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Abstract

X-ray image techniques are part of many security-screening systems due to their ability
to produce images of the interiors of the object scanned. The classification of threats
is carried out via shape recognition and the characterization of materials through the
physical properties that are measurable with X-rays. In the case of X-ray Computed
Tomography (CT), the measured quantity is the Linear Attenuation Coefficient (LAC),
which has energy dependence. The polychromatic nature of laboratory-scale X-ray
sources results in energy-dependent distortions in the retrieval of the LAC, when using
conventional energy-integrating detectors.
This thesis presents spectral X-ray imaging techniques based on energy-discriminating
single-photon counting detectors, with focus on Spectral X-ray CT (SCT). This
technique offers the possibility to resolve the energy dependence of the LAC, in a
discrete number of energy channels. Thus, it directly enables the estimation of system-
independent properties as the effective atomic number, Ze, and the electron density, ρe.
Energy-dependent effects, such as beam hardening, are mitigated with the proposed
method. However, artifacts due to scattering noise and photon starvation by metals
remain to be corrected.
This work also introduces a framework for Monte Carlo simulation of SCT
measurements used to generate a large amount of training data for machine learning-
based correction methods. These posses the advantage of near real-time execution
and not requiring a-priori knowledge of the sample. The proposed employs a spectral
Convolutional Neural Network architecture, which can learn features from the energy
domain. The corrections of real experimental datasets show promising results for both
scattering noise and metal artifact removal. The drawback using this method is the
introduction of blur, due to the spatial downsampling of the input images and the
small size of the network that could fit the computational hardware used for this work.
Lastly, this thesis presents a benchmark study of the material classification and threat
detection accuracy of 2- and 3-dimensional luggage-type objects. It is found that
material features measured with spectral techniques produce better results compared
to energy-integrating techniques. The accuracy is improved up to ≈ 35% for the threat
detection. In addition, the material classification accuracy is improved up to ≈ 55%.
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Introduction 1
X-ray Computed Tomography (CT) is a non-destructive testing and evaluation
technique that has been established for routine uses in the medical field, in the industry
and many other sectors. This technique, briefly, consists in measuring the ratio between
the incident and transmitted photons through an object from multiple projections. The
collection of the projections is used by mathematical models to reconstruct a voxelized
model of the object. While this technique has been used daily for many decades, it is
still an active topic of research in the X-ray imaging domain. The reason is that the
data analysis is often obscured by a reduced quality in the results of the measurement
and image processing, i.e. the volume reconstruction of the object under investigation.
The key factors for an optimal reconstruction are the image resolution (by means of
lack of blur) and the contrast to noise ratio (that defines how well different materials
are distinguishable with respect to the background image noise). For example, in the
medical field, a poor resolution or contrast between suspicious and regular matter in the
CT reconstructions makes it hard to perform precise diagnoses. In security screening
applications, a too small contrast between different materials complicates the correct
discrimination between threat and innocuous materials.
A poor quality of the reconstructions is often a consequence of mainly two aspects.
Firstly, commercially available standard imaging scanners employ sources generating a
polychromatic beam while they are equipped with detectors that integrate the energies
of the incoming signal. Since the interactions that feature the CT measurements are
energy-dependent, this leads to non-linearity in how the physical properties of matter
are measured and calculated. Consequences of this aspect are typically grouped under
the so-called beam-hardening effect, showing up mainly as cupping artifacts and a
loss of contrast in the images. Secondly, to keep a limited X-ray dose while having
a small focal spot, which is necessary to have a good spatial resolution and decrease
image blur, the source parameters are set so that dense materials may drastically block
the radiation resulting in photon starvation at the detectors. The consequences of this
effect are typically sorted in the metal artifact category, showing up as severe streaking
artifacts in the images.
The two effects introduced above are due to hardware limitations in a correct
measurement of the physical interactions. Other typical artifacts are due to scanning
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1. Introduction

requirements consisting of high throughput of scanned objects and a demand for a
reduced dose. For example, one may want to reduce the number of projections taken
during the CT scan, resulting in so-called few-views artifacts. In other applications,
the object cannot be measured from the full angular set, resulting in so-called limited-
view artifacts. Finally, sample or instrument motion, as well as finite size of the source
focal spot are sources of blur in the images. A detailed overview of the artifacts in
X-ray CT and their causes can be found in the review by Boas and Fleischmann [1].
While several research topics in the mathematics and imaging processing domain have
the overarching goal to compensate and correct for artifacts in the reconstructions
and acquisitions, physical-based models can also be used to address the problem and
develop correction methods. This work will focus on the enhancement of models used
for the correction methods based on the study of the physical interactions between
photons and matter, with an attention to security screening applications.

1.1 X-rays as a Tool for Security Screening

In security screening, the underlying goal of the technique employed is the accurate
and precise detection of illicit objects or substances, typically contained in bags or
luggage presenting high level of clutter. The natural choice for this task is given
to X-ray imaging methods. Due to their ability to penetrate matter, X-rays reveal
inner structure of objects enabling a rapid survey without a physical intervention
required. Moreover, X-rays are highly sensitive to electron density variations, allowing
for a characterization of materials based on their physical properties. In commercial
aviation, due to the threat of hijacking, sabotage and use of Improvised Explosive
Devices [2], airports are required to be equipped with X-ray scanners for the screening
of customers’ luggage. The first scanners implemented conventional X-ray attenuation
based measuring systems, seeking to detect explosive or illicit material by the analysis
of the bulk density and shapes in the images. Traditionally, the screening technology
has been using simple 2D images, or radiographs, however, new regulations are
imposing using 3D reconstruction from CT scans [3]. Using conventional CT however,
the accurate material characterization and classification is limited mainly by two
factors. Firstly, innocuous and threat materials may have very similar physical
properties thus, hard to distinguish from each other. Secondly and more importantly,
the measured quantity is the Linear Attenuation Coefficient (LAC), µ(E), which is
described by the Lambert-Beer’s law:

I(E) = I0(E) exp−lµ(E), (1.1)

where E is the energy and I and I0 are respectively the transmitted and incident beam
intensity passing through a sample of thickness l. The LAC is an energy-dependent
property of matter. Thus, this method is system-dependent as it is determined by
the source, filters and other components that make up the scanner. Moreover, this
technique is prone to non-linearity in the calculation of the LAC, caused by beam
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1.2. Simultaneous Spectral X-ray Imaging

hardening as the spectrum is modulated as it passes through media. The reviewing
and demand for more strict screening procedures following the 9/11 terrorist attack and
the 2006 transatlantic aircraft plot [4] inspired the research for more refined techniques.
To overcome the limitations in the characterization of materials, researchers have
recently developed methods to estimate energy-independent physical parameters of
the materials, using Dual Energy CT (DECT) scans [5, 6]. DECT is a first step
towards Spectral X-ray CT (SCT), in which the LAC of materials is measured at
two different mean energies (low- and high- energy pair). This is performed typically
as a consecutive scan changing source parameters and filters to modify the energy
distribution of the radiation or using sandwich dual energy detectors [7]. The dual LAC
values are then converted into the energy-independent physical parameters of electron
density ρe and effective atomic number Ze, as in the System-Independent ρe/Ze (SIRZ)
method proposed by Azevedo et al. [8] and further developed by Champley et al. [9]
While this is expected to soon be the standard acquisition method employed by airport
scanners, it yet has limitations caused by the assumptions in the method. For example,
materials with the presence of K-edge discontinuities in the LAC are not characterized
correctly, and the beam-hardening correction depends on the accuracy of the spectral
models used for the source and detectors.

1.2 Simultaneous Spectral X-ray Imaging

The groundbreaking step towards multi-energy Spectral X-ray CT and other energy-
resolved imaging techniques was the development of energy-sensitive single Photon
Counting Detectors (PCD). These detectors can discriminate the energy of the detected
photons allowing for the simultaneous acquisition of the spectrum of energy-dependent
material properties. Simulation and preliminary experimental studies on multi-energy
spectral CT have demonstrated the superiority of this technique, in terms of improved
contrast to noise ratio [10–13], and for enabling K-edge X-ray imaging [14, 15].
However, the lower price on the market of these detectors has grown the interest
towards SCT dramatically. While techniques using PCDs are potentially superior to
conventional energy integrating techniques, they require an adaptation and extension
of the image processing routines and correction algorithms to compensate for the
detectors’ limitations in their performance and accuracy. In addition, the increased
size of the data due to the supplementary energy dimension requires optimization of
the algorithms, in terms of computing efficiency. This thesis presents a workflow for
spectral X-ray CT, with novel scattering and metal artifact correction methods, which
take advantage of the additional information provided by the energy resolution and the
powerful tools from the artificial intelligence, or more specifically, deep learning field.
The performance of the spectral technique for material discrimination is benchmarked
against conventional energy integrating techniques. While the focus of this work
revolves around the SCT technique, a few other spectral X-ray imaging techniques
for security screening applications using PCDs will be introduced and discussed.
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1. Introduction

1.3 Thesis Overview

Chapter 2 provides the theoretical background of X-ray imaging with an overview of
various techniques used in this thesis, and a description of the physical interactions
between photons and matter. Chapter 3 introduces the concept of spectral X-
ray imaging, with focus on the SCT technique and its main advantages over other
techniques. This chapter presents a new material characterization method for the
estimation of electron density and effective atomic number using SCT scans. Chapter 4
presents the framework adopted for the Monte Carlo (MC) X-ray tracing simulation of
the interactions between photons and matter. The software package used in this thesis
is McXtrace [16] and a new component for the simulation of SCT scans is developed.
This toolkit is used for the estimation of the scattering noise produced by the sample
and other instrument components, and for the generation of synthetic. Chapter 5
describes the SCT correction steps developed employing Convolutional Neural Network
(CNN) architectures. Briefly, the networks are trained to reproduce the same output
as the MC simulations but with an increase in speed of several orders of magnitude
and with the advantage of not requiring complex inputs, but merely images like the
ones obtained in real scanners. Chapter 6 presents the experimental results in the
characterization of methods using SCT. Finally, the performance of different material
properties measured using SCT are benchmarked in a material classification test for
the detection of threat objects in large samples containing multiple materials.
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X-ray Imaging and
characterization 2

This chapter will briefly describe the theoretical framework that is at the base of X-ray
imaging, with the description of the interactions between photons and matter and the
different imaging techniques. A detailed documentation on the subject can be found
in the literature [17, 18].

2.1 X-ray Interactions

X-rays are electromagnetic waves with the quantum entity being photons with
wavelengths typically in the region of 1 Å (corresponding to 12.39 keV). Photon’s
energy of soft and hard X-rays extends the range respectively down to a few hundreds
of eVs and up to a few MeVs. Since X-rays are electromagnetic waves, they follow
the fundamental properties and relations for waves. As such, the wavenumber, k,
wavelength, λ, and energy are related by the following equations: k = 2π

λ
= E

~c , where
~ is the reduced Planck’s constant and c is the speed of light. At a macroscopic scale,
the interactions between X-rays and matter can be summarized by the refractive index,
n:

n(E) = 1− δ(E) + iβ(E). (2.1)

Considering a planar X-ray wave ξ0 = eikz, after travelling a distance z within a media
with refractive index, n, the wavevector changes from k to nk and the wave can be
expressed as:

ξ = einkz = e(1−δ)kze−βkz. (2.2)

We can deduce that the first term of the Right Hand Side (RHS) of Eq. (2.2)
corresponds to a phase shift of the wave, φ = −δkz, thus, is related to refraction
effects of the waves. The real part of the refraction index, δ is derived as [17]:

δ(E) =
2πρer0

k2
, (2.3)

where r0 is the Thomson scattering length, ρe is the electron density.
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2. X-ray Imaging and characterization

The second term of the (RHS) of Eq. (2.2) corresponds to an exponential decay, as
predicted by Lambert-Beer’s law. It is derived that the imaginary part of the refraction
index, β, is proportional the linear attenuation coefficient (LAC), µ of materials as:

β(E) =
µ(E)

2k
. (2.4)

Both changes in δ and β of materials can be measured using X-rays, employing different
imaging modalities. Among the figures of merit to characterize an optimal imaging
technique, contrast is one of the key factors. Contrast is defined as the value differences
between two different materials in the resulting images. For two materials j and k, the
contrast, C, for the observable x can be written as:

C(x) = ∆x = |xj − xk|. (2.5)

In the energy range suitable for laboratory-scale measurements (approximately between
5 and 200 keV), the contrast between the different materials is several orders of
magnitudes higher for δ than β. Fig. (2.1) represents an example of contrast in δ

and β for water (H2O) and hydrogen peroxide (H2O2). This demonstrates the high

Figure 2.1: The contrast between water and hydrogen peroxide for the real,
C(δ), and imaginary, C(β), parts of the refractive index.

potential of phase-contrast imaging techniques, which are sensitive to the phase shift
experienced by photons when passing through media, over conventional attenuation-
based techniques, which directly measure the ratio between incident and transmitted
photon. The disadvantage of phase-contrast imaging techniques is that they are
much more experimentally demanding in terms of equipment necessary for their
realization. An important property of materials in the X-ray energy range is that
the refractive index difference of materials from unity (i.e. the refractive index of
vacuum) is extremely small. Consequently, refraction angles are extremely small,
and the registration of the phase shift require high-resolution detectors or external
devices that modulate the X-ray beam. Even though the early techniques developed
all required a synchrotron radiation source, recent studies demonstrated the feasibility
of laboratory scale phase-contrast imaging techniques [19–22].
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2.1. X-ray Interactions

2.1.1 Attenuation and Photon Cross Sections

For photons with energy E < 1.022 MeV1 and a single element with atomic number Z,
the physical interactions are represented by photoelectric absorption, elastic scattering
and incoherent scattering. Fig. (2.2) sketches these different interactions, which will
be described below in separate subsection.

Figure 2.2: Left: a) In photoelectric absorption a photon transfers its
energy to an electron of an atom, which is ejected from an electron shell as
a photoelectron, producing a hole. This hole is filled by an electron of an
outer electron shell and a photon is emitted (X-ray fluorescence), with energy
equivalent to the difference between the binding energy of the two shells. b)
In elastic scattering the photon only suffers a deviation in the direction. c) In
incoherent scattering the photons transfer parts of its energy to a free-electron,
which recoils away from the atom. Right: X-ray fluorescence emissions lines
(Siegbahn notation) and binding energies of the electron shells for Tungsten
(Z = 74).

These, all contribute to the imaginary part of the refractive index have been studied and
tabulated in terms of cross sections, σ(Z,E) (cm2/g), which represent the likelihood
of a certain interaction to happen. The individual cross section due to photoelectric
absorption (σph), elastic scattering (σela), and incoherent scattering (σinc) sum up to
the total mass attenuation cross section, (σtot) expressed as:

σtot(Z,E) = σph(Z,E) + σela(Z,E) + σinc(Z,E). (2.6)

Look-up tables of the photon’s cross-sections for elements of the periodic tables,
compounds and mixtures can be found from multiple sources [23–25]. In this work,
the photon cross-sections tables used are the ones provided by the National Institute

11.022 MeV is the energy of twice the rest mass of the electron. Above this energy, the cross-section
for pair production becomes significant.
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2. X-ray Imaging and characterization

of Standards and Technologies (NIST) [26]. Fig. (2.3) illustrates the NIST energy-
dependent photon attenuation cross sections of elements of the periodic table and the
individual contributions, exemplified for silicon. This figure emphasizes the presence

Figure 2.3: Left: Photon cross sections for the elements of the periodic table.
Note that the scale of the color bar is in log10 unit. The Kα absorption edge
boundary is clearly visible in the middle of the plot. Right: The individual cross
sections tabulated by NIST, exemplified for silicon. The total attenuation cross
section (solid black), is the sum of the individual photoelectric absorption (solid
green), elastic (dashed red) line and incoherent scattering (dash-dotted blue)
cross sections. The vertical dashed black line at approximately 60 keV marks
the intersection between σph and σinc. Note the logarithmic scale in the y−axis.

of an energy boundary that defines two regions, where the dominant interaction
is either the photoelectric absorption or the incoherent scattering. For silicon for
example, the energy boundary is found at approximately 60 keV that corresponds to
the energy value in which the incoherent scattering cross section becomes larger than
the photoelectric absorption cross section. The energy boundaries in which are found
intersection between the cross sections increase with the atomic number Z however,
the qualitative behavior of the cross sections holds the same for each element in the
periodic tables (ignoring K-edges). With respect to the elastic scattering, it is observed
that it has an intensity of approximately two orders of magnitude lower than the total
attenuation in the photoelectric absorption regime and of approximately three orders of
magnitude lower than the total attenuation in the incoherent scattering regime. Other
interactions that need to be mentioned but are only possible energy above 1.022 MeV

are the nuclear and electron pair production, which both result in the annihilation of
the incident photon.
The linear attenuation coefficient (LAC), µ(Z,E), can be calculated from the cross
section defined in Eq. (2.6), by multiplying the material’s bulk density, ρ (g/cm3), as
in the following equation:

µ(Z,E) = ρσtot(Z,E). (2.7)

8



2.1. X-ray Interactions

Photoelectric Absorption

In the photoelectric absorption interaction between X-ray and matter, a photon with
energy Eγ is absorbed by an atom transferring its energy to it. The atom becomes
excited, ejecting a photoelectron from an electron shell with binding energy Eb. The
photoelectron has energy equivalent to the difference between the photon’s energy
and the binding energy of the ejected electron shell: Ee− = Eγ − Eb. The hole
generated in this process is filled very quickly (femtoseconds) by an electron belonging
to an outer shell. This jump produces simultaneously the emission of a photon with
energy equivalent to the difference between the two electron shells. The X-ray radiation
produced by this effect is called X-ray fluorescence and is characteristic for each element
of the periodic table, since the binding energy varies with the atomic number. Fig. (2.2)
shows some of the different emission lines that can be produced, depending on which
electron shells are involved, and their respective notation (see Siegbahn notation [27]
for a full overview of the emission lines classification for X-ray spectroscopy).
The photoelectric absorption cross section is approximately proportional to the third
power of the reciprocal of the energy [17], 1/E3, except for discontinuous sharp rises,
called absorption edges. These, are found when the energy of the incident photon is
equal to the binding energy of an electron shell (K, L1, L2, M1, etc.) corresponding to
the absorbing atom. Fig. (2.4) depicts the photoelectric absorption cross sections for
iodine, cadmium, gadolinium and tungsten, where the K-edges are clearly visible. The
energy corresponding to the K-edges increases with the atomic number, Z. It is found
that the photoelectric absorption cross section is linearly dependent to approximately
the fourth power of the atomic number, Z4 [17]. Thus, overall the photoelectric

Figure 2.4: Photoelectric absorption cross sections for iodine, cadmium,
gadolinium and tungsten. The K-edges are clearly visible for Cd, Gd and
W at the energies of 26.71, 50.24 and 69.53 keV respectively. Additional
overlapping edges visible in the low energies are L1- and L2-edges of gadolinium
and tungsten.
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2. X-ray Imaging and characterization

absorption cross section dependence on energy can be approximated as:

σph ∝
Z4

E3
. (2.8)

Elastic Scattering

Elastic (also commonly named Rayleigh or coherent) scattering is the process by which
photons with energy E are scattered by bound atomic electrons without excitation of
the target atom. This process results from interference effects between waves diffracted
by different parts of the atomic charge distribution. This perturbation leads to a
change in the direction of the photons, which is modeled by the atomic Differential
Cross Section (DCS). The elastic DCS per unit solid angle is given approximately by:

dσela

dΩ
=
dσTh

dΩ
F (Q, Z)2, (2.9)

where the first term is energy-independent and is the DCS per unit solid angle for
Thomson scattering, which describes the elastic of electromagnetic radiation by a
charged particle:

dσTh

dΩ
= r2

0

1 + cos2 θ

2
, (2.10)

where θ is the angle between the incident and the outgoing scattered photon. The
second term in Eq. (2.9) is the atomic form factor, F (Q, Z), defined as:

F (Q, Z) =

∫
ρ(r)eiQrdr. (2.11)

The atomic form factor can be interpreted as the scattering amplitude of an
electromagnetic wave by an isolated atom, seen as a charge cloud surrounding the
nucleus, with density ρ(r). In the calculation of the scattering amplitude, eiQr is the
phase factor, which weights the contribution from each volume element dr. A detailed
framework for the description and derivation of the atomic form factor can be found
in the standard textbooks [17]. For the purpose of this work, it is important to know
its dependence on the magnitude of the momentum transfer, Q, which related the
scattering angle to the wavelength (thus energy) as follows:

Q =
4π

λ
sin (θ) . (2.12)

It can be shown that the atomic form factor is a monotonically decreasing function,
that goes from F (0, Z) = Z to F (∞, Z) = 0 [28]. The first limit corresponds to the
phase factor approaching the unity thus, the integral simply yields the total number
of electrons, Z. The second limit corresponds to X-ray wavelength becoming smaller
than the scatterer size, which produced destructive interference of the scattered waves.
Analytical approximations can be used to estimate atomic form factors [28–30] as a
function of the momentum transfer and atomic number. Fig. (2.5) shows a polar plot
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2.1. X-ray Interactions

of the DCS for a carbon atom (Z = 6) for X-ray energies E = {2, 5, 15, 30, 200} keV as
a function of the scattering angle. It can be observed that the amount of forward
scattering increases drastically with the energy, and the back-scattering becomes
negligible at the photon energy of 15 keV and above. However, when materials more
complex like molecules or mixtures are considered, one must consider the structure
in which the atoms organize into a molecule. This can lead to oscillations or isolated
peaks in the magnitude of the form factor making it unique for each material and
structure. In this way, the measurement of the scattering function, which is the
intensity of the scattered radiation as a function of the momentum transfer, can be used
to distinguish different materials. A further analysis of the scattering function can be
used to extrapolate properties of materials such as inter-atomic distances, coordination
number etc.

