

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 26, 2023

A comprehensive integer programming formulation of the nurse rostering problem in
Denmark

Bödvarsdottir, Elin Björk; Bagger, Niels-Christian Fink; Høffner, Laura Elise; Stidsen, Thomas Jacob Riis

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bödvarsdottir, E. B., Bagger, N-C. F., Høffner, L. E., & Stidsen, T. J. R. (2019). A comprehensive integer
programming formulation of the nurse rostering problem in Denmark. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/c093ac7e-af99-46d5-8193-35a61f4e8a0c

A comprehensive integer programming formulation of the
nurse rostering problem in Denmark

Elín Björk Böðvarsdóttir (ebod@dtu.dk)
Department of Technology, Management and Economics, Technical University of Denmark

Niels-Christian Fink Bagger (nc@finkoptimization.com)
Fink Optimization

Laura Elise Høffner (laebu@regionsjaelland.dk)
Department of Data and Development Support, Region Zealand

Thomas Stidsen (thst@dtu.dk)
Department of Technology, Management and Economics, Technical University of Denmark

September 2019

1 Introduction
In this report, we present a comprehensive integer programming formulation for the nurse rostering
problem (NRP). This model is the result of a collaboration between DTU Management and the De-
partment of Data and Development Support (DU) at Region Zealand, with financial support from the
Danish Ministry of Health. The work has been conducted in a close collaboration with healthcare
practitioners at Danish hospitals, and the model has been iteratively built up to include all aspects
that are needed to match the real-world problem that practitioners face.

This report is organized as follows: Section 2 briefly introduces the problem this report considers.
Section 3 presents the model, constraint by constraint, divided into subsections based on the charac-
teristics of the constraints. Then, Section 4 describes the generation of conflict cliques, which are used
to reduce the number of constraints, and at last, Section 5 presents concluding remarks.

The appendices provide a summary, with a short description of the different constraints in Ap-
pendix A, an overview of the notation in Appendix B and the full model in Appendix C.

2 Problem description
As in other nurse rostering problems, the main task is to assign nurses to shifts on a given set of days
(i.e., the rostering horizon). To ensure that we produce a feasible roster, we also need to consider some
assignments from the previous rostering horizon, i.e., on the days leading up to the current horizon.

As the nursing staff at Danish hospitals does not only consist of educated nurses, but also assistants,
we will use the more general term employees throughout this report. We classify the employees in two
categories, those that we should assign to shifts on all days of the rostering horizon, and those that we
should only consider occasionally (indicated by the input data).

For shifts, we use two terms: Shift type and Shift set, where the former refers to a single event (e.g.,
work shift or day off) and the latter refers to a set of events (e.g., all work shifts). We note that for
various constraints it is indifferent whether we use shift types or shift sets, but for consistency we will
present these constraints using the notation for shift sets throughout the report.

1

As the formulation is developed in collaboration with Danish hospitals, Danish legislation applies.
This mainly affects the formulation of days off, as described in Section 3.2.2. In addition to various
general constraints (see Appendix A), the employees also have the option to make a request for every
day of the rostering horizon (e.g., to be assigned to a specific shift). Thus, the model should capture the
individual wants and needs of each employee, along with satisfying numerous general requirements.

3 Model
We now introduce the problem formulation in detail, alongside an integer programming formulation
used to solve it. The formulation consists of 14 hard constraints (H1-H14) and 15 soft constraints (S1-
S15). Constraints H1-H10 and S1-S10 are employee-specific (i.e., ensuring the quality of all individual
rosters), and the remaining constraints ensure that the ward as a whole functions according to the
standards that have been set (e.g., ensuring sufficient staffing). We present the individual constraints
in Section 3.2 and the ward constraints in Section 3.3.

We formulate the problem as a minimization problem with a single weighted objective, where each
soft constraint (S1-S15) has an associated weight. The weight can either be positive, representing a
penalty, or negative, representing a reward. We present the objective function in Section 3.4

3.1 Notation
Throughout the formulation, we use the following notation: E represents the set of employees that we
should create a full roster for and Eall the set of all employees in the ward. An employee e ∈ Eall\E
is not scheduled by the model, except when he or she specifically requests a shift. D represents the
set of days in the rostering horizon and Dpre is a set of days from the previous rostering horizon.
Additionally, we define Dall = D∪Dpre for all days andW as the set of weeks of the rostering horizon,
along with subsets of days Dw for all weeks w ∈ W.
S represents the set of shift types where we denote the starting and ending times on day d ∈ Dall

with T starts,d and T ends,d , respectively. Additionally, we define subsets Swork for work shifts and Se,d for
feasible shift types for employee e ∈ Eall on day d ∈ D, and extend it to include previous assignments
for d ∈ Dpre. We define the set of feasible assignments as A = Eall × D × Se,d, and the extension
Aall = Eall × Dall × Se,d also includes assignments from the previous horizon. Finally, we define the
set of shift sets Z, where we denote the relation between shift type s ∈ S and shift set σ ∈ Z with
parameter αs,σ ≥ 0. If αs,σ = 0 then the shift type does not belong to the shift set, but if αs,σ = 1
then the shift type fully belongs to the shift set. In addition, a relation αs,σ ∈]0, 1[means that the
shift type partly belongs to the shift set.

We introduce the assignment variables xe,d,s ∈ {0, 1}, to denote whether we assign employee e ∈ Eall
to shift type s ∈ Se,d on day d ∈ D. The first soft constraint S1 corresponds to a weight ωassigne,d,s

associated with each assignment. The weight can either be a penalty or a reward, depending on the
assignment.

We let xpree,d,s ∈ {0, 1} denote the (fixed) solution from the previous horizon, i.e., whether employee
e ∈ Eall was assigned to shift type s ∈ S on day d ∈ Dpre. We let x̃e,d,s be the extension of xe,d,s to
Eall ×Dall × Se,d by setting x̃e,d,s = xpree,d,s for e ∈ Eall, d ∈ Dpre and s ∈ S.

When assigning shifts we need to ensure that they do not overlap in time, and that employees
get sufficient rest between them. According to the Danish legislation, employees should generally get
ρfull > 0 hours to rest between work shifts. Nonetheless, the rest may be reduced to ρreduced > 0 by
the employee’s request, where ρreduced < ρfull.

3.2 Individual constraints
Most constraints in the model relate to the roster of each individual employee. We present these
constraints in the following categories: Section 3.2.1 presents the basis for creating a feasible roster,

2

i.e., assigning employees to shifts without any conflicting assignments. Section 3.2.2 presents the
formulation for days off as required by Danish law. Section 3.2.3 and Section 3.2.4 present counter
constraints and series constraints, respectively, following the categorization from previous research.
Finally, Section 3.2.5 presents individual constraints that do not fit any other category.

3.2.1 Assigning shifts

The first hard constraint is H1, stating that we should assign each employee e ∈ E to at least one shift
type s ∈ Se,d for each day d ∈ D. This constraint is given with Equation (1).∑

s∈Se,d

xe,d,s ≥ 1, ∀e ∈ E , d ∈ D (1)

The second hard constraint is H2, stating that we cannot schedule any conflicting assignments. We
define a pair of conflicting assignments as two assignments a1, a2 ∈ Aall where assigning both of them
would lead to an infeasible roster. These conflicts can, for example, occur due to physical restrictions
(e.g., employee cannot work two shifts simultaneously) or due to legislation (e.g., employees should get
sufficient rest).

We define a set of conflict cliques Γ, where γ ∈ Γ corresponds to a subset of assignments Aγ ⊂ Aall,
such that every two assignments in Aγ are conflicting. Using the conflict cliques, we can express H2
using Equation (2). ∑

(e,d,s)∈Aγ

x̃e,d,s ≤ 1, ∀γ ∈ Γ (2)

In addition to Γ, we also generate sets of work conflict cliques Γe,d for each employee e ∈ E and
day d ∈ D. We can use these cliques to reduce the number of constraints in the model. We describe
the generation of cliques in Section 4.

3.2.2 Protected days off

According to Danish law, all employees are entitled to protected days off, which are subject to various
constraints. In this section, we describe two specific constraints for protected days off, but note that
some general constraints presented in later sections also apply for protected days off. We let spf ∈ S
denote the shift type for a protected day off and note that constraints H2, for conflicting assignments,
ensure that if we assign spf ∈ S, then it is the only shift assigned to that employee on that day. We
define variables pe,d,i ∈ {0, 1} denoting whether employee e ∈ E starts a sequence of i ∈ N protected
days off on day d ∈ Dall. We link these variables using Equations (3)-(5).

∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = x̃e,d,spf , ∀e ∈ E , d ∈ Dall : spf ∈ Se,d (3)

∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = 0, ∀e ∈ E , d ∈ Dall : spf /∈ Se,d (4)

∑
j∈N

pe,d,j +
∑

d′∈Dall,
i∈N:

d′+i=d

pe,d′,i ≤ 1, ∀e ∈ E , d ∈ Dall (5)

Equations (3)-(4) ensure that the pe,d,i variable can only be one if we have assigned employee e ∈ E
to the protected day off shift spf ∈ S on all days from d ∈ Dall to d + i ∈ D, including both days.

3

Furthermore, Equations (5) ensure that two sequences of protected days off are never adjacent, but
instead defined as one longer sequence.

The former constraint for protected days off is H3, stating that a day off can only count as a
protected day off if it satisfies a given minimum number of hours off. This constraint represents a
legal requirement, which is a minimum of either 32 or 35 hours off for a single protected day off or a
minimum of 24 · k + 7 · bk/2c hours off for k consecutive protected days off.

We let T prev, and T fut, denote reference points in time from previous, and upcoming, rostering
horizons. When comparing to these reference values, we round on hours to two decimal places, denoted
with b·e2 in the formulation. The exact values for T prev and T fut are irrelevant, as they are only used
as a baseline to compare different points in time. We define two variables, τ laste,d ≥ 0 and τnexte,d ≥ 0,
where τ laste,d represents the number of hours between T prev and the end of the last work shift employee
e ∈ E has before day d ∈ D and τnexte,d represents the number of hours between T fut and the start of
the next work shift employee e ∈ E has after day d ∈ D.

We connect the variables τ laste,d using Equations (6)-(7), and τnexte,d using Equations (8)-(9). Finally,
we let ρpfi denote the minimum number of hours off required for i ∈ N consecutive protected days off
and express H3 using Equations (10), where Γe,d are work conflict cliques as defined in Section 3.2.1.

τ laste,d −
∑

s∈Swork:
(e,d−1,s)∈Aγ

⌊
T ends,d−1 − T prev

⌉
2
· x̃e,d−1,s ≥ 0, ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (6)

τ laste,d ≥ τ laste,d−1, ∀e ∈ E , d ∈ Dall (7)

τnexte,d −
∑

s∈Swork:
(e,d+1,s)∈Aγ

⌊
T starts,d+1 − T fut

⌉
2
· x̃e,d+1,s ≤

⌊
T fut − T prev

⌉
2
, ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (8)

τnexte,d ≤ τnexte,d+1, ∀e ∈ E , d ∈ Dall :

d+ 1 ∈ Dall (9)

τ laste,d +
∑
i∈N

ρpfi · pe,d,i ≤ τnexte,d , ∀e ∈ E , d ∈ Dall (10)

When we assign employee e ∈ E to a work shift s ∈ Swork on day d− 1 ∈ Dall, then Equations (6)
ensure that the counter variable τ laste,d is updated according to the end of the work shift. Similarly,
Equations (8) ensure that the counter variable τnexte,d is updated according to the start of a work shift
on day d + 1 ∈ Dall. Equations (7) and (9) ensure the consistency of the variables on days where we
do not assign a work shift on the previous or subsequent day. Finally, Equations (10) ensure that the
variable pe,d,i can only become one when the difference between the counters τnexte,d and τpreve,d is more
than the required minimum hours for i ∈ N protected days off.

The latter constraint for protected days off is S2, stating that the number of days between two
contiguous sequences of protected days off should be below a maximum, denoted with vpref . We
note that this constraint categorizes as a series constraint. We define variables ve,d ∈ [0, 1] denoting
whether employee e ∈ E exceeds vpref days without a protected day off from day d ∈ D, and link them
using Equations (11). To avoid violation, the objective function penalizes with weight ωpf ≥ 0 when
ve,d > 0.

ve,d +
∑
d′∈D:

d≤d′<d+vpref

x̃e,d′,spf ≥ 1, ∀e ∈ E , d ∈ Dall : d+ vpref ∈ D (11)

4

3.2.3 Counter constraints

We include five counter constraints in the formulation. The first two are; H4, to not exceed a maximum
when assigning an employee to certain shifts during the rostering horizon, and H5, to assign a fixed
number of certain shifts to an employee during the rostering horizon. We useM total,ub

e,σ , andM total,fix
e,σ ,

to denote the maximum, and fixed, total assignments for employee e ∈ E to shift set σ ∈ Z. These
parameters are only defined for a limited subset of E ×Z, as various employees or shift sets do not have
associated upper bounds or targets. We then express H4-H5 using Equations (12)-(13), respectively.

∑
d∈D,

s∈Se,d∩σ

αs,σ · xe,d,s ≤M total,ub
e,σ , ∀e ∈ E , σ ∈ Z : M total,ub

e,σ defined (12)

∑
d∈D,

s∈Se,d∩σ

αs,σ · xe,d,s = M total,fix
e,σ , ∀e ∈ E , σ ∈ Z : M total,fix

e,σ defined (13)

The third counter constraint is H6, to assign a fixed number of certain shifts to an employee in a
given week. This counter constraint does not consider the rostering horizon as a whole but as separate
weeks. We use Mweek,fix

e,σ,w to denote the fixed number of assignments for employee e ∈ E to shift set
σ ∈ Z during week w ∈ W, and note that these parameters are only defined for a limited subset of
E × Z ×W. We then express H6 using Equations (14).

∑
d∈Dw,
s∈Se,d∩σ

αs,σ · xe,d,s = Mweek,fix
e,σ,w , ∀e ∈ E , σ ∈ Z, w ∈ W : Mweek,fix

e,σ,w defined (14)

The fourth counter constraint is S3, stating that we should minimize the deviation between con-
tractual hours and assigned hours. This constraint is global, i.e., not defined for a single rostering
horizon but for a longer reference period. We let T targete denote the target hours, i.e., the hours we
should assign to employee e ∈ E during the rostering horizon, after correcting for deficit or surplus
from previous rostering horizon. In addition, we let Thoure,d,s denote the hours an assignment to shift
type s ∈ S on day d ∈ D counts towards the target for employee e ∈ E . We define variables he,w ≥ 0
for the hours assigned to employee e ∈ E during week w ∈ W, and link them using Equations (15).

We formulate S3 using a two-factor penalty where variables t+e ∈ [0, N+], and t−e ∈ [0, N−], denote
the positive, and negative, deviation from the target hours within a bound N+, and N−. In addition,
we define variables t++

e ≥ 0, and t−−e ≥ 0, denoting the deviation exceeding the bounds. We then link
these variables using Equations (16).

∑
d∈Dw,
s∈Se,d

Thoure,d,s · xe,d,s = he,w, ∀e ∈ E , w ∈ W (15)

∑
w∈W

he,w − t+e + t−e − t++
e + t−−e = T targete , ∀e ∈ E (16)

To penalize for deviating from the contractual hours, we define weights ω+ ≥ 0, and ω− ≥ 0, as the
penalties for the positive, and the negative, deviation from the target hours within the bounds N+,
and N−. Additionally, we define ω++ ≥ ω+, and ω−− ≥ ω−, for penalizing the positive, and negative,
deviation exceeding these bounds.

The fifth counter constraint is S4, stating that we should distribute the hours between weeks
according to weekly targets for each employee. We let Tweeke,w denote the target hours for employee
e ∈ E during week w ∈ W. Furthermore, we let variables λ+

e,w ≥ 0, and λ−e,w ≥ 0, denote the positive,

5

and negative, deviation from the weekly target and link these variables using Equations (17). The
objective function penalizes with weight ωweek ≥ 0 when λ+

e,w, λ
−
e,w > 0.

he,w − λ+
e,w + λ−e,w = Tweeke,w , ∀e ∈ E , w ∈ W (17)

3.2.4 Series constraints

In addition to S2 (for protected days off), we include eight series constraints in the formulation. The
first two are H7 and S5, stating that we should not exceed a maximum in a row when assigning an
employee to certain shifts. We let Mrow

e,d,σ denote the maximum number of days in a row that we can
assign employee e ∈ E to shift set σ ∈ Z, from and including day d ∈ Dall, and note that these
parameters are only defined for a limited subset of E × Dall ×Z.

As the constraint can either be hard or soft depending on the employee, the day and the shift,
we have parameters βrowe,d,σ denoting whether it should be hard (βrowe,d,σ = 1) or soft (βrowe,d,σ = 0). For
βrowe,d,σ = 0, we define variables µe,d,σ ≥ 0 denoting whether employee e ∈ E is assigned to shift set
σ ∈ Z more than Mrow

e,d,σ days in a row from day d ∈ Dall, and extend it to be zero for βrowe,σ = 1. We
then express H7 and S5 using Equations (18). To avoid assigning too many consecutive assignments,
the objective function penalizes with weight ωmaxrowe ≥ 0 when µe,d,σ > 0.∑

d′∈Dall,
s∈Se,d∩σ:

d≤d′≤d+Mrow
e,d,σ

αs,σ · x̃e,d′,s − µe,d,σ ≤Mrow
e,d,σ, ∀e ∈ E , d ∈ Dall, σ ∈ Z : Mrow

e,d,σ defined (18)

The third series constraint is H8, stating that we cannot exceed a maximum of hours when assigning
certain shifts on consecutive days. We let Hconsec

e,d,σ be the maximum hours we can assign to employee
e ∈ E from shift set σ ∈ Z on Dconsec

e,d,σ consecutive days from day d ∈ Dall, and note that these
parameters are only defined for a limited subset of E ×Dall×Z. We express H8 using Equations (19),
where Thoure,d,s is as defined in Section 3.2.3.

