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Abstract—Cyber-physical systems are networks of computers
connected to the physical world. Often the interaction with the
physical world is time critical. In that case computation and
communication must be performed in real time. However, a
standard implementation of a network stack is hardly time
predictable.

This paper addresses the challenge of real-time communication
for time-critical cyber-physical systems with a time-predictable
network stack. We present tpIP, a real-time implementation of the
TCP/IP stack. We achieve time predictability by two properties:
(1) the application interface is based on polling functions, instead
of blocking sockets, that fits for periodic real-time tasks; (2) the
implementation is carefully crafted to enable static worst-case
execution time analysis of all functions.

I. INTRODUCTION

Cyber-physical systems are controlling the physical world
often under real-time constraints. The computing structure
for the controlling is distributed to several computing nodes,
which are connected by a network for communication and co-
ordination. Not only needs the computing be time-predictable
for such real-time systems, but also the latency of the com-
munication needs to be upper bounded.

The trend is to use standard Internet technology instead of
proprietary technologies for the fieldbus. This trend started
by using Ethernet and part of the Internet protocols, such as
Modbus TCP/IP [18], Modbus over UDP [39], or TTEther-
net [33]. This trend is further reenforced by the movement to
connect more devices via the Internet, the so called Internet-
of-Things (IoT). The original IoT idea was not envisioning to
use IoT for real-time and control systems. However, Industrial
IoT is the research and development area where Internet
technology is used for control applications. To enable Internet
technology for real-time systems we need time-predictable
communication technology, a time-predictable processor, and
a time-predictable implementation of the network software.

At the link layer, a technology such as TTEthernet [33],
provides time-predictable transport of packets. However, the
software stack above usually follows the standard sockets
approach with blocking read and write functions. This block-
ing is hardly analyzable for the worst-case execution time
(WCET) [38]. Furthermore, standard implementations of the
TCP/IP stack, which go back to code from the Berkeley
TCP/IP implementation [16], are not programmed to enable
WCET analysis.

This paper presents tpIP, a time-predictable TCP/IP stack
for time-critical cyber-physical systems. We ensure time pre-
dictability by following design principles:

• The application interface to the TCP/IP stack is based
on polling, instead of blocking accept, read, and write
operations on sockets, to allow WCET analysis of tasks.
This polling approach fits well with the organization of
periodic real-time tasks.

• There is no dynamic memory allocation. All needed
buffers are pre-allocated with a fixed configurable max-
imum size. After usage, the buffers are returned to a
free pool of buffers, i.e., they are recycled. Therefore,
the maximum memory usage is statically bounded.

• All loops are bounded to enable WCET analysis of
TCP/IP stack functions.

• Packet buffers are handled by pointers form layer to
layer. This results in a zero-copy implementation to avoid
unnecessary memory copy.

Furthermore, as embedded systems might be very resource
constrained systems, e.g., wireless sensor networks, we opti-
mize the stack for a very low resource usage. Even a single
packet buffer is good enough to support a simple HTTP server
or client.

Our network stack is in the same philosophy as the em-
bedded Java network stack ejIP [27]. Particularly, we avoid a
blocking API and provide an implementation that it WCET
analyzable. The overall aim of this project and the research
direction is to provide a full solution (execution stack) of a
time-predictable architecture [26].

The contributions of this paper are: (1) a new interface to
a network stack that fits real-time systems and (2) an im-
plementation of that network stack that is WCET analyzable.
This combination allows to use standard Internet protocols for
future time-critical cyber-physical systems. Furthermore, we
present two independent prototype implementations of tpIP
in C and in Scala in open source.

This paper is organized as follows: Section II presents
related work. Section III presents the architecture and design
of tpIP. Section IV presents the implementation of the two
prototypes of tpIP, discusses the proposed architecture, and
provides WCET analysis results. Section V concludes the
paper.



II. RELATED WORK

The Berkeley TCP/IP implementation, included in Berke-
ley’s Unix [16], is a well-known open-source TCP/IP stack. As
this code is provided with the industry-friendly BSD license, it
is used in many commercial implementations of TCP/IP. The
stack also introduced the BSD socket API for networking,
which is now the de-facto standard API for networking and
evolved into the POSIX socket API [14]. However, for real-
time systems and small embedded systems this network stack
might be too large. Therefore, size optimized implementation
of TCP/IP have been developed for embedded systems. Fur-
thermore, to implement blocking sockets, support for multi-
threading from the operating system is needed.

