
 
 
General rights  
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

�x Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
�x You may not further distribute the material or use it for any profit-making activity or commercial gain 
�x You may freely distribute the URL identifying the publication in the public portal 

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Oct 15, 2024

Clothing-Mediated Exposures to Chemicals and Particles

Licina, Dusan; Morrison, Glenn C.; Bekö, Gabriel; Weschler, Charles J.; Nazaroff, William W.

Published in:
Environmental Science and Technology

Link to article, DOI:
10.1021/acs.est.9b00272

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Licina, D., Morrison, G. C., Bekö, G., Weschler, C. J., & Nazaroff, W. W. (2019). Clothing-Mediated Exposures to
Chemicals and Particles. Environmental Science and Technology, 53(10), 5559-5575.
https://doi.org/10.1021/acs.est.9b00272

https://doi.org/10.1021/acs.est.9b00272
https://orbit.dtu.dk/en/publications/8e6e81cb-b1d0-4e55-bcd7-d9193386d7ee
https://doi.org/10.1021/acs.est.9b00272


This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies.

Clothing-mediated exposure to chemicals and particles

Journal: Environmental Science & Technology

Manuscript ID es-2019-002722.R1

Manuscript Type: Critical Review

Date Submitted by the 
Author: n/a

Complete List of Authors: Licina, Dusan; Ecole Polytechnique Federale de Lausanne, School of 
Architecture, Civil and Environmental Engineering
Morrison, Glenn; University of North Carolina at Chapel Hill Gillings 
School of Global Public Health , Professor Environmental Sciences and 
Engineering
Beko, Gabriel; Technical Univ. of Denmark, Civil Engineering
Weschler, Charles J.; UMDNJ-RW Johnson Medical School and Rutgers 
University, Environmental and Occupational Health Sciences Institute
Nazaroff, William; University of California, Civil & Environmental 
Engineering

 

ACS Paragon Plus Environment

Environmental Science & Technology



mailto:glennmor@email.unc.edu


Revised for Environmental Science & Technology Date: April, 2019

2

Abstract

A growing body of evidence identifies clothing as an important mediator of human exposure to 

chemicals and particles, which may have public health significance. This paper reviews and 

critically assesses the state of knowledge regarding how clothing, during wear, influences 

exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and 

allergens. The underlying processes that govern the acquisition, retention and transmission of 

clothing-associated contaminants and the consequences of these for subsequent exposures are 

explored. Chemicals of concern have been identified in clothing, including byproducts of their 

manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing 

acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental 

sources. Evidence suggests that while clothing can be protective by acting as a physical or 

chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and 

may have adverse health consequences. This complex process is influenced by the type and 

history of the clothing, the nature of the contaminant and by wear, care and storage practices. 

Future research efforts are warranted to better quantify, predict and control clothing-related 

exposures.
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1.   Introduction

Diverse chemicals, particles and microbes are found on clothing. Some are present at the time 

clothing is purchased, and some are acquired during the care, storage, and use of garments. 

People spend most of their lives in intimate contact with clothing. They are exposed to the 

species found on and in their clothing via inhalation, ingestion and dermal absorption (Figure 1). 

More specifically, humans inhale species that desorb or are released from their clothing, ingest 

clothing-associated chemicals and particles when clothing materials enter their mouths, and 

acquire species on their skin from the clothing they wear. Once in the lungs, in the 

gastrointestinal system or on the skin, chemicals from clothing may be absorbed into the body.1 

As we show in this review, the resulting exposures are influenced by factors inherent to clothing, 

such as fiber type, weave, morphology, dyeing process, color and chemical treatment (including 

incorporation of flame retardants, stain repellants, and anti-wrinkle agents). Exposures are also 

influenced by external factors such as washing, drying, storage, and usage patterns. Clothing-
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mediated exposures can contribute to irritation, allergic reactions, and infections as well as risks 

for adverse health effects as diverse as cancer, birth defects and heavy-metal poisoning.2-4