Incoherent Scattering

Incoherent (also commonly named Compton or inelastic) scattering is the process by
which a photon with energy E interacts with an electron that absorbs it and re-emits
a secondary photon with lower energy E ′ = τE in a new direction with an angle,
θ, relative to the original direction. Part of the energy of the colliding photon is
transferred to the electron, which recoils. The decrease in energy of the photon is
referred to as Compton shift. The relationship between the scattering angle and the
fractional energy, τ , is derived by conservation laws of energy and momentum and is

Figure 2.5: Left: Polar plot of the elastic scattering DCS (in arbitrary units)
per unit solid angle, for different photon energies E = {2, 5, 15, 30, 200} keV
for carbon (Z = 6). The angular axis is the scattering angle, θ, of the photon
undergoing elastic scattering. Right: Polar plot of the Thomson scattering
(E → 0 keV) and incoherent scattering DCS (in arbitrary unit) per unit solid
angle, for different photon energies E = {40, 130, 200, 1000} keV. The angular
axis is the scattering angle, θ, of the secondary photon that is emitted through
incoherent scattering.
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given by:

cos θ =
1

γ

(
γ + 1− 1

τ

)
, (2.13)

with γ = E/mc2 = E/(511keV). Eq. (2.13) can be rearranged in terms of the fractional
energy, τ , as:

τ =
1

1 + γ(1− cos θ)
. (2.14)

The fractional energy has minimum and maximum values corresponding to backward
(θ = π) and forward (θ = 0) scattering respectively:

τmin = τ |θ=π =
1

1 + 2γ
and τmax = τ |θ=0 = 1. (2.15)

The angular deflection of the secondary photon is described by the Klein-Nishina
formula [31], assuming unpolarized photons and the target electron to be free and
at rest:

dσKN

dΩ
=
r2

0

2
f(E, θ)−2

[
f(E, θ) + f(E, θ)−1 − sin2 θ

]
, (2.16)

with

f(E, θ) =
1

[1 + E(1− cos θ)]
. (2.17)

When considering real matter, electron binding effects need to be considered as
well. This is done by multiplying the Klein-Nishina formula by the incoherent
scattering function of the target atom, S(Q, Z) [28]. The incoherent scattering
function can be computed in terms of the atomic ground state wave function and the
respective form factor F (Q, Z) [32]. It can be shown that S(Q, Z) is a monotonically
increasing function of Q that has limit values of S(0, Z) = 0 and S(∞, Z) =

Z. For practical purposes, this function can also be calculated using analytical
approximations [28, 30, 33]. Overall the atomic incoherent DCS in terms of the
fractional energy τ becomes:

dσinc

dτ
=
dσKN

dτ
S(Q, Z), (2.18)

where the first term is the Klein-Nishina DCS in terms of the fractional energy, which
can be derived from Eq. (2.16). Fig. (2.5) displays the incoherent scattering DCS
for carbon atom (Z = 6) for X-ray energies E = {40, 130, 200, 1000} keV where
it can be seen how the amount of forward scattering increases drastically with the
energy of the primary photon while the back-scattering is still significant at 200 keV.
Without considering the incoherent scattering function S, which is responsible of the
sharp decrease of scattering intensity as the scattering angle approaches zero, in the
low-energy limit the incoherent scattering DCS reduces to the Thomson formula in
Eq. (2.10), where backward and forward scattering have the same likelihood.
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2.2. Attenuation Imaging

2.2 Attenuation Imaging

Perhaps the most direct technique employed within X-ray imaging is based on the
fact that the attenuation coefficient depends on material physical properties of density
and atomic number, as in Eq. (2.7), resulting in a contrast in the images of materials
with a difference in such physical properties. The attenuation coefficient of materials
is measured using Lambert-Beer’s law for a non-homogeneous sample with varying
attenuation coefficient µ(x, y):

I(x′) = I0(x′) exp{−
∫
t

µ(x, y)dxdy}, (2.19)

where I0 and I are respectively the incident and detected X-ray intensity, measured
at the pixel position x′, and x an y are the position coordinates within the sample.
Lambert-Beer’s law can be rearranged into the line integral form to define a radiograph,
or projection R:

R(x′) = −log I(x′)

I0(x′)
= −

∫
t

µ(x, y)dxdy. (2.20)

When parallel rays passing through the sample along a certain direction or angle
(ω) are considered, the so called forward-projection can be described via the Radon
transform [34] expressed as:

Rω(x′) = R [µ(x, y)] = −
∫
t

µ(x, y)δ(x cosω + y sinω − x′)dxdy, (2.21)

where δ is the delta function. Fig. (2.6) illustrates a collection of projections {Rωn(x′}
from multiple views, ωn (n = 1, 2, 3, . . . ), which are merged in Computed Tomography
(CT) to obtain a voxelized reconstruction of the object in terms of the attenuation
coefficient, µ(x, y). The first reconstruction algorithm developed for X-ray CT was the
Filtered Back Projection (FBP). In this method, the back-projection is retrieved by
calculating the inverse Radon transform:

R′ω(k) =

∫
e−ikx

′
Rω(x′)dx′ =

∫
t

µ(x, y)e−ik(x cosω+y sinω)dxdy, (2.22)

and integrating over the frequency domain, (k):

FBPω(x, y) =

∫ +∞

−∞
|k|R′ω(k)eik(x cosω+y sinω)dk. (2.23)

Finally, the reconstructed volume in terms of attenuation is retrieved by summing all
the filtered back projections:

µ(x, y) =
∑
ω

FBPω(x, y). (2.24)

Note that in Eq. (2.23) |k| is an added term called Ram-Lak filter. Without this factor
the inverse Fourier transform and the Fourier transform in the equation would just
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2. X-ray Imaging and characterization

Figure 2.6: Schematic illustration of the Computed Tomography technique.
Multiple projections of the sample enable the reconstruction of the object, with
volumetric information of the inner materials.

cancel out and leave the back projection formula, which will not allow to recover the
original function µ(x, y) but rather its smoothed version. Several different choices of
filters can be found in the literature, depending on the application.
Since the data collected is discretized into pixels, so the models and the reconstruction
results must be discretized. The advantage of the FBP is that it is computationally
very efficient as it is analytically defined. However, it requires a relatively large
number of projections, it is not robust to noise in the dataset and it requires equally
spaced projections, imposing limitations in the geometrical settings for the scanning
acquisitions. In iterative reconstruction algorithms, the forward projection is modeled
as a linear system of equations [35] in the form of:

yi =
∑
j

aijxj, (2.25)

or in matrix form:

y = Ax (2.26)

Therein, A is the projection matrix, containing the information about the geometry
of the acquisitions, i.e. how the rays are passing through the sample voxels xj and
reaching the detector pixels yi. Since the number of equations is prohibitively large,
and there is randomness due to the noise, the problem is ill posed as it may have
non-unique solutions. Thus, iterative approaches are required to solve the problem of
the CT reconstruction. The advantage of these techniques is that they are intrinsically
discretized, and they can handle noise and various geometry settings for the acquisition.
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2.3. Scattering Methods for Material Characterization

On the other hand, they are computational demanding and may require parameter
optimization to yield desired results. Iterative reconstruction algorithms are subject
of an ongoing active field of research, which has overarching goal to refine the quality
of the results by developing model-based iterative reconstruction techniques. More
details on the topic can be found in various literature publications [35–37]. In this
thesis, the focus is on developing physical-based models for the correction steps in the
image and signal processing.
The contrast between different materials using this technique is given by the difference
between their linear attenuation coefficients. Thus, according to Eq. (2.7), it
depends linearly on the difference between the bulk density ρ of similar materials
and approximately on the 4th-power of atomic number Z of different materials. For
this reason, this technique is very efficient in the non-destructive evaluation of objects
composed of materials with different atomic number (e.g. bone/flesh, organic/metal
compounds etc.). In the context of security screening however, materials often have
similar physical properties making it challenging to distinguish between threat and
innocuous materials.

2.3 Scattering Methods for Material
Characterization

In the previous section, where the concept of attenuation imaging was presented,
the scattering interactions were assumed to act in the same way as photoelectric
absorption events, assuming a scattered photon does not reach the detector. Thus,
in that technique the scattered radiation represents a noise element that needs to be
estimated and corrected. However, as mentioned in Section 2.1.1 each material scatters
photons in a unique way, making the measurement of scattering function itself a useful
tool for the characterization of different materials. Fig. (2.7) sketches the X-ray Diffuse
Scattering (XDS), which measures the elastic scattering intensity as a function of the
momentum transfer Q, expressed in Eq. (2.9). This is typically done by illuminating a
sample with an X-ray beam collimated into a pencil beam and measuring the scattering
signal around the incident beam, either with a 2D flat panel detector or by translating a
single pixel detector. The scattering angles, θ, can be calculated given the detector pixel
position and the sample to detector distance. The wavelength, λ, is ideally a fixed value
corresponding to a monochromatic radiation however, the monochromatic bandwidth
depends on the source and in many cases on the monochromator crystal that are
employed. Large-scale facilities such as synchrotron radiation sources, or free electron
lasers, due to their extremely high brilliance are the typical choice for this technique,
when high resolution is required. Time-resolved studies of the molecular dynamics
using this technique have nowadays reached a time resolution of femtoseconds [38].
For security screening application however, laboratory-scale conventional sources are
used, which generate a polychromatic beam. Thus, the techniques become better with
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2. X-ray Imaging and characterization

Figure 2.7: Schematic illustration of the X-ray Diffuse Scattering technique.
The X-ray beam is collimated into a pencil beam, passes through a sample and
the scattering signal is measured at a flat-panel 2D detector as a function of
the X-ray’s wavelength, λ, and the scattering angle, θ. The following azimuthal
radial integration then is used to calculate the scattering signal as a function
of the momentum transfer, Q.

the energy-resolving detectors that will be presented in the next section. In the context
of material characterization and security screening, ED-XRD has the advantage that
the material features measured, i.e. the scattering functions, have a non-monotonic or
discontinuous nature. Thus, compared with attenuation-based methods, the material
classification task is simplified by the detection of the scattering function peaks rather
than a contrast between the attenuation coefficients of different materials. For example,
different water-based mixtures in which water is the dominant material, have very
similar linear attenuation coefficient values making it hard to distinguish between each
other. However, an analysis of the changes in the position and shape of the scattering
peaks due to different solvents in the momentum transfer domains may facilitate the
material classification.
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Spectral X-ray Imaging
Techniques and

Characterization Methods 3
This chapter introduces the concept of spectral X-ray imaging and characterization.
It starts presenting the detectors that enable the spectral X-ray techniques, which rely
on the simultaneous detection of the energy of the incoming photons. The chapter
continues describing some of the laboratory-scale spectral X-ray imaging techniques
under development with focus on Spectral X-ray CT (SCT). These techniques are
described in contrast with the respective conventional ones using energy integrating
detectors, to highlight the advantages as well as the limitations and the main problems
faced in the data processing chain. Lastly, is described the method developed for the
material characterization into system-independent physical properties.
Fig. (3.1) represents a block diagram of the overall workflow proposed for material
classification applications using SCT scans and introduces the main data processing
algorithms developed in this work.

3.1 Single Photon Counting Detectors

The groundbreaking step towards the emergence of spectral X-ray imaging techniques
was the development of energy discriminating Photon Counting Detectors (PCD) for
X-ray imaging applications. Fig. (3.2) illustrates the layout of the detector main
components and the photon interactions. Assuming ideal detection, the incident
photon is absorbed within the thickness of the semiconductor layer sensor that
is bump-bond connected to the readout chip. The photoelectric absorption event
produces electron-holes pairs, which are separated and drifted within the sensor by
an electric field induced with an HV bias. The electric charge reaching the readout
chip produces a pulse which is pre-amplified, shaped and counted only when the signal
exceed predefined thresholds, resulting in the suppression of electronic noise. Multiple
thresholds can be used to bin the signal into energy channels with number and width
defined by energy thresholds [39, 40]. Semiconductor materials used for these detectors
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3. Spectral X-ray Imaging Techniques and Characterization Methods

Figure 3.1: Block diagram of the overall workflow following a SCT scan,
showing the individual data processing steps. Note that the orange colored
blocks are the mandatory steps. In the figure’s notation, Npx is the number of
detector pixels, Nvox is the number of voxels in the volume/image reconstructed,
Nproj is the number of projections, Ech is the number of energy channels of the
detector, Nm is the number of the materials composing the sample, µ(E) is the
material’s LAC and Ze and ρe are the material’s effective atomic number and
electron density respectively.

are dense, high atomic number materials (such as CZT (CdZnTe), CdTe and GaAs)
to have a higher likelihood oh photoelectric absorption. This family of semiconductor-
based detectors are preferred to their main competitors in the market, which are Si-
based detectors, due to their high efficiency in terms of absorbed photons for energies
up to 160 keV. On the other hand, presence of high Z elements in the semiconductor
layer leads to fluorescence noise signal for energies corresponding to the K-edges of
such materials, if that is within the energy range of the detector. That leads to a
decreased performance of the detectors at low energies, where the contrast in the LAC
between organic materials is the greatest.

3.1.1 MultiX ME-100 detector

The detector adopted for the experiments in this work is the MultiX ME-100 v2 [42],
developed at CEA-LETI. This detector has an energy resolution of 6.5% (8 keV at
122 keV) for X-ray fluxes up to 7 Mphotons/s for each pixel [43]. A single module of
Multix-ME100, consists of an array of 1 × 128 pixels of size 0.8 × 0.8 mm2 and each
operated with 128 energy channels of width 1.1 keV, evenly distributed between 20 and
160 keV. Detector modules can be daisy-chained into detector arrays to extend the field
of view. Figs. (3.3 and 3.4) depict five daisy-chained modules of the MultiX detector
for a total of 640 pixels array detector and a total linear field of view of 512 mm. In
imaging application daisy-chained modules lead to a gap between the pixels adjacent
to the end of the linked modules that must be modeled in the reconstruction algorithm
for geometry consistence. Moreover, each module is composed of 5 crystals that have
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Figure 3.2: Overview of the interactions between photons and the detector
device: The incident photon is absorbed by the semiconductor layer and
produces an electron cloud that is drifted towards the readout chip via an
electric field induced by an HV bias. a) The full electric charge is deposited
into the collecting pixel. b) The photon hit the sensor at the edge of the
collecting pixel and electric charge is deposited into two pixels (charge sharing).
c) Fluorescence provokes a subsequent electric charge that are deposited into
two different pixels. d) The incident photon undergoes a scattering event which
deflect the trajectory and the charge is collected by a neighboring pixel. In case
of inelastic scattering, an electron is released in the interaction and the photon
loses energy. e) Two photons hit the sensor within the same processing chain
are detected as a single photon with increased energy (pulse pile-up). Figure
inspired by the work of Ehn [41].

a significant drop in count rate due to reduced size at their edges. This difference can
be seen even following the Lambert Beer’s law normalization thus, the pixels located
at the crystal edges require a correction or interpolation to avoid severe ring artifacts
in the reconstructions (see Fig. (5.10) for an example of an only partially corrected
ring artifact). The Multix-ME100 implements fast readout electronic circuits to reach
count rates of several millions counts per seconds. In SCT measurements we achieve a
reasonably low noise level for integration times of only a few hundreds of milliseconds
per projection. Given these characteristics, this detector is suitable for applications
with high throughput demand, such as luggage inspection, where a scan of a single
object must approach near real-time execution.

3.1.2 Correction Algorithm for Detector’s Spectral Response

When using a PCD, the first processing routine that is recommended following
the measurements and the storage of data is the correction for the detector’s
spectral distortions. Assuming a perfect PCD, a photon absorbed by the sensor via
photoelectric absorption deposits all its energy into the sensor’s respective pixel, noted
as collecting pixel. However, in the real scenario, PCDs are subject to interactions
between the photons and the detector device that can result in both a wrong energy
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Figure 3.3: Picture of five daisy-chained MultiX-ME100 modules with the
liquid cooling system and a slit with adjustable aperture size to suppress
environmental and scattering noise.

determination and activation of the pixels neighboring the collecting one. Fig. (3.5)
illustrates the effects on the spectrum of these interactions, which are listed and briefly
described below:

• Charge sharing and Weighting Potential Cross-Talk : When a photon hits a
sensor close to the edge of the collecting pixel, its charge may spread into one
of the neighboring pixels. These pixels are triggered as well, and both collecting
and neighboring pixels successively count a photon with reduced energy. This
effect is called charge sharing. Similarly, the movement of the charge carriers
in the collecting pixels may induce a charge in the neighboring pixels, which
also count a photon with reduced energy. This is the so-called weighting
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Figure 3.4: Sketch of the frontal view of the five daisy-chained MultiX-ME100
modules and the collimator slit.

potential cross-talk [44]. When polychromatic beams are considered, both these
interactions result in an overall background signal in the low-energy tail of the
peak corresponding to the source’s emission line. In CT, when the signal is
converted into linear attenuation coefficients of materials using Lambert-Beer’s
law, these effects cause a dampening of the LAC at low energies. This effect
increases with the attenuation of materials and eventually can result in a relative
maximum of the LAC in the low-energy range (see for example Fig. (3.9)), while
it should be physically modeled as a monotonically decreasing function (assuming
no K-edge discontinuities).

• Fluorescence radiation: When PCDs are built using semiconductors with high
atomic number elements, these may have K-edges within the energy range of the
source. Thus, when a photon hits the semiconductor sensor there is a chance for
the fluorescence emission from the detector itself to be detected in the collecting
pixel or within a few neighboring pixels. The overall spectral distortion due to
by fluorescence is similar to charge-sharing effects. For example, MultiX-ME100,
which is a CdTe-based PCD, is exposed to such effects due to the Kα1 and Kα2

emissions of Cd and Te respectively at approximately 23 keV and 27 keV.

• Scattering radiation: As in the case of fluorescence radiation, photons which
hit the sensors can undergo scattering interactions and travel further reaching
neighboring pixels before being fully absorbed. These can be due to both elastic
and incoherent scattering events; however, incoherent scattering has more impact
due to the higher probability of photons with scattering angles large enough to
end up activating neighboring pixels.

• Pulse Pile up: When two or more photons hit the detector sensor within the same
processing chain, their pulses overlap and are registered by the collecting pixel
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as a single photon with energy approximately equal to the sum of the individual
photon energies. When considering a polychromatic beam, this effect leads to an
increase of the spectrum with the energy, in contrast to the ideal Bremsstrahlung
decay to zero at the acceleration voltage setting of the source. Since the X-ray
emission follows a Poisson distribution, this effect increases dramatically with the
beam flux. When a material LAC measurement is concerned, this effect results
in an upturn of the LAC for high energies, while it is supposed to be modeled by
the photon cross section for incoherent scattering.

In addition to the effects listed above, CdTe semiconductor based PCDs (such as
the MultiX-ME100) suffer from incomplete charge collection, which has the effect
of skewing the spectrum toward lower energies. This is caused by the difference
in the drift mobility of electrons and holes [45]. Lastly, the detector’s working
temperature influences the shape of the measured X-ray spectrum [46]. In X-ray CT
applications, where the data is normalized by Lambert-Beer’s law using the same flat
field spectrum (I0), it is important that the spectrum does not change when collecting
the successive projections to avoid distortions in the measured LAC. Thus, especially in
long CT scans, cooling systems are required to stabilize the detector’s temperature and
overcome temperature build-up due to the incident X-ray source and room temperature
fluctuations.
When polychromatic beams are used, the changes in the spectrum shape are a
superimposition of the effects for the individual photon energies, which complicates
the modeling of the detector spectral response matrix that is typically employed for
corrections [47]. To characterize the spectrum distortion due to these interactions, a
synchrotron radiation source measurement was taken using the MultiX detector and a
70 keV X-ray beam. Fig. (3.5) highlights the experimental findings and the different
distorting interactions. Overall, the distortion can be summarized as a broadening of
the main energy peak, a background signal below the actual photon’s energy and peaks
around 140 keV which can be attributed to a two photons pile-up counting event.
The changes in the spectrum due to theses interaction depend on the source’s spectrum
shape and photon flux as well. The latter depends in turn not only on the source power,
but also on the materials the X-ray passes through. For this reason, in a CT scan,
where the data is normalized by taking the ratio between acquisitions with and without
the sample, there is a non-linearity in the spectral response of the detector leading to
wrong LAC calculation. Thus, a good spectral correction algorithm is essential in the
correct quantitative characterization of materials using SCT. In this work the correction
algorithm presented by Dreier et al. [48] is adopted in the data workflow (Paper II in the
appendix). This method, as compared with previously presented correction algorithms,
is flux dependent so that it is more flexible with respect to different source settings
and samples, and robust to pile-up and other flux-dependent effects.
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Figure 3.5: Spectral distortions suffered by a PCD measuring a 70 keV
synchrotron radiation source X-ray beam. The dashed red line corresponds
to the ideal detector response, considering the detector’s energy resolution.
Figure is taken from Paper II in the appendix.