Two size optimized TCP/IP stack implementations for em-
bedded devices are lwIP (lightweight IP) and uIP (micro
IP) [4]. Both TCP/IP stacks avoid the need for multithread-
ing by providing a different API than the Berkeley sockets.
The application must be organized in a loop, which checks
for arrived packets and timeouts. Both generate application
events. A programming abstraction called protothreads [7] can
simplify application programming for the event-driven uIP and
lwIP stack. uIP has recently been extended to support IPv6 [8].
The main difference between lwIP and uIP is the handling
of TCP retransmissions. While lwIP keeps the packet buffers
allocated for retransmission, applications using uIP have to
reproduce the data on a retransmission. The later approach
further saves memory. Our tpIP network stack shares the idea
of a polling interface to the network code. However, our focus
is on a time-predictable network stack and analyzable memory
footprint.

Microcontroller companies often provide a TCP/IP stack
optimized for their product, e.g., Microchip’s TCP/IP stack
includes its own cooperative multitasking system [22]. Co-
operative multitasking enforces the user to split longer tasks
into smaller ones to avoid long blocking of tasks that need a
shorter period. We can envision to use tpIP in a similar single-
threaded runtime as there are no blocking operations. However,
on multicore, such as the T-CREST [28] platform, different
layers of the TCP/IP stack can benefit from true concurrency
of multiple processing cores.

The focus of RTIP-32 [35] is on deterministic and con-
figurable memory usage. RTIP-32 implements the Berkeley
socket API. It is intended for embedded systems and needs
the On Time real-time operating system. Our tpIP stack is
also concerned with bound memory consumption, but we also
provide deterministic maximum execution time.

Devices for wireless sensor networks have extreme resource
constraints [12]. For the first devices TCP/IP was consid-
ered too heavyweight fur such devices. However, this has
changed [23]. Using standard TCP/IP protocol for wireless
sensor networks is an important move to enable the “Internet-
of-things”. One of the first TCP/IP implementations used on
wireless sensors was the uIP TCP/IP stack [5], [6].

The promise of using one protocol as the backbone for
Internet-of-things has been outlined in [37]. In Internet-of-

things, sensors and actuators embedded in physical objects are
often linked using the same Internet protocol that connects the
Internet.

We seek to develop a TCP/IP stack that is subject to some of
the same requirements as listed in [19]: the development of the
Common Industrial Protocol for Ethernet and standards with
particular reference to time synchronization, real-time motion
control, and safety.

One of the possible use cases for our embedded IP stack
are real-time web-servers [9]. They investigate embedded web
servers for real-time remote control and monitoring of an
FPGA-based on-board computer system.

Some have conducted surveys on how a variety industrial
protocols have been developed to address said weaknesses of
TCP/IP, which solve the problems of standard Ethernet- and
TCP/IP- or UDP/IP-based communication [3].

A TCP/IP stack in Java for embedded systems, ejIP [27],
has been developed for real-time system. The idea for ejIP
similar to tpIP, but restricted to Java systems where access
to low-level hardware is possible.

III. TIME PREDICTABLE NETWORKING

As we are interested to support real-time systems, the
network stack shall be timing analyzable, which means that we
can derive statically the WCET bound [38] of all functions.
Besides coding the base functionality in a time-predictable
way, the API needs to be structured to support WCET analysis.
The standard approach to use blocking reads and writes on
sockets is not feasible. Instead we propose to use a polling
API and non-blocking read and write operations. Furthermore,
buffer allocation is handled conservative by setting aside a
packet pool before application start.

A. Overview

Figure 1 provides an overview of the tpIP stack and its
usage. The tpIP stack is organized according to the different
protocol layers: datalink, network (IP), transport (TCP/UDP),
and transfer (e.g., HTTP, TFTP).

The application is built on top of the transfer layer or can
directly use the transport layer. The transport layer (TCP or
UDP) provides a connection between applications residing on
different hosts. Internetwork communication is supported by
the network layer, which support routing as well as dispatching
on the host based on the transport protocol.

In principle, the whole stack can be organized within a
single thread of control. However, to decouple different layers,
we can introduce queues of packets between different parts. In
the example in Figure 1 we decouple the datalink layer from
the network layer.