∑
d≤d′≤d+Dconsece,d,σ −1,

s∈σ∩Se,d′

Thoure,d′,s · x̃e,d′,s ≤ Hconsec
e,d,σ , ∀e ∈ E , d ∈ Dall, σ ∈ Z :

Hconsec
e,d,σ and Dconsec

e,d,σ defined. (19)

The fourth and fifth series constraints are H9 and S6, referring to patterns of assignments on
consecutive days that we either forbid (H9) or penalize (S6). We let Y denote the set of patterns and
for each pattern y ∈ Y we let ly denote the length in days and βpaty denote whether the pattern is
forbidden (βpaty = 1) or penalized (βpaty = 0). Furthermore, each pattern y ∈ Y represents a series of
shift sets 〈σ1, . . . σly 〉 with σi ∈ Z, ∀i ∈ {1, . . . , ly}. For βpaty = 0, we define variables πe,d,y ∈ [0, 1]

denoting a violation of pattern y ∈ Y for employee e ∈ E starting on day d ∈ Dall, and extend it to
be zero for βpaty = 1. As we can relax some patterns by request, we let Πe,d,y denote whether pattern
y ∈ Y should be active for employee e ∈ E starting on day d ∈ D. We then express H9 and S6 using
Equations (20). The objective function penalizes with weight ωpaty ≥ 0 when πe,d,y > 0.

∑
i∈{1,...,ly},

si∈σi∩Se,d+i−1

x̃e,d+i−1,si ≤ ly − 1 + πe,d,y, ∀e ∈ E , d ∈ Dall, y ∈ Y :

d+ ly − 1 ∈ D,Πe,d,y = 1 (20)

The sixth series constraint is S7, stating that we should restrict the number of assignments to
different shifts for an employee on consecutive days. We let Zdiff ⊆ Z be the set of shift sets we

6

restrict, and ndiff be the maximum of different assignments on Ddiff consecutive days. We define
variables κe,d,σ ∈ [0, 1] denoting whether we assign employee e ∈ E to σ ∈ Zdiff on Ddiff consecutive
days from day d ∈ Dall. Furthermore, we define variables κmoree,d ≥ 0 denoting how much we exceed
ndiff for employee e ∈ E on Ddiff consecutive days from d ∈ Dall. We bind the variables using
Equations (21)-(22). The objectieve function penalizes with weight ωdiff ≥ 0 when κmoree,d > 0.

x̃e,d′,s ≤ κe,d,σ, ∀e ∈ E , d ∈ Dall, d′ ∈ {d, . . . , d+Ddiff − 1}, σ ∈ Zdiff ,
s ∈ σ : d+Ddiff − 1 ∈ D (21)∑

σ∈Zdiff
κe,d,σ − ndiff ≤ κmoree,d ∀e ∈ E , d ∈ Dall : d+Ddiff − 1 ∈ D (22)

The seventh series constraint is S8, stating that we should not assign work sequences (i.e., consec-
utive work days) shorter than a minimum number of days, denoted with mseq. We define variables
θstarte,d ∈ [0, 1] denoting whether employee e ∈ E starts a work sequence on day d ∈ Dall . Similarly we
define θende,d ∈ [0, 1] for the end of a work sequence. We link these variables using Equations (23)-(24),
respectively, where Γe,d are work conflict cliques as defined in Section 3.2.1. Additionally, we define
variables δe,d ≥ 0, used to penalize for the deviation from mseq if employee e ∈ E has a shorter work
sequence than preferred ending on day d ∈ D. We connect these variables using Equations (25). The
objective function penalizes with weight ωseqlen ≥ 0 when δe,d > 0.

∑
s∈Swork:

(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d−1,s ≤ θstarte,d , ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (23)

∑
s∈Swork:

(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d+1,s ≤ θende,d , ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d : d+ 1 ∈ D (24)

(mseq − d+ d′ − 1)
2 ·
(
θende,d + θstarte,d′ − 1

)
≤ δe,d, ∀e ∈ E , d ∈ D, d′ ∈ Dall :

d−mseq < d′ ≤ d (25)

Equations (23) force θstarte,d to be one if employee e ∈ E has a work shift on day d ∈ Dall but not
on day d − 1 ∈ Dall, and similarly Equations (24) force θende,d to be one if employee e ∈ E has a work
shift on day d ∈ Dall but not on day d + 1 ∈ Dall. Finally, Equations (25) consider work sequences
shorter than preferred and bind the penalty variable δe,d to be the square of the deviation from mseq,
to ensure that extremely short sequences, e.g., single work days, are heavily penalized.

At last, the eight series constraint is S9, stating that the number of work sequences containing
certain shifts should not exceed a maximum for an employee on consecutive days. We let Zseqe ⊆ Z
represent the set of shift sets that we restrict for employee e ∈ E , and let χe,σ denote the maximum
number of work sequences, containing shift set σ ∈ Zseqe , that we should assign to employee e ∈ E on
Dseq
e,σ consecutive days.
We define variables φstarte,d,σ ∈ [0, 1] denoting whether employee e ∈ E starts a work sequence con-

taining σ ∈ Zseqe on day d ∈ Dall. Similarly we define φende,d,σ ∈ [0, 1] for the end of a sequence. We link
these variables using Equations (26)-(27), respectively. Additionally, we define variables φcounte,d,σ ≥ 0

denoting the number of sequences, exceeding χe,σ, on Dseq
e,σ consecutive days from d ∈ Dall, where we

assign employee e ∈ E to σ ∈ Zseqe . We connect these variables using Equations (28). The objective
function penalizes with weight ωseqconsec ≥ 0 when φcounte,d,σ > 0.

xe,d2,s + θstarte,d1 −
∑
d∈D:

d1≤d<d2

θende,d − 1 ≤ φstarte,d1,σ, ∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall, σ ∈ Zseqe ,

7

s ∈ Se,d2 ∩ σ : d1 ≤ d2 (26)

xe,d1,s + θende,d2 −
∑
d∈D:

d1<d≤d2

θstarte,d − 1 ≤ φende,d2,σ, ∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall, σ ∈ Zseqe ,

s ∈ Se,d1 ∩ σ : d1 ≤ d2 (27)

φende,d,σ +
∑

d′∈Dall:
d<d′≤d+Dseqe,σ

φstarte,d′,σ − χe,σ ≤ φcounte,d,σ , ∀e ∈ E , d ∈ Dall, σ ∈ Zseqe : d+Dseq
e,σ ∈ D (28)

Equations (26) consider all days from the start and to the end of a sequence, including both days,
and check whether we assign e ∈ E to shift set σ ∈ Zreqe on any of those days. If so, then we force
φstarte,d,σ to be one for the start day d ∈ Dall of the sequence. Equations (27) work similarly for the end
of a sequence. Finally, Equations (28) count the number of sequences including shift set σ ∈ Zseqe that
we have assigned to employee e ∈ E on Dseq

e,σ consecutive days, and forces the penalty variable φcounte,d,σ

to be positive if we exceed the preferred number χe,σ.

3.2.5 Other individual constraints

In addition to the constraints presented in previous sections, we include two individual constraints
that do not fit any category.

The first constraint is H10, stating that we can only schedule certain assignments for a given
employee in combination with other assignments. We let Lemp,bothe,d1,d2,σ1,σ2

∈ {0, 1} denote whether we
only assign employee e ∈ E to shift set σ1 ∈ Z on day d1 ∈ Dall in combination with assigning shift
set σ2 ∈ Z on day d2 ∈ Dall, and vice versa. Similarly, Lemp,onee,d1,d2,σ1,σ2

∈ {0, 1} denotes whether we
only assign employee e ∈ E to shift set σ1 ∈ Z on day d1 ∈ Dall in combination with assigning shift
set σ2 ∈ Z on day d2 ∈ Dall, but not necessarily the other way around. We then express H10 using
Equations (29)-(30). We will present similar constraints on a ward level in Section 3.3.1.