3.1.3 Energy channels rebinning

Depending on the type of data analysis application, the number of energy channels in
the spectral datasets is a parameter that can be optimized for a more efficient data
processing workflow. Generally, algorithms that process datasets with fewer energy
channels have faster computation time thus, the number of energy channels shouldn’t
increase unless there is an advantage. Moreover, wider energy channels lead to an
increase of their respective photon count, which is relevant in SCT for reducing noise
artifacts due to low photon statistics and for increasing the contrast to noise ratio. Most
of the PCDs with a high number of energy channels (in some cases referred as hyper-
or multi-spectral) offer the possibility of manually setting the thresholds, assigning an
energy value to the energy channels that corresponds to the arithmetic mean between
the two respective adjacent thresholds. For quantitative spectral analysis, e.g. the
measurement of material’s LAC, the correctness of the energy value assigned to the
channel is key to an efficient data analysis, especially in cases of energy channels with
relatively high energy width. Fig. (3.6) highlights the difference in the two methods
for assigning the energy values to the new energy channels, exemplified for a rebinning
into 8 energy channels. Clearly, the deviation between the two means gets higher as
the number of new energy channels decreases due to a larger energy integration width,
and the weighted means represent the real spectrum better.
When using hyper-spectral PCDs it is recommended to collect the data with the
maximum number of energy channels and then, if desired, merge them into fewer
channels (K) using the following procedure exemplified for MultiX-ME100, which
considers the source spectrum and the detector spectral response. The merging is
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Figure 3.6: Plot of the initial spectrum measured with 128 energy channels
(red line), and the spectrum resulting from the energy rebinning into 8 energy
channels, with energy values defined as weighted means as in Eq. (3.2) (blue-
circled line) and with arithmetic mean (green crosses).

done by summing the radiation I detected in adjacent energy channels as follows
(exemplified for a rebinning from 128 to K = 64 energy channels):

IE
′
k = IE2k−1 + IE2k , k = 1, ..., K. (3.1)

The energy values assigned to the new energy channels E ′k are calculated by taking the
weighted mean according to the source spectrum as follows:

E ′k =
I
E2k−1

0 · E2k−1 + IE2k
0 · E2k

I
E2k−1

0 + IE2k
0

, k = 1, ..., K. (3.2)

Therein, I0 is the corrected flat-field measurement, i.e. the projection without the
sample being inserted, and corresponds to the source spectrum as measured by the
detector (also referred to as the system’s spectral response). It has to be noted that
the merging procedure in Eqs. (3.1 and 3.2) can be done for a power of 2 of new energy
channels (i.e. K = 1, 2, 4, 8, 16, 32) however, the principle can easily be adapted for
any number of new energy channels.

3.2 Spectral X-ray Computed Tomography

As today, in the fields of medical imaging, Non-Destructive Testing (NDT) and
generally in the industry, conventional CT scanners are made up with sources that
produce a polychromatic beam and energy-integrating detectors. When only the
contrast between different materials is of concern this is an efficient method. However,
it is defective for quantitative characterization of materials. This is because the
material property directly measured in a CT scan is the LAC, which is an energy-
dependent property, whereas the energy information is lost at the detectors during the
signal integration. To calculate the effective LAC of the materials, system spectral-
response functions modeling the source spectrum and the detector spectral response
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are required to find a pseudo-monochromatic energy point for the LAC (see Fig. (3.7
a)).
Other physical properties of matter can be extrapolated from the LAC. It has for long
been known [49] that the energy-dependent LAC, µ(E), can be expressed as:

µ(E) =
N∑
n=1

anfn(E), (3.3)

where {an, n = 1, 2, ..., N} are the coefficients of a set of basis functions {fn(E), n =

1, 2, ..., N} and N is an arbitrary chosen number of basis functions. Depending on
the choice of the basis functions of Eq. (3.3), several image processing algorithms
for quantitative material analysis have been proposed and will be described later in
this section. Still, the groundbreaking step towards techniques able to extract more
information with energy-selective CT scans is the representation of the attenuation
coefficient into the dual basis function decomposition by Alvarez and Macovski [5].

Figure 3.7: a) In conventional X-ray CT, the signal is integrated over all
energies. Center. b) In Dual Energy X-ray CT, two different spectra are
used to probe the sample attenuation at a low- and high- mean energy. c) In
spectral X-ray CT, single photon counting detectors discriminate the incoming
radiation in distinct energy channels with mean energy depending on the set
energy thresholds.

The dual basis decomposition inspired the emergence of the Dual-Energy CT (DECT)
technique, which would soon become the new state-of-the-art method for quantitative
material characterization using X-ray CT. DECT (see Fig. (3.7 b)) is performed either
by a pair acquisitions with energy integrating detector and two different source spectra
using different filters or acceleration voltage settings, or simultaneously with a single
source spectrum and employing dual-energy sandwich detectors. This technique has
the advantage of contrast enhancement and enabling the material characterization into
material dependent physical properties.
The first implementations of energy discriminating PCDs in X-ray imaging, however,
put the concept of spectral X-ray CT under the spotlight of many research groups.
Fig. (3.7 c) illustrates the so-called Spectral X-ray CT (SCT), which probes using
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3. Spectral X-ray Imaging Techniques and Characterization Methods

PCDs the linear attenuation coefficient (LAC) at multiple energies defined by the
energy thresholds. In the literature, this technique can also be found named as Multi-
Energy X-ray CT (MECT). For a high enough number of narrow energy channels, a
SCT scan is ideally approaching a set of monochromatic scans. Thus, each projection
defined in Eq. (2.20), becomes a set of energy resolved projections {REk

}:

REk
(~x′) = −log I

Ek(~x′)

IEk
0 (~x′)

= −
∫
t

µ(~x,Ek)d~x, with k = 1, ..., NE; (3.4)

where ~x′ is the detector pixel’s position and NE is the number of energy channels of
the detector. The most direct approach with SCT is to perform reconstructions for
each energy channel of the energy-resolved projections resulting in the retrieval of the
energy spectrum of the materials’ LAC. Since the emission of X-ray photons from the
source follows a Poisson distribution and has a defined spectrum shape, each energy
channel has a relative noise level that depends on the photon source flux in that energy
channel. Clearly, wider energy channels integrate more photons and thus have lower
noise level. Instrumental settings of a SCT scan thus have a trade-off between spectral
resolution and noise level. To compensate for this, a study presented by Rigie et al.
proposed to use total nuclear variation as a regularizer for reconstruction of spectral
sinogram, showing greater performance than channel-by-channel reconstructions.
Most of the works in the current literature use detectors with up to eight energy
channels, each of a width of several keVs, which is far from the ideal assumption
of monochromatic acquisition sets. In this case, a source and detector spectral
response model needs to be applied to correct for beam hardening and to assign the
correct energy values to the respective energy channels in which the linear attenuation
coefficients are calculated. Alternatively, one can use the basis function decomposition
shown in Eq. (3.3) and substitute the LAC in a pre-reconstruction step in Eq. (3.4)
resulting in the reconstruction of the object in terms of the coefficients, an(x′).
Obviously, the LAC decomposition can also be performed in a post-reconstruction step.
The advantage of a pre-reconstruction is that it typically reduces the computational
time as the number of reconstructions is determined by the number of basis function
and coefficient pairs, rather than the number of energy channels. However, the accuracy
of this method depends on how well the basis function can represent all the possible
materials.

3.2.1 Dual Basis Decomposition

Several choices for the basis function have been suggested however, the most influential
was the one presented by Alvarez and Macovski [5]. They found good match with
experimental data (without K-edges) by fitting Eq. (3.3) with a dual set of basis
functions, consisting of the photoelectric absorption and Klein-Nishina functions:

µ(E) = aphfph(E) + aKNfKN(E). (3.5)
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3.2. Spectral X-ray Computed Tomography

Figure 3.8: Dual basis composition of the LAC of water and silicon using the
photoelectric absorption, fph, and the Klein-Nishina, fKN, functions.

As discussed in chapter 2, the photoelectric absorption basis function depends on the
energy as fph(E) = 1/E3, whereas the Klein-Nishina function is defined by:

fKN =
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
log (1 + 2α)

]
+

1

2α
log (1 + 2α)− 1 + 3α

(1 + 2α)3
. (3.6)

They also expressed the dependence of the coefficients on the physical parameters of
bulk density ρ and atomic number Z:

aph ≈ K1
ρ

A
Zn, n ≈ 4;

aKN ≈ K2
ρ

A
Z

(3.7)

where K1 and K2 are constants and A is the atomic weight. Fig. (3.8) features an
example of the dual basis decomposition into photoelectric absorption and Klein-
Nishina, exemplified for water and silicon materials. Therein, the constants that were
best fitting the LACs reported by NIST were K1 = 28.0, K2 = 0.40 for water and
K1 = 24.7, K2 = 0.30 for silicon, setting the exponent to n = 4 in Eq. (3.7).
Alvarez and Macovski showed for example, that aph and aKN can be measured with a
DECT scan using a pair of a low- and high- energy scans. The underlying assumption
is that, since the low-energy part of the spectrum is dominated by photoelectric
absorption interactions whereas the high-energy part of the spectrum is dominated by
incoherent scattering events, the low/high-energy scan pairs can be used to measure
the respective the coefficients pairs, {aph/aKN}, in Eqs. (3.7). The energy distribution
that models the source spectrum and detector response of the two scans are required to
produce a pair of pseudo-monochromatic measurements. Another method, presented
by Ying, Naidu and Crawford [6], extended this technique to retrieve the pair of
material features {µhigh,Zeff}, where µhigh is the attenuation coefficient measured
with the high-energy source spectrum and Zeff is the effective atomic number. The
commonly-used definition of Zeff , used to approximate materials composed of different
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elements into a single non-integer value for the atomic number, is found in [50]:

Zeff = p

√√√√ N∑
i=1

riZ
p
i , (3.8)

where N is the number of elements in the material and ri is the relative electron
fraction of each element, defined by:

ri =
niZi∑N
j=1 njZj

, (3.9)

where n is the number of atoms with the same atomic number. The exponent p is
a free parameter that can be tuned depending on the set of materials and spectral
region and was originally set to p = 2.94. As of today, the most recent, accurate
and precise documentation of material characterization from DECT was presented by
Azevedo et al. [8]. They proposed a new material feature space, composed by the
pair of electron density ρe and a redefinition of the effective atomic number, Ze. The
method shows great advantage compared with the previous techniques as it estimates
system-independent physical properties of materials. In this approach, the total mass
cross section is converted into electronic cross section (cm2/e−mol), as:

σe(Z,E) =
A(Z)

Z
σ(Z,E), (3.10)

where A(Z) is the atomic mass (g/mole) of the element Z. Likewise, the bulk density
ρ (g/cm3) is converted into electron density ρe (e−mol/cm3), using the relation:

ρe =
Z

A(Z)
ρ. (3.11)

For a compound material, consisting of a number ni of N distinct elements i, the
electronic density is extended from Eq. (3.11) as:

ρe =

∑N
i=1 niZi∑N
i=1 niAi

ρ. (3.12)

The effective atomic number, Ze, presented by Azevedo et al. [8] is a redefinition of the
Zeff in Eq. (3.8). It is represented by a non-integer atomic number that corresponds to
an artificial element, for which the interactions are assumed to be modeled by the X-ray
attenuation cross sections. The cross sections for the artificial element Ze are obtained
by a linear interpolation between the cross section of the two adjacent elements in the
periodic table:

σe(Ze, E) = (1− ε)σe(Z ′, E) + εσe(Z
′ + 1, E). (3.13)

Therein, Z ′ is the lower adjacent element Z ′ = floor(Z) and ε is the difference
ε = Z ′−Z. In this feature space of the effective atomic number and electronic density,
Eq. (2.7) for the linear attenuation coefficient of a material m becomes:

µm(E) = ρme σe(Z
m
e , E). (3.14)
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This technique was shown by Azevedo et al. [8] to be superior to its precedents, with
good accuracy and precision for a set of materials with Ze < 15 and well known-
physical parameters. The general interest is towards system-independent techniques
that can be implemented in any scanner. However, the performance of these techniques
depends on the choice of the pair of spectra used for the DECT acquisitions and the
correct modeling and characterization of their respective system spectral responses. For
these reasons, these techniques define a group of materials within a limited range of
Ze for which the characterization is accurate and precise but is inaccurate for others.
For example, the same pair of spectra that was used to characterize materials with
Ze < 15, may not be efficiently used with highly attenuating materials as a different
pair of spectra would be more proficient. Nevertheless, this dynamic range is often not
required in real application. For example, in security screening, materials that cannot
be characterized using this technique are often metals or alloys for which the shape
detection is enough in terms of threat detection. A more concerning limitation is that
the approximation of compound materials into Ze is not valid for materials including
elements with K-edge. An example of such a material is Polyvinyl Chloride (PVC),
which can contain lead particles as stabilizer, for which a K-edge discontinuity is found
at 88 keV. Mixture compounds and inhomogeneous materials are also not efficiently
approximated by the Ze as this feature depends on the concentration of the different
materials. Similarly, granular materials yield different ρe values depending on the void
fraction in the material.

3.2.2 Material Basis Decomposition

Material basis decomposition is a worth to note basis function decomposition of
Eq. (3.3). In these methods, the basis functions are represented by energy dependent
linear attenuation coefficients of reference materials fZ , typically with very different
attenuation properties. The other materials are then represented in terms of the
coefficients aZ found for the reference materials. Brambilla et al. [51] for example have
used a dual function set composed of the measured energy resolved LAC of polyethylene
(PE) and polyvinyl chloride (PVC), and a trial function set adding gadolinium’s LAC,
which presents a K-edge discontinuity at 50.2 keV. The trial basis function set can be
represented in Eq. (3.3)’s form as:

µ(E) = aPEfPE(E) + aPVCfPVC(E) + aGdfGd(E). (3.15)

The advantage of this model is that is more flexible than the photoelectric absorption-
Compton and it can be more accurate for certain applications, as the basis functions
are modeled with real data from the same scanner. Moreover, it can represent the LAC
of materials with K-edge discontinuities. However, this method is system-dependent
as it is built upon other reference measurements.
Taking advantage of the high number of energy channels of recent PCD realizations,
Babaheidarian and Castañón [52] proposed a spectral decomposition method called
SPECK, that can be considered as a combination of the dual and material basis
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decomposition. SPECK adds to the standard photoelectric absorption and Klein-
Nishina basis functions the energy-dependent LAC of a number (K), of elements with
the K-edge in the detector’s energy range. These are the additional basis functions,
denoted as fk(E). In this approach Eq. (3.3) can be rewritten as:

µ(E) = aphfph(E) + aKNfKN(E) +
K∑
k=1

akfk(E). (3.16)

This choice of basis functions still has the property of being a linear independent set
of functions, due to the energy dependence of the K-edge discontinuities relative to
each element’s atomic number Z. The advantage of using this basis function set is
that it can fully represent materials exposed to K-edge discontinuities. As suggested
by Babaheidarian and Castañón for example, Baratol, an explosive compound which
combines barium nitrate (Ba(NO2)3) with TNT, has a K-edge for barium at 38 keV

and would not be characterized correctly using either the standard dual-basis function
or the approximation into effective atomic number Ze.

3.2.3 K-edge Imaging

In chapter 2 it was discussed how certain materials can be exposed to discontinuities
in their LAC’s function of energy, due to the K-absorption edges. In conventional
CT, the X-ray spectrum is integrated, and such discontinuities cannot be resolved
thus, the additional information exposed by this material property is lost. However, in
spectral CT, using detectors with an energy resolution that is high enough to resolve
K-edge discontinuities, this represents an additional material feature that can be used
for characterization and contrast enhancements. Several recent works [11, 14, 15] have
proposed the use of iodine or gadolinium as a contrast agent, since their K-edge at the
energies of respectively 33.16 keV and 50.23 keV is within the detectors’ energy range.
Using this technique, the contrast between two materials with similar attenuation
coefficient properties but different K-edges can be drastically enhanced. Another
work from Si-Mohamed et al. [53] demonstrated the determination, via spectral X-
ray K-edge imaging, of the bio-distribution of gold nanoparticles in vivo. The current
challenges in these techniques are mainly represented by the spectral resolution and
the detection’s energy range of the current PCDs that can work with relevant photon
flux. For example, iodine, which is a practical and convenient contrast agent in biology
studies, has the K-edge discontinuity in an energy range where CdTe based PCD has
low spectral resolution due to the distortion effects discussed earlier in this chapter.
Nevertheless, this technique shows great potential of improvement, both in the advance
of the hardware and the data processing algorithms.
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3.3 Spectral ρe/Ze Estimation Method (SRZE)

In this work the focus is on a novel method developed for the estimation of the physical
properties of electron density, ρe, and effective atomic number, Ze, of a material from
its spectral LAC measurements. The detailed description of the method can be found
in the Paper III of the appendix section. Fig. (3.1) highlights the overall workflow of the
data processing, which starts with the correction algorithm briefed in Section. 3.1.2 and
fully detailed in Paper II for the correction of the detector’s spectral response. In case
of desired rebinning the data is processed using Eqs. (3.1 and 3.2) of Section. 3.1.3. The
projections are then converted into the attenuation coefficient domain using Eq. (3.4)
and corrected for scattering, when necessary, using the method presented below in
chapter 5.
Depending on the geometry parameters of the CT scan, different reconstruction
algorithms and techniques have been used. In case of slice reconstructions with fan-
beam geometry and a high number of projections we used the filtered-back projection
(FBP) method using LTT [54] software. With the same geometry, but a limited
number of projections (below 100) we used a custom implementation of the Algebraic
Reconstruction Technique with Total Variation regularization (ART-TV) presented
by Sidky et al. [55] as it has shown better reconstruction quality. In case of cone-
beam collimation of the source we used a GPU implementation of the Simultaneous
Iterative Reconstruction Technique (SIRT) [56] using ASTRA toolbox [57] for enhanced
computational speed. Note that in this work reconstruction were performed on an
energy channel-by-channel basis.
The individual materials are segmented from the reconstructions in their respective
Region Of Interest (ROI) surfaces or volumes using the spectral algorithm presented
by Kehl et al. [58] For each material, the energy-dependent LAC and its respective
error is found by calculating the median value and the standard deviation within the
material’s ROI for each energy-resolved reconstruction.

Energy channel thresholding

Once the LAC’s mean value and standard deviation are found for each material, the
analysis can start. Fig. (3.9), represents an example of silicon’s LAC measured with
and without the application of the detector spectral correction algorithm presented in
section 3.1.2, as well as the corresponding ground truth calculated using reference
values of silicon’s effective atomic number and electron density. The correction
algorithm helps correct the LAC towards the ground truth values at the low energies,
where the contrast between organics compounds is highest. The error increases
towards the low- and high-energies due to the lower photon statistics in these energy
channels. Likewise, the deviation of the LAC from the reference increase towards
the low- and high-energies due to a incomplete restoration of the distortions by the
correction algorithm. To estimate the ρe and Ze of each material, the method requires
an automated selection of the low- and high-energy thresholds, EL and EH, which
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Figure 3.9: Energy resolved LAC, exemplified for Silicon. The solid black
line is the ground truth obtained by using the ground truth values of ρe and
Ze in Table 1, using NIST cross-sections. The dark and light blue lines are the
LAC calculated with and without applying the spectral correction algorithm in
Section 3.1.2 respectively. The width of the error-bars represents the respective
standard deviation values. The vertical red dash-dotted lines are the low- and
high-energy thresholds EL and EH found by the energy channel thresholding
step.

correspond to energy thresholds that exclude bins in which the LAC is affected by low
photon statistics and pulse pile-up. For all the materials scanned in this work, these
two thresholds were calculated by assuming the LAC to be monotonically decreasing,
and with no inflection points in the incoherent scattering regime (E > 60 keV). This
assumption is useful, in case of a PCD, for materials (i.e. 1 6 Ze 6 42) that do
not have a K-edge within the detector’s energy range. The low-energy threshold EL

is determined by taking the first derivative of the estimated LAC (∂µ(E)/∂E) and
locating the nearest zero intercept closest to the lowest-energy bin, as it corresponds
to a relative maximum with a change from increasing to decreasing. The high-energy
threshold EH is determined by taking the second derivative of the estimated LAC
(∂2µ(E)/∂E2), and locating the bin nearest the zero intercept, closest to the highest
energy bin, as it corresponds to an inflection point. Fig. (3.9) also illustrates the energy
thresholds determined from the measured LAC of silicon.
The estimation is performed by solving a constrained minimization of a cost function
g(E):

arg min g(E). (3.17)

The cost function is defined as g(E) = |µ̃(E) − µ(E)|2, that is, the squared
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distance between the measured LAC, µ̃(E), and its relative theoretical definition µ(E),
parametrized by ρe and Ze as in Eq. (3.14). Thus, for a spectral acquisition Eq. (3.17)
becomes:

arg min
{ρe,Ze}

f∑
k=i

λEk
|µ̃(Ek)− ρeσe(Ze, Ek)|2. (3.18)

Therein, λEk
are the energy weights, computed as the reciprocal of the variance (s2)

of each material’s LAC in their ROI, λEk
= 1/s2(µ̃Ek

). These can be interpreted as
the weight given to each energy bin Ek into the estimation of the material’s features.
Note that the summation runs from the low- and high-energy thresholds EL and EH,
found as described in the previous section. The minimization process in this work
was performed with MATLAB®’s routine function fmincon with solution boundaries
ρe = 0 − 15 e−mol/cm3 and Ze = 1 − 99 and initial guesses ρ0

e = 1 e−mol/cm3

and Z0
e = 7. No dependency on the starting values was observed. The runtime is

approximately 1 second per LAC.