Studies related to clothing-mediated exposures have been conducted by a diverse set of 

researchers in the textile industry, government laboratories and academia.2,3,5,6 While many 

results have been summarized in reviews, government reports and books, the findings have yet to 

be summarized within a framework that focuses on the ways in which clothing mediates 

exposures to chemicals and particles. This review aims to provide a critical summary from such a 

perspective. We present the review in two main sections, considering clothing-mediated 

exposures first to chemicals and second to biotic and abiotic particles. Within these sections, we 

summarize evidence for the influence of clothing on exposure to chemicals (§2.1) and particles 

(§3.1). We review the occurrence and persistence of chemicals in clothing (§2.2), outline a 

framework for quantifying clothing-mediated particle exposures (§3.2), discuss mechanisms of 

accumulation and transfer of chemicals (§2.3), and review factors that influence clothing-

associated exposures to particles (§3.3). We discuss situations where the underlying factors 

influencing chemical and particle exposures are similar, while also recording fundamental ways 

that they differ. Whereas the potential influence on health risks is the key ultimate reason to 

better understand clothing-mediated exposures, a detailed examination to quantify clothing-

associated health risks is beyond the scope of this review. We conclude (§4) with an examination 

of knowledge gaps that currently limit the ability to predict or mitigate clothing-related 

exposures to chemicals and particles. We suggest some research directions that could reduce 

these limitations. Overall, we find that the influence of clothing on environmental exposures is 

often substantial and so additional research efforts are warranted to better understand how 

clothing influences human exposures, and ultimately human health and well-being.
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Figure 1. Non-dietary routes of human exposure for contaminants of concern: Inhalation, 
ingestion and dermal absorption.

2.   Chemical exposures

2.1 Evidence of clothing-associated exposure to chemicals

2.1.1 Clothing-associated chemicals in skin, blood and urine

Human exposure and uptake of organic compounds by means of transfer from treated fabrics has 

been investigated for several decades. For example, in the late 1970s, Blum et al.7 reported 

finding metabolites of the flame retardant tris(2,3-dibromopropyl)phosphate (tris) in the urine of 

children who had worn clothing treated with this chemical. Radiolabeled tris in treated and dried 

cloth was shown to penetrate clipped skin of rabbits. Moistening the cloth with simulated sweat 

did not increase absorption.8 Earlier, Armstrong et al.9 and Brown10 reported instances of infant 

poisoning attributable to use of phenolic disinfectants in improperly laundered hospital fabrics. 
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for nicotine.28,29 This role of clothing as either “protector” or “amplifier” of dermal uptake is 

illustrated in Figure 2. In another study, three subjects exhibited elevated urinary excretion rates 

of the UV filter benzophenone-3 (BP-3) and its metabolite benzophenone-1 shortly after donning 

T-shirts previously exposed to air with elevated BP-3 levels.30 The authors suggested that dermal 

uptake of BP-3 from clothing could meaningfully contribute to overall body burdens. 

The protective effect of uncontaminated clothing has also been indicated by reduced phthalate 

and halogenated flame retardant concentrations in skin wipe samples taken from body parts 

covered with clothing compared to uncovered skin.31,32 However, clothing did not provide total 

protection in these studies. In vitro experiments demonstrated reduced absorption of 

organophosphates through a cotton shirt as compared to unclothed skin.33 However, common 

clothing is reported to have little effect on dermal exposure to certain gases in hazardous material 

incidents, such as methyl bromide, sulfuryl fluoride, chloropicrin and ethylene oxide.34,35 

Page 8 of 55

ACS Paragon Plus Environment

Environmental Science & Technology















Revised for Environmental Science & Technology Date: April, 2019

15

2.3.1 Dermal transfer and absorption

Most exposure models of skin contact transfer of chemicals from surfaces are conservative by 

design, i.e. they account, realistically, for the maximum potential exposure for risk assessment 

and risk management purposes. Exposure is derived from factors including the skin area in 

contact, the concentration of the chemical in the material, the number, frequency or duration of 

contact events, the type of contact and a transfer efficiency.122,124 The transfer efficiency is the 

fraction of the chemical in the material that transfers during contact events. Experimental 

measurements of the transfer of pesticides126 and fluorescent tracers127 from carpet and of 

permethrin from military uniforms128 have been used to quantify transfer efficiency of residues 

from textiles. Some experimental results used to derive residue transfer efficiency are based on 

low-volatility chemicals directly applied to the side of the textile in contact with the skin. 