We provide prototype implementations of tpIP first in Scala
and then in C to demonstrate that it is time-predictable. With a
system, such as Patmos [30], it is possible to perform WCET
analysis using platin [11].

One can argue that time-predictability at the network stack
is useless when the underlying network is not time-predictable.
Therefore, we envision to us a time-predictable physical layer,



Fig. 1: tpIP network stack

such as TTEthernet [33] or Time-Sensitive Networking, which
is part of the IEEE 802.1 working group. Therefore, we
can provide end-to-end guarantees for distributed real-time
systems. Those systems are also called Industrial Internet-of-
Things [13].

B. Time Predictability

To achieve time predictability and enable WCET analysis
programs need to fulfill several properties:

1) Bounded loops
2) Bounded recursion
3) Non-blocking function calls
4) No dynamic memory management on the heap
5) Avoid function pointers

Without having upper bounds on loop iterations and recur-
sion depth no WCET analysis is possible. If the loop bounds
are not trivial, they might need to be annotated in a tool
specific way. For the implementation of protocols there is
usually no need for recursion, therefore this is not an issue
for the implementation of tpIP

Functions with a blocking semantic, such as reading from a
file, are also an issue for WCET analysis as the blocking time
is usually unknown. Therefore, we will define an application
programming interface (API) for tpIP that is free of blocking
calls. To enable schedulability analysis, real-time tasks are
usually organized as periodic tasks with a period and rate
monotonic assigned priorities. Therefore, our tpIP stack is
also organized around periodic functions. The tpIP main
function must be called by the application from within such a
periodic loop.

Heap allocation with malloc or new is hardly time-
predictable. Therefore, we preallocate all needed buffers at
initialization time and avoid all heap allocation during runtime.
Allocation on the stack for temporary data is not an issue for
WCET analysis.

Function pointers are not in principle an issue for WCET
analysis. However, current WCET analysis tools may have
a hard time to extract possible target addresses of function
pointers from the binary code. Function pointers are useful in
a TCP/IP stack to distribute packets depending on registered
port numbers to different handlers. Do avoid functions pointers



class PeriodicApp(period: Int)
extends RtThread(period) {

val tpip = new Tpip()
var i = 0

def run(): Unit = {
while (true) {
tpip.run()
i += 1
if (i == 3) {
println("Send a ping")
val p = tpip.ll.txChannel.freePool.deq
doPing(p)
tpip.ll.txChannel.queue.enq(p)

}
waitForNextPeriod()

}
}

}

Fig. 2: Invoking the network code from a periodic thread and
sending a ping after three seconds.

we envision to hard code the dispatch at the application level.

C. A Non-blocking API

The classic interface to the TCP/IP network stack is via
sockets and then using blocking read and write calls. This
abstraction is elegant as it reuses the API for file IO. However,
to enable WCET analysis we need to avoid blocking functions.
Therefore, our API in tpIP uses polling functions for read or
write. E.g., the data link layer provides new received packets
via a FIFO queue. The dequeueing function is non-blocking.
When a packet is available it returns the packet. Otherwise, a
null pointer is returned. The upper layer, in this case IP, is
responsible to periodically check for new packets.

Therefore, the application needs to call the network code in
a periodic thread. Figure 2 shows a periodic thread written in
Scala, but inspired by the real-time specification for Java [2].
The real-time thread is created with a period as argument for
the constructor of RtThread. The thread executes in an endless
loop and each call to waitForNextPeriod() waits for the
next periodic release of the thread. This pattern is a standard
approach for periodic real-time threads. Within the loop the
tpIP network stack is invoked by calling tpip.run(). This
function contains itself calls all functions from the different
layers of the network stack that is shown in Figure 1.

D. Non-blocking Channels

For the communication between layers we provide an
abstraction of a channel. A channel contains two queues:
(1) a free pool queue and (2) a data queue. A channel is
also associated with preallocated packet buffers. Initially all
preallocated buffers are put into the free pool queue. When a
new buffer is needed, e.g., on receive of an Ethernet frame, a
buffer is dequeued from the free pool, filled with the Ethernet
content, and put into the receive queue, e.g., from the link layer
to the IP layer. The upper layer, in our example IP, dequeues
the packet and uses it. When the packet is no longer needed,

e.g., because the data has been copied into an application
buffer, the packet must be put back into the free pool of the
channel. In this way, we recycle the packet buffers.