3.4 Energy-Dispersive X-ray Diffraction

In the previous chapter, the XRD method for characterization of materials was
presented. The goal of the technique is to measure the intensity of the radiation
undergoing elastic scattering interactions as a function of the momentum transfer Q,
which is parametrized by the photon’s wavelength, λ, and scattering angle, 2θ, as in
the following equation:

Q =
4π

λ
sin

(
2θ

2

)
. (3.19)

In most cases, an XRD experiment is performed at a large-scale facility, where
monochromatic and powerful beams with extremely high photon flux are available.
Laboratory-scale X-ray instruments on the other hand, implement X-ray tube sources
that produce a polychromatic beam, which makes it impossible to correctly determine
a single energy value as input of Eq. (3.19). A possible solution could be the use
of monochromator components, as used for synchrotron radiation sources, which
select only certain wavelength windows however, for laboratory scale photon fluxes
they would reduce drastically the photon count slowing the speed of measurements.
A more promising solution is the Energy Dispersive X-ray Diffraction1 (ED-XRD)
technique, which take advantage of the simultaneous spectral resolution of energy
resolving PCDs. In this technique, a spectral measurement can be considered as a
simultaneous scan of a set of monochromatic acquisitions, each at a defined energy
that depends on the detector’s specifics. For example, an ED-XRD acquisition with
a PCD that discriminates into 128 energy channels, would lead to 128 individual

1The diffraction term is due to the notoriety and similarities with the X-ray Diffraction (XRD)
technique however, it doesn’t strictly require crystalline samples.
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scattering functions Q(E). The individual energy-resolved scattering functions are
normalized and merged in a final scattering function Q̃(E). While this technique can
easily be applied for homogeneous materials, more complex samples including multiple
materials represent a challenge due to the overlap of scattering signals from different
materials within the X-ray beam’s optical path. Techniques under development in the
field of security screening for samples such as luggage are mainly found implementing
collimators or coded aperture to resolve the scattering signal at each position along the
optical path of the incident collimated beam [59]. Using a pencil-beam collimation,
a raster scan throughout the sample is required for a complete investigation of the
object. Alternatively, the beam can be steered to probe suspicious volumes detected
in previous steps. The spectral resolution of the detectors, together with source flux,
is indeed the major limitation of this method for material characterization.
For this work, ED-XRD was used for the material characterization into diffraction
pattern of several innocuous and threat materials commonly found in luggage. The
scans were carried out using a single pixel PCD, manufactured by AMPTEK, called
XR-100CdTe. This detector is a CdTe semiconductor-based diode, with an energy
resolution at 122 keV of 1.5 keV Full Width at Half Maximum (FWHM), and the
possibility to threshold the photons into a maximum of 2048 energy channels of
0.0851 keV width. The high spectral resolution property of this detector is key in
the success of the ED-XRD measurement in order to resolve the diffraction peaks and
features, despite the relatively low field of view of 5 mm2 × 5 mm2, which makes it
hard to implement in high-throughput industrial scanners. For these experiments, the

Figure 3.10: Elastic scattering signal of water, measured with an in-house
ED-XRD instrument (solid blue) and a publicly available reference from
synchrotron radiation source measurements (solid red).

detector was mounted on a goniometer motor able to rotate it at a fixed distance with
respect to the sample position. Several scattering intensity spectra were collected at
different scattering angles to equally sample the intensities at different momentum
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transfer values within the relevant range. These, were normalized, merged and
corrected for incoherent scattering using the analytical approximations by Pálinkás [30].
Fig. (3.10) presents an example of an ED-XRD measurement result for water. The
water’s diffraction pattern obtained with our in-house instrument built for ED-XRD
acquisitions (section 6.1) is compared to a synchrotron radiation measurement from
reference [60]. A good match was found between the two scattering functions, with
a normalized root-mean-squared-error (NRMSE) of 0.03. The same technique and
experiment setup were used to obtain the scattering function for the other materials,
which are used in this work for modeling the elastic scattering in the simulation
framework in chapter 4.
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Tracing Simulations using

McXtrace 4
This chapter describes the software package used for the Monte Carlo (MC) X-ray
tracing simulations of X-ray experiments. A new sample component is developed,
which can be used to model interactions between photons and samples that can be
composed of multiple different materials with a given shape. This component is used
for correction steps in the SCT workflow to reconstruct and characterize the object
scanned, to design the optimal parameters for the X-ray instrumentation and lastly to
train the Convolutional Neural Network (CNN) architectures in the next chapter. The
component, as well as other add-ons for simulation of spectral X-ray CT experiments
can be found in the GitHub repository [61].

4.1 Toolkit for Simulation of Spectral X-ray CT
Measurements

The simulations framework adopted for this work is McXtrace [16], a software package
for MC simulation of X-ray experiments by ray-tracing methods. Rather than tracing
individual photons, in this framework rays are represented by photon entities, and
their interactions are simulated by probabilistic weight factors and tracing parameters
such as direction, wave-vector, polarization vector and phase. The individual parts
composing the instrument (e.g. sources, slits, detectors, samples, etc.) are identified
as so-called components that can be separately implemented in comparatively few lines
of code and interact with each sampled ray by applying weight factor operations or
by altering their parameters. For this work, we have developed a sample component
suitable for spectral X-ray imaging, with explicit treatment of the different physical
interactions (described in chapter 2) of X-rays incident on objects composed of multiple
materials of a given shape. The sample is initialized by loading a volumetric discretized
phantom of the object that is made up of a finite number of voxels of a defined
size in a 3D rectangular parallelepiped grid representing the bounding box. In this
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Data: Sample’s volumetric phantom and densities ρi, cross sections σi(E) and
scattering functions I iela(Q) and I iinc(Q) for each material i.

Result: Energy resolved total and scattering signal from the interaction
between X-rays and the sample.

Initialize sample and load ray parameters.;
Set the step length sl.;
while ray is within the sample do

if ray is scattered then
if incoherent scattering then

Sample scattering angle θ from incoherent DCS (Eq. (2.18));
Update ray direction according to θ;
Update energy due to Compton shift with Eq. (4.2);

else
Sample scattering angle θ from I iela(Q);
Update ray direction according to θ;

end
end
Read photoelectric absorption attenuation µ(E) = ρiσiph(E);
Ray travels the step length sl;
Increment the cumulative attenuation due to photoelectric absorption along
the trace: lµ(E) = lµ(E) + slµ(E);

end
Apply final attenuation to the ray: e−µ(E)l;

Algorithm 1: Pseudo-code of the McXtrace sample component.

way, samples composed of objects of complex shape require the same computational
cost as simple geometries. Moreover, since the reconstruction images rendered and
employed in the forward and back projections of iterative methods are discretized in the
same way, the format is well suited for reconstruction algorithms and their parameter
optimization. The drawback of the voxel representation, when compared with other
3D volume rendering techniques such as triangular mesh or error quadrics [62], is
that it is a resource intensive method and high-resolution simulations may require
an object phantom voxelization, of which the size overrides the software or hardware
capabilities. For example, a 1 m3 volume with 1 mm3 feature resolution for an object
with a relatively simple shape requires 1.2 GB in the memory while it only takes 200 kB

and 1.2 MB for quadrics and triangular meshes respectively [63], due to the volumetric
nature of voxelization. Depending on the application, different rendering methods have
higher efficiency and one should choose accordingly. Another advantage of the voxel
representation in this ray-tracing method is that the multiple scattering events, i.e.
when a photon reaches the detector after more than one scattering event in the same
lifetime, can be easily included in the model. Commonly in the literature, the ray
tracing methods are detector driven, meaning that the scattering noise probabilities at
the detector are calculated starting from the given coordinates for the detector pixels.
While this can be advantageous in terms of computational cost, it limits the modeling

37



4. Monte Carlo Spectral X-ray Tracing Simulations using McXtrace

of multiple scattering interactions that may have a significant impact on the total
scattering intensity when relatively large samples are considered. The value in each
voxel holds an integer number i = 0, 1, 2, ..., N which labels a specific material.
Algorithm 1 presents the pseudo-algorithm of the sample component, responsible of
the tracing of the rays through the sample component.
For each material, lookup tables of various interaction likelihoods are required. The

Figure 4.1: Elastic scattering function of water, measured with an in-house
ED-XRD experiment (solid blue) and using analytical approximation for a gas
of non-interacting atoms with the effective atomic number of water Ze = 7.45.

first lookup table is composed of the energy parametrized photon cross sections for
the possible interactions between the X-ray beam and the sample; i.e. photoelectric
absorption σph(E), elastic scattering σela(E) and incoherent scattering σinc(E). For X-
rays spectra that go up to several MeVs, nuclear and electron pair production photon
cross sections are loaded as well. These values are used to determine the likelihood of
each photon interaction in the component as they pass through matter and could
for instance be loaded from the database administrated by the National Institute
of Standards and Technology (NIST) [64]. In a simplified approach, assuming that
the scattered radiation is deflected out of the detector’s range and thus, extinct at
the sample, the photoelectric absorption cross section can be replaced by the total
attenuation cross section (σtot =

∑
i σi), allowing the user to skip the following

component’s treatment of the scattering and thus, faster performance.
The remaining two lookup tables are used to sample the elastic and incoherent angular
deflection of the ray trajectory when a scattering event occurs. In the case of elastic
scattering, the scattering angle determination is modeled by the scattering function,
i.e. the intensity of the scattering as a function of the momentum transfer. In this
approach, the scattering function is treated as the probability distribution function
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(PDF) of the momentum transfer ~Q, of amplitude:

Q = |~Q| = 4π

λ
sin

(
2θ

2

)
(4.1)

where λ is the wavelength of the incident X-ray and 2θ is the detected scattering
angle (i.e. between the incident and the scattered ray). The scattering vector’s
amplitude Q can be sampled by the inversion method [65], which involves computing
the Cumulative Distribution Function (CDF) of the distribution and then inverting
that function. Since the latter is discrete, the computation of the CDF is simply done
by adding up the individual probabilities (normalized to sum 1) for the various points
of the distribution. The detected scattering angle 2θ is derived from the sampled Q

using Eq. (4.1) since the energy of the incident ray is a known parameter. Most of

Figure 4.2: Simulation of isolated elastic scattering Iela using an experimen-
tally measured (exp superscript) scattering function distribution and analytical
approximation (ana superscript). For the top row, the collimation of the beam
is set to pencil beam, visible as the yellow dot in the left figure. For the bottom
row, the collimation of the beam is set to cone beam, which makes the water
cylinder visible.

commercially available software for X-ray tracing used for the scattering estimation
use simplified models for the angular deflection due to elastic scattering, which do not
consider the molecular structure of the materials. Analytical approximations such as
the ones presented by Hajdu [29] are explicitly expressed for a gas of non-interacting
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Figure 4.3: Sketch of the simulation of the XRD experiments with two
different collimation settings. The first is the pencil beam (black line), obtained
by using a slit collimator with small aperture size whereas the cone beam (light
blue cone) is obtained by opening the slits further.

atoms, leading to a scattering function that has a maximum for forward scattering
and decreases monotonically with the scattering angle. However, depending on the
phase and molecular structure of materials the scattering function takes unique shapes,
as discussed in chapter 2. Fig. (4.1) highlights this discrepancy, showing the elastic
scattering function of water measured with ED-XRD, and calculated using Hajdu’s
approximation for a gas of non-interacting atoms using the effective atomic number of
water Ze = 7.45.
To further demonstrate the difference between the two models in imaging applications,
we performed a simulation of an XRD experiment using a water filled thin cylinder
as a sample. Fig. (4.2) shows the elastic scattering signal at the detector using the
two different models, for two different X-ray beam geometries: pencil and divergent
cone-beam geometries (see geometry sketches in Fig. (4.2)). Clearly, the simulation
output using the analytical model for gas is significantly different. In general, the
use of analytical approximations not considering the molecular structure leads to an
overestimation of scattering within the area subtended by the sample.
In this work, the distribution for Iela(Q) has been experimentally determined for a list
of common materials by the ED-XRD method as described by Kehres et al. [66] and
stored into a feature library.
For the simulation of incoherent scattering, due to the considerable amount of backward
and high scattering angles, the same models used for elastic scattering cannot be used.
Firstly, the incoherent scattering analytical approximations by Hajdu [29] and the later
extension by Palinkas [30] are only defined for a value range of the momentum transfer
for which the elastic scattering events are relevant, as their end goal is to correct for
background incoherent scattering in XRD measurements. Thus, backwards and high
angle scattering events are not included in their models. Secondly, an experimental
setup for measuring the incoherent scattering and obtaining an incoherent scattering
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Figure 4.4: Simulation of isolated incoherent scattering Iinc using the
scattering function model by Baró et al. [28], for the pencil- and cone-beam
collimation incident on a water cylinder sample (similar to Fig. (4.2)).

function parameterized by momentum transfer is complicated by background noise
from other instrument components and physical constraints in the positioning of the
detectors. The scattering angles for incoherent scattering Iinc(Q), are sampled using
the sampling method presented by Baró et al. [28]. In their model, the incoherent
scattering function in Eq. (2.18) is determined using analytical approximations that
are only dependent on the atomic number, Z. For molecules, rather than using the
approximations by Baró et al. for the incoherent scattering functions, one would
need to calculate molecular incoherent scattering. However, in this work’s approach,
molecules and compounds are approximated using an effective atomic number Ze,
analogous to what is done for the photon cross section in Eq. (3.13).
For both elastic and incoherent scattering, the azimuthal angle φ is uniformly sampled
in the interval (0, 2π), since the radiation emitted by a conventional X-ray tube is
almost fully unpolarized. Finally, when the scattering event is determined to be
of incoherent type, the ray’s energy parameter is updated to Einc according to the
Compton energy shift relation [67]:

Einc =
E

1 + E
511keV(1− cos(θ))

. (4.2)

4.2 X-ray Scattering Estimation in SCT using
McXtrace

In X-ray CT, one of the physical interactions that leads to artifacts in the
reconstructions and to a wrong characterization of the material properties is the
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scattering noise. In an SCT scan, the total detected signal for each projection, I(~x′, E),
is a function of the pixel position ~x′ and energy E, and can be written as:

I(~x′, E) = Ip(~x′, E) + Is(~x′, E) + Ibkg(~x′, E) (4.3)

where Ip(~x′, E) is the primary signal, which is the effective radiation transmitted
through the sample; Is(~x′, E) is the scattered signal, composed of the photons being
scattered by the sample, for which the scattering angle is not high enough to escape
the detector. Fig. (4.5) sketches the different contributions to the total signal in a CT
scan.
Lastly, Ibkg(~x′, E) is the background contribution, composed of the photons being
scattered or reflected from the environment and collimating components. In this work,
the latter term is not included in the simulation framework as it is highly dependent
on the setup of the instrument, and the system can be optimized to minimize its
contribution.

Figure 4.5: Visualization of scattering noise in X-ray CT. The total signal
detected I, is a sum of the radiation transmitted through the sample (Ip) and
the scattered photons that do not escape the detector’s field of view (Is).

In SCT, when the signal is converted to LAC using the Lambert-Beer’s law, by
considering the scattered noise radiation, Eq. (3.4) becomes:

REk
(~x′) = −log I

Ek(~x′)

IEk
0 (~x′)

= −log
IEk

p (~x′) + IEk
s (~x′)

IEk
0 (~x′)

, with k = 1, ..., NE. (4.4)

It follows from this equation that the scattered radiation in SCT leads to a global
dampening of the LAC which increases with the amount of scattering, as it shows up
as an additive term to the transmission. The impact of the scattering noise in an X-ray
CT measurement is quantified with the Scattering to Primary Ratio (SPR), which is
the ratio between the scattering and primary signal:

SPR =
Is

Ip

. (4.5)

It follows from Eq. (4.5) that the SPR increases with the attenuation of the sample
since this corresponds both to a decrease in the primary signal and an increase of
the amount of scattering noise. Thus, the impact of scattering noise increases with
the sample size, as higher optical paths of X-rays increase the likelihood of scattering
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and absorption events. Likewise, the scattering noise depends on the effective atomic
number and electron density, as both absorption and scattering cross sections increase
leading to higher Is and smaller Ip. Another instrumental parameter that affects the
SPR is the distance between the sample and the detector, often referred to as air gap.
The amount of elastic and incoherent scattering noise in X-ray CT scans depends on the
air gap. Generally, smaller air gaps correspond to higher magnitude of the scattering
noise as the value range of the photon’s scattering angle in order to still hit the detector
gets higher. The last factor is the geometry of the X-ray acquisition, in terms of the
size of the solid angle irradiating the sample and the size of the detector. Referring
to the standard geometries, a cone-beam collimation with a 2D flat panel detector is
exposed to a significantly higher amount of scattering when compared with fan-beam
collimation with a 1D-array detector, due to both a higher amount of scattering from
the sample and a larger area of detection that allows fewer scattered photons to escape
the detector. On the other hand, the latter geometry is relatively less efficient for
three-dimensional evaluation of samples as it requires a translation stage either for
both the X-ray source and detector array or the sample stage.
For significantly high SPR, uncorrected scattering noise leads to a loss of contrast
between different materials, and a wrong material characterization due to the decrease
in the calculated LAC. A scattering correction method attempts to restore the primary
radiation by suppressing the scattering term in Eq. (4.4). This can be achieved
with hardware solutions such as the anti-scatter grid. This component is made up
of absorbing plates parallel to the incident beam direction, which block the photons
reaching the detector with an incident angle due to a scattering interaction. While the
anti-scatter grids suppress the scattered radiation efficiently, they have the drawback of
reducing the overall relevant photon flux. Thus, employing anti-scatter grid solutions
requires an increased X-ray dose at the sample to compensate and have the ideal
photon statistics for optimized contrast to noise ratio (CNR). For this reason, a
software implementation that can estimate and correct for the scattering noise from
the projections before the reconstruction step of CT is ideally the preferred solution,
as it does not introduce a trade-off between scattering suppression and an increased
X-ray dose. Various methods for scattering noise estimation and their description can
be found in the literature [68], which are based on the use of scattering convolution
kernels applied to the transmission term. However, the gold standard method for the
scattering noise estimation is using Monte Carlo X-ray tracing simulations as they
explicitly model the physical interactions between photons and matter.
In this work, McXtrace and the sample component introduced in the previous section
of this chapter are used to estimate the scattering noise from SCT experiments. The
speed performance of the scattering estimator is similar to what has been reported
in some previous recent works for a sample of similar geometrical size [69]. For the
simulation of CT experiments, several projections can be simulated in parallel in multi-
core architectures to increase efficiency. To reduce further the computational efforts
of the MC simulations, a 3D Gaussian blurring is applied to the spectral scattering
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Figure 4.6: Visualization of the effect of the 3D Gaussian blurring in real-
space and energy. Left: Starting from the top frame towards the bottom are
shown the energy integrated scattering estimate S̃s(~r), the result of the filtering
and the reference S̃ref(~r). Right: The spectral distribution of the respective
spatial integrated scattering projections S̃s( ~E).

projections S̃s(~r, E), inspired by the accelerated simulation method present by Colijn
and Beekman [70]. This method relies on the assumption that the scattering intensity
has a smooth spatial profile and introduces a trade-off between noise and blur (variance
and bias) in the simulation output using fixed bandwidth kernel density estimation with
a Gaussian kernel [71]. The method implements a 3-D Gaussian kernel and vectorial
form of the blurring width ~σ = (σz, σy, σE), composed of the individual blurring
widths in the z− and y− axes of the projection image and the energy domain. The
optimal choice of ~σ depends on the number of rays being sampled and the geometrical
parameters of the system. For this work, the blurring widths have been found on a
case-by-case basis by the minimization of the combined Root Mean Squared Error,
RMSE(σz, σy, σE) between the simulation output, S̃s(zi, yj, Ek), and a reference image,
S̃ref(~r, E), obtained by reaching simulation convergence:

RMSE(σz, σy, σE) =

√√√√ Nz∑
i=1

Ny∑
j=1

NE∑
k=1

(S̃s(zi, yj, Ek)− S̃ref(zi, yj, Ek))2

NzNyNE

.

Therein, Nz and Ny are the numbers of pixels in the z− and y− direction respectively
andNE is the number of energy channels of the detector. Fig. (4.6) shows an example of
this method for scattering estimation acceleration, where S̃s(zi, yj, Ek), S̃ref(zi, yj, Ek)

and the filtering result for blurring width ~σ = (9, 4.14, 1.71) are displayed. For a better
visualization of the results, the energy dimension of the scattering projections has been
integrated into S̃s(z, y) =

∑NE

k=1 S̃s(~r, Ek).
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4.3 Multiple Source Scattering

Applications that require a continuous and fast throughput, such as airport scanners,
it is convenient to have the projections collected by multiple stationary pairs of sources
and detectors lying on a mutual plane. In such a scanner, the luggage is driven through
these planes with the aid of a conveyor belt. Each of these planes will be denoted in this
section as source-detector plane. Figs. (4.7 and 4.8) display an example of a scanning

Figure 4.7: McXtrace’s tracing GUI visualization of a luggage scanner com-
posed of twelve pairs of L-shaped detectors and sources, and a parallelepiped
bounding box containing the luggage phantom. Each plane containing the pair
of detector and source include slits, used to collimate the beam produced by
the source into a planar fan-beam, that are hidden for a better visualization of
the content.

instrument with twelve source-detector planes that has been built up in the McXtrace
software package. The main advantage of this type of scanning system is that a CT
scan can be realized without the rotation of the sample, which would be a bottleneck
in the measurement, as it would require stopping the conveyor belt transporting the
objects. With this imaging mode, the individual projections are taken as the sample
translates through the source-detector planes. While this system can be advantageous
in terms of acquisition time per sample and building costs, it is highly exposed to
scattering due to the large size of the samples and the multiple sources being active
simultaneously. Each source-detector plane is exposed not only to scattering noise
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Figure 4.8: 3D-CAD drawing of the scanner built up in the McXtrace
simulator in Fig. (4.7). Figure courtesy of Exruptive A/S (https://www.
exruptive.com).

coming from the source belonging to that plane (self-scattering), but also from the
sources lying on the other planes (cross-scattering). In the following simulation study,
we show how the system can be optimized, in terms of scattering suppression, by the
aid of the scattering estimation method presented earlier in this chapter.
To simplify the simulations’ model, rather than including all the twelve source-detector
planes, only two source-detector planes were considered. The sample was composed
of a thin rectangular bounding box of the size of 0.5 × 1.2 m, enclosing a thin
aluminum sheet, and four rounded objects composed of organic materials. The source
spectrum was sampled using a reference spectrum measurement using the MultiX-
ME100 PCD, setting the source to 160 kVp, and using a 3 mm thick aluminum filter.
The individual self- and cross- scattering estimates with specific isolation of elastic
and single scattering events, and the overall SPR were analyzed as a function of the
following instrument parameters:

• Angle between the two sources and the sample center, γ. To find the optimal
angular distribution of the sources.

• Distance between the two source-detector planes. To find the closest distance
between the source-detector planes, to have a compact scanner while keeping a
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low scattering noise signature.

• Aperture size of the source’s and the detector’s slits. To find the optimal ratio
between scattering suppression and the photon flux blocked by the slits.

Fig. (4.9) exhibits these parameters, with both a lateral and a frontal view of the
system. For each of these parameters a set of simulations was performed, keeping

Figure 4.9: The lateral (left) and frontal (right) views of the system used in
the simulations study are shown. All the parameters analyzed to optimize the
SPR are shown, which are the distance between the two source-detector pair
planes, the angle γ between the sources and the vertical axis of the sample and
the aperture size of the detector and source slits. The detectors are L-shaped
to keep the size of the scanner contained while having a larger field of view per
source.

the other parameters to a fixed value corresponding to the distance between the two
source-detector planes of 80 mm, the angle between the source and sample’s vertical
axis of 45◦, and source and detector slit aperture size of 5 mm and 10 mm respectively.
The distance between the planes was scanned for 10 values evenly distributed between
50 mm and 150 mm, the angle was scanned for 10 values evenly distributed between
0 and 90, the detector slit aperture size was scanned for 10 values evenly distributed
between 1 mm and 20 mm and lastly, the source slit aperture size was scanned for 7
values evenly distributed between 1 mm and 7 mm. Fig. (4.10) represents the spectra
of the scattering noise as the distance between the two source-detector planes, with
their individual contribution from elastic and single scattering events. Note that the
incoherent and multiple scattering profiles can be obtained as well by subtracting from
the total signal the elastic and single scattering noise respectively. As expected, the
self-scattering magnitude and the spectrum do not change as the distance between the
two planes increases while the intensity of the cross-scattering decreases dramatically.
A qualitative analysis of the self-scattering profile indicates that it is approximately
evenly split into its elastic and incoherent scattering contribution, and into its single
and multiple scattering event contribution. On the other hand, cross-scattering is
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Figure 4.10: Left: Simulated scattering spectra for distance between the
two source-detector planes set to 0.09 m, separated into the contribution from
elastic (dashed lines) and single scattering events (dash-dotted lines) for the
self-scattering (red lines) and the cross- scattering (blue lines). Right. Cross-
scattering spectra as function of the distance between the two source-detector
planes.

dominated by multiple and incoherent scattering events, justified by the fact that
higher scattering angles are required in order to be registered at the detector, which
have less likelihood in the scattering models. Moreover, cross-scattering spectra are
shifted towards lower energy due to the numerous Compton energy shifts experienced
by the photons undergoing incoherent scattering, and the fact that the likelihood of
photon interactions with higher scattering angles increase as the energy decreases.
Fig. (4.11) represents the total SPR integrated for all energies as the individual
parameters are scanned. It is observed that the SPR decrease proportionally with
the distance between the source-detector planes from 9.8% to 7.5% in the value range
scanned. Similarly, the SPR increases dramatically from 2.5% to 11.5% as the source
slit aperture size is increased, emphasizing the importance of having this component
installed in a multiple source scanner. On the other hand, the detector slit does not
seem to play a major role in the scattering suppression, as the SPR only increases
from 8.3% to 9.4%. Interestingly, two relative minima are found for the SPR at the
angle between the source and the sample’s vertical axis values of 30◦ and 80◦. Within
these two angles the SPR is contained below 9%, while it goes up to 12.6% to 11.3%

respectively for angles of 0◦ and 90◦. This study served as recommendation for the
system’s design in terms of scattering suppression.

4.4 Short Summary

In this chapter, I presented a simulation framework for Monte Carlo simulations of X-
ray experiments. The software package was extended to be utilized for spectral X-ray
techniques with focus on photoelectric absorption and elastic and incoherent scattering
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Figure 4.11: The resulting overall scattering to primary ratio (SPR) as a
function of each parameter scanned: distance between source-detector planes
(top left), angle between sources and sample’s vertical axis (top right), source
slit (bottom left) and detector slit (bottom right) aperture size.

interactions between photons and a volumetric sample, with given shape and material
composition. I presented a method for the estimation of scattering in SCT acquisitions,
with an application for a scanner implementing multiple X-ray sources, for which the
impact of scattering in the material characterization becomes significant.
In the next chapter, the software package will be used to generate training data
for machine learning architectures, with the goal of having near real-time correction
methods for SCT, based on physical models of the interactions. The advantage of using
a Monte Carlo simulation framework for the forward projection is that they produce
results that are closer to real experiments, compared with probabilistic noise models,
increasing significantly the quality of the training data.
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Corrections for Spectral

X-ray CT 5
In this chapter, I present a brief overview of the techniques for X-ray CT image
processing using tools from the field of Machine Learning and specifically the training
of Convolutional Neural Networks (CNN). Specifically, I cover the architecture adopted
and used in the processing of both simulated spectral X-ray CT data and experimental
data. The primary focus of this chapter is to present novel correction methods for
scattering and metal artifacts in SCT as well as the physical models used to generate
the training data.

5.1 Related Work

Over the last decades, the development and easier accessibility of graphics cards with
extremely high computing power has rapidly grown the interest of many researchers
with respect of using tools and ideas from Artificial Intelligence, such as Machine
Learning and more specifically Deep Learning. Machine learning can simply be
explained as the practice of using algorithms that parse a bulk of input data, named
training data, and learn from that to make predictions in a desired application. Machine
learning techniques can be branched in supervised, unsupervised and reinforcement
learning depending on the task. Supervised learning, which is the technique used in
this work, is utilized when the training data contains the solution to the problem that
is intrinsic to the input data. In unsupervised learning, the goal is to find correlation
patterns and similarities in the input data, while in reinforcement learning the data
is processed to maximize a given notion of a reward function. These techniques
have increased in popularity due to applications such as self-driven cars[72], online
fraud detection[73], product recommendation and advertisements[74], virtual personal
assistants[75], image recognition[76, 77] etc.
The aforementioned deep learning branch of Machine learning, involves architectures
that are inspired by a brain’s network of neurons, including several layers of parameters
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Figure 5.1: Sketch of a simplified neural network in which a pair of input, xn,
and output, yn, training dataset is used to train the weights βn of two inner
layers. The nodes are connected through mathematical operations that vary
depending on the task.

that are recursively updated by loss function optimization. The update of the
parameters β can be expressed as:

β′ = arg min
β
L(β) + λΓ(β), (5.1)

where λΓ(β) is the regularization (or penalty) term and L is the loss function:

L(β) =
1

n

n∑
i=1

L(yi, f(x(i), β)). (5.2)

Therein, f is the activation function, which express how the input values, xi, are related
to the network predicted values, ỹi. L represents the deviation between the network’s
prediction and the target yi, and can be expressed in many ways (e.g. mean squared
error, mean squared logarithmic error, mean absolute error etc.).
Fig. (5.1) illustrates a simplified example of a neural network. The convolutional
neural network (CNN) technique that is used in this work further develops upon this
architecture type, implementing convolutional filters as the tuning parameters. CNN
architectures have shown a lot of success recently in fields such as computer vision
and image classification and segmentation [78, 79]. In the field of X-ray CT imaging,
several studies have shown promising results in the correction of metal artifacts [80],
scattering [81, 82] and reconstruction in low-dose regimes [83, 84]. However, as of
today, these works are contained only within the conventional energy-integrating CT.
When spectral X-ray CT is considered, the architectures and algorithms that have been
reported in the literature can be used individually for each energy channel. However,
this method would be inefficient and neglects trends and signal coherence that are
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Figure 5.2: Sketch of a simplified encoder-decoder network. In the encoding
part, the input image of size (256×256×1) goes through layers of convolutional
filters and pooling operations that increase the number of features (the third
dimension) while reducing the image size, to avoid overfitting and keeping a
reduced architecture memory size. In the decoding part, the feature vector
resulting from the encoding is used to reconstruct the image in the initial input
size. Skip connections (red arrows) link encoding and decoding nodes with
same image size.

embedded in the spectral domain. Thus, it is preferred a spectral neural network
architecture that can deal with data from spectral X-ray CT.
The CNN architecture that is adopted in this work builds on an architecture designed
for biomedical image segmentation, called U-net [85], which is an encoder-decoder
network type. Fig. (5.2) illustrates the functioning of this kind of networks. The
encoder sub-network takes as input an image and recursively generates a higher
dimensional feature vector, which holds the feature information about the input image.
The decoder sub-network takes this feature vector and inverts the steps to reconstruct
an image in the same space of the input. In the U-net, this procedure is done by
applying convolutional filters to each node (increasing the third dimension) and by
pooling and upsampling operations that respectively reduce and increase the image
size based on its features. Skip-connections are used to connect encoding and decoding
nodes with the same size in order to preserve image features at higher resolutions and
speed up training convergence. In a supervised learning algorithm, such as the one used
in this work, both encoder’s input and decoder’s output (representing the starting point
and the target of the network) are provided for the training of the convolutional filters
that connect all the nodes of the architecture. Fig. (5.3) illustrates how the data is
provided to the CNN during the learning process. The number of training epochs,
which is the times that each input training dataset (sample) is seen by the network,
determines the overall time of the learning process. For each epoch, the samples are
shuffled and collected into batches with a user-defined size. This determines the number
of samples used by the network before the weight parameters are optimized. When the
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batch size is set to 1, it is typically referred to as stochastic gradient descent. When
the batch size is set equal to the total number of the samples it is referred to as batch
gradient descent and lastly, when the batch size is a number in-between these two,
the learning algorithm is referred to as mini-batch gradient descent. For this work, the
mini-batch gradient descent showed greater performance. Batch normalization [86] can
optionally be applied, which consists in shifting and scaling each batch to have man
of zero and variance of one and then finding new optimal scale and shift parameters
as part of the learning. A slight modification of the U-net was recently presented by

Figure 5.3: Illustration of the concepts of epoch, batch and samples used in
the training. The training data samples are grouped in batches with a defined
size and an epoch is completed when the network sees all the samples in a
training cycle.

Maier et al. [82] for the estimation of scattering in X-ray projections. This inspired
a further adaptation to deal with the additional dimension in spectral X-ray imaging
given by the energy as described in section 5.2.

5.2 Spectral Convolutional Neural Network
Architecture

As this work focuses on spectral X-ray imaging techniques, the U-net architecture
requires an adaptation that enables the extraction of the additional information in the
energy domain. Moreover, the architecture needs to be optimized to support three-
dimensional data. This is a technical and conceptual challenge because the spectral
images are represented as large 3D matrices (e.g. 256×256 pixels, 128 energy channels,
32-bit floating-point pixel values), each of which connected to its chain of weight maps
for each network filter (i.e. the sub-unit of a layer), which have to be stored at once
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in the memory of the graphics card. The architecture adopted in this work for SCT
features 3D convolutional layers that can extract information from the spectral domain.

3D U-net

A U-net with 3D convolutional layers is designed to learn the combined features in the
energy end spatial domains [87]. Fig. (5.4) illustrates the 3D U-net architecture built
using Keras [88], a Python Deep Learning library. In this work, the initial spectral
image was with size (96×96×32) although the network can be adjusted to fit different
image sizes. The image size chosen for this work was relatively small to allow for a fast
check of results with modifications of the network and the training data. It is expected
higher resolution of the results when increasing the image sizes. The filter types used
by the CNN architecture appearing in the figure are listed and described below:

• Conv. 3D: These are layers of the network consisting of a defined number of
3D convolutional filters with defined size. These filters are the main units (or
neurons) of the network as they contain all the coefficients being tuned during
the training process. Note that the number of filters at each step defines the
fourth dimension of the incoming dataset in Fig. 5.4. The Rectified Linear Units
(ReLU) apply the function f(x) = max(0, x) to all the values in the input volume,
which replaces all the negative activations with zeros. ReLU are applied after
each convolutional layer to introduce nonlinearity.

• Dropout: During training, some training entities (i.e. pixels) are randomly
chosen and ignored, or in other terms dropped. This step is introduced to avoid
overfitting, as suggested by Srivastava et al. [89].

• MaxPooling: Max pooling refers to the step of applying a maximum filter to
(usually) non-overlapping sub regions of the initial representation, and it is
necessary to reduce the dimension of the data while preserving the features.
For example, a 3D MaxPooling with size (2× 2× 2) halves the size data in each
of the three dimensions.

• UpSampling: Works as opposite of the MaxPooling operation. By default, this is
done by padding the matrix cells with zero values. Alternatively, the upsampling
can be carried out with interpolation.

• Concatenate: This step concatenates datasets along a chosen dimension.
For example, the concatenation in the first layer of the CNN architecture
concatenates the data preceding the MaxPooling and the data connected to the
4 filters convolutional layers, both with a size of (96× 96× 32× 4), into a single
data with size (96× 96× 32× 8).

Patch-based training, which takes as input smaller patches of the initial images, is
avoided because the image distortions and artifacts (which are corrected for) are found
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Figure 5.4: Sketch of the 3D U-net architecture, with all the building blocks
and filter types. The legend inset in the lower right hand side corner shows the
color code for the activation functions.

by correlations across the whole image and thus, represents non-local pixel relations.
Additionally, batch normalization is not performed because the network operates with
training data that has a globally variable value range. Instead, the image values are
converted into either attenuation or absorption via Lambert-Beer’s law. The batch
size of the network itself was set to 32 to satisfy the existing hardware constraints
and the number of parallel works employed for data loading and augmentation. We
employed Adam [90] as optimization algorithm, with the initial learning rate set to
1.0×10−4 and the decay fixed at 3.0×10−7. The learning rate determines how quickly
the network parameters are updated at each step of the gradient descent whereas the
decay represents the diminishing of the learning rate after each update. As such, the
value of the learning rate changes dynamically through the training. This is preferred
to have a constant value, as a too small learning rate requires many updates before
reaching convergence whereas a too high learning rate causes drastic updates that lead
to divergent behaviors.
The drawback of such 3D networks and their limiting factor for applications to
physically measured data with large image size is the exponential computation
requirement. Existing hardware limitations govern the maximal depth of a 3D U-
net implementation, which prohibits the learning of higher-level logic and global data
relations across the image. The hardware limitations can be overcome in trivial
scenarios by increased pooling sizes thus, a more aggressive downsampling of the
input image data, and a reduction in the number of learning filters. This approach
has limitations in practical implementations when a given minimum observation size
for imaged features is required and when a minimum number of features is to be
extracted for the image correction. It is observed a significant loss of detail in the image
correction, due to hardware limitation the 3D network being restricted to be relatively
shallow (i.e. very few down/up sampling blocks) and with excessively coarse resolution.
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A possible solution to this would be the integration and subsequent combination of
alternative architectures, able to preserve resolution and detail with respect to the
spatial patterns as well as spectral signal response of the data.

5.3 Training Data Generation

One of the key factors to the success of the CNN correction procedures is the quality
of the training data, i.e. how well the samples generalize the problem to be solved.
The image set for the hereby-presented architecture consists of a pair of distorted and
ground truth spectral images corresponding in a real acquisition to the measured and
desired corrected images. Depending on the difficulty, in terms of generalization, of
the problems that one aims to solve using deep learning, the quantity and variety
of the training data sets must be adjusted. In the literature, as a rule of thumb,
a few thousands sets of training data are at the least required to model realistic,
non-trivial imaging problems. Such a large number is generally achieved by relatively
simple data augmentation steps, in which elementary operations such as Gaussian noise
filtering, rotations and translations are applied to the input data. The training data
can either be generated starting from real experimental data or simulation data, and
in some cases with a combination of both. For most of the applications, experimental
training data is hard and slow to generate in large amounts. In the context of security
screening the major bottlenecks are in the sample preparation and replacement, as the
training data must reflect the variety of different possible samples and their relative
arrangement, as commonly found in bags. Moreover, it is often complex to obtain
experimentally the ground truth data. For example, for CT scattering correction
procedures there are no ways to directly measure the scattering noise simultaneously to
the ideal CT acquisition. Likewise, for metal artifact and beam-hardening corrections
the ground truths would be the results of iterative correction algorithms, or manual
data correction.
In this work, the training data is generated using the Monte Carlo X-ray tracing
simulation tools presented in Chapter 4. The main advantage of this method is that
the ground truth is intrinsically available as it is part of the input requirements of the
simulations. Secondly, the software package can be set such that it uninterruptedly
generates new training data with none, or minimal operator intervention required.
However, a drawback is that the execution time of a MC X-ray tracing simulation is
higher compared with an experimental scan. Moreover, it can prove difficult to generate
samples and training data that have the same nature and properties of real data and
fit the scope of the correction correctly. When possible, it is generally recommended to
use exclusively real training data, as it is the best representation of the problem to be
solved. Alternatively, efficient solutions have been found by a first step training with
synthesized simulation data, followed by a second training step with experimentally
measured data. For the applications presented in this work, it was not possible to
obtain experimental ground truth images. As such, the networks were fully trained
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with simulation data and the corrections were tested on both real and synthetic data.

Figure 5.5: Two 3D representations of the random generated phantoms. A
cuboid (left) and an ellipsoid (right) envelope, containing objects with randomly
chosen shape, size, center coordinates and material composition.

The generation of the samples used in the simulations was performed by a random
sample generator, which was created with the aid of a software tool for CT phantoms
presented by Kazantsev et al. [91]. Using this tool, artificial samples composed of
different materials were generated, using random relatively simple geometrical shapes
such as ellipsoids, parallelepipeds and cubes of randomly chosen size and position.
The materials used for these samples, are randomly chosen from a list of materials
that can be commonly found in luggage (detailed in Table (6.5)). Fig. (5.5) shows a
few realizations of random samples.
Once the full set of the training data designed for the CNN learning is generated, the
datasets are split and grouped into training data, validation data and test data. The
training data consists of the samples that are used by the network to fit the parameters
at each epoch. The validation data is excluded from the training of the network and
used after the fitting at each epoch to tune hidden-layer parameters, avoid overfitting
and evaluate the convergence of the training. Similarly, the test data consists of samples
that are excluded from the training and are only used at the end of the overall training
of the network to analyze the performance of the trained CNN architecture in solving
the assigned problem. The experts in the field typically recommend to randomly divide
the dataset into 64% training data, 16% validation data and 20% test data[92].

5.4 CNN Spectral Scattering Corrections

As described in Chapter 4 the gold standard technique for the estimation of the
scattering noise in SCT scans is by means of Monte Carlo X-ray tracing simulations.
However, this method requires a geometrical model of the sample and its material
composition, which is often not possible to define a priori (e.g. baggage, in which the
content changes for each sample). A scattering correction using the MC estimation
would require the reconstruction algorithm to incorporate the simulation step in an
iterative approach. In this method, the sample phantom required for the X-ray tracing
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is generated through a preliminary reconstruction, which is subsequently used in the
simulation toolkit to estimate the scattering and correct for it. This is followed by a
final reconstruction step. The purpose of the correction in most cases does not meet the
speed requirement of high throughput for real scanners, since both the MC simulations
and the impact on the reconstruction algorithm adds up to the total computational
time of the data processing routine. As it will be shown, this gap can be closed with
the aid of CNN architectures.

Figure 5.6: A sketch of the scattering correction using CNN. A volumetric
phantom is given as input for the McXtrace software package to obtain as
output the total and primary spectral projections via X-ray tracing simulations.
These are given as input training data in the CNN architecture. Once trained,
the CNN architecture only takes as input the total spectral projection and
returns as output the primary spectral projection (corrected for scattering).

Fig. (5.6) summarizes in a block diagram the approach presented here. The CNN
architecture is trained using synthetic data obtained through MC simulations as a
pair of total and primary attenuation. This is done to reproduce the same scattering
estimates that one would obtain by using MC X-ray tracing simulations, given
attenuation projection data. Referring to Eq. (4.3), this procedure estimates the
scattering noise term Is directly from the total signal I. Since it is desired that the CNN
architecture is independent of the photon flux, the training data obtained with MC
simulations is normalized into attenuation using Eq. (3.4). The primary attenuation,
lµp(E), and total attenuation, lµt(E), are obtained using the following relations:

lµt(E) = −log
(
Ip(E) + Is(E)

I0(E)

)
, (5.3)

lµp(E) = −log
(
Ip(E)

I0(E)

)
. (5.4)
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The CNN architecture is trained to directly estimate the primary attenuation, lµp,
from the total attenuation, lµt. The advantage of using this technique for the scattering
correction is that a preliminary reconstruction is not required, and it has a near-real-
time operational speed once the network is trained.
For a fixed set of sample materials, the spatial and spectral distribution of the scattering
signal depends highly on the air gap (i.e. the distance from the sample to the detector)
and on the source spectrum, as they govern the likelihood of the different scattering
interaction types and of the scattering angle amplitude. Thus, it is preferred for higher
accuracy to train and utilize a CNN with fixed air gap and source spectrum that match
with the data. For the scattering correction application, since the individual incoherent
and elastic scattering cross sections are required for the MC simulations, the photon
cross sections were obtained using as input a compound’s chemical formula and its
respective reference bulk density in the NIST’s database. The incoherent and elastic
scattering functions used are the ones described in Chapter 4 with the incoherent
scattering functions modeled using the effective atomic number respective to each
material. Elastic scattering functions of the different materials were taken from ED-
XRD measurements when available or approximated into the water’s signature when
missing, as it was the best guess of the unknown material properties and shown in
Chapter 4 to be more accurate than using analytical approximations for gasses.

