD

e ∪le,ω

[
ηlω

(
p

(RT )2
lω + q

(RT )2
lω − Sl

)]
−

∑
l∈LD

e ∪le,ω

[
βlω

(
vRT
mω − vRT

nω + 2(Rlp
RT
lω +Xlq

RT
lω )

− (R2
l +X2

l )ϕRT
lω

)]
+

∑
n∈ND

e ∪nHV
e ,ω

[
σ−nω

(
V 2

n − vRT
nω

)
+ σ+

nω

(
vRT
nω − V

2

n

) ]
−
∑

r∈R,ω

[
ν−rωw

RT
rω − ν+

rω

(
wRT

rω −WRT
rω

) ]
+
∑

g∈G,ω

[
ςRT−
gω

(
P g − pRT

gω

)
+ ςRT+

gω

(
pRT
gω − P g

)]
+
∑

d∈D,ω

[
ςRT−
dω

(
P d − pRT

dω

)
+ ςRT+

dω

(
pRT
dω − P d

)]
+
∑

g∈G,ω

[
κRT−
gω

(
Q

g
− qRT

gω

)
+ κRT+

gω

(
qRT
gω −Qg

)]
+

∑
d∈DD

e ,ω

[
κRT−
dω

(
Q

d
− qRT

dω

)
+ κRT+

dω

(
qRT
dω −Qg

)]
+
∑

g∈G,ω

[
−p↑gωεp↑gω − p↓gωεp↓gω

]
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+
∑

r∈R,ω

[
−w↑rωεp↑rω − w↓rωεp↓rω

]
+
∑

d∈D,ω

[
−p↑dωε

p↑
dω − p

↓
dωε

p↓
dω

]
+
∑

n∈N,ω

[
−ΥRT−

nω sRT
nω + ΥRT+

nω

(
sRT
nω −

∑
d∈Dn

pRT
dω

)]
(18)

The KKT conditions of above Lagrangian are (excluding
the primal constraints of 17):

(p↑gω) : φωπ
↑
g + ζpgω − εp↑gω = 0, ∀g ∈ GD

e (19a)

(p↓gω) : φωπ
↓
g − ζpgω − εp↓gω = 0, ∀g ∈ GD

e (19b)

(p↑dω) : φωπ
↑
d − ζ

p
dω − ε

p↑
iω = 0, ∀d ∈ DD

e (19c)

(p↓dω) : φωπ
↓
d + ζpdω − ε

p↓
dω = 0, ∀d ∈ DD

e (19d)

(w↑rω) : φωπ
↑R + ζprω − εp↑rω = 0, ∀r ∈ RD

e (19e)

(w↓rω) : φωπ
↓R − ζprω − εp↓rω = 0, ∀r ∈ RD

e (19f)

(sRT
nω ) : φωVOLLn − λp,RT

nω −ΥRT−
nω

+ ΥRT+
nω = 0, ∀n ∈ N (19g)

(wRT
rω ) : φωπ

R − ζprω −
[
λp,RT
nω

]
nr

+ ν+
rω

− ν−rω = 0, ∀r ∈ RD
e (19h)

(pRT
gω ) : φωπ

DA
g − ζpgω − ςRT−

gω + ςRT+
gω

−
[
λp,RT
nω

]
ng

= 0, ∀g ∈ G (19i)

(qRT
gω ) : −κRT−

gω + κRT+
gω −

[
λq,RT
nω

]
ng

= 0, ∀g ∈ GD
e

(19j)

(pRT
dω ) : −φωπDA

d − ζpdω − ς
RT−
dω + ςRT+

dω

+
[
λp,RT
nω −ΥRT+

nω

]
nd

= 0, ∀d ∈ D (19k)

(qRT
dω ) : −κRT−

dω + κRT+
dω +

[
λq,RT
nω

]
nd

= 0, ∀d ∈ DD
e

(19l)

(pRT
lω ) : λp,RT

nω − λp,RT
mω +

[
2γlωp

RT
lω − µ

p
lω − µ

p
l′ω + 2ηlωp

RT
lω

− 2βlωRl

]
l∈LD

e

+
[
γT
lω + ηT

lω

]
l∈LT

= 0, ∀l ∈ L (19m)

(qRT
lω ) : λq,RT

nω − λq,RT
mω +

[
2γlωq

RT
lω − µ

q
lω − µ

q
l′ω + 2ηlωq

RT
lω

− 2βlωXl

]
l∈LD

e

= 0, ∀l ∈ L (19n)

(ϕRT
lω ) : −γlωvRT

nω + µp
lωRl + µq

lωXl + βlω(R2
l +X2

l )

= 0, ∀ω, l = (n,m) ∈ LD
e (19o)

(vRT
nω ) : −γlωϕRT

lω − βl′ω + βlω − σ−nω + σ+
nω

= 0, ∀ω, l = (n,m) ∈ LD
e (19p)

APPENDIX E
PROOF OF PROPOSITION 1

Proposition 1: The first order necessary conditions (KKT
conditions) of the day-ahead market and the real-time market
combined contain all the KKT conditions of the DSO market

in (9) and solving (2) is equivalent to solving (1).
Proof of propositon 1: Problem (3) and (4) are explicitly
convex. Therefore their KKT conditions are also optimality
conditions. This is the first part of the proof. The KKT
conditions of the DSO market in (9) are given in (11) and
(12). The DSO market is also explicitly convex and the KKT
conditions define optimality. The KKT conditions of the day-
ahead market are presented in (15) and (16). All equations of
(11) are contained in either (15) or (19) with exception of the
variables related to the PCC injections in feeder e. The dual
constraints with regards to those variables are (11u) through
(11y). The PCC prices πPCC,DA

e , π↑PCC
e , π↓PCC

e and the PCC
flow limits fe, fe are variables in the upper level problem (1)
and therefore constitute slack variables that will not influence
the optimality of (9). Therefore removing the DSO market
lower level problem and solving (2) is equivalent to solving
(1). This ends the proof.