Furthermore, each of the two queues has just a single reader
and a single writer. Therefore, we can use a non-blocking
implementation of the queues [15].

We can use these channels between any layers which we
would like to run independently. However, as any buffering be-
tween components, this adds to the end-to-end latency. Having
this decoupling of the layers enables us to use several threads
for the tpIP stack, which is especially useful on a multicore
architecture. However, with a multicore architecture, such as
T-CREST [28], which support on-chip message passing with
a network-on-chip, it will be useful to extend this channel to
use the network-on-chip.

In our first prototype implementation of tpIP in Scala we
just use as receive and a transmit channel between the data
link and the IP layer to provide some elasticity and to show
the principles. In the C prototype we currently just use a single
packet buffer for each direction.

E. WCET Aspects

The tpIP architecture is founded on a minimal number
of primitives. One primitive to tpIP is the a queue [17].
IP encompass the following layers: application, transport,
Internet, and data link. A queue may be used to connect any
of the different layers of the IP protocol [20].

In our example IP stack shown in Figure 1, we insert
transmit and receive queues between the network layer and
the data link layer. Each of the queues is an object with
a maximum capacity (number of empty buffers) defined at
initialization time. The enqueueing and dequeueing operations
are performed within a periodic thread. This periodic thread is
configured at initialization time to deliver at most one packet
each period, τtx, to the data link layer for the Tx queue. The
receive queue, Rx, is likewise configured to be periodically
polled each τrx, depending on the required timing resolution
of the real-time application.

The functional aspects just described are closely related to
the WCET aspects of Figure 1. However, starting from the
lowest layers, the physical and MAC layers need to provide
essential timing guarantees on host-to-host (or process to
process) latency and jitter in baseline scenarios such as two
hosts in a clint/server setup using one shared Ethernet cable.
This scenario is important as it provides upper bounds on both
the transmission time and the jitter properties of same. For
instance, IEEE 1588 PTP [1] can synchronize clocks to less
than 10 ns [34] with approx. 99.7% probability.

The tpIP stack software covers especially the network and
the transport layers. In this domain of the WCET analysis the
main tool is maximum flow analysis of all possible execution
flows through the compiled software instructions [21]. The
compiled program is partitioned into basic blocks that provide
linear execution flows and thus the WCET for a basic block,
BBWCET is just a sum of the execution time for the number
of processor cycles for the instructions making up this basic



block. The basic blocks are linked with loops and therefore the
WCET analysis includes a max. flow analysis of the “worst”
time it can take to execute a given basic block several times.

As an example we consider the checksum calculation and
checksum verification which is a common operation both for
the transmit and receive part of the tpIP stack. If the payload
were defined to be a maximum of 512 bytes, then the 16-bit-
oriented checksum would loop up to 256 times. This example
points to the influence of the maximum transfer unit (MTU)
on the WCET and especially in the cases where the transport
protocols can carry a varying size payload.

Finally, the “message” (i.e. the packet payload) arrives to
the host application process for which is was intended. The
WCET time for the whole stack, as outlined in Figure 1, is
the sum of the physical/MAC layer latency and jitter added to
the WCET for the actual tpIP stack itself.

IV. PROTOTYPE IMPLEMENTATION

For a start we have chosen two high-level languages (Scala
and F#) for prototyping, as they allow for quick evaluation of
ideas and concepts. However, for the real version of tpIP we
need to recode the stack in plain C, as this is still the most
common language for embedded real-time systems.

The programming language Scala is running on top of the
Java runtime system and hence covers a large part of all
the languages in use if one consider them representative for
the JVM [36]. However, we currently do not have a time-
predictable platform for Scala that supports WCET analysis.
The Java processor JOP [25] with its WCET analysis tool
WCA [31] would be a time-predictable implementation of the
JVM. However, porting the needed Scala runtime libraries to
JOP is out of the scope of this work.

Therefore, we restarted the tpIP implementation in C.
In that case we can target the time-predictable processor
Patmos [30], [32]. For Patmos, we have two WCET analysis
tools available: aiT [10] tool from AbsInt and the open-source
tool platin [11], which allow static computation of WCET
bounds. In the future we will explore to use multiple Patmos
cores in the T-CREST multicore platform [28], [29] to speedup
the network stack and the application using the network stack.