∑
s∈Se,d1∩σ1

x̃e,d1,s =
∑

s∈Se,d2∩σ2

x̃e,d2,s, ∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z : Lemp,bothe,d1,d2,σ1,σ2
= 1 (29)

∑
s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

s∈Se,d2∩σ2

x̃e,d2,s, ∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z : Lemp,onee,d1,d2,σ1,σ2
= 1 (30)

The second constraint is S10, stating that employees working some periods should get the sur-
rounding days off. We define Qe as the set of periods where we should assign surrounding days off to
employee e ∈ E if he or she is working during the period. Each period q ∈ Qe is an interval of days
[qs, qe] where we should assign qb days off before and qa days off after. We let Oe,q ⊂ Swork × Dall
denote the set of assignments that overlap with q ∈ Qe and let ψd1,d2,s1,s2 be the number of full days
between shift type s1 ∈ Swork on day d1 ∈ Dall and shift type s2 ∈ Swork on day d2 ∈ D, where
d1 ≤ d2.

We define variables Be,q ≥ 0 and Ae,q ≥ 0, denoting the number of days off we assign to employee
e ∈ E before and after period q ∈ Qe, respectively. We bind these variables using Equations (31)-(33),
and the objective function rewards with weights ωb ≤ 0 when Be,q > 0 and ωa ≤ 0 when Ae,q > 0.

Be,q + qb · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qb + ψd1,d2,s1,s2 , ∀e ∈ E , q ∈ Qe, d1 ∈
[
qs − qb, qs − 1

]
,

s1 ∈ Se,d1 ∩ Swork, d2 ∈ D,
s2 ∈ Se,d2 ∩ Swork : d1 ≤ d2,

(s1, d1) /∈ Oe,q, (s2, d2) ∈ Oe,q,
0 ≤ ψd1,d2,s1,s2 < qb (31)

8

Ae,q + qa · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qa + ψd1,d2,s1,s2 , ∀e ∈ E , q ∈ Qe, d2 ∈ [qe + 1, qe + qa] ,

s1 ∈ Se,d1 ∩ Swork, d1 ∈ Dall,
s2 ∈ Se,d2 ∩ Swork : d1 ≤ d2,

(s1, d1) ∈ Oe,q, (s2, d2) /∈ Oe,q,
0 ≤ ψd1,d2,s1,s2 < qa (32)

(qb + qa) ·
∑

d∈Dall,
s∈Se,d∩Swork:

(s,d)∈Oe,q

x̃e,d,s ≥ Be,q +Ae,q, ∀e ∈ E , q ∈ Qe (33)

Equations (31) ensure that if we assign employee e ∈ E to shift s2 ∈ Swork during the period q ∈ Qe
and also to shift s1 ∈ Swork less than qb days before the period, then the variable Be,q is bounded
from above by the number of full days off between the two assignments. Similarly, Equations (32)
ensure that if we assign employee e ∈ E to shift s1 ∈ Swork during the period q ∈ Qe and also to shift
s2 ∈ Swork less than qa days after the period, then the variable Ae,q is bounded from above by the
number of full days off between the two assignments. Finally, Equations (33) ensure that the variables
Be,q and Ae,q can only be positive if we assign a work shift to employee e ∈ E during period q ∈ Qe.

3.3 Ward constraints
The remaining constraints consider the interaction between employees required to make the ward
function as a whole. We present these constraints in the following three categories: Section 3.3.1
presents coverage constraints and Section 3.3.2 presents constraints that balance the workload between
employees. Finally, Section 3.3.3 presents constraints for chaperoning and employees that should be
working together.

3.3.1 Coverage constraints

We let C denote the set of coverage constraints, ensuring that we assign employees to work shifts
according to pre-defined staffing requirements. In general, we have two types of coverage constraints;
H11, stating that we should assign a minimum number of employees to a given coverage, and H12,
stating that we can not exceed a maximum number of employees for a given coverage. For a coverage
j ∈ C and day d ∈ D we denote the minimum with cminj,d , and the maximum with cmaxj,d , and note that
at least one needs to be defined for each coverage constraint. Without loss of generality we assume
that every coverage j ∈ C has an associated shift set σj ∈ Z.

We let βfloatj denote whether we allow (βfloatj = 1) or forbid (βfloatj = 0) float nurses for coverage
j ∈ C. For βfloatj = 1, we define variables fj,d ∈ N0 denoting the number of float nurses we assign to
coverage j ∈ C on day d ∈ D, and extend it to be zero for βfloatj = 0. The objective function penalizes
with weight ωfloatj ≥ 0 for fj,d > 0.

Additionally, we define Ξj as the set of skills with the competences required for coverage j ∈ C,
where ξe represents the skill of employee e ∈ Eall. We then express H11-H12 using Equations (34)-(35),
respectively.

∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≥ cminj,d , ∀j ∈ C, d ∈ D : cminj,d defined (34)

∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≤ cmaxj,d , ∀j ∈ C, d ∈ D : cmaxj,d defined (35)

9

An additional constraint for the coverage is H13, stating that we can only schedule certain assign-
ments in combination with other assignments. This constraint is similar to H10 from Section 3.2.5.

We let Lward,bothd1,d2,σ1,σ2
∈ {0, 1} denote whether we only assign shift set σ1 ∈ Z on day d1 ∈ Dall in

combination with assigning shift set σ2 ∈ Z on day d2 ∈ Dall, and vice versa. Similarly, Lward,oned1,d2,σ1,σ2
∈

{0, 1} denotes whether we only assign shift set σ1 ∈ Z on day d1 ∈ Dall in combination with assigning
shift set σ2 ∈ Z on day d2 ∈ Dall, but not necessarily the other way around. We then express H13
using Equations (36)-(37).

∑
e∈Eall,

s∈Se,d1∩σ1

x̃e,d1,s =
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s, ∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z : Lward,bothd1,d2,σ1,σ2
= 1 (36)

∑
e∈Eall,

s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s, ∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z : Lward,oned1,d2,σ1,σ2
= 1 (37)

In addition to the constraints presented in this section, we have one soft constraint related to
the coverage constraints. The constraint is S12, stating that for some coverage constraints we should
penalize for not reaching the maximum number of employees allowed. The objective function penalizes
with weight ωnonmaxj ≥ 0 for the difference between the maximum number of employees allowed and
the actual number that is assigned.

3.3.2 Balancing constraints

We include two constraints that balance the work load between employees. First is S13, stating that
we should balance the excess we assign to a given coverage throughout the rostering horizon. This
constraint only considers coverage constraints that include all set of skills, i.e., we only balance the
number of employees but not the distribution between different types of employees.

We let variables c+j ≥ 0, and c−j ≥ 0, denote the highest, and the lowest, number of employees
exceeding cminj,d assigned to coverage j ∈ C on any day d ∈ D. If a coverage j ∈ C either has a
maximum number of employees cmaxj,d defined for all days d ∈ D or has a restriction regarding skills
(i.e., Ξj 6=

⋃
e∈Eall ξe), then we set c+j and c−j to be zero. In other cases, we link the variables using

Equations (38)-(39). The objective function penalizes with a weight ωbal ≥ 0 for the difference between
c+j and c−j . ∑

e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c+j ≤ c
min
j,d , ∀j ∈ C, d ∈ D : Ξj =

⋃
e∈Eall

ξe

cminj,d defined, cmaxj,d not defined (38)∑
e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c−j ≥ c
min
j,d , ∀j ∈ C, d ∈ D : Ξj =

⋃
e∈Eall

ξe

cminj,d defined, cmaxj,d not defined (39)

Second is S14, stating that we should spread the assignments to some shifts evenly between the
employees, relative to employee specific restrictions. We let M̃ total,ub

e,σ be the extension of M total,ub
e,σ as

defined with (40), where T targete is the total hours we should assign to employee e ∈ E (as defined
in Section 3.2.3) and lgen is the standard length of a shift type. Therefore, M̃ total,ub

e,d represents a
maximum number of assignments for all employees e ∈ E and shift sets σ ∈ Z.

M̃ total,ub
e,σ =

{
M total,ub
e,σ if M total,ub

e,σ defined,⌊
T targete

lgen

⌉
otherwise.

(40)

10

We let Zspread ⊆ Z represent the set of shift sets where we prefer to spread the assignments
evenly between the employees. We define variables ζmaxσ ≥ 0, and ζminσ ≥ 0, denoting the maximum,
and minimum, assignments to σ ∈ Zspread for any employee e ∈ E relative to M̃ total,ub

e,σ . We bind
the variables using Equations (41)-(42), respectively. The objective function penalizes with a weight
ωspread ≥ 0 for the difference between ζ+

j and ζ−j .

∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζmaxσ ≥ 0, ∀e ∈ E , σ ∈ Zspread (41)

∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζminσ ≤ 0, ∀e ∈ E , σ ∈ Zspread (42)

3.3.3 Chaperoning constraints

This section includes two constraints related to employees in training (referred to as trainees). We
define the chaperoning shift, sc ∈ S, as a shift type dedicated to planning and evaluating the progress
of a trainee’s education.