5.4.1 Experiments

Simulation Training and Test Data

To test the performance of the CNN architecture designed for correction of the
scattering noise, 900 training data sets were generated as a pair of total and primary
spectral attenuation projections using McXtrace. The distance from the phantom’s
bounding box center to the flat panel detector was set to 20 mm, whereas the size of
the phantom’s bounding box was set to 274.4 mm for each side. The source spectrum
in the simulations was modeled using a measurement of an X-ray spectrum with the
MultiX-ME100 detector and the source set to 150 keV with a 2 mm aluminum filter.
The detector’s geometry was also set to match the MultiX detector, and the spectral
images acquired were resized into (96×96×32) to fit the CNN. The list of materials used
for the random phantoms in the simulations included aluminum, water, nitrobenzene,
ethylenediamine, methanol and nitromethane for which an XRD diffraction pattern for
the sampling of the elastic scattering was measured. A total of 75 random phantoms
were generated, sampling for each 12 spectral projections evenly distributed between 0

and 360 degrees. The training data set was randomly divided into training, validation
and test data as suggested previously in this chapter. The CNN was trained for
250 epochs for a total time of approximately 9 hours using a desktop PC equipped
with NVIDIA Titan X (Pascal) and GeForce GTX 1080 GPUs, 256 GB RAM and
an Intel(R) Xeon(R) E5-2637 v3 CPU. Fig. (5.7) represents the convergence of the
loss function and mean squared error for the training and validation as a function of
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the epochs. It is observed that they follow the expected behavior for deep learning
training.

Figure 5.7: Convergence of the loss function and the mean squared error
(MSE) for the training and validation data as a function of the training epochs.

Once trained, the CNN architecture was benchmarked with the simulation test
datasets. Fig. (5.8) presents the correction results, exemplified for a single dataset and
a specific energy channel. A visual comparison of the images highlights the restoration
of the contrast between the LAC of different materials, which is confirmed by a look at
the line profiles. However, the drawback is the introduction of blurring in the correction
images. This can be caused by multiple factors that are under investigation. Firstly,
the CNN was trained for a relatively low number of epochs, due to the large dimension
of the training data and the size of the CNN architecture. Secondly, as mentioned
previously, the CNN architecture is rather shallow, with few layers so that the feature
resolution is already degraded severely at the second layer. In connection with that,
the size of the image is of a comparably low resolution in order to fit the hardware’s
memory. It is expected that advances in these aspects would reduce the blurring effect
of the CNN correction.
The performance of the correction is quantified in terms of the following metrics for
image quality:

• Root Mean Squared Error (RMSE):

RMSE =

√√√√∑
Npix

(µgt − µCNN)2

Npix

, (5.5)

Where Npix is the number of pixels in the ground truth (µgt) and CNN corrected
(µCNN) energy resolved reconstructions.

• Normalized Root Mean Squared Error (NRMSE):

NRMSE =

√∑
Npix

(µgt−µCNN)2

Npix

< µ >
, (5.6)
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Figure 5.8: Top row: Images at a fixed energy (E=26.3 keV) of the total
attenuation (lµt), and the primary attenuation corrected using the trained
CNN (lµCNN

p ) and estimated using Monte Carlo simulations (lµMC
p ). Note that

the MC is the ground truth reference. Bottom row: vertical and horizontal
profile of the total and primary attenuation at the marked red lines.

Table (5.1) summarizes the results for the uncorrected input and CNN-corrected,
calculated as a mean RMSE and NRMSE among all the test datasets. An improvement
is found in both the two indexes when considering the CNN-corrected projections.
The performance of the scattering estimation using CNN in the spectral domain was
evaluated as well in terms of the energy-dependent root mean square error (RMSE(E))
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Table 5.1: Performance of the CNN MAR correction measured as the RMSE
and NRMSE, calculated between the input ground truth and CNN corrected
data.

Data RMSE NRMSE
Uncorrected 0.11 0.27
CNN-Corrected 0.07 0.18

between the MC and CNN estimates:

RMSE(E) =

√√√√∑
Npix

(lµMC
p (E)− lµCNN

p (E))2

Npix

(5.7)

where Npix is the number of pixels in each energy resolved primary attenuation
projection µp(E).
Fig. (5.9) shows the correction results in the spectral domain as input, corrected and
ground truth attenuation calculated in the region of interest marked in Fig. (5.8).
Moreover, it illustrates the RMSE(E) calculated as the mean among all the test
datasets. It is observed that in the marked region of interest containing a material
the CNN-correction is efficiently restoring the LAC in the full spectrum. On the other
hand, the energy-dependent RMSE indicates that towards the high-energy domain the
performance of CNN-correction tends to regress. The main reason for this is that the
energy-resolved projections cannot be normalized in the same value range as discussed
above. Thus, the training is focused on the low-energy spectrum because the LAC
values are higher, hence the loss function that the CNN architecture evaluates to fit
the parameter is higher. It is expected that training for more epochs will make the
correction efficient towards the high-energy domain as well.

Figure 5.9: Left: Spectrum of the attenuation in the region of interest (green
box) marked in Fig. (5.8). Right: Plot of the energy-resolved root mean square
error calculated as the mean of RMSE of all test datasets.

Real Test Data

The same CNN architecture that was trained with MC simulation data was then
tested to correct real data from an in-house SCT scan experiment (see instrumentation
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in section 6.1). The sample was built up with multiple plastic materials (chemical
composition and properties are listed later in Table (5.2)). The parameters for the
X-ray source, the sample to detector distance and the phantom size were set up to
mimic the simulations in the training data generation, in order to have the same
spectrum and a comparable amount of scattering noise from the sample. The 360

projections, evenly distributed from 0 to 360 degrees, were acquired with a continuous
rotation of the sample, with the detector’s radiation integration time set to 0.1 s per
projection. Fig. (5.10) features a 3D volume reconstruction as well as slice images
including all the nine plastic materials composing the sample. The SCT scan was

Figure 5.10: Visualization of the 3D cone-beam reconstruction of the plastics
sample (bottom right frame). The top left figure shows a slice along the vertical
axis containing all the plastic materials. Therein, the two red lines mark the
vertical slices intersecting PMMA and PEEK (top right frame) and the other
seven materials (bottom left frame) respectively. The ring artifacts visible in
the images are due to the drops in attenuation at the interface between different
modules of the detector array and could only be partially corrected.

performed with two different types of source collimation; one to have a scattering
noise affected measurement and one to have a minimal amount of scattering. Firstly,
an SCT scan with cone-beam collimation of the source, to have a significant amount
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of scattering from the sample due to the large volume being irradiated. Secondly,
the source was collimated into a fan-beam geometry, which is known to suppress
significantly the scattering noise. Both the SCT scans were reconstructed and the
individual materials LAC were extracted using the procedure described in chapter 4.
The cone-beam corrected, and fan-beam LACs were then used for the evaluation of
the CNN correction’s accuracy. Fig. (5.11) shows the cone-beam raw and corrected

Figure 5.11: Plots of the LAC calculated for the POM-H, PC and PET
materials for the cone-beam measurement, the fan-beam measurement, the
CNN correction and a theoretical curve using reference values of Ze and ρe. In
the bottom right frame is plotted the mean percent deviation of all material
between the cone-beam and the CNN-corrected LAC with respect to the fan-
beam.

LACs, as well as the fan-beam and reference calculated using the expected material
properties of Ze and ρe. The figure confirms that the fan-beam collimation reduces
the effect of the scattering noise in the calculation of the LAC. This can be observed
by comparing the results of measurements with fan- and cone-beam collimation with
the LAC calculated using reference tabulated values for effective atomic number and
electron density. Regarding the CNN-correction, it is observed that the scattering
correction pushes the LAC towards the fan-beam and reference curves, but not to a
complete restoration. This can be attributed to an underestimation of the incoherent
scattering in the MC simulations, arising from the interactions between X-rays and
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the sample or other parts of the instrument. Another reason might be attributed to
the CNN training. The convolutional filters in the CNN architecture are trained by
minimizing the loss function between the total absorption projection and the scattering
noise. Thus, low-energy channels which have greater values of absorption and thus,
scattering have a greater weight in the training. Solutions for this effect are currently
under investigation, such as an energy-dependent weight function applied to the loss
function, which would ideally balance the importance for all the individual energy
channels. Another factor that might lead to this mismatch is that the materials used
to generate the training data have a higher attenuation range, while the materials
included in the real sample are restricted to the organic low attenuating compounds.
In the literature, the current corrections for X-ray CT using CNN are developed for
dedicated applications such as medical or industrial scanners, in which the properties
and shape of the sample do not vary much. The challenge of this correction method
is that it attempts to correct for any possible material and shape that might be
contained in luggage. Thus, there is a requirement for a large amount of training
data to generalize for every possible material and size within a certain interval. The
performance of the correction is expected to increase with a higher number and more
diverse variety of training data.

Table 5.2: All the plastic materials composing the sample and their respective
expected and estimated physical properties. †While most of materials are
polymers, the chemical formula is reported for the composing monomer. ∗The
mean values were calculated from the absolute values of each column.

Material Formula† ∆Zcone
e ∆ZCNN

e ∆ρcone
e ∆ρCNN

e

(%) (%) (%) (%)

∗PP C3H6 5.8 6.1 -11.5 -2.6
PEEK C19H12O3 2.0 2.5 -10.6 1.5
PC C14O3H8 -3.0 -3.0 -13.9 -6.8

PMMA C5O2H8 -4.3 -2.0 -14.6 -7.6
PET C10H8O4 -6.8 -3.7 -6.8 3.6

POM-C CH2O -4.7 -4.5 -11.5 -2.4
POM-H CH2O -5.3 -3.2 -10.0 -1.8
PVDF C2H2F2 -9.8 -9.2 -10.7 -1.4
PTFE C2F4 -9.2 -9.2 -11.1 -0.9
Mean∗ - 5.7 4.8 11.2 3.2

|∆(Ze)|, |∆(ρe)|

Nonetheless, it is found that the correction yields to a better estimate of the material
properties. Using the SRZE method presented in chapter 4, the effective atomic
number, Ze, and electron density, ρe, were estimated from the LACs corresponding
to cone-beam, CNN-corrected and fan-beam measurements. Table (5.1) reports the
relative deviation, ∆(%), between the cone-beam and CNN-corrected estimates and the
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reference fan-beam estimates. It is found that the electron density, which is the main
feature affected by scattering noise, is significantly restored using the CNN-correction.

5.5 CNN Spectral MAR Corrections

A notorious issue in the field of X-ray CT is Metal Artifact Removal (MAR). Metal
artifacts in CT images are due to photon starvation caused by highly attenuating
materials such as metals and are in most cases appearing as streaking artifacts in
the reconstruction images. In the images, these streaks typically originate from a
metallic object and extend further overlapping with other materials in the sample. The
metal artifacts not only degrade the graphic quality of the reconstructions, but also
additionally worsen the performance of segmentation and thus, the classification and
characterization of materials. For these reasons, MAR is key to enhanced performance
of a CT scanner both in medical and NDT fields.
The goal of a MAR algorithm is to improve the quality of the reconstructions
by removing the streaks, while preserving the real features. This can be done in
a pre-reconstruction approach by a correction in the sinogram domain, which is
typically done by adaptive interpolation of the photon starved detector pixels in the
projections. Alternatively, MAR can be done in a post-reconstruction step, by directly
attempting to remove the streaks and restoring the materials’ LAC values in the
reconstructions. Fig. (5.12) summarizes in a block diagram the approach presented
here. The overarching goal is to remove the streaking artifacts in a post-reconstruction
step with the aid of CNNs from energy-resolved reconstruction obtained with spectral
X-ray CT. In SCT, since the photon starvation depends on a material’s LAC property
it is an energy dependent phenomenon and, thus, there may be samples for which the
artifacts are appearing in the low-energy reconstruction but not in the high-energy ones.
This is of great value as the information regarding geometrical features, shapes and
material physical properties can be extracted from the artifact-free high-energy domain
and used to restore the reconstruction in the artifact-affected low-energy domain.
The generation of the training data was performed similarly to the previous case, for
the scattering correction. In this case, the scattering noise is ignored and incorporated
in the photon cross section attenuation to save computational time in the simulations.
The materials’ LACs were obtained with a combination of in-house spectral LAC
measurements of materials with known density, and entries from NIST’s database.
In addition, each phantom includes multiple metallic objects of either copper, gold
or tungsten, to force the appearance of metal artifacts in the reconstructions. Lastly,
hollow object shapes were also included in the framework to simulate hollow containers
such as bottles.
An issue faced when including highly attenuating materials in the training data is due
to the logarithmic nature of the LAC of materials. Since the metals have a value range
that is significantly superior to organic compounds, there is a biased training of the
CNN architecture. That is because the training relies on the tuning of convolutional
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Figure 5.12: A sketch of the MAR correction using CNN. The 3D volume of
the ground truth phantom of the materials is given as input of the McXtrace
software package to obtain physically modeled spectral sinograms via X-ray
tracing simulations. These are reconstructed into metal artifact affected volume
reconstruction, using the ASTRA [93] toolbox. Each pair of the orthogonal
spectral slices of the ground truth and reconstructed volumes are given as input
training data in the CNN architecture. Once trained, the CNN architecture
corrects the metal-artifact affected spectral slices. The metal objects are visible
as the lighter gray items.

filters by minimizing a loss function, which is the deviation between the two input
images. Due to photon statistic noise, the difference between the simulated and
ground truth image is significantly higher for the metal, when compared with organic
compounds. This results in a disappearing of the low attenuating materials from the
images, as they are seen by the architecture as void noise, hence replaced with zero
values. On the other hand, in most cases the overarching goal of the correction is not a
mere streaking removal but a restoration of the image features of the low attenuating
materials to efficiently perform further analysis routines. The solution proposed and
used in this work is a high attenuation thresholding, which consists in substituting LAC
values that are greater than silicon’s LAC with the silicon corresponding values. This
is justified by the fact that in most application the metals are not the objective of the
data analysis but an intrusive material that leads to artifacts. The CNN architectures
are optimized to work with data normalized in the value range [0, 1] thus, the data
undergoes an additional normalization step in which each individual energy dependent
projection is remapped to the value range [min,max] → [0, 1] and it was observed to
greatly improve the performance of the correction and the speed of the convergence.
Note that for the scattering problem this step could not be done because the input
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uncorrected and ground truth projection were on different scales due to the scattering
noise, whereas in this case the features to preserve are in the same scale,
A second concern in the data generation process is that the geometrical shapes have
great impact on the performance of the correction itself. Depending on the application
of the CT itself, this imposes different conditions on the type of training data. For
security screening scanners, ideally the CNN should have enough training data to learn
all the possible geometries. Of course, this is limited by the storage and computational
time to generate enough training data. In this work, the sample variation is restricted
to relatively simple random geometries and few entries for the number of projections
preceding the reconstruction. In an application focusing on luggage screening, objects
could be scanned separately (including material characterization and segmentation)
to provide the simulation inputs with realistic shapes for objects made of different
materials.
A last consideration is that in the related published research, the aim of MAR is to
restore the image quality by removing streaks and contrast between different materials.
In this work, since the goal is the quantitative material characterization into physical
properties, the focus is also on the preservation and restoration of the effective LAC
values. Incorrect physical models for the generation of the training data may introduce
offsets in the materials’ LAC succeeding the MAR correction.

5.5.1 Experiments

Simulation Data

For the benchmarking of the spectral MAR correction using CNN, the training data
was generated using McXtrace with the following procedure. The number of individual
unique sample phantoms was set to 10, and a full spectral CT scan of each was done
simulating randomly 120, 90, 72, 60 or 52 projections with a cone-beam geometry
collimation of the source and a 256× 256 flat panel 2D spectral detector with 8 energy
channels, for a detection area of 204.8 mm × 204.8 mm. The source to sample and
detector distances were set respectively to 816.6 mm and 1141.9 mm. This led to a
relatively high sample to detector distance, in order to minimize the scattering noise
from the sample for the real experiment planned as a successive step. Each energy-
resolved sinogram was reconstructed into a 3D volume using the ASTRA toolbox [93]
and each training dataset was extracted as a pair of orthogonal slices of input ground
truth and reconstructed 3D volumes of the sample (see Fig. (5.12)). This resulted in a
total of 925 training datasets split into training, validation and test as described above.
Note that not every slice has visible metal artifacts due to the random composition
of the phantom. Each slice pair was resized into the dimension (96 × 96 × 8) to fit
the CNN architecture and followed the normalization procedure described above. The
CNN architecture did not require modifications as it was compatible with the one
previously presented for the scattering correction. However, one could have replaced
the 3D MaxPooling and UpSampling with size (4 × 4 × 4) with an additional layer
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with two 3D MaxPooling and UpSampling with size (2 × 2 × 2), increasing the
amounts of features that the CNN learns. The training was carried out for 50 and
250 epochs, for a total time of approximately 2 and 8 hours respectively, to analyze
the training performance against the training. Once trained each metal artifact affected
slice is corrected in approximately 15 ms, satisfying the near real-time requirement of
industrial applications.

Figure 5.13: MAR correction analysis of a simulation test training data for
different amounts of training epochs. The top row features the images for
uncorrected data, and corrected data training the network for 50 and 250 epochs
and the ground truth. The bottom row features the absolute difference between
the top adjacent images and the ground truth. The red arrow indicates the
cupping artifact induced by the CNN correction when the network is trained for
50 epochs. This effect disappears when the network is trained for 250 epochs.

To the indexes presented in the previous section for the assessment of the correction
performance, we add for this problem one that emphasizes the image features:

• Mean Structural Similarity (MSSIM). Structural Similarity (SSIM) is a method
for measuring the similarity between two images presented by Wang et al. [94].
This method returns an image with the same size as the input images, with values
ranging from -1 to 1 taking maximum value when the two images are identical.
In the MSSIM a single index value is calculated as the mean value over the SSIM
image.

These indexes of image quality are calculated for each uncorrected and corrected (both
training the CNN architecture for 50 and 250 epochs) test datasets and reported in
Table 5.3. The values reported in the table are calculated as the mean between all test
datasets The MSSIM increases significantly for both the 50 and 250 epochs trained
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Table 5.3: Performance of the CNN MAR correction measured as the RMSE,
NRMSE and MSSIM, calculated between the input ground truth and CNN
corrected data. The results are reported for the uncorrected data and corrected
data training the CNN for 50 and 250 epochs.

Data RMSE NRMSE MSSIM
Uncorrected 0.0035 0.12 0.926
50 epochs 0.0031 0.13 0.978
250 epochs 0.0020 0.09 0.990

CNN corrections, meaning that the streaks are successfully corrected in most cases.
The worse NRMSE can be caused by either lack of training data diversity or most
probably due to CNN training that has not reached convergence. Fig. (5.13) features
a comparison of two images after training for 50 and 250 epochs. It is observed that
for a limited training, the CNN struggles to define whether an object should be full or
hollow as modeled in the input data. This results in a cupping effect that is seen at
50 training epochs but disappears at 250 training epochs.
Figs. (5.14, 5.15 and 5.16) represent a few examples of the results of the MAR
corrections. In these figures, the top image is consisting of metal artifact affected
(Input), corrected (CNN Correction) and reference input data (Ground Truth) slice
images at four of the eight energy channels, corresponding to 29.4 keV, 62.7 keV,
98.0 keV and 132.5 keV. Note that the color map in the images is identical for each
energy channel (column). The red line in the ground truth frame marks the line along
which the attenuation profiles are displayed in the plots at the bottom.
The first example (Fig. (5.14)) shows a slice where moderate metal artifacts are visible
in the first energy channel input images and in the vertical line profiles as an increase
of the LAC with respect to the ground truth. It is observed by looking at the line
profiles, that the correction efficiently restores the LAC values and smoothens the
noise oscillations caused by either the presence of a metal in neighboring slices or
the limited number of projections. The drawback is the introduction of moderate
cupping, which could be potentially solved by training the network for more epochs as
discussed above. The second example (Fig. (5.15)) displays in the first energy channel
a strong streaking metal artifact, which overlaps with a neighboring object provoking
a partial disappearance of its geometrical features. The artifacts decrease in intensity
as the energy increases, to a point where the shapes can be clearly visible. This case
demonstrates the advantage of spectral X-ray CT over conventional techniques as the
CNN architecture utilizes the information on the material LAC and shape in the higher
energy channel to restore the image quality in the metal artifact affected low-energy
channels. However, in cases like the third example (Fig. (5.16)), where the LAC values
of the compounds affected by the streaks are lower (compare the LAC in the vertical
axes in Figs.(5.15 and 5.15), the streaks extend to higher energy channels, challenging
the performance of the MAR correction. Nevertheless, the correction still succeeds in
cleaning the image from the streaks, leading to an enhanced image quality.
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Figure 5.14: Simulation test data. Example 1. Orthogonal slice of
the reconstructed volume for the input metal artifact affected (first row),
MAR corrected (second row) and ground truth (third row) at different energy
channels. Note that each column, corresponding to a fixed energy channel,
have identical color map. The bottom frame shows respective line profiles at
different energies along the marked red line. 71
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Figure 5.15: Simulation test data. Example 2. The object feature obscured
by the metal-provoked streak artifact is restored by the CNN correction. (See
Fig. (5.14) for visual notes.)
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Figure 5.16: Simulation test data. Example 3. The object features are
only partially corrected by the CNN architecture, due to severe artifacts. (See
Fig. (5.14) for visual notes.)
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Real data: suitcase

The same CNN architecture that was trained with MC simulation data was then
tested with real metal artifact affected data (see instrumentation in section 6.1). A
suitcase composed of several metal parts was filled with objects commonly found
in luggage and scanned with the spectral X-ray CT technique. The geometry and
source settings were set to resemble the one in the simulations to generate training
data and 75 projections were taken. Differently from the simulations, the source
was collimated into a fan-beam geometry to have reduced amount of scattering noise
while still having streaking artifacts due to metals. Each vertical slice of the object
was measured by vertically translating the sample stage. The difference between
the two geometries in the reconstructions is that vertical slices from the cone-beam
reconstructions may have artifacts that are caused by metals belonging to adjacent
slices, whereas this is not found for fan-beam geometry. The measured data followed the
SCT procedure described in Chapter 4, rebinning the energy channels into 8 to match
the simulation data. The reconstruction algorithm adopted was an iterative ART with
TV regularization, presented by Sidky et al. [55], which was proven particularly efficient
in case of few projection CT scans. Each reconstruction slice was corrected using the
CNN trained for 250 epochs and merged to reform the 3D volume stack. Figs.(5.17,
5.18, 5.19 and 5.20) display orthogonal slices and 3D volumes of the uncorrected and
corrected suitcase, obtained by stacking each vertical slice.
It is observed by looking at the results, that the MAR correction efficiently cleans the
reconstructions from most of the streaking metal artifacts, except for a few cases in
which they are predominant in the images (see for example Fig. (5.17)). The drawback
of this correction technique at its current state, is a degradation of feature resolution,
which manifests as blurring and dampening of LAC values of small metallic objects,
and in some cases (especially in the first energy channel) of cupping artifacts in the
homogeneous materials. This could be potentially prevented by training the CNN
architecture for more epochs or by including more training data with objects of more
diverse shape and material composition. Alternatively, the introduction of an objective
function in the loss function minimization during the CNN training could identify and
segment geometrical features that are typically less artifact-prone in the intermediate
energy channels and project them into the lower energy channel images. Lastly, it is
noted that differently from the simulation data, the high-energy channel is dominated
by noise due to low photon statistics, indicating an eventual mismatch in the spectrum
modeling. Interestingly, a circle shaped artifact (marked with a red arrow) that appears
in the first energy channel image of Fig. (5.17) is successfully removed by the MAR
correction, possibly due to the absence of it in the higher energy channels. On the other
hand, the empty plastic bottle container (marked with a red arrow in Fig. (5.18)),
and suitcase border are also partially removed by the MAR correction, due to the
significantly lower LAC value, compared with the other materials.
The comparison of the 3D volumes of the input and corrected suitcases in Figs. (5.19
and 5.20) highlight the overall result of the MAR correction. Note that each pair
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at a fixed energy channel is shown with identical value range of the color map, to
emphasize the contrast to noise comparison, as the overarching goal is the material
discrimination and thus, contrast between the different objects enclosed in the suitcase.
A significant improvement of the overall reconstruction quality is observed in the low-
energy channel volume with only a moderate blurring drawback caused by the MAR
correction (see Fig. (5.19)). On the other hand, the correction does not seem to
deliver a significant improvement in the intermediate energy channel (Fig. (5.20)) as
the noticeable streaking removal from the CNN architecture does not trade with the
loss in feature resolution. It is expected that further developments in the architecture
and eventual ad hoc tuning of the training data to be similar to real suitcases will close
the gap with ideal corrections.