In Scala we implemented a (special) link layer, IP, ICMP
or better known as ping, and base support for UDP. In C we
implemented SLIP as simple (and time-predictable) link layer
and explored UDP based communication by implementing a
small subset of a real world application.

A. Development Environment

Developing software on a laptop is more convenient than
developing and debugging on an embedded device. Therefore,
we aimed for a setup under normal operating systems (Win-
dows and Mac OS X). Developing a TCP/IP stack needs access
to the lowest protocol layer, the link layer. A common link
layer is Ethernet. However, under normal operating systems
user programs have no access to the Ethernet device. Another
option is to use a serial cable to connect two laptops or a
laptop with itself and use SLIP.

However, we are aiming to develop the stack from remote
places and need a way to tunnel IP packets over the normal
Internet. Therefore, we defined a simple link layer protocol
where we transmit IP packets over HTTP. We encode the
binary packet in “hexadecimal” ASCII characters such that, for
instance, 0xAB becomes the characters ’A’ and ’B’ (or ’a’ and
’b’). That string is used as URL for a HTTP GET request. This
URL is the encoded IP packet for the destination, using a web
server for receiving those IP packets. After this HTTP GET
the HTTP server may deliver some debugging information,
which shall be ignored. After the reply to the HTTP GET, the
server shall close the connection. A convenient feature of this
protocol is that we can simply use a web browser for testing.
We call this virtual link layer Blaa Hund.1

A valid Blaa Hund GET request (not containing a valid IP
packet) is:

GET http://iprt.ngrok.io/adcd0123

We use NGROK2 as a tunnel to localhost to expose our
Blaa Hund server behind a NAT-enabled gateway.

For the C based development we started with implementa-
tion on a standard PC and used two serial cables connected
with each other. On one serial port we started the Linux
version of SLIP (slattach) and on the other serial port we
run the tpIP implementation of SLIP.

B. On an Embedded Platform

We target with tpIP embedded real-time systems. There-
fore, we need a platform that allows WCET analysis. We chose
the time-predictable processor Patmos [30] as such an execu-
tion platform. For Patmos, we use the open-source WCET
analysis tool platin [11], which allow static computation of
WCET bounds.

Patmos is implemented in an FPGA. We use the default
configuration of Patmos, which runs on the Altrea/Intel DE2-
115 FPGA board for the experiments. We connect a second
serial cable to an expansion header for the SLIP interface. The
details to reproduce the results are available in a README.3

C. Code Examples and WCET Analysis

In this subsection we present small code fragments as
examples and provide their WCET analysis.

Listing 1: Illustration of IP header chechksum
int calculateipchecksum(ipstruct_t* ip_p) {

unsigned char* h = ip_p->header;

int checksum = ((h[0]<<8)+h[1])+((h[2]<<8)+h[3])+
((h[4] <<8)+h[5]) + ((h[6] <<8)+h[7]) +
((h[8] <<8)+h[9]) +
// ignore old checksum: (h[10]<<8)+h[11]
((h[12]<<8)+h[13]) + ((h[14]<<8)+h[15]) +
((h[16]<<8)+h[17]) + ((h[18]<<8)+h[19]);

1Correctly written Blå Hund in Danish, which means blue dog, which also
happens to be a cafe in Frederiksberg, Denmark, where we invented that
protocol.

2https://ngrok.com/
3online on GitHub at: https://github.com/t-crest/iot-rt/tree/master/tpip

https://ngrok.com/
https://github.com/t-crest/iot-rt/tree/master/tpip


TABLE I: WCET statistics for one configuration of the tpIP
stack

Function WCET bound (cycles)

packip 1170
calculateipchecksum 662

tpip slip run 451

if ((checksum & 0xFFFF0000) > 0)
checksum = (checksum >>16) + (checksum & 0x0000FFFF);
if ((checksum & 0xFFFF0000) > 0)
checksum = (checksum >>16) + (checksum & 0x0000FFFF);
if ((checksum & 0xFFFF0000) > 0)
checksum = (checksum >>16) + (checksum & 0x0000FFFF);
checksum = (˜checksum) & 0x0000FFFF;
return checksum;
}

Listing 1 shows an optimized version to calculate the
checksum of the IP header. The checksum loop is unrolled
to optimize the WCET of the function.