The first constraint for chaperoning is H14, stating that we can only assign the chaperoning shift
to a chaperone when we also assign it to a corresponding trainee, and vice versa. We define the set of
chaperones Echap ⊂ Eall and the set of trainees for each chaperone Etrainc ⊆ Eall, ∀c ∈ Echap. Then we
express H14 using Equations (43).∑

e∈Etrainc

xe,d,sc = xc,d,sc , ∀c ∈ Echap, d ∈ D (43)

The second constraint is S15, stating that we prefer some employees to work together. We define
EG ⊂ E×Eall as the set of employees we prefer to assign work together and let Ztogether ⊆ Z denote the
set of shift sets where we consider employees to be working together. We define variables ge1,e2,d,σ ∈
[0, 1] denoting how much employees (e1, e2) ∈ EG work together when assigned to σ ∈ Ztogether on
day d ∈ D. We link the variables using Equations (44)-(45), which ensure that ge1,e2,d,σ can only be
positive if we assign both employees (e1, e2) ∈ EG to shift set σ ∈ Z on day d ∈ D. The objective
function then rewards with weight ωtogethere1,e2 ≤ 0 for ge1,e2,d,σ > 0.

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe1,d,s, ∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether (44)

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe2,d,s, ∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether (45)

3.4 Objectives
The objective function is a a linear combination of penalties and rewards related to the violation or
satisfaction of soft constraints S1-S15, as presented with Equation (46). The weights for different
constraints should represent their relative importance.

min
∑

(e,d,s)∈A

ωassigne,d,s · xe,d,s +
∑
e∈E,
d∈Dall

ωpf · ve,d

+
∑
e∈E

(
ω+ · t+e + ω− · t−e + ω++ · t++

e + ω−− · t−−e
)

11

+
∑
e∈E,
w∈W

ωweek ·
(
λ+
e,w + λ−e,w

)
+

∑
e∈E,

d∈Dall,
σ∈Z

ωmaxrowe · µe,d,σ

+
∑
e∈E,

d∈Dall,
y∈Y

ωpaty · πe,d,y +
∑
e∈E,
d∈Dall

ωdiff · κmoree,d +
∑
e∈E,
d∈D

ωseqlen · δe,d

+
∑
e∈E,

d∈Dall,
σ∈Zseqe

ωseqconsec · φcounte,d,σ +
∑
e∈E,
q∈Q

(
ωb ·Be,q + ωa ·Ae,q

)
+
∑
j∈C,
d∈D

ωfloatj · fj,d

+
∑
j∈C,
d∈D

ωnonmaxj ·

cmaxj,d −
∑

e∈Eall,
s∈Se,d∩σj

αs,σj · xe,d,s

+
∑
j∈C

ωbal ·
(
c+j − c

−
j

)
+

∑
σ∈Zspread

ωspreadσ ·
(
ζmaxσ − ζminσ

)
+

∑
(e1,e2)∈EG,

d∈D,
σ∈Ztogether

ωtogethere1,e2 · ge1,e2,d,σ (46)

4 Clique generation
This section describes the automatic generation of cliques, which are used to reduce the size of the
model. We represent each assignment as a triple (e, d, s) of an employee, a day and a shift type. We let
A denote the set of feasible assignments for the rostering horizon and let Aall be the natural extension
to previous rostering horizon.

To generate the set of conflict cliques Γ, we construct a conflict graph where each node represents an
assignment (e, d, s) ∈ Aall. For each conflicting pair of assignments ((e1, d1, s1), (e2, d2, s2)) ∈ Aall×A,
we add an edge to connect the two corresponding nodes. We choose the set Γ to be a clique cover
of the graph, meaning that for every conflicting pair of assignments at least one clique contains both
assignments. To generate the cliques, we use the heuristic by Kou et al. (1978), producing a clique
cover while trying to minimize |Γ|.

In addition to Γ, we also generate sets of work conflict cliques Γe,d for each employee e and day d
of the rostering horizon. We employ these cliques in constraints H3 and S8, both reducing the number
of constraints needed and strengthening the formulation.

We generate these cliques using Algorithm 1, where we first iterate over all γ ∈ Γ to create cliques
Γe,d with all work assignments in Aγ that correspond to e ∈ E and d ∈ D. Afterwards, we try to
reduce |Γe,d| by iterating through Γdesce,d , defined as a descending ordering of the cliques γ ∈ Γe,d w.r.t.
the number of conflicting assignments |Aγ |. For d ∈ Dpre, we define one γ ∈ Γe,d such that Aγ only
includes the assignment that employee e ∈ E got on day d ∈ Dpre.

To further clarify the generation of work conflict cliques we provide a simple example in Table 1,
where we generate work conflict cliques for day d ∈ d. We let sD, sE and sN denote day, evening and
night shifts, respectively. Furthermore, sc (the chaperoning shift) is categorized as a work shift, while
spf and soff are not. At last, d− 1 indicates that the shift is positioned on the day before, and d+ 1
on the day after, as a clique γ ∈ Γ does not have to be confined to a single day.

Table 1 presents the first step in generating the work conflict cliques, namely identifying the relevant
cliques (γ1-γ4) and extracting the work assignments. In each column, the blue shift types make up an
item in Γe,d after line 6 (Algorithm 1).

We sort these cliques in a descending order, namely γ3, γ2, γ1, γ4. After initially marking all
conflicting pairs of assignments as uncovered (lines 7-11), we go through the cliques in the descending
order. In γ3 we have four shift types, corresponding to six conflicting pairs that we mark as covered.

12

Algorithm 1 Generation of work conflict cliques
1: Γe,d = ∅ ∀e ∈ E , d ∈ D
2: for γ ∈ Γ do
3: for e ∈ E , d ∈ D do
4: Γe,d ← Γe,d

⋃{
(e′, d′, s) ∈ Aγ | e′ = e ∧ d′ = d ∧ s ∈ Swork

}
5: end for
6: end for
7: for (e1, d1, s1), (e2, d2, s2) ∈ A do
8: if ∃γ ∈ Γ : {(e1, d1, s1), (e2, d2, s2)} ⊆ Aγ then
9: ((e1, d1, s1), (e2, d2, s2)) marked as uncovered

10: end if
11: end for
12: for e ∈ E , d ∈ D do
13: for γ ∈ Γdesce,d do
14: if ∃(e1, d1, s1), (e2, d2, s2) ∈ Aγ : ((e1, d1, s1), (e2, d2, s2)) marked uncovered then
15: for (e1, d1, s1), (e2, d2, s2) ∈ Aγ do
16: ((e1, d1, s1), (e2, d2, s2)) marked as covered
17: end for
18: else
19: Γe,d ← Γe,d\{γ}
20: end if
21: end for
22: end for

Table 1: The first step in generating work conflict cliques.
γ1 γ2 γ3 γ4

sE (d− 1) sN (d− 1) soff sN
sD spf spf spf (d+ 1)
sc sD sD

sc sc
sE sE

sN

When moving through the remaining cliques, all pairs have been marked as covered and thus we can
remove those cliques from the set of cliques. As a result, only one clique remains in the set of work
conflict cliques, namely Γe,d = {γ3}

5 Concluding remarks
This report has introduced an integer programming formulation for the nurse rostering problem under
Danish legislation. The model has been developed in collaboration with practitioners, with the focus
of practical applicability. Thus, the model is very comprehensive in the constraints that it includes and
simultaneously flexible regarding their usage. Currently, the model has replaced manual scheduling in
two wards in two Danish hospitals, and we aspire to spread it to a larger scale. As a supplement to
this report, Böðvarsdóttir et al. (2019) presents 12 datasets from these two wards.

13

References
Elín Björk Böðvarsdóttir, Niels-Christian Fink Bagger, Laura Elise Høffner, and Thomas Stidsen. Data
for research on nurse rostering in Denmark [Data set]. https://doi.org/10.5281/zenodo.3374636,
2019.

LT Kou, LJ Stockmeyer, and CK Wong. Covering edges by cliques with regard to keyword conflicts
and intersection graphs. Communications of the ACM, 21(2):135–139, 1978. ISSN 00010782. doi:
10.1145/359340.359346.

14

A Constraints
This Appendix summarizes the constraints presented in the report. The hard constraints are as follows:

H1: For each day of the rostering horizon, we should assign at least one shift type to each employee.

H2: For any conflicting pair of assignments (e.g., due to physical infeasibility), we can at most assign one of them.

H3: A protected day off needs to fulfill some minimum number of hours off between the adjacent work shifts.

H4: The total assignments for an employee to given shifts must be below an upper bound during the rostering
horizon.

H5: The total number of assignments for an employee to given shifts should be fixed during the rostering horizon.