Therefore, the residue transfer model may inaccurately characterize exposure from clothing that 

has volatile or semivolatile chemicals distributed throughout the fabric. Recognizing that 

diffusive migration can occur within consumer materials, it has been proposed that a transfer 

efficiency can be derived from the amount that can diffuse from a thin “contact layer” of the 

material. The thickness of this layer can be specified for consumer products or can be estimated 

if diffusion coefficients are known for specific chemical-material combinations.129 These models 

generally do not account for the uptake resistance of skin itself.130

Models of sweat-mediated transfer of chemicals from clothing also use a transfer efficiency 

approach. The leachable fraction is derived from experiments using artificial sweat to extract 

substances such as dyes17,43 and trace elements.57 (See also §3.1.3.) Often, the extracted fraction 

is assumed to be entirely transferred to the skin. Such an approach is likely to overestimate 

exposures, since only a fraction of the sweat will return to the skin from clothing. For example, 
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chemical removal during laundering,31,68,92,139 the air-gap between fabric and skin, laundering 

frequency, and the history of the clothing items prior to wear.133 A key advantage of dynamic 

mechanistic models is that they can predict how clothing accumulates chemicals under non-

equilibrium conditions. Such models can be used to derive simpler exposure heuristics for 

classes of chemicals, types of clothing and exposure scenarios for risk assessment purposes.140 

2.3.2 Inhalation

Inhalation exposures for clothing-associated chemicals can be modeled using methods similar to 

those used to estimate inhalation of chemicals emitted by consumer products. For example, the 

emission rate of dry-cleaning solvents from clothing hung in a closet can be combined with 

building air-exchange rates to predict indoor air concentrations,103 which are then used to assess 

inhalation exposures. Inhalation exposure from the emissions that are generated while wearing 

an article of clothing may be enhanced owing to the “personal cloud” effect, as described for 

particles in §3.1.5. For gaseous pollutants, personal-cloud type alterations have been illustrated 

in climate chamber experiments investigating transport and pollutant distribution in the breathing 

zone,141 as well as using computational fluid dynamics to predict breathing zone concentrations 

of volatile products that result from ozone reactions with the surface of the body and 

clothing.142,143 For a seated person under typical indoor conditions, inhalation exposure to 

volatile ozone reaction products with skin oils was predicted to be up to 2.5 times higher than the 

corresponding value for room-average concentrations. Predicted exposure to ozone itself was 

estimated to be 0.6 to 0.9 times the corresponding condition for room-average concentrations.142 

Simulations are currently limited to simple scenarios, such as stationary seated or standing 

individuals. Experimental validation of personal cloud effects for clothing-associated chemical 

exposures are lacking.
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2.3.3 Ingestion

Ingestion by mouthing of fabrics can be a significant exposure pathway, especially for young 

children. Exposure estimation requires information on the extractability of compounds in saliva, 

the frequency of mouthing clothing and the area of the fabric mouthed. Extractability can be 

quantified using a broader set of in vitro bioavailability methods,144 which have been applied to 

determine extractability in saliva simulants of azo dyes145 and for silver from nanoparticles.146 

For highly water-soluble species, upper bounds on exposure can be established by assuming that 

the chemical is completely extractable. In an evaluation of indirect exposure to environmental 

airborne methamphetamine in former residential methamphetamine labs, mouthing of cotton 

fabric by toddlers was predicted to generate intakes approximately 10 times greater than all other 

exposure pathways combined.90 

A diagramatic summary of these exposure pathways as influenced by physical-chemical 

properties is shown in Figure 3. Excepting particles and particle-associated chemicals, inhalation 

requires a chemical to be volatile enough to become airborne. Ingestion is important for more 

water-soluble chemicals. Most species can be transferred to skin by contact or transfer through 

the clothing-skin air gap. For both ingestion and transfer to skin surface, the chemical must be of 

lower volatility to be present in clothing at meaningful concentrations. Transdermal uptake from 

the skin surface tends to be highest for chemicals with intermediate volatilities and relatively low 

water-solubilities.
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Figure 3. The relative importance of clothing-associated exposure pathways based on a 
chemical’s volatility and water solubility.