Figure 5.17: Orthogonal slice of the suitcase for the input (first row)
and CNN-corrected (second row) data at different energies and the absolute
difference between the two (third row). Note that each column, corresponding
to a fixed energy channel, has identical color map. The red arrow indicates
a hollow object look-like artifact, which does not appear in the higher energy
channel and is efficiently removed by the correction.
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Figure 5.18: Another orthogonal slice of the suitcase as in Fig. (5.17). The
red arrow indicates a real hollow object (plastic container) that is erroneously
removed by the CNN correction due to its very low attenuation (especially in
the low energies).
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Figure 5.19: Input and MAR corrected 3D volume reconstruction of the
suitcase at 46.3 keV. The CNN correction clearly removes most of the artifacts
increasing dramatically the quality of the reconstruction.
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Figure 5.20: Input and MAR corrected 3D volume reconstruction of the
suitcase at 98.0 keV. The CNN correction removes some of the non-severe
streaking artifact introducing however, blurring of the features.

5.6 Short Summary

In this chapter, I presented a Machine Learning architecture for correction methods in
SCT measurements. Specifically, the architecture was used for the direct correction of
scattering from SCT projections, and metal artifacts from SCT reconstruction. The
study highlighted the potential of this framework to establish near real-time corrections
methods for samples for which the a-priori knowledge is scarce (e.g. luggage). It is
expected that this network can be used for most of the effects producing artifacts in
the reconstruction (such as beam-hardening, ring artifacts, etc.) given that the quality
of the training data is good enough. Compared to related work using conventional
CT techniques, this architecture can learn features from the spectral domain as well,
expanding the range of the cases for which the correction is successful.
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Spectral X-ray CT 6
This chapter presents experimental results on the accuracy of the SRZE characteriza-
tion method presented in section 3.3. It continues with a benchmarking of a material
classification task of samples containing multiple objects. This is based on different
material features measured using SCT.

6.1 Instrumental Setup for Spectral X-ray
Measurements

Fig. (6.1) displays the instrumental setup for spectral X-ray acquisitions, which is a
custom instrument mainly built by Jan Kehres in the imaging center of the Technical
University of Denmark (DTU) [95]. All the experiments reported in this work were
carried out using this imaging setup, unless when specified. The setup features an
X-ray tube equipped with a tungsten anode (Hamamatsu Microfocus X-ray source
L12161-07), mounted on a vertically translating motor. The acceleration voltage of
the source can go up to 150 kV and the filament current up to 500 µA. The focal spot
for these operating parameters is 50 µm. The sample stage can rotate and translate
in the three orthogonal directions. The setup introduces a unit for spectral detectors
on a translation stage for movement in the three orthogonal various directions. The
setup also includes a tungsten slit mounted in front of the source to collimate the beam
into the desired geometry, and a tungsten slit mounted in front of the detection line to
suppress environmental noise. When necessary, filters can be attached to the frontal
collimator to shape the source spectrum as desired. Fig. (6.2) illustrates a schematic
view from the top of the setup with all the components and degrees of freedom of the
translating motors. The many degrees of freedom of the components building up the
instrument, makes it ideal for experimental studies, which can accommodate diverse
geometry settings.
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Figure 6.1: Picture of the instrumental setup for spectral X-ray acquisitions
built in the imaging center of the Technical University of Denmark (DTU).

6.2 SRZE Characterization Experiments

Two experiments were carried out to evaluate the accuracy and precision of the SRZE
method for the estimation of the physical properties of material. The results are
reported in a table listing the expected and estimated material properties and ρe/Ze

scatter plot figures. In the tables, the expected values for Ze and ρe were calculated
with ZeCalc [96] setting the source’s acceleration voltage to 160 kV with a 2 mm thick
slab of aluminum filter to match experimental conditions. ZeCalc’s input parameters
for each material were the material’s respective chemical formula and the bulk density,
ρ, which was measured in the laboratory with measurements of volume and mass.
Information regarding measurement uncertainties are reported in the tables as well.
The ∆x notation refers to relative deviation (% unit) between the expected (exp
superscript) and the estimated (est superscript) values of the observable x, and is
calculated as:

∆x = 100%
xest − xexp

xexp
. (6.1)
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Figure 6.2: Sketch of view from the top of the instrumental setup pictured
in Fig. (6.1). The SSD and SDD are the distance between the source and
the sample stage and the detector respectively. The degrees of freedom of the
translation motors are marked in blue.

6.2.1 Test Sample 1

The first experiment was performed at the Lawrence Livermore National Laboratory
(LLNL) using the same sample reported in a previous characterization study using
dual energy CT by Azevedo et al [8]. For the measurements, an YXLON 450-D11
(YXLON International, Hudson, Ohio) X-ray source was used with an acceleration
voltage of 160 kV, anode filament current of 0.5 mA and 1 mm focal spot. The source
spectrum was filtered with 2 mm thick slab of aluminum. The detector was made
up of two daisy-chained linear array PCD MultiX ME-100 modules. For all the SCT
scans performed in this work, 360 projections were acquired by rotating the sample
stage at 1◦ increments. For each projection, the total exposure time was set to 5 s.
The Source to Detector Distance (SDD) was set to 3000 mm whereas the Source to
Sample Distance (SSD) was set to 2830 mm. Fig. (6.3) illustrates the first sample
set, consisting of six different materials scanned simultaneously within a carousel [97].
Other materials, with larger diameter or attenuation were scanned individually. The
material properties were calculated from their respective measured bulk densities ρ
using the ZeCalc software [96].
Table (6.1) reports the characterization accuracy using the SRZE method. Promising
results were found in the estimation of the effective atomic number, with an overall
mean relative error value of 1.79%. It is observed that the estimation of Ze worsens for
smaller Ze, due to lower performance of the detector in terms of spectral resolution at
the lower-energy bins and lower contrast between LAC curves of adjacent Ze values.
Moreover, the spectral distortions in the low-energy reconstructions lead to higher
standard deviations, and hence less energy weight λEk

in the estimation method.
However, the highest contrast between material LACs, leading to higher differences
in the features’ estimation, is found at lower energies.
The estimation of ρe on the other hand shows a mean 4% negative bias in the mean
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Figure 6.3: Picture of the carousel sample holder with six different materials
in place. Figure courtesy of Dooraghi et al. [97]

Table 6.1: SRZE estimation of the material’s features. †Materials placed in
the six materials carousel. ‡Materials scanned individually. ∗The mean values
were calculated from the absolute values of each column.

Material Formula† Zexp
e Zest

e ∆Ze ρexp ρexpe ρeste ∆ρe

(%) g/cm3 e−mol/cm3 e−mol/cm3 (%)

†Graphite B C 6 5.81 -3.2 1.85 0.924 0.871 -5.7
†POM (CH2O)n 7.01 6.87 -2.0 1.40 0.749 0.718 -4.2
†Water H2O 7.45 7.25 -2.7 0.99 0.554 0.516 -6.9
†PTFE (C2F4)n 8.43 8.32 -1.3 2.17 1.042 0.987 -5.3

†Magnesium Mg 12 12.10 0.8 1.74 0.857 0.811 -5.4
†Silicon Si 14 14.11 0.8 2.33 1.16 1.05 -9.5

‡Graphite A C 6 6.17 2.9 1.70 0.846 0.842 -0.5
‡Aluminum Al 13 13.09 0.7 2.70 1.30 1.258 -3.2
‡Titanium Ti 22 21.74 -1.2 4.54 2.08 2.07 -0.7
Mean∗ - - - 1.7 - - - 4.6

|∆(Ze)|, |∆(ρe)|

relative error value, perhaps due to an overall underestimation of the measured energy
resolved attenuation coefficient. One reason for this may be due to a high amount of
environmental X-ray scattering, not considered in the analysis. For these experiments,
except for the titanium, aluminum, and graphite A scans, the source was not collimated
into a fan-beam geometry and a large portion of the beam hit the sample stage, mostly
composed of metal parts (see Fig. (6.3)). The small distance between the sample stage
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and the detector permitted a large portion of the environmental scattering to reach the
detectors. The large error in the estimation of silicon’s electron density (ρe) may be
due to the use of monocrystalline silicon, which is known to exhibit a different X-ray
cross section than polycrystalline silicon [8, 98]. The results are in the same order of
magnitude as the ones reported in a previous work using state-of-the-art Dual-Energy
CT [98], except for the significant lower performance on the estimation of ρe, which is
due to the reasons discussed above.

Figure 6.4: Scatter plot of the ρe, Ze results obtained using the SRZE method.

6.2.2 Dependence on Number of Energy Bins

The material characterization using the SRZE method was benchmarked with respect
to different numbers of new energy channels E ′k following the energy-rebinning step
described in section 3.1.3. Tables (6.2 and 6.3) respectively report the results as a
function of new energy channels for the carousel with six materials and for the materials
scanned individually.
A first observation is that the estimation of the electron density for the carousel
sample has a consistent negative bias, which is not found for the materials scanned
individually. This confirms the assumption on the environmental scattering noise due
to a lack of the fan-beam collimation of the source in the carousel sample scan. Another
prompt observation is the significant bad results overall for the rebinning into two
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Table 6.2: Estimation of Ze and ρe rebinning in different numbers of energy
channels, Eb, for the six materials carousel sample.

∆Ze(%)
Eb Graphite B Magnesium Water PTFE Silicon POM < |∆Ze| >
2 17.7 15.5 19.0 18.0 5.7 18.4 15.7
4 4.8 4.0 7.0 6.3 -2.9 6.4 5.3
8 -1.3 0.5 0.2 0.2 -2.8 -0.2 0.9
16 -3.5 0.6 -2.0 -0.4 -1.1 -2.1 1.6
32 -3.8 1.4 -3.5 -1.5 0.2 -2.6 2.2
64 -3.9 0.8 -3.2 -1.8 0.9 -2.4 2.2
128 -3.5 0.6 -2.1 -1.2 0.8 -1.5 1.6

∆ρe(%)
Eb Graphite B Magnesium Water PTFE Silicon POM < |∆ρe| >
2 -5.5 -10.2 -7.5 -7.2 -9.9 -4.5 7.5
4 -5.1 -5.9 -6.8 -5.8 -4.3 -3.9 5.3
8 -4.9 -4.2 -6.3 -4.8 -5.2 -3.4 4.8
16 -5.0 -4.6 -6.2 -5.0 -6.9 -3.4 5.2
32 -5.3 -5.7 -6.3 -4.9 -8.5 -3.7 5.7
64 -5.6 -5.4 -6.8 -5.1 -9.5 -4.1 6.1
128 -6.1 -5.6 -7.9 -5.8 -9.8 -4.8 6.7

energy channels. This may be because no initial energy channels of the 128 maximum
energy offered by the detector MultiX ME-100 were truncated, while it is known that
the detector’s performance gets worse at the low- and high-energy boundaries, even
though the detector response correction algorithm is applied. Thus, the integration
of the signal including these troublesome energy channels leads to distortions in the
calculation of the LAC. As this effect depends on the flux and photon statistics, the
distortion becomes more significant as the material’s LAC increases as well. The
characterization of Titanium, for example, only begins to have relatively good values
for 64 energy channels and yields the best results for 128 energy channels. This is
because, a higher number of energy channels in the data allows truncating these
energy channels through the energy thresholding step described in section 3.3. On
the other hand, it is seen that for relatively low attenuating materials, as the ones in
the carousel sample, the characterization is stable enough and yields best values for 8

energy channels. This suggests that the optimal number of energy channels depends
on the material’s attenuation properties, and that one should choose it depending on
the analysis application.
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Table 6.3: Estimation of Ze and ρe rebinning in different numbers of energy
channels, Eb, for the single material samples.

∆Ze(%)
Eb Titanium Aluminum Graphite A Silicon POM < |∆Ze| >
2 -24.8 1.5 23.5 -2.4 15.0 13.4
4 -25.6 -4.1 10.1 -7.5 2.7 10.0
8 -32.1 -2.3 2.6 -3.3 -5.3 9.1
16 -4.1 -1.1 1.9 -1.9 -7.6 3.3
32 -6.7 0.1 3.0 -1.1 -6.0 3.4
64 -3.3 0.6 1.8 -0.7 -7.6 2.8
128 -0.6 1.0 1.9 -0.6 -5.8 2.0

∆ρe(%)
Eb Titanium Aluminum Graphite A Silicon POM < |∆ρe| >
2 33.8 -3.7 -1.6 -4.2 -3.4 9.4
4 37.1 0.4 -0.8 1.0 -2.4 8.3
8 54.1 -1.2 0.6 -3.0 -0.3 11.9
16 5.7 -1.0 0.3 -3.5 -0.4 2.2
32 10.6 -2.6 -0.2 -4.8 -1.1 3.9
64 3.8 -3.1 0.2 -5.5 -0.4 2.6
128 -1.8 -3.9 -0.3 -5.8 -1.5 2.6

6.2.3 Dependence on Energy Thresholds Selection

To test the robustness and sensitivity of the EL and EH thresholds selection procedure
described earlier in this chapter, the SRZE estimation method was used over a range
of values for the low- and high-energy thresholds EL and EH. Fig. (6.5) shows the
relative percent deviation of the estimated material features for aluminum as a function
of the two thresholds. Note that the diagonal elements correspond to taking only two
adjacent energy bins and the values below the diagonal are not calculated, as they have
no physical representation. The distribution of the dark areas (corresponding to less
deviation) shows that the key factor for accurate estimation of the LAC, and thus ρe

and Ze, is the selection of the low-energy threshold EL. The optimal performance is
reached by truncating the low-energy bins for which the spectral distortions and photon
starvation cause a distortion of the measured LAC. On the other hand, choosing a
higher threshold for the low-energy bins yields a poor estimation, as the bulk of the
material properties is revealed by the low energy bins.
Fig. (6.5) also highlights that the selection of the high-energy threshold EH has less
impact on the estimation of the LAC, and thus ρe and Ze. The large areas in which
the deviation is below 2% indicate that the estimation method is overdetermined and
there may be a material dependent optimal choice of the energy bins, that leads to
optimized results. The difference in shape between the dark areas for ρe and Ze,
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suggests that there may be an independent choice of optimized thresholds for each
of the two parameters characterization. On the other hand, there is a common area
with low percent deviation for both parameters indicating that the characterization is
moderately sensitive to errors in the determination of the thresholds.

Figure 6.5: Plot of the material features estimation accuracy as a function
of the EL and EH thresholds, exemplified for aluminum. The scale unit is the
percent relative deviation (%) expressed in Eq. (6.1).

6.2.4 Plastic Samples

The second experiment was designed in order to evaluate the characterization accuracy
for low attenuating plastic materials precisely. The sample was built up stacking nine
plastic slabs of different material composition, which are listed in Table (6.4). A 3D
visualization of the sample was shown in Fig. (5.10) of Chapter 5. A single slice fan-
beam geometry SCT scan was taken with 370 projections with 0.1 s exposure time
for each of them. The energy-resolved reconstructions were performed with the FBP
algorithm of the LTT software. Table (6.4) and Fig. (6.7) present the characterization
results obtained with the SRZE method. Except for the polypropylene (PP) material,
all the relative deviations are below 3.2% with a mean deviation of 0.9% for the
effective atomic number and 1.9% for the electron density. The mismatch between
the characterization results for PP and the expected values are suspected to be caused
by a chemical mixture with colorants, which yield a higher effective atomic number
than the pure PP. For this reason, the PP results were neglected in the calculation of
the mean deviations. Another observation is that the relative deviation of Ze takes
negative values for each material, indicating a negative bias in the estimation. Fig. (6.6)
represents the expected and measured spectral resolved LAC of the PTFE material,
and a comparison between the two highlights the reason for the poor Ze estimation.
In the low energy range, the measured LAC yields lower values due to an incomplete
restoration of the spectrum by the detector correction algorithm, which leads to an
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underestimation of the effective atomic number Ze. The correction significantly extends
the low energy value range in which the measured LAC follows the expectations. This
is key to a correct discrimination of low attenuating materials. It is expected that both
advantages in the detector’s performance and the correction algorithm will increase the
accuracy of the SRZE characterization method.

Figure 6.6: Plot of the measured LAC (red line) of the PTFE material and
the LAC calculated using the estimated values (blue line) and reference (dashed
black line) for effective atomic number, Ze, and electron density, ρe.

6.3 Material Classification Experiments

The last part of this work is an analysis of the classification of materials based on their
measured physical properties using spectral X-ray CT. The classification is performed
using a large library of tabulated physical properties of materials measured individually
in separate SCT scans.

6.3.1 Material Features Library

The first step of the material classification experiments was to build reference tables
for the experimentally measured various physical properties of a list of materials.
The library of materials, for which the physical parameters were estimated, includes
innocuous materials, which are commonly found in luggage, and explosive or precursor
materials, which are prohibited by airport security regulations. Note that the materials
in this study are mostly organic and liquid materials without a K-edge discontinuity
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Table 6.4: All the plastic materials composing the sample and their respective
expected and estimated physical properties. †While most of materials are
polymers, the chemical formula is reported for the composing monomer. ∗The
mean values were calculated from the absolute values of each column, ignoring
the entries for polypropylene (PP).

Material Formula† Zexp
e Zest

e ∆Ze ρexp ρexpe ρeste ∆ρe

(%) g/cm3 e−mol/cm3 e−mol/cm3 (%)

∗PP C3H6 5.44 7.13 31.1 0.91 0.519 0.520 0.3
PEEK C19H12O3 6.26 6.26 -0.1 1.30 0.677 0.653 -3.5
PC C14O3H8 6.40 6.29 -1.8 1.18 0.609 0.618 1.4

PMMA C5O2H8 6.49 6.47 -0.3 1.18 0.635 0.620 -2.3
PET C10H8O4 6.65 6.65 -0.1 1.38 0.721 0.699 -3.1

POM-C CH2O 7.02 6.95 -0.9 1.41 0.752 0.741 -1.4
POM-H CH2O 7.02 6.99 -0.4 1.43 0.762 0.744 -2.4
PVDF C2H2F2 7.94 7.83 -1.4 1.79 0.895 0.887 -0.8
PTFE C2F4 8.43 8.22 -2.5 2.16 1.035 1.036 0.1
Mean∗ - - - 0.9 - - - 1.9

|∆(Ze)|, |∆(ρe)|

Figure 6.7: Plot of the material features estimation accuracy as a function
of the EL and EH thresholds, exemplified for aluminum. The scale unit is the
percent relative deviation (%) expressed in Eq. (6.1).

and with 6 ≤ Ze ≤ 10. Table (6.5) shows an example of such a reference table, listing
all the materials characterized into effective atomic number and electron density using
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the SRZE method. Similar tables were constructed for other material features such as
the energy-dependent LAC, and a single value LAC obtained by integrating the signal
over all the energy channels to emulate a conventional detector.

Table 6.5: The list of all the 73 materials scanned and processed through the
SRZE method, and their estimated physical parameters ρe(e

−mol/cm3) and
Ze.