H6: The total number of assignments for an employee to given shifts should be fixed for a given week.

H7: The number of assignments in a row for an employee to given shifts must be below an upper bound.

H8: The assignments on consecutive day for an employee to certain shifts cannot exceed a maximum of hours.

H9: We forbid some patterns of shift assignments on consecutive days. This constraint is general, and each pattern
can be represented as a series of shift sets 〈σ1, . . . σly 〉, where assigning all shift sets in the given order on
consecutive days is forbidden.

H10: For a given employee, we can only schedule some assignments in combination with another assignment. This
constraint is general, and can be represented with two tuples (d1, σ1), (d2, σ2) of days and shift sets, where the
employee cannot be assigned to one tuple without the other (and sometimes vice versa).

H11: We require a minimum number of employees for a given coverage constraint, in correspondence to pre-defined
staffing requirements.

H12: We allow a maximum number of employees for a given coverage constraint, in correspondence to pre-defined
staffing requirements.

H13: For the ward as a whole, we can only assign schedule some assignments in combination with another assignment.
This constraint is similar to H10, but is represented with two tuples (e1, d1, σ1), (e2, d2, σ2) of employees, days
and shift sets.

H14: We can only assign a chaperoning shift to a chaperone at the same time as a corresponding trainee, and vice
versa.

Furthermore, the soft constraints are as follows:

S1: Every assignment has an associated weight, reflecting how desired or unwanted it is.

S2: The number of days between two contiguous sequences of protected days off for an employee should be below
an upper bound.

S3: The hours we assign to an employee should not deviate from their contractual hours.

S4: The hours we assign to an employee each week should be close to their weekly target.

S5: The number of assignments in a row for an employee to given shifts should be below a given upper bound. This
constraint is a soft version of H7.

S6: We penalize some patterns of shift assignments on consecutive days. This constraint is a soft version of H9.

S7: An employee should not exceed a maximum number of different shifts on consecutive days.

S8: The length of a work sequence (i.e., the number of consecutive work days) for an employee be above a lower
bound.

S9: The number of work sequences containing given shifts for an employee should be above an upper bound on
consecutive days.

15

S10: An employee working in a given period of the rostering horizon should get the time off on the days surrounding
the period. Each period can be represented as an interval of days [qs, qe] where we should assign qb days off
before and qa days off after.

S11: We should minimize the number of float nurses assigned to meet the minimal staffing requirements.

S12: We penalize for not reaching the maximum number of employees allowed for some coverage constraints.

S13: We should balance the number of employees exceeding the minimum required throughout the rostering horizon.

S14: We should spread the assignments to some shifts evenly between the employees.

S15: We should assign some employees to work together.

16

B Notation
This Appendix summarizes the notation we have presented in the report, in the order that it appears.

Table 2: Sets used in compact model

Set Description
E Employees for whom we should create a full schedule.
Eall All employees in the ward, including those that the model generally does not schedule.
D Days of the planning horizon.
Dpre Days from the previous horizon.
Dall All days Dall = D ∪Dpre that we consider,
W Weeks of the planning horizon.
Dw Days Dw ⊆ D of week w ∈ W.
S Shift types.
Swork Work shift types Swork ⊂ S.
Se,d Shift types Se,d ⊆ S that are feasible for employee e ∈ Eall on day d ∈ D, or the shift

types that were assigned if d ∈ Dpre.
A Feasible assignments for the planning horizon A = Eall ×D × Se,d.
Aall Feasible assignments including those that were assigned during previous horizon Aall =

Eall ×Dall × Se,d.
Z Shift sets.
Γ Conflict cliques.
Aγ Subset of assignments Aγ ⊂ A belonging to conflict clique γ ∈ Γ.
Γe,d Work conflict cliques for employee e ∈ E on day d ∈ Dall
Y Patterns that we forbid or penalize (see constraints H9 and S6).
Zdiff Subset of shift sets Zdiff ⊆ Z which we consider when restricting the assignments to

different shift sets on consecutive days (see constraint S7).
Zseqe Subset of shift sets Zseqe ⊆ Z where we restrict the number of sequences on consecutive

days containing certain shifts (see constraint S9).
Qe Periods where we prefer to assign surrounding days off if employee e ∈ E is working in

the period (see constraint S10).
Oe,q Assignments Oe,q ⊂ Swork ×Dall that overlap with period q ∈ Qe for employee e ∈ E .
C Coverage constraints (see constraints H11 and H12).
Ξj Positions with competences for coverage j ∈ C.
Zspread Subset of shift sets Zspread ⊆ Z, for which we should spread the assignments evenly

among the employees.
Echap Chaperons Echap ⊂ Eall.
Etrainc Trainees Etrainc ⊂ Eall with chaperone c ∈ Echap.
EG Pairs of employees EG ⊂ E × Eall that we should assign work together.
Ztogether Subset of shift sets Ztogether ⊆ Z where employees assigned to the same set are considered

working together.
Γdesce,d An descending ordering of the cliques γ ∈ Γe,d with respect to the number of conflicting

assignments |Aγ |.

Table 3: Parameters used in compact model

Parameter Description
T starts,d The starting time of shift type s ∈ S on day d ∈ Dall.
T ends,d The ending time of shift type s ∈ S on day d ∈ Dall.
αs,σ The relation between shift set σ ∈ Z and shift type s ∈ S ∩ σ.
xpree,d,s A binary parameter denoting whether employee e ∈ Eall had shift type s ∈ S on

day d ∈ Dpre in the previous schedule.
Continued on next page

17

Table 3: Parameters used in compact model

Parameter Description
ρfull The minimum time required for full rest between assignments.
ρred The minimum time required for reduced rest between assignments.
T prev A reference point in time from previous planning horizon.
T fut A reference point in time from upcoming planning horizon.
ρpfi The minimum number of hours off for i ∈ N consecutive protected days off.
vpref The maximum distance between two contiguous protected days off.
M total,ub
e,σ The maximum number of assignments employee e ∈ E should get from shift set

σ ∈ Z during the planning horizon.
M total,fix
e,σ The fixed number of assignments employee e ∈ E should get from shift set σ ∈ Z

during the planning horizon.
Mweek,fix
e,σ,w The fixed number of assignments to shift set σ ∈ Z employee e ∈ E should get in

week w ∈ W.
T targete The number of hours we should assign to employee e ∈ E during the planning

horizon.
Tnorme,d,s The number of hours that assigning shift type s ∈ S on day d ∈ D counts towards

the target for employee e ∈ E .
N+ The maximum positive deviation from the target hours before penalizing heavier

in two-factor penalty.
N− The maximum negative deviation from the target hours before penalizing heavier

in two-factor penalty.
Tweeke,w The number of hours we should assign to employee e ∈ E during week w ∈ W.
Mrow
e,d,σ The maximum number of days in a row from day d ∈ Dall we should assign

employee e ∈ E to shift set σ ∈ Z.
βrowe,d,σ A binary parameter denoting whether the maximum assignments in a row from

day d ∈ D for employee e ∈ E to shift set σ ∈ Z should be a hard or a soft
constraint.

Hconsec
e,d,σ The maximum number of hours we can assign employee e ∈ E to shift set σ ∈ Z

on Dconsec
e,d,σ consecutive days from day d ∈ D.

Dconsec
e,d,σ The number of consecutive days when restricting the number of hours assigned to

employee e ∈ E from shift set σ ∈ Z from day d ∈ D.
ly The length of pattern y ∈ Y in days.
βpaty A binary parameter denoting whether pattern y ∈ Y should be a hard or a soft

constraint.
Πe,d,y A binary parameter denoting whether pattern y ∈ Y should be active for employee

e ∈ E from day d ∈ D.
ndiff The maximum number of different shift sets from Zdiff we should assign on Ddiff

consecutive days.
Ddiff The number of consecutive days when restricting the number of different shift sets.
mseq The minimum length of a work sequence in days.
χe,σ The maximum number of work sequences including shift set σ ∈ Zseqe we should

assign to employee e ∈ E on Dseq
e,σ consecutive days.

Dseq
e,σ The number of consecutive days when restricting the number sequences including

the same shift set.
Lemp,bothe,d1,d2,σ1,σ2

A binary parameter denoting whether we can only assign employee e ∈ E to shift
set σ1 ∈ Z on day d1 ∈ D in combination with assigning him to σ2 ∈ Z on day
d2 ∈ D, and vice versa.