3.   Exposures to particles

3.1 Clothing-associated exposures to biotic and abiotic particles

Ample evidence from environmental and occupational exposure studies indicate that clothing 

can act as an important source of particle-borne agents that contribute to human exposures. 

Clothing-associated exposures have been observed for biotic and abiotic particles, with varied 

acquisition, retention and release mechanisms, exposure routes and potential health outcomes. 

This section consolidates evidence from relevant empirical and field studies in the context of a 

providing an overview of exposure to biotic and abiotic particles associated with clothing.

3.1.1 Allergens

Exposure to allergenic biological particles from clothing has been well-studied, including cat 

allergen (Fel d 1), dog allergen (Can d 1), dust-mite allergen, and pollens. Tovey et al.147 were 

among the first to identify clothing as a significant source of inhalable allergens. They showed 
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emerging consensus indicates that excessive exposure to nanomaterials can contribute to 

detrimental health outcomes, including pulmonary inflammation, carcinogenicity, genotoxicity 

and circulatory effects.186 The effects of nanomaterial additives in clothing on human exposure 

and consequent health effects remain a subject of debate. Such materials have the potential to be 

released from clothing fabrics and contribute to exposures of their wearers and others. The 

mechanisms of release from clothing are different for nanomaterials as compared with biological 

particles. For example, in addition to mechanical abrasion, nanoparticles can potentially be 

released from clothing by migrating into human sweat and saliva.146

To date, most exposure-related studies have focused on the migration of silver nanoparticles 

from clothing into human sweat,146,187,188 their release during laundering,189,190 and their 

antimicrobial properties.191 Dermal exposure to clothing-embedded nanoparticles has not been 

rigorously investigated. One group of studies reported that TiO2 and ZnO nanoparticles do not 

penetrate deeply into the skin.192 To the contrary, there is evidence of the increase of the 68Zn 

isotope in the blood of a healthy adult after exposure to 68ZnO nanoparticles in a sunscreen 

formulation.193 One study reported that healthy skin is a more effective barrier for silver 

nanoparticles than damaged skin.194

Overall, there is a need for more research to characterize the influence of antimicrobial agents, 

including nanoparticles, on microbial diversity in clothing and on the development of microbial 

resistance over time. Whether the presence of nanomaterials on fabrics in contact with the skin 

could alter the local skin microbiota remains a key open question. 

3.1.4        Para-occupational exposures
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Studies have reported instances of para-occupational (or “take-home”) exposures to hazardous 

particles encountered in workplaces. Most such studies have focused on asbestos. As reviewed 

by Donovan et al.195 and Goswami et al.,196 there is abundant evidence for increased risks of 

mesothelioma and lung cancer owing to para-occupational exposure to asbestos fibers and 

asbestos-containing dust on workers’ clothing. However, relatively little research provides 

quantitative evidence that mechanistically links workplace encounters with subsequent 

household exposures. Sahmel et al.197 found that handling clothes contaminated with chrysotile 

asbestos resuspends 0.2–1.4% of the material. Sanon and Watkins176 demonstrated that 

healthcare uniforms can act as a vector for pathogen transmission outside of hospitals. Overall, 

the take-home effect for particles and microbial exposure via clothing seems to be a plausible 

route of transmission worthy of increased attention. 

3.1.5        Personal cloud

An enhancement of inhalation exposure to particles beyond the room-average levels may occur 

for clothing-associated particle releases. This feature, termed the “personal cloud,” was 

introduced for clothing-mediated chemical exposures in §2.3.2. 

There are multiple dimensions to the clothing-associated personal cloud effect. Key determinants 

involve size-dependent emission rates of particles from clothing, proximity of clothing to the 

breathing zone, and local air movement in relation to personal activities. Several studies suggest 

that direct shedding from clothing surfaces may be a noteworthy source of coarse-mode particles 

and bioaerosols indoors,198–201 but none of them quantified contributions to the personal-cloud 

effect. A recent study by Licina et al.202 reported that clothing movement can release coarse 

particles into the perihuman space of a seated person, which can then be transported upwards by 

means of the metabolically induced thermal plume. In that study, the contribution of such 
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For known clothing-associated particle emission rates, contributions to exposures can be 

assessed. For example, particle emission rates from clothing can be incorporated into material 

balance models to estimate the component of exposure associated with increased indoor air 

concentrations.203 Alternatively, the intake fraction approach can be applied to estimate mass or 

particle number inhalation increments directly from emission rate information.204 Additional 

contributions to exposure from the personal-cloud effect can be assessed based on 

experimental202 or numerical143 evidence.  

