Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim; Wu, Hao

Published in:
Fuel Processing Technology

Link to article, DOI:
10.1016/j.fuproc.2017.10.005

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Figure A1: K_2CO_3 conversion rates of repeated experiments. $T = 800 \, ^\circ\text{C}$ Pure N_2 environment; K_2CO_3:SiO$_2$ ratio = 3:100; well mixed mixtures; powder K_2CO_3; total residence time 4h.

Figure A2: Thermodynamic calculations of pure K_2CO_3 under N_2 and CO_2 atmosphere
Figure A3: XRD analysis. Sample 1: SiO$_2$:K$_2$CO$_3$ mole ratio 1:0.013; pure N$_2$; 4h residence time. Sample 2: SiO$_2$:K$_2$CO$_3$ mole ratio 1:1; pure N$_2$; 24h residence time.