Lemp,onee,d1,d2,σ1,σ2
A binary parameter denoting whether we can only assign employee e ∈ E to shift
set σ1 ∈ Z on day d1 ∈ D in combination with assigning him to σ2 ∈ Z on day
d2 ∈ D, but not necessarily the other way around.

qs The first day of period q ∈ Qe for employee e ∈ E .
qe The last day of period q ∈ Qe for employee e ∈ E .
qb The number of days employee e ∈ E should have off before working in period

q ∈ Qe.
Continued on next page

18

Table 3: Parameters used in compact model

Parameter Description
qa The number of days employee e ∈ E should have off after working in period q ∈ Qe.
ψd1,d2,s1,s2 The number of full days between shift type s1 ∈ Swork on day d1 ∈ D and shift

type s2 ∈ Swork on day d2 ∈ D, where d1 ≤ d2.
cminj,d The minimum number of employees required for coverage j ∈ C on day d ∈ D.
cmaxj,d The maximum number of employees allowed for coverage j ∈ C on day d ∈ D.
βfloatj A binary parameter denoting whether a float nurse is allowed for coverage j ∈ C.
ξe The position of employee e ∈ Eall.
Lward,bothd1,d2,σ1,σ2

A binary parameter denoting whether we can only assign any employee to shift
set σ1 ∈ Z on day d1 ∈ D in combination with assigning any employee to σ2 ∈ Z
on day d2 ∈ D, and vice versa.

Lward,oned1,d2,σ1,σ2
A binary parameter denoting whether we can only assign any employee to shift
set σ1 ∈ Z on day d1 ∈ D in combination with assigning any employee to σ2 ∈ Z
on day d2 ∈ D, but not necessarily the other way around.

lgen The standard length of a shift type in hours.
M̃ total,ub
e,σ An extension of M total,ub

e,σ , defined for all e ∈ E and σ ∈ Z

Table 4: Variables used in compact model

Variable Description
xe,d,s ∈ {0, 1} Denotes whether we assign employee e ∈ Eall to shift type s ∈ Se,d on day

d ∈ D, i.e. whether we schedule assignment (e, d, s) ∈ A.
x̃e,d,s ∈ {0, 1} Extension of xe,d,s that includes the (fixed) assignments xpree,d,s from previous

horizon.
pe,d,i ∈ {0, 1} Denotes whether we assign employee e ∈ E to i ∈ N consecutive protected days

off starting at day d ∈ D.
τ laste,d ≥ 0 The number of hours from the reference point T prev to the end of the last work

shift employee e ∈ E has before day d ∈ D.
τnexte,d ≥ 0 The number of hours from the start of the first work shift employee e ∈ E has

after day d ∈ D to the reference point T fut.
ve,d ∈ [0, 1] Denotes whether employee e ∈ E has no protected day off from day d ∈ Dall

to day d+ vallow ∈ D, including both days.
he,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W.
t+e ∈ [0, N+] The number of hours we assign to employee e ∈ E above the target hours,

within a bound N+.
t++
e ≥ 0 The number of hours we assign to employee e ∈ E above the target hours,

exceeding N+.
t−e ∈ [0, N−] The number of hours we assign to employee e ∈ E below the target hours,

within a bound N−.
t−−e ≥ 0 The number of hours we assign to employee e ∈ E below the target hours,

exceeding N−.
λ+
e,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W above

the weekly target.
λ−e,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W below

the weekly target.
µe,d,σ ≥ 0 If βrowe,d,σ = 0, this denotes whether we assign employee e ∈ E to shift set σ ∈ Z

on more than Mrow
e,d,σ days in a row, starting on day d ∈ Dall.

πe,d,y ∈ [0, 1] If βpaty = 0, this denotes whether we violate pattern y ∈ Y starting on day
d ∈ Dall for employee e ∈ E .

κe,d,σ ∈ [0, 1] Denotes whether we assign employee e ∈ E to shift set σ ∈ Zdiff on any day
d′ ∈ {d, . . . d+Ddiff − 1} for d ∈ Dall.

Continued on next page

19

Table 4: Variables used in compact model

Variable Description
κmoree,d ≥ 0 The number of shift sets from Zdiff we assign to employee e ∈ E on any day

d′ ∈ {d, . . . d+Ddiff − 1} for d ∈ Dall exceeding the maximum ndiff .
θstarte,d ∈ [0, 1] Denotes whether employee e ∈ E has a work sequence starting on day d ∈ Dall.
θende,d ∈ [0, 1] Denotes whether employee e ∈ E has a work sequence ending on day d ∈ Dall.
δe,d ≥ 0 The square of the violation of minimum work sequence when employee e ∈ E

has a sequence below the minimum that ends on day d ∈ D.
φstarte,d,σ ∈ [0, 1] Denotes whether employee e ∈ E starts a work sequence including shift set

σ ∈ Zseqe on day d ∈ Dall.
φende,d,σ ∈ [0, 1] Denotes whether employee e ∈ E ends a work sequence including shift set

σ ∈ Zseqe on day d ∈ Dall.
φcounte,d,σ ≥ 0 The number of work sequences exceeding χe,σ that we assign to employee e ∈ E

on Dseq
e,σ consecutive days from d ∈ Dall, that include σ ∈ Zseqe .

Be,q ≥ 0 The number of days off we assign to employee e ∈ E before period q ∈ Q if the
employee is assigned work during the period.

Ae,q ≥ 0 The number of days off we assign to employee e ∈ E after period q ∈ Q if the
employee is assigned work during the period.

fj,d ∈ N0 If βfloatj = 1, this denotes the number of float nurses assigned to coverage j ∈ C
on day d ∈ D.

c+j ≥ 0 The highest number of employees exceeding cminj,d that we assign to coverage
j ∈ C on any day d ∈ D.

c−j ≥ 0 The lowest number of employees exceeding cminj,d that we assign to coverage
i ∈ C on any day d ∈ D.

ζmaxσ ≥ 0 The maximum assignments to shift set σ ∈ Zspread for any employee, relative
to employee specific restrictions.

ζminσ ≥ 0 The minimum assignments to shift set σ ∈ Zspread for any employee, relative
to employee specific restrictions.

ge1,e2,d,σ ∈ [0, 1] Denotes how much employees (e1, e2) ∈ EG assigned to shift set σ ∈ Ztogether
on day d ∈ D are working together.

Table 5: Weights used in compact model

Weight Constraint Description
ωassigne,d,s S1 Penalty or reward for assigning employee e ∈ E to shift s ∈ S on day d ∈ D.
ωpf S2 Penalty for exceeding the maximum distance between two contagious pro-

tected days off.
ω+ S3 Penalty for a positive deviation from the target hours, within the bound

N+.
ω++ S3 Penalty for a positive deviation from the target hours, exceeding N+ .
ω− S3 Penalty for a negative deviation from the target hours, within the bound

N−.
ω−− S3 Penalty for a negative deviation from the target hours, exceeding N−.
ωweek S4 Penalty for deviation from the weekly targets.
ωmaxrowe S5 Penalty for exceeding the number of maximum assignments in a row for

employee e ∈ E .
ωpaty S6 Penalty for assigning non-preferred pattern y ∈ Y.
ωdiff S7 Penalty for the number of shift sets exceeding the preferred we assign on

Ddiff consecutive days.
ωseqlen S8 Penalty for violating the minimum sequence.
ωseqconsec S9 Penalty for exceeding the maximum number of sequences including a certain

shifts on consecutive days.
Continued on next page

20

Table 5: Weights used in compact model

Weight Constraint Description
ωb S10 Reward for scheduling surrounding days off before a period where it is pre-

ferred.
ωa S10 Reward for scheduling surrounding days off after a period where it is pre-

ferred.
ωfloatj S11 Penalty for assigning a float nurse to coverage j ∈ C.
ωnonmaxj S12 Penalty for not hitting the maximum target for coverage j ∈ C.
ωbal S13 Penalty for not balancing the excess personnel.
ωspreadσ S14 Penalty for not spreading assignments to shift set σ ∈ Zspread relatively

equally between the employees.
ωtogethere1,e2 S15 Reward for assigning employees (e1, e2) ∈ EG work together.

21

C Compact model
This Appendix gives a compact overview of the model, using the same numbers for each equation as in the report.

min
∑

(e,d,s)∈A

ωassigne,d,s · xe,d,s +
∑
e∈E,
d∈Dall

ωpf · ve,d +
∑
e∈E

(
ω+ · t+e + ω− · t−e + ω++ · t++

e + ω−− · t−−e
)

+
∑
e∈E,
w∈W

ωweek ·
(
λ+
e,w + λ−e,w

)
+

∑
e∈E,

d∈Dall,
σ∈Z

ωmaxrowe · µe,d,σ +
∑
e∈E,

d∈Dall,
y∈Y

ωpaty · πe,d,y

+
∑
e∈E,
d∈Dall

ωdiff · κmoree,d +
∑
e∈E,
d∈D

ωseqlen · δe,d +
∑
e∈E,

d∈Dall,
σ∈Zseqe

ωseqconsec · φcounte,d,σ

+
∑
e∈E,
q∈Q

(
ωb ·Be,q + ωa ·Ae,q

)
+
∑
j∈C,
d∈D

ωfloatj · fj,d +
∑
j∈C,
d∈D

ωnonmaxj ·

cmaxj,d −
∑

e∈Eall,
s∈Se,d∩σj

αs,σj · xe,d,s

+
∑
j∈C

ωbal ·
(
c+j + c−j

)
+

∑
σ∈Zspread

ωspreadσ ·
(
ζmaxσ − ζminσ

)
+

∑
(e1,e2)∈EG,

d∈D,
σ∈Ztogether

ωtogethere1,e2 · ge1,e2,d,σ (46)

s.t.
∑
s∈Se,d

xe,d,s ≥ 1, ∀e ∈ E , d ∈ D (1)

∑
(e,d,s)∈Aγ

x̃e,d,s ≤ 1, ∀γ ∈ Γ (2)

∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = x̃e,d,spf , ∀e ∈ E , d ∈ Dall : spf ∈ Se,d (3)

∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = 0, ∀e ∈ E , d ∈ Dall : spf /∈ Se,d (4)

∑
j∈N

pe,d,j +
∑

d′∈Dall,
i∈N:

d′+i=d

pe,d′,i ≤ 1, ∀e ∈ E , d ∈ Dall (5)

τ laste,d −
∑

s∈Swork:
(e,d−1,s)∈Aγ

⌊
T ends,d−1 − T prev

⌉
2
· x̃e,d−1,s ≥ 0, ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (6)

τ laste,d ≥ τ laste,d−1, ∀e ∈ E , d ∈ Dall (7)

τnexte,d −
∑

s∈Swork:
(e,d−1,s)∈Aγ

⌊
T starts,d+1 − T fut

⌉
2
· x̃e,d+1,s ≤

⌊
T fut − T prev

⌉
2
, ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (8)

τnexte,d ≤ τnexte,d+1, ∀e ∈ E , d ∈ Dall : d+ 1 ∈ Dall (9)

τ laste,d +
∑
i∈N

ρpfi · pe,d,i ≤ τnexte,d , ∀e ∈ E , d ∈ Dall (10)

ve,d +
∑
d′∈D:

d≤d′<d+vpref

x̃e,d′,spf ≥ 1, ∀e ∈ E , d ∈ Dall : d+ vpref ∈ D (11)

22

∑
d∈D,

s∈Se,d∩σ

αs,σ · xe,d,s ≤M total,ub
e,σ , ∀e ∈ E , σ ∈ Z : M total,ub

e,σ defined (12)

∑
d∈D,

s∈Se,d∩σ

αs,σ · xe,d,s = M total,fix
e,σ , ∀e ∈ E , σ ∈ Z : M total,fix

e,σ defined (13)

∑
d∈Dw,
s∈Se,d∩σ

αs,σ · xe,d,s = Mweek,fix
e,σ,w , ∀e ∈ E , σ ∈ Z, w ∈ W :

Mweek,fix
e,σ,w defined (14)∑

d∈Dw,
s∈Se,d

Thoure,d,s · xe,d,s = he,w, ∀e ∈ E , w ∈ W (15)

∑
w∈W

he,w − t+e + t−e − t++
e + t−−e = T targete , ∀e ∈ E (16)

he,w − λ+
e,w + λ−e,w = Tweeke,w , ∀e ∈ E , w ∈ W (17)∑

d′∈Dall,
s∈Se,d∩σ:

d≤d′≤d+Mrow
e,d,σ

αs,σ · x̃e,d′,s − µe,d,σ ≤Mrow
e,d,σ, ∀e ∈ E , d ∈ Dall, σ ∈ Z :

Mrow
e,d,σ defined (18)∑

d≤d′≤d+Dconsece,d,σ −1,

s∈σ∩Se,d′

Thoure,d′,s · x̃e,d′,s ≤ Hconsec
e,d,σ , ∀e ∈ E , d ∈ Dall, σ ∈ Z :

Hconsec
e,d,σ and Dconsec

e,d,σ defined. (19)∑
i∈{1,...,ly},

si∈σi∩Se,d+i−1

x̃e,d+i−1,si ≤ ly − 1 + πe,d,y, ∀e ∈ E , d ∈ Dall, y ∈ Y :

d+ ly − 1 ∈ D,Πe,d,y = 1 (20)

x̃e,d′,s ≤ κe,d,σ, ∀e ∈ E , d ∈ Dall, σ ∈ Zdiff ,
d′ ∈ {d, . . . , d+Ddiff − 1},
s ∈ σ : d+Ddiff − 1 ∈ D (21)∑

σ∈Zdiff
κe,d,σ − ndiff ≤ κmoree,d ∀e ∈ E , d ∈ Dall :

d+Ddiff − 1 ∈ D (22)∑
s∈Swork:

(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d−1,s ≤ θstarte,d , ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (23)

∑
s∈Swork:

(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d+1,s ≤ θende,d , ∀e ∈ E , d ∈ Dall, γ ∈ Γe,d :

d+ 1 ∈ D (24)

(mseq − d+ d′ − 1)
2 ·
(
θende,d + θstarte,d′ − 1

)
≤ δe,d, ∀e ∈ E , d ∈ D, d′ ∈ Dall :

d−mseq < d′ ≤ d (25)

xe,d2,s + θstarte,d1 −
∑
d∈D:

d1≤d<d2

θende,d − 1 ≤ φstarte,d1,σ, ∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall,

σ ∈ Zseqe , s ∈ Se,d2 ∩ σ : d1 ≤ d2 (26)

23

xe,d1,s + θende,d2 −
∑
d∈D:

d1<d≤d2

θstarte,d − 1 ≤ φende,d2,σ, ∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall,

σ ∈ Zseqe , s ∈ Se,d1 ∩ σ : d1 ≤ d2 (27)

φende,d,σ +
∑

d′∈Dall:
d<d′≤d+Dseqe,σ

φstarte,d′,σ − χe,σ ≤ φcounte,d,σ , ∀e ∈ E , d ∈ Dall, σ ∈ Zseqe :

d+Dseq
e,σ ∈ D (28)∑

s∈Se,d1∩σ1

x̃e,d1,s =
∑

s∈Se,d2∩σ2

x̃e,d2,s, ∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lemp,bothe,d1,d2,σ1,σ2
= 1 (29)∑

s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

s∈Se,d2∩σ2

x̃e,d2,s, ∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lemp,onee,d1,d2,σ1,σ2
= 1 (30)

Be,q + qb · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qb + ψd1,d2,s1,s2 , ∀e ∈ E , q ∈ Qe,
d1 ∈

[
qs − qb, qs − 1

]
, d2 ∈ D,

s1 ∈ Se,d1 ∩ Swork,
s2 ∈ Se,d2 ∩ Swork :

(s1, d1) /∈ Oe,q, (s2, d2) ∈ Oe,q,
d1 ≤ d2, 0 ≤ ψd1,d2,s1,s2 < qb (31)

Ae,q + qa · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qa + ψd1,d2,s1,s2 , ∀e ∈ E , q ∈ Qe,
d2 ∈ [qe + 1, qe + qa] , d1 ∈ Dall,
s1 ∈ Se,d1 ∩ Swork,
s2 ∈ Se,d2 ∩ Swork :

(s1, d1) ∈ Oe,q, (s2, d2) /∈ Oe,q,
d1 ≤ d2, 0 ≤ ψd1,d2,s1,s2 < qa (32)

(qb + qa) ·
∑

d∈Dall,
s∈Se,d∩Swork:

(s,d)∈Oe,q

x̃e,d,s ≥ Be,q +Ae,q, ∀e ∈ E , q ∈ Qe (33)

∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≥ cminj,d , ∀j ∈ C, d ∈ D : cminj,d defined (34)

∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≤ cmaxj,d , ∀j ∈ C, d ∈ D : cmaxj,d defined (35)

∑
e∈Eall,

s∈Se,d1∩σ1

x̃e,d1,s =
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s, ∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lward,bothd1,d2,σ1,σ2
= 1 (36)∑

e∈Eall,
s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s, ∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lward,oned1,d2,σ1,σ2
= 1 (37)∑

e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c+j ≤ cminj,d , ∀j ∈ C, d ∈ D : cminj,d defined,

24

cmaxj,d not defined (38)∑
e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c−j ≥ cminj,d , ∀j ∈ C, d ∈ D : cminj,d defined,

cmaxj,d not defined (39)∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζmaxσ ≥ 0, ∀e ∈ E , σ ∈ Zspread (41)

∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζminσ ≤ 0, ∀e ∈ E , σ ∈ Zspread (42)

∑
e∈Etrainc

xe,d,sc = xc,d,sc , ∀c ∈ Echap, d ∈ D (43)

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe1,d,s, ∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether

(44)

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe2,d,s, ∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether

(45)

25