APPENDIX F
SCENARIO GENERATION

A simple scenario generation method is used for the un-
certainties of the wind production. The distance of the wind
farms are

Drw =

∣∣∣∣∣∣∣∣ xr − xwyr − yw

∣∣∣∣∣∣∣∣ , ∀r ∈ R,w ∈ R, r 6= w (20)

The co-variance matrix is now given in (21).

Σrw =
σ2
r + σ2

w

2
e−Drw ,∀r ∈ R,w ∈ R (21)

The distributions of the wind generators are thus:

W ∼ Nr(µr,Σrw) (22)

Now the scenarios can be drawn by random sampling i.e.

WRT
rω ∼∼ Nr(µr,Σrw) (23)

APPENDIX G
MODIFIED 24 BUS TEST NETOWK

The 24-bus power system – Single area RTS-96 is used here
in a modified form. The mean and variance of the wind power
plants in the network are given in table II. The locations of
each wind farm is given in table III, which is used to claculate
the distance between them as in equation (20).

TABLE II
THE MEAN OF THE FORECAST OF THE INSTALLED RES AND VARIANCE OF

THE FORECAST.

W1 W2 W3 W4 W5 W6 W7

Variance σ2 750 740 760 300 300 300 200
Mean µ 200 200 200 40 40 40 10

APPENDIX H
CONGESTION LEVEL

The Congestion level of the colored dots in Fig. 4 is here
plotted as a line plot in Fig. 8. The data for the two plots is
the same.
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Fig. 7. Diagram of the 24-bus power system – Single area RTS-96. 5 DSO
feeders have been added, as well as 7 Wind power plants. The loads from the
buses where the DSO feeders are connected have been moved to the DSO
feeders.

TABLE III
GEORGRAPHICAL LOCATION OF EACH WIND FARM.

W1 W2 W3 W4 W5 W6 W7

X-coordinate 0 0.25 0.5 6 6.25 6.5 6.75
Y-Coordinate 0 0 0 5 5 5 5.2

Fig. 8. Probability of at least two transmission lines being congested in RT.

APPENDIX I
COMPUTATIONAL PERFORMANCE

Here we show some results pertaining to the Benders
decomposition approach that was presented in section IV. In
Fig. 9 we present the convergence of the suggested multicut
benders decomposition for a sample point of wind-penetration.

The upper bound of the benders decomposed problems in
iteration (i) is found as:

UB(i) = SWDA(i) −
∑
ω

φω∆CostRT(i)
ω (24)

The lower bound in iteration (i) is found via:

LB(i) = SWDA(i) −
∑
ω

φωψ
(i)
ω (25)

The computational burden of the decomposed problem is
analyzed by logging the time it takes Mosek 8.0 to solve
every master-problem and sub-problem for every scenario. The
implementation we use in this paper relies on the CVX plugin
for Matlab, which yields large overhead due to the time it takes
to initialize every master-problem and sub-problem. Therefore
the results in table IV only give the time that the solver
actually spent, while the full time including the overhead for
the initialization is about two to four times this number. In
the future we wish to use an implementation that does not
rely on CVX which can help solving larger case studies. The
data provided in table IV is the average over all the different
wind-penetration settings of the RES (i.e. it is the average
of 24 different wind penetration settings). Because the sub-
problems are independent, and can be solved in parallel, the
number of scenarios do not affect the computational time as
long as there are enough CPU-cores to solve them in parallel.

The number of binary variables in the master-problem
depend on the number of complimentarity constraints in (16).
Because we choose to solve the complimentarity constraints
with the Big-M approach every one of these constraints uses
one binary. The number of complimentarity constraints in
turn depend mainly on the number of generators, number
of elastic demands and number of RES sources. In the case
study for this work the master problem therefore contains 196
binary variables. As a result of the benders decomposition the
conic constraints have all been moved to the subproblem, and
therefore the master problem is MILP, while the subproblems
are continuous SOCP.

Fig. 9. Convergence of the Benders decomposition upper and lower bound
over the iterations. Note, we minimize −SW , which is equivalent to maxi-
mizing social welfare.

TABLE IV
COMPUTATIONAL BURDEN OF THE BENDERS MULTI-CUT SOLUTION

STRATEGY. NOTE: WE AVERAGE FOR ALL SOLVED INSTANCES OF
INCREASING WIND PENETRATION.

CPU times [s]
Initial Master

Average Average master in last Average
subproblem master problem iteration #Iterations

0.31 0.54 0.67 0.91 29.5
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