Listing 2: SLIP run function with character receiving
1 void tpip_slip_run() {
2
3 unsigned char c;
4
5 if(tpip_slip_getchar(&c) == 1) {
6 if (is_esc) {
7 if (c == ESC_ESC) {
8 rxbuf[cnt++] = ESC;
9 } else if (c == ESC_END) {

10 rxbuf[cnt++] = END;
11 }
12 is_esc = 0;
13 } else if (c == ESC) {
14 is_esc = 1;
15 } else if (c == END) {
16 rxfull = 1;
17 } else {
18 rxbuf[cnt++] = c;
19 }
20 if (cnt == 2000) cnt = 0;
21 }
22 }

Listing 2 shows the receive function for SLIP, which must
be called periodically. It polls the input port if a character is
received and in that case processes this character. Note that
also here we perform no blocking or busy wait to receive a
character to enable WCET analysis.

We show selected WCET numbers, as, for instance, the
calculateipchecksum(...), which is analyzed by the platin
tool to yield 662 cycles as coded in Listing 1. Table I shows
examples of WCET bounds derived from the static WCET
analysis with platin.

D. An Application Example

To explore tpIP and the time-predictability of using IP
based communication we started to implement a subset of
a protocol from a real application. The protocol is used in
a railway application for the Austrian Railways’ (ÖBB) as

support system for single track lines [24], which is in operation
since about 2004.

The OEBB application consists of a master station and de-
vices in the locomotives. The system helps the superintendent
at the railway station to keep track of all trains on the track.
He can submit commands to the engine drivers. The devices
in the trains contain a GPS receiver and check their current
position and generate an alarm when the train enters a track
segment without a clearance.

At the central station all track segments are administered
and controlled. When a train enters a non-allowed segment all
trains nearby are warned automatically. This warning generates
an alarm at the locomotive and the engine driver has to perform
an emergency stop.

The exchange of positions, commands, and alarm messages
is performed via a public mobile phone network (via GPRS).
The connection is secured via a virtual private network.
The application protocol is time-triggered and uses UDP/IP
as transport layer. Both systems (the central server and the
terminal) regularly send their complete status. Events are
transmitted as flags in the message and the reception is
acknowledged by setting the according flag. After that the flag
is set back and the acknowledge flag in turn as well. The event
notification uses therefore a 4-way handshake.

The deadline for the communication of important messages
is in the range of several seconds. A network error can be
detected with a timeout on not receiving packets from the
communication partner. In that case, the operator is informed
about the communication error. He is than in charge to perform
the necessary actions.

This system is not qualified as a safety-critical system.
The communication over a public mobile phone network is
not reliable and the system has not certified for safety. The
intension is just to support the superintendent and the engine
drivers.

We have implemented only a small feature, the event
notification and acknowledgment, of the application protocol.
We plan to implement the core functionality of the protocol
to be able simulate a train. Then we can connect our system
to the original traffic display and command program, which is
shown in Figure 3.

E. Future Work
Fog computing brings the Cloud “closer to the ground”

(to the edge of the network) to enable real-time control. The
European training network “Fog Computing for Robotics and
Industrial Automation” (FORA)4 research program focuses on:
a reference architecture for Fog computing; resource man-
agement and middleware for mixed-critical Fog applications;
safety and security assurance; and real-time machine learning.
Within FORA we will develop the open-source version of
the Fog computing node. The presented tpIP network stack
is the starting point for the time-predictable interconnect
between FORA Fog nodes. In FORA we will add support
for TTEthernet to tpIP.

4http://www.fora-etn.eu/

http://www.fora-etn.eu/


Fig. 3: Screen shot of the traffic display and command
application

F. Source Access

The prototype source code for tpIP is available at GitHub
in Scala and C https://github.com/t-crest/iot-rt. The C based
experiments are described in the README at https://github.
com/t-crest/iot-rt/tree/master/tpip. The compilation and start of
the Scala implementation is described in the READM at https:
//github.com/t-crest/iot-rt.

V. CONCLUSION

We have created an architecture for an Internet protocol
stack, called tpIP, for time-critical cyber-physical systems.
The main feature of tpIP is to be time-predictable and that is
shall be possible to derive worst-case execution time bounds
for the stack when executing on a time-predictable platform.
This is possible by changing the classic TCP/IP API from
blocking read/write operations to a polling API and to code
the stack so that all loops are bounded and that all resources
(buffers) are statically allocated. We provide two open source
prototype implementations of tpIP.
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