Index Material label Type Ze ρe

1 2-Butanone Threat 6.64 0.440
2 2,4-Dinitrotoluene Threat 8.16 0.316
3 Acetone Threat 6.12 0.442
4 Ethylenediamine Threat 6.31 0.506
5 H2O2 50% Threat 7.24 0.661
6 Hexamethylenetetramine Threat 5.59 0.461
7 Hydrazine solution Threat 7.07 0.575
8 Methanol Threat 7.17 0.439
9 N,N-Dimethylhydrazine Threat 6.36 0.454
10 Nitric acid 65% Threat 7.21 0.744
11 Nitrobenzene Threat 6.70 0.621
12 Nitromethane Threat 7.09 0.586
13 Wine Innocuous 7.16 0.557
14 Cream Liquor Innocuous 7.19 0.580
15 Balsamic Vinegar Innocuous 6.98 0.640
16 Bromhexin DAK Innocuous 7.24 0.608
17 Baby Shampoo Innocuous 7.39 0.614
18 Aftersun Lotion 1 Innocuous 6.69 0.560
19 Brandy Innocuous 7.51 0.537
20 Hand cream Innocuous 7.01 0.545
21 Sun Lotion 1 Innocuous 6.74 0.579
22 Body Lotion 1 Innocuous 6.93 0.566
23 Beer 1 (Wheat) Innocuous 7.14 0.566
24 Ethanol 40% Innocuous 6.81 0.541
25 Ethanol 96% Innocuous 6.08 0.463
26 Shampoo Innocuous 7.36 0.589
27 Beer 2 (Brown Ale) Innocuous 7.35 0.564
28 Porto Wine Innocuous 7.26 0.568
29 Aftersun Lotion 2 Innocuous 6.95 0.567
30 Sun Lotion 2 Innocuous 6.61 0.572
31 Neutral Hand Soap Innocuous 6.50 0.585
32 Sun Lotion 3 Innocuous 7.19 0.580
33 Sun Baby Lotion Innocuous 8.73 0.606

Continued on next page
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Table 6.5 – Continued from previous page
Index Material label Type Ze ρe

34 Antiperspirant Innocuous 6.05 0.340
35 Beer 3 (Pale Ale) Innocuous 7.55 0.556
36 Olive Oil Innocuous 5.41 0.510
37 Alcohol Drink Innocuous 7.27 0.583
38 Rapeseed Oil Innocuous 5.40 0.516
39 Simple Eye Makeup Remover Innocuous 7.00 0.576
40 Body Lotion 2 Innocuous 6.92 0.563
41 Sugar Innocuous 6.49 0.524
42 Sun lotion 4 Innocuous 8.57 0.595
43 Hairspray 1 Innocuous 7.11 0.568
44 Beer 4 (IPA Ale) Innocuous 7.35 0.563
45 Beer 5 (Danish Christmas Beer) Innocuous 7.42 0.560
46 Whiskey Innocuous 7.27 0.524
47 Beautifying Anti-Blemish Care Innocuous 7.15 0.582
48 Water Innocuous 7.05 0.562
49 Energy Drink Innocuous 7.10 0.586
50 Hairspray 2 Innocuous 8.10 0.391
51 Shaving Foam Innocuous 8.12 0.542
52 Toothpaste 1 Innocuous 8.19 0.665
53 Ammonia Nitrate Threat 6.73 0.490
54 Book Innocuous 9.74 0.419
55 C4 Simulant1 Threat 8.02 0.855
56 C4 Threat 6.44 0.497
57 Chocolate Innocuous 6.68 0.700
58 Comp B Threat 6.54 0.897
59 Crystal Sugar Innocuous 6.63 0.531
60 DVD Bomb Simulant Threat 7.49 0.878
61 Hard Cheese Innocuous 7.41 0.619
62 Marzipan Innocuous 6.47 0.648
63 Nitromethane Threat 6.86 0.575
64 PETN Simulant1 Threat 7.72 0.719
65 Peanut Butter Innocuous 6.94 0.636
66 PETN Threat 6.73 0.839
67 Shampoo Innocuous 7.37 0.582
68 Soap Bar Innocuous 6.13 0.595
69 Soft Cheese Innocuous 7.35 0.604
70 Sun Cream Innocuous 7.32 0.571
71 TNT (chunks) Threat 6.63 0.434

Continued on next page
1†We found noticeable difference in the chemical composition of the simulant materials respectively

to the real threat materials.
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6.3. Material Classification Experiments

Table 6.5 – Continued from previous page
Index Material label Type Ze ρe

72 Toothpaste 2 Innocuous 8.26 0.678
74 Vinegar Innocuous 7.13 0.639

Singular Value Decomposition of Data

To confirm that the underlying model (Eq. (3.14)) adopted to estimate material
physical parameters from their LAC matches with the experimental findings, the data
is processed through a Singular Value Decomposition (SVD) analysis procedure, similar
to the one proposed by Eger et al. [99] for synthetic data. In a first step, a matrixM is
constructed with the energy-dependent LACs measured of all the reference materials
listed in Table (6.5). The matrix M has dimensions (Eb × Nmat) where Eb is the
number of energy bins for which the LAC is measured and Nmat is the number of
materials. The SVD decomposition aims to find a set of linearly independent vectors
that can express the LAC, and can be represented as:

SVD(M) ≡M = USV T , (6.2)

where U is a (Eb × Nmat) matrix where each column i composes the set of linearly
independent vectors Ui(E), S is a (Nmat×Nmat) diagonal matrix where the magnitude
of each element Si,i describes the relative contribution of the corresponding vector Ui
to the model. Fig. (6.8) represents the singular values Si,i and the first six singular
vectors Ui. A qualitative look at these vectors indicates that the two dominant singular
vectors, U1 and U2 are corresponding to the basis functions for incoherent scattering
and photoelectric absorption, as in Eq. (3.5). These observations were confirmed
by finding a linear proportionality between U1 and the Klein-Nishina function fKN,
and a linear trend of the inversion 1/ 3

√
U2(E). The remaining singular vectors are

dominated by noise components except for the third singular vector U3, which models
the oscillations in the measured LAC due to the residuals of the detector correction
algorithm around the emissions spectrum peaks of the X-ray source, as indicated by
the wiggles around the energy of the Kα1 and Kβ1 tungsten emission lines. This was
confirmed by calculating the autocorrelation of the singular vectors, which was below
the value of 0.5 [100] except for U1,2,3 and a few more with the same behavior of U3 but
different modulation of the peaks (see Fig. (6.8) (b)). Note that the list of materials
analyzed in this work do not have a K-edge in the measured LAC. Such a discontinuity
in the LAC would yield an additional relevant singular value and its respective singular
vector, for each of the eventual energy values of the K-edges in the library.
This suggests that for a list of materials without K-edge discontinuity such as the
one analyzed here, the two dominant singular vectors contain the bulk of information
about the physical properties of materials. Thus, there is no additional information
which can be represented by a third feature in addition to the standard effective
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(a) (b)

Figure 6.8: Singular Value Decomposition analysis of the reference materials
LACs. (a) Singular values of the diagonal i-elements (blue-squares). Note
logarithmic scale. (b) Singular vectors Ui respective to the diagonal singular
values si. The scale is in arbitrary unit.

atomic number and electron density {Ze, ρe} pair. Having only two dominant vectors
suggests the possibility for a basis function decomposition similar to the material basis
decomposition in Eq. (3.15), where the basis functions used are represented by the
singular vectors, and the coefficients can be used to represent physical properties based
on reference calibration measurements. This area is not investigated further in this
work, as the general interest is towards a system-independent method.

6.3.2 Prediction Models

In this work, four different methods are tested for the material classification from
SCT data acquisitions. In the first method, the material’s feature used is the energy
integrated LAC, µ̃(E ′), obtained by summing the signal over all the 128 energy channels
of the detector. The effective energy (E ′) corresponding to µ̃ was calculated using the
source spectrum as measured by the flat field acquisition (i.e. without the sample) as
a model for the detector’s response. The second and third methods, utilize the energy-
dependent LAC as the material’s identifier, i.e. the attenuation coefficient measured
at the 128 energy values corresponding to the specifics of the detector (µ(Ek) with
k = 1, 2, 3, ..., 128), with the difference that in the third method the standard deviation
is used to weight the different energy channels. In the fourth method, the materials
are characterized with the SRZE characterization method described in section 3.3. For
each of these methods, a look-up table library of material features such as Table (6.5),
has been built by using single slice fan-beam SCT of individual materials in ideal
condition (i.e. without metal artifacts and center-offset).
The classification is performed finding the closest match between the material property
of all the materials in the library and the unknown material under investigation. The
material label is thus found as follows for each method:
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• Integrated LAC (µ̃) classification:

label = arg min
label

√
(µest − µ̂label)2. (6.3)

• Spectral LAC (µ(E)) classification:

label = arg min
label

√√√√ 128∑
k=1

(
µestEk
− µ̂labelEk

)2
. (6.4)

• Weighted LAC (weµ(E)) discrimination:

label = arg min
label

√√√√ 128∑
k=1

λEk

(
µestEk
− µ̂labelEk

)2
. (6.5)

• SRZE (ρe/Ze) classification:

label = arg min
label

√√√√wZe

(
Zest

e − Ẑe

label

< Ẑe

label
>

)2

+ wρe

(
ρeste − ρ̂e

label

< ρ̂e
label >

)2

. (6.6)

The hat sign refers to the values stored in the libraries whereas the <> operator
corresponds to the mean, applied to all reference values of Ze and ρe. That is done to
have the physical parameters in the same scale and with same importance. The energy
weights λEk

are set to the reciprocal of the standard deviation respective to the LAC
value, to attribute less importance wherever the uncertainty is greater. The weights
wρe and wZe are assigned to the individual features of Ze and ρe to tune the influence
given to each of them. They are calculated with the equation below:

ŝZe =
max
label

(Ẑe
label

)−min
label

(Ẑe
label

)

mean
label

(Ẑe

label
)

; ŝρe =
max
label

(ρ̂e
label)−min

label
(ρ̂e

label)

mean
label

(ρ̂e
label)

, (6.7)

where ŝZe and ŝρe represent the widths of the value ranges in the reference library of
the effective atomic number and electron density respectively, normalized by dividing
by the respective mean values. The widths are then normalized through the equations
below such that their sum is equal to one, to obtain the weights:

wZe =
ŝZe

ŝZe + ŝρe
; wρe =

ŝρe
ŝZe + ŝρe

. (6.8)

The role of these weights is to give more impact to the prediction of the feature that has
more variability in the reference library. In the material classification, the prediction is
successful when the individual material label is found correctly, whereas in the binary
classification the discrimination is only done between innocuous and threat materials.
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6.3.3 Experiments

The following scans are the tests samples, which are built shuffling a few of the
tabulated materials in a sample holder or container. For each of the materials
contained in the samples the classification accuracy is benchmarked, as the ratio
between successful and failing predictions for the four prediction models. As a remark,
note that only the materials used in the samples are extracted for building up the
material reference table.

Homogeneous samples: slice reconstructions

The first set of experiments consists in 30 test samples composed of four glass bottles
filled with different materials and aluminum pin of 4mm diameter placed in a sample
holder. Of these samples, 10 of them were with the sample holder centered with the
sample’s rotation stage, 10 of them were with an offset between the sample holder and
rotation stage centers, and the remainder 10 with an aluminum slab of 10× 30 mm as
well. Fig. (6.9) features examples of the CT reconstructions of the different groups.

Figure 6.9: Reconstruction examples of the three types of dataset reproduced.
Left: the samples are placed centered in respect to the center of rotation.
Center: the samples are placed offset in respect to the center of rotation.
Right: the samples are placed offset in respect to the center of rotation and
an aluminum plate 10 × 30 mm wide is inserted to cause metal artifacts and
photon starvation.

Table (6.6) reports the results of the benchmarking for the different prediction
models and sample groups. Differently from the results obtained in the Paper IV
of the Appendix, in this work the weighted LAC has been introduced and the
weights in the SRZE classification have been calculated using Eq. (6.8), leading
to wZe = 0.38 and wρe = 0.62, rather than being equally set to 0.5. All the
spectral characterization methods (Spectral LAC, Weighted LAC and SRZE) show an
overall improved prediction accuracy when compared with the integrated LAC method
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(which corresponds to conventional integrating detectors), showcasing the advantage
of spectral techniques.

Table 6.6: The accuracy results (%) obtained for the different sample groups
and all of them (overall column). In the exact material classification, the
prediction is successful when the specific materials are classified correctly. In
the binary classification, the discrimination is only performed between threats
and innocuous materials. † Note that the aluminum plates and pins, which are
of relatively simple classification, are counted toward the total results.

Material classification
Prediction Model Centered Offset Offset with Al plate† Overall
Integrated LAC (µ̃) 24% 28.0% 40.0% 30.7%
Spectral LAC (µ(E)) 80.0% 74.0% 38.3% 64.1%
Weighted LAC (weµ(E)) 84.0% 86.0% 83.3% 84.4%
SRZE (ρe/Ze) 84.0% 82.0% 75.0% 80.3%

Binary classification (Threat/Innocuous)
Prediction Model Centered Offset Offset with Al plate Overall
Integrated LAC (µ̃) 60.0% 64.0% 75.0% 66.3%
Spectral LAC (µ(E)) 100% 98.0% 66.7% 88.2%
Weighted LAC (weµ(E)) 100% 100% 100% 100%
SRZE (ρe/Ze) 100% 100% 83.0% 94.3%

The spectral LAC methods has better results than the integrated one, but worse than
the weighted LAC and SRZE methods. This indicates that the energy channels for
which the detector correction algorithm is not efficient enough or the photon statistic
is too low, need to be treated carefully. This is emphasized by samples with metal
artifacts induced by the aluminum plate, for which a decrease in the accuracy of the
spectral LAC discrimination method is seen, whereas the accuracy increases with the
weighted LAC and SRZE methods. That is because these methods allow data affected
by photon starvation induced by the Aluminum plate to be disregarded by energy
weights or thresholding.
It is remarked that such a relatively low accuracy in the exact material classification was
expected as most of the innocuous materials in the library are water-based compounds
and some of them are varieties of the same specimens (e.g. 5 types of beer, 4 sun
lotions etc.). On the other hand, the SRZE method shows perfect accuracy in the
binary classification for samples without the aluminum plate, and the weighted LAC
yields perfect binary classification accuracy for all samples. The superior accuracy
of the weighted LAC method in this case can be explained by a better efficiency in
disregarding photon starvation effects using energy weights, when compared with the
thresholding of the SRZE method.
To analyze the specific materials for which the classification failed a confusion matrix
(C) was build. The confusion matrix is a useful tool to determine which materials
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require more attention in the classification task and is calculated as:

C = {ci,j} =
∑
label

δi,j (6.9)

with

δi,j =

{
1, if i = labelreal & j = labelpredicted

0, otherwise.
(6.10)

Each element ci,j of the confusion matrix can be interpreted as the instances of
the actual material corresponding to the row i that are classified into the material
corresponding to the column j. Fig. (6.10) features the normalized confusion matrix
for the SRZE classification method. In the normalized confusion matrix, each row is
normalized to sum 1 and converted into percent (%). It is observed that from the
measurements it is hard to distinguish between brandy, hand cream and water as the
first two materials were classified as water. With respect to the binary classification,
the shampoo has been classified as the nitromethane threat material, whereas the
incorrect classification of methanol and nitromethane did not lead to wrong binary
classification.

Materials filled boxes

The second set of experiments consists in 20 test samples composed of a cardboard box
filled with different combinations of random threat and innocuous materials. A three-
dimensional SCT of each test sample was performed with the same current settings
and geometry. The source was set to 150 keV with a 2 mm aluminum filter and fan-
geometry collimation of the source, with vertical height field of view at the detector
corresponding to the detector’s pixel size. For each of the 360 projections distributed
between 0 and 360 degrees, the sample stage was continuously translated vertically to
have an acquisition of the 2D projections of the sample as one would obtain with cone-
beam geometry, while suppressing significantly the scattering noise from the sample.
Each of the vertical orthogonal slices was reconstructed using a custom adaptation of
the ART-TV reconstruction technique. Fig. (6.11) displays a 3D volume of a single
sample, obtained by merging all the vertical orthogonal slice reconstructions.
Table (6.6) reports the overall results of the benchmarking for the different prediction
methods. The comparison between the different material features used for the
classification task is consistent with the first experiment reported, but improvement of
the performance using the weighted LAC and SRZE method is lower when compared
with the spectral LAC. Moreover, the weighted LAC method is not superior in both
material and binary classification to the SRZE method. The overall decreased accuracy
is justified by a larger amount of materials in the reference material library. Fig. (6.12)
features the normalized confusion matrix for the SRZE classification method. It
is found that the peanut butter, hard cheese and vinegar materials are the major
responsible for the low classification accuracy as they are often the result of the
prediction of other real materials.
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Figure 6.10: Normalized confusion matrix for the SRZE classification. The
ideal confusion matrix corresponding to perfect classification is the diagonal
identity matrix. The unit of the color bar is the percentage (%) of real
materials (y-axis) being predicted as a material from the reference library (x-
axis). †Threat materials.

Table 6.7: The accuracy results (%) obtained for the different sample groups.
In the exact material classification, the prediction is successful when the specific
materials are classified correctly. In the binary classification, the discrimination
is only performed between threats and innocuous materials.

Prediction Model Material Classification Binary Classification
Integrated LAC (µ̃) 18.4% 80.2%
Spectral LAC (µ(E)) 36.9% 86.3%
Weighted LAC (weµ(E)) 45.6% 86.7%
SRZE (ρe/Ze) 43.7% 87.2%

6.4 Short Summary

In the first part of this chapter the SRZE method using SCT presented in Chapter 3
has been validated using sample with well-known material properties. The assumptions
for the reasons producing worse electron density estimation of materials in the first
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Figure 6.11: Visualization of the 3D reconstruction of a box sample filled
with five different materials. To the right side are shown two vertical slices of
the reconstruction in the Y-Z and X-Z planes.

experiment (Test Sample 1) were confirmed with a second scan of plastic materials. For
this experiment all the estimation deviations were below 3.6%, with a mean deviation
of 0.9% for Ze, and 1.9% for ρe. The main advantage of this method is that due
the simultaneous measurement of the spectral features it does not require system
optimization to estimate high attenuating materials properties but rather, a robust
truncation of photon-starved energy channels.
Finally, I have presented a benchmark study of material classification using different
material features measured with SCT. All the spectral features used for the material
classification produced significantly better accuracy compared with conventional
energy integrating features, both in the exact material classification and in the
threat/innocuous material discrimination. This study demonstrated the advantage
of spectral techniques in extracting additional information on material properties from
the energy domain.
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Figure 6.12: Normalized confusion matrix for the SRZE classification. The
ideal confusion matrix corresponding to perfect classification is the diagonal
identity matrix. The unit of the color bar is the percentage (%) of real
materials (y-axis) being predicted as a material from the reference library (x-
axis). †Threat materials.

99



Summary and Outlook 7
This thesis has presented an overview of the current state of laboratory-scale spectral
X-ray imaging techniques with a focus on spectral X-ray CT. I presented an overview
of the various methods and algorithms for the data processing and correction steps
in the overall workflow. Although the experiments were performed to highlight the
advantages that this technique offers in security screening applications, the methods
and algorithms developed in this research work can also be applied in other fields, such
as medical imaging and general non-destructive testing or industrial quality check
inspections.

CNN-based corrections

For this research work, I have developed new correction methods for scattering and
metal artifacts correction methods in the spectral image processing workflow. The
methods (shown in Chapter 5) use a spectral Convolutional Neural Network (CNN)
architecture from the field of machine. Compared to related work, the proposed
approach learns features from the energy domain extending the range of the problems
that can successfully corrected. The advantages of these methods, is that they can
generalize for the problem to be solved as the prior information required for the
correction is intrinsically incorporated in the training data. The correction step for
real measured data is then parameter-free and with near real-time speed, satisfying
requirement of real scanners. The performance of these methods depends highly on
the quality of the training data and how well its variety generalizes the problem. It was
shown how the fabrication of training data can be a slow and in some cases complex
procedure, which needs to be tailored for the desired application. However, this aspect
becomes simpler in cases where the diversity of the objects under inspection decreases.
For the application cases presented in this thesis, the corrections always successfully
accomplished the given task improving the results. The current limitation of this
correction method is the introduction of blur in the reconstruction, which is mainly
due to the computational hardware limitations. Due to the extremely large size of
spectral reconstructions (3 or 4-D), the input data was downsampled in size losing high-
resolution features. Likewise, the spectral CNN architecture was relatively limited in
the layers depth and in the number and size of the convolutional filter (weight tensors).
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For this reasons, high-resolution scanners with a large data size may require further
adaptations of the architecture or fragmentation of the datasets into smaller patches
followed by a successive merging. Nevertheless, it is expected that future technology
and findings will overcome these limitations.

Material Characterization Methods

In Chapter 3 I have presented an overview of the different material characterization
methods enabled with spectral-CT techniques. For this research work, we adopted
a channel-by-channel approach for the reconstruction techniques, which preserves the
energy resolution of the materials’ LAC. Thus, the SRZE method we have developed
for the estimation of the system-independent material properties of effective atomic
number and electron density is of a post-reconstruction type. Within the security-
screening field, this is justified by the high variety of the materials that can be found
in the investigated objects. Nonetheless, pre-reconstruction approaches are preferred
in specialized applications, where more a-priori knowledge of the samples is available.
The SRZE method presented has shown accuracy and precision that are comparable
to its state-of-the-art competitor using Dual Energy CT scans. The relative deviations
from the expected ground truth, for the plastic samples experiment, were all below
3.6%, with a mean deviation of 0.9% for Ze, and 1.9% for ρe. In addition, the charac-
terization of titanium, a highly attenuating material, was possible without changes to
the scanning system or the method parameters. This demonstrates the advantage of
this spectral technique, in terms of the higher flexibility of the material range that can
be scanned without modification of the instrument parameters. Unfortunately, it was
not possible to evaluate a direct performance comparison of spectral and dual-energy
CT techniques.

With respect to the overarching goal of security screening, that is the classification
of material, and their discrimination into threat/innocuous material, