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Abstract. Euclidean data often exhibit a nonlinear behavior, which
may be modeled by assuming the data is distributed near a nonlinear
submanifold in the data space. One approach to find such a manifold
is to estimate a Riemannian metric that locally models the given data.
Data distributions with respect to this metric will then tend to follow
the nonlinear structure of the data. In practice, the learned metric rely
on parameters that are hand-tuned for a given task. We propose to es-
timate such parameters by maximizing the data likelihood under the
assumed distribution. This is complicated by two issues: (1) a change
of parameters imply a change of measure such that different likelihoods
are incomparable; (2) some choice of parameters renders the numerical
calculation of distances and geodesics unstable such that likelihoods can-
not be evaluated. As a practical solution, we propose to (1) re-normalize
likelihoods with respect to the usual Lebesgue measure of the data space,
and (2) to bound the likelihood when its exact value is unattainable. We
provide practical algorithms for these ideas and illustrate their use on
synthetic data, images of digits and faces, as well as signals extracted
from EEG scalp measurements.

Keywords: manifold learning, metric learning, statistics on manifolds.

1 Introduction
The “manifold assumption” is often applied in machine learning research to
express that data is believed to lie near a (nonlinear) submanifold embedded
in the data space. Such an assumption finds uses e.g. in dynamical or periodic
systems, and in many problems with a smooth behavior. When the manifold
structure is known a priori it can be incorporated into the problem specification,
but unfortunately such structure is often not known. In these cases it is necessary
to estimate the manifold structure from the observed data, a process known as
manifold learning. In this work, we approach manifold learning geometrically
by estimating a Riemannian metric that captures local behavior of the data,
and probabilistically by estimating unknown parameters of the metric using
maximum likelihood. First we set the stage with background information on
manifold learning (Sec. 1.1) and geometry (Sec. 1.2), followed by an exposition
of our model (Sec. 2) and the proposed maximum likelihood scheme (Sec. 3).
Finally results are presented (Sec. 4) and discussed (Sec. 5).



1.1 Background and related work

Given observations x1:N = {x1, . . . ,xN} in RD, the key task in manifold learning
is to estimate a data representation that reflect the nonlinear structure of the
original data. The intuition behind most methods for this was phrased by Saul
& Roweis [18] as “Think Globally, Fit Locally”, practically meaning that locally
linear models are fitted to all points in data space and these then are merged to
a global representation (details depend on the method).

The Isomap method [20] famously replace Euclidean distances with geodesic
distances defined on a neighborhood graph and then embed the data in a lower
dimensional space where Euclidean distances approximate the geodesic coun-
terparts. While this approach is popular, its discrete nature only describes the
observed data points and consequently cannot be used to develop probabilistic
generative models. Similar comments hold for other graph-based methods [18,2].

As a smooth alternative, Lawrence [16] proposed a probabilistic extension of
standard surface models by assuming that each dimension of the data is described
as xd = fd(z), where z is a low-dimensional latent variable and fd is a Gaussian
process. The latent variables then provide a low-dimensional parametrization that
capture the manifold strucure. Tosi et al. [21] give this a geometric interpretation
by deriving the distribution of the induced Riemannian pull-back metric and
show how geodesics can be computed under this uncertain metric.

Often manifold learning is viewed as a form of dimensionality reduction,
but this need not be the case. Hauberg et al. [12] suggest to model the local
behavior of the data manifold via a locally-defined Riemannian metric, which is
constructed by interpolating a set of pre-trained metric tensors at a few select
points in data space. Once a Riemannian metric is available existing tools can
be used for dimensionality reduction [22,11,8], mixture modeling [1,19], tracking
[13,14], hypothesis testing [17], transfer learning [9] and more. Our approach
follow this line of work.

1.2 The basics of Riemannian geometry

For completeness we start with an informal review of Riemannian manifolds, but
refer the reader to standard text books [5] for a more detailed exposition.
Definition 1. A smooth manifold M together with a Riemannian metric M :
M → RD×D and M � 0 is called a Riemannian manifold. The Riemannian
metric M encodes a smoothly changing inner product 〈u,M(x)v〉 on the tangent
space u,v ∈ TxM of each point x ∈M.
Since the Riemannian metric M(x) acts on tangent vectors it may be interpreted
as a standard Mahalanobis metric restricted to an infinitesimal region around x.
This local inner product is a suitable model for capturing local behavior of data,
i.e. manifold learning. Shortest paths (geodesics) are then length-minimizing
curves connecting two points x,y ∈M, i.e.

γ̂ = argmin
γ

∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt, s.t. γ(0) = x, γ(1) = y. (1)



Here M(γ(t)) is the metric tensor at γ(t), and the tangent vector γ′ denotes the
derivative (velocity) of γ. The distance between x and y is defined as the length
of the geodesic. Geodesic can be found as the solution to a system of 2nd order
ordinary differential equations (ODEs):

γ′′(t) = −1
2M−1(γ(t))

[
∂vec[M(γ(t))]

∂γ(t)

]|

(γ′(t)⊗ γ′(t)) (2)

subject to γ(0) = x, γ(1) = y. Here vec[·] stacks the columns of a matrix into a
vector and ⊗ is the Kronecker product.

This differential equation allows us to define basic operations on the manifold.
The exponential map at a point x takes a tangent vector v ∈ TxM to y =
Expx(v) ∈ M such that the curve γ(t) = Expx(t · v) is a geodesic originating
at x with initial velocity v and length ‖v‖. The inverse mapping, which takes y
to TxM is known as the logarithm map and is denoted Logx(y). By definition
‖Logx(y)‖ corresponds to the geodesic distance from x to y. The exponential
and the logarithmic map can be computed by solving Eq. 2 numerically, as an
initial value problem or a boundary value problem respectively.

2 A locally adaptive normal distribution

We have previously provided a simple nonparametric manifold learning scheme
that conceptually mimics a local principal component analysis [1]. At each
point x ∈ RD a local covariance matrix is computed and its inverse then
specify a local metric. For computational efficiency and to prevent overfitting

Fig. 1: Example geodesics.

we restrict ourselves to diagonal covariances

Mdd(x) =
(

N∑
n=1

wn(x)(xnd − xd)2 + ρ

)−1

, (3)

wn(x) = exp
(
−
‖xn − x‖2

2
2σ2

)
. (4)

Here the subscript d is the dimension, n corresponds
to the given data, and ρ is a regularization parameter
to avoid singular covariances. The weight-function wn(x) changes smoothly such
that the resulting metric is Riemannian. It is easy to see that if x is outside
of the support of the data, then the metric tensor is large. Thus, geodesics are
“pulled” towards the data where the metric is small (see Fig. 1).

The weight-function wn(x) depends on a parameter σ that effectively de-
termine the size of the neighborhood used to define the data manifold. Small
values of σ gives a manifold with high curvature, while a large σ gives an almost
flat manifold. The main contribution of this paper is a systematic approach to
determine this parameter.

For a given metric (and hence σ), we can estimate data distributions with re-
spect to this metric. We consider Riemannian normal distributions [17]



Fig. 2: Example of the
locally adaptive normal
distribution (LAND).

pM(x | µ,Σ) = 1
C

exp
(
−1

2d
2
Σ(x,µ)

)
, x ∈M (5)

and mixtures thereof. HereM denote the manifold in-
duced by the learned metric, µ and Σ are the mean and
covariance, and d2

Σ(x,µ) = 〈Logµ(x),Σ−1Logµ(x)〉.
The normalization constant C is by definition

C(µ,Σ) =
∫
M

exp
(
−1

2d
2
Σ(x,µ)

)
dM(x), (6)

where dM(x) denotes the measure induced by the Riemannian metric. Note that
this measure depends in σ. Figure 2 show an example of the resulting distribution
under the proposed metric. As the distribution adapts locally to the data we coin
it a locally adaptive normal distribution (LAND).