It is reasonable to expect that particle exposures associated with clothing occur mainly indoors.  

As with other indoor particle sources, emission rates can be inferred from measuring time- and 

size-resolved particle concentrations in chamber experiments with controlled environmental 

conditions (e.g. known ventilation rate and low particle backgrounds) and simulated 

activities.199,202 It is also plausible to infer emission rates from field observations; however, doing 

so for clothing-associated particle emissions poses the challenge of separately accounting for 

resuspension from flooring, commonly an important source of coarse particles indoors.205

In assessing clothing-associated emissions, it is worthwhile to differentiate broadly among three 

particle source categories (see Figure 4). One category is skin flakes, known as squames, 

generated through frictional interaction between clothing and skin. These squames consist of 

skin fragments with associated microbes, especially bacteria. A second category would be 

particles endogenous to the clothing fabric, such as fabric fragments and nanoparticle additives. 

A third category, the broadest, is exogenous particles that become associated with clothing 

articles by means of environmental transfer. The first category has been studied most carefully in 

connection with concerns about hospital-acquired infections. Concern about the second category 

is increasing, in part due to the emerging use of nanoparticle fabric treatments. The third 
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category would be relevant for concerns as diverse as allergen exposure, para-occupational 

exposure, and general enhancements of airborne particles via the personal cloud.

Figure 4. Particle source categories associated with clothing (left); and mechanisms of size 
dependent particle release and resuspension characteristics (right). Corresponding references: 
dominant particle size mode reported by Bhangar et al.199; size-resolved emission rates from 
sitting and walking person reported by Licina et al.202; release of previously deposited particles 
from clothing (transport vector effect) reported by Licina and Nazaroff.206

For squame emissions associated with clothing, key factors would include the state of the skin 

surface (dryness, for example), the nature and intensity of frictional interaction between fabric 

and skin, and the tightness of the weave. Variability in the emissions of skin-associated 

Staphyloccus aureus among individuals has been demonstrated to be large, and systematically 

higher for men than for women.184 Notwithstanding a long history of studies, the issue of what 

should be worn by medical staff in the operating theatre to minimize surgical site infections 

remains a subject of debate.207 For endogenous particle emissions (e.g., nanoparticle additives), 
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one expects that important factors affecting emissions would include initial particle loading of 

the fabric, the nature of bonding with fibers, the nature and intensity of movement generating 

frictional forces, and the overall wear of the fabric. 

For emissions of exogenous particles, one might envision clothing articles as environmental 

reservoirs and aim to account for the net movement of particles between these reservoirs and the 

surroundings. Consider an article of clothing, such as a T-shirt, passing through a cycle starting 

with laundering. The washing cycle might effectively remove previously deposited particles, but 

could conceivably add particles from dissolved salts in the wash water and from detergent 

residue. A tumble-dry cycle could effectively add some airborne exogenous particles filtered by 

the clothing items from the drying air that passes through the drum. The clothing article might 

then lose some of these particles, and contribute an increment of exposure, during the post-

laundry handling of folding and placing in storage. When worn, the T-shirt can acquire 

exogenous particles by deposition from the air and by direct contact with particle-laden surfaces. 

Exogenous particles may also be acquired during storage intervals, especially if exposed in a 

manner that would be influenced by settling dust. The accumulation of particles during these 

processes could be quantified through deposition assessments, for example through the 

multiplicative combination of exposure concentrations of particles, a suitable deposition velocity, 

and duration of exposure. Knowing the size-resolved and composition-specific quantities of 

exogenous particles on a clothing article, one could assess the emission rate through the use of 

loss-rate coefficients. An analogous approach has been used to systematically investigate particle 

resuspension from walking.205

3.3 Factors affecting clothing-mediated particle exposures 
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rate of biotic particles from clothing-skin interactions increases within an hour after showering. 

Transport of particles through clothing surfaces and subsequent dispersal can be reduced by 

wearing tightly-woven and non-woven fabrics.179,224,228

A few recent studies have applied a material-balance approach to infer size-resolved biotic 

particle emission rates associated with human occupancy. Qian et al.229 used quantitative PCR to 

infer that a single university classroom occupant contributes effective emissions of 37 million 

bacterial genomes per hour, with a modal aerodynamic diameter of 3–5 µm. However, that study 

could not differentiate between emissions associated with clothing and those from other sources 

such as resuspension from a carpeted floor. Bhangar et al.230 applied a laser-induced fluorescence 

technique to quantify the per person emission rate of fluorescent biological aerosol particles 

(FBAP) in the size range 1–15 µm diameter in an uncarpeted university classroom. Their work, 

which again did not isolate the contribution of clothing, yielded an average emission rate of 2 

million FBAP per hour with modal diameters of 3–4 µm. In a subsequent chamber study, 

Bhangar et al.199 found that at least 60-70% of occupancy-associated FBAP emissions originated 

from the floor. However, they also found that “clothing, or its frictional interaction with human 

skin, was … a source of coarse particles, and especially of the highly fluorescent fraction.” That 

study also revealed a dominant size mode for FBAP of 3-5 µm diameter.

When considering the specific issue of infectious disease transmission in relation to clothing, the 

persistence and survival of infectious agents on fabrics needs to be considered. Variation in 

building environmental conditions and properties of clothing fabrics produce various effects on 

microbial persistence and survival.231,232 Longitudinal assessment of bacteria survival across 

different studies showed a remarkably high persistence — from several days up to more than 90 

days for isolates of VRE and MRSA.176,233,234 Survival and persistence of viruses and fungi on 
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from textiles other than clothing (e.g. pillows, quilts, bed linen). The sleeping environment is 

potentially of great importance in this matter given the large proportion of time spent in bed.

Predicting and controlling exposure rely on adequate understanding of underlying mechanisms. 

A robust literature describes transport mechanisms for chemicals among environmental 

reservoirs. Reasonable approaches have been proposed for assessing risk and exposure to 

chemicals in clothing. However, we have limited in vivo evaluations of such assessments. 

Compared with chemical transport, mechanisms of particle uptake and subsequent release from 

clothing are even less well understood. Further quantitative investigations of factors that drive 

acquisition, retention and transmission of biotic and abiotic particles in clothing are needed to 

better link such processes to clothing associated exposures. We also need to better understand the 

extent to which clothing plays a role in the spread of infectious disease. Considerable research 

has focused on textile innovations and personal protective clothing designed to limit the spread 

of infectious agents in hospital environments. Researchers could usefully build upon lessons 

learned and consider the potential utility of incorporating such innovations in everyday clothing.

One should anticipate that future changes in clothing will influence exposure. The useful lifetime 

of some clothing has become shorter. High turnover (short ownership time) might yield greater 

exposure to chemicals that are present in newly purchased clothing, with proportionately less 

exposure to environmental chemicals that require a long period to equilibrate (e.g., high 

molecular weight phthalates). Similarly, increased use of antimicrobial agents as coatings on 

clothing articles may increase uptake of nanoparticles by the human body and lead to altered 

toxicological effects. Worth noting is that people in Western countries commonly have closets 

full of clothes that are rarely worn. These articles may have sufficient time to equilibrate with the 

chemicals present in their storage environment. Worldwide, demand for synthetic fabrics is 
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increasing.260 Synthetics have chemical partitioning behaviors and moisture holding capacities 

that differ from those of natural fibers, altering the capacity to be reservoirs of contaminants. 

Advances in materials and adjustments in laundering procedures may also influence how 

clothing is cared for and how chemicals and particles are acquired and retained in clothing. 

Increased recycling and re-use of clothing can influence tertiary exposures. 

People spend nearly their entire lives in intimate contact with clothing and other textiles. The 

evidence reviewed in this article supports a view that this environmental compartment plays 

important roles in exposure and health risk. Consequently, clothing as a mediator of chemical 

and particle exposure deserves substantial attention from the environmental science research and 

regulatory communities.
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Figure 1. Non-dietary routes of human exposure for contaminants of concern: Inhalation, ingestion and 
dermal absorption. 
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