Assuming that the data are generated from a distribution qM then commonly
the mean µ and covariance Σ are estimated with intrinsic least squares (ILS)

Intrinsic least
squares (ILS)

Maximum
likelihood (ML)

Fig. 3: ML and ILS means.

µ̂ = argmin
µ∈M

∫
M
d2(µ,x)qM(x)dM(x), (7)

Σ̂ =
∫
Tµ̂M

Logµ̂(x)Logµ̂(x)|pM(x)dM(x), (8)

where d2(·, ·) denotes the squared geodesic dis-
tance. These parameter estimates naturally gen-
eralize their Euclidean counterparts, and they can be further shown to have
maximal likelihood when the manifold is also a symmetric space [7]. For more
general manifolds, like the ones under consideration in this paper, these estimates
do not attain maximal likelihood. Figure 3 show both the ILS estimate of µ and
the maximum likelihood (ML) estimate. Since the ILS estimate falls outside the
support of the data, a significantly larger covariance matrix is needed to explain
the data, which gives a poor likelihood. To find the maximum likelihood parame-
ters of µ and Σ we perform steepest descent directly on the data log-likelihood
using an efficient Monte Carlo estimator of the normalization constant C [1].

3 Maximum likelihood metric learning

Determining the optimal metric (parametrized by σ) is an open question. Since
the LAND is a parametric probabilistic model it is natural to perform this model
selection using maximum likelihood. The complete data log-likelihood is

L(σ) = −1
2

N∑
n=1

d2
Σ(xn,µ)−N log C(µ,Σ). (9)



It is tempting to evaluate L(σ) for several values of σ and pick the one with
maximal likelihood. This, however, is both theoretically and practically flawed.

The first issue is that the measure dM(·) used to define the LAND depends
on σ. This imply that L(σ) cannot be compared for different values of σ as they
do not rely on the same measure. The second issue is that Logµ(xn) must be
evaluated numerically, which can become unstable whenM has high curvature.
This imply that L(σ) can often not be fully evaluated when σ is small.

3.1 Likelihood bounds to cope with numerical instabilities
When numerical instabilities prevent us from evaluating L(σ) we instead rely
on an easy-to-evaluate lower bound L(σ). To derive this, let vn = Logµ(xn).
Then ‖vn‖ is the geodesic distance between µ and xn, while vn/‖vn‖ is the initial
direction of the connecting geodesic. It is easy to provide an upper bound on the
geodesic distance by taking the length of a non-geodesic connecting curve, here
chosen as the straight line connecting µ and xn. The bound then becomes

‖vn‖ ≤ d̃n =
∫ 1

0

√
〈(xn − µ),M(txn + (1− t)µ)(xn − µ)〉dt. (10)

The initial orientation vn/‖vn‖ influence the log-likelihood as the covariance Σ
is generally anisotropic. This is, however, easily bounded by picking the initial
direction as the eigenvector of Σ corresponding to the smallest eigenvalue λmin.
This then gives the final lower bound

L(σ) = −1
2

N∑
n=1

d̃2
n

λmin
−N log C(µ,Σ). (11)

In practice, we only use the bound for data points x where the logarithm map
cannot be evaluated, and otherwise use the correct log-likelihood.

3.2 Comparing likelihoods
Since the measure dM(·) changes with σ we cannot directly compare L(σ) across
inputs. In order to make this comparison feasible, we propose to re-normalize
the LAND with respect to the usual Lebesgue measure of the data space RD.
This amount to changing the applied measure in Eq. 6. As we lack closed-form
expressions, we perform this re-normalization using importance sampling [4]

C̃(µ,Σ) =
∫

RD

exp
(
−1

2d
2
Σ(µ,x)

)
dx =

∫
RD

exp
(
− 1

2d
2
Σ(µ,x)

)
q(x) q(x)dx (12)

≈ 1
S

S∑
s=1

ws exp
(
−1

2d
2
Σ(µ,xs)

)
, xs ∼ q(x), ws = 1

q(xs) , (13)

where q(x) is the proposal distribution from which we draw S samples. In our
experiments we choose q(x) = N (x|µ,Σ) with the linear mean and covariance
of the data. Thus, we ensure that the support of the proposal captures the data
manifold, but any other distribution with the desired properties can be used.



4 Results

Experimental setup: We evaluate the proposed method on both synthetic
and real data. The two-dimensional synthetic data is drawn from an arc-shaped
distribution (see Fig. 4c) [1]. We further consider features extracted from EEG
measurements during human sleep [1]; the digit “1” from MNIST; and the
“Frey faces”1. Both image modalities are projected onto their first two principal
components, and are separated into 10 and 5 folds respectively. To each data
modality, we fit a mixture of LANDs with K components.

(a) Data samples.
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(b) Importance sampling.
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(d) Synthetic data (K=1).
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(e) MNIST digit 1 (K=2).
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(f) EEG signal (K=3).
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(g) Frey faces (K=2). (h) Digit 1 density. (i) EEG sleep density.

Fig. 4: Experimental results on various data sets; see text for details.

Verification: First, we validate the importance sampling scheme in Fig. 4b
where we compare with an expensive numerical integration scheme on a predefined
grid. It is evident that importance sampling quickly gives a good approximation
to to the true normalization constant. However, choosing the correct proposal
1 http://www.cs.nyu.edu/~roweis/data.html

http://www.cs.nyu.edu/~roweis/data.html


distribution is usually crucial for the success of the approximation [4]. Then,
in Fig. 4c we show the impact of σ on the geodesic solution. When σ is small
(0.01) the true geodesic cannot be computed numerically and a straight line is
used to bound the likelihood (Sec. 3). For larger values of σ the geodesic can
be computed. Note that the geodesic becomes increasingly “straight” for large
values of σ.

Model selection: Figures 4d-4g show the log-likelihood bound proposed
in Sec. 3 for all data sets. In particular, we can distinguish three different regions
for the σ parameter. (1) For small values of σ the manifold has high curvature
and some geodesics cannot be computed, such that the bound penalizes the data
log-likelihood. (2) There is a range of σ values where the construction of the
manifold captures the actual underlying data structure, and in those cases we
achieve the best log-likelihood. (3) For larger values of σ the manifold becomes
flat, and even if we are able compute all the geodesics the likelihood is reduced.
The reason is that when the manifolds becomes flat, significant probability mass
is assigned to regions outside of the data support, while in the other case all the
probability mass is concentrated near the data resulting to higher likelihood.

5 Discussion

Probability density estimation in non-linear spaces is essential in data analysis [6].
With the current work, we have proposed practical tools for model selection of
the metric underlying the locally adaptive normal distribution (LAND) [1]. The
basic idea amounts to picking the metric that maximize the data likelihood. A
theoretical concern is that different metrics gives different measures implying that
likelihoods are not comparable. We have proposed to solve this by re-normalizing
according to the Lebesgue measure associated with the data space. Practically our
idea face numerical challenges when the metric has high curvature as geodesics
then become unstable to compute. Here we have proposed an easy-to-compute
bound on the data likelihood, which has the added benefit that metrics giving
rise to numerical instabilities are penalized. Experimental results on diverse data
sets indicate that the approach is suitable for model selection.

In this paper we have considered maximum likelihood estimation on the
training data, which can potentially overfit [10]. While we did not observe such
behavior in our experiments it is still worth investigating model selection on a
held-out test set or to put a prior on σ and pick the value that maximize the
posterior probability. Both choices are straight-forward.

An interesting alternative to bounding the likelihood appears when considering
probabilistic solvers [15] for the geodesic equations (2). These represent the
numerical estimate of geodesics with a Gaussian process whose uncertainty
captures numerical approximation errors. Efficient algorithms then exist for
estimating the distribution of the geodesic arc length [3]. With these solvers,
hard-to-estimate geodesics will be associated with high variance, such that the
now-stochastic data log-likelihood also has high variance. Model selection should
then take this variance into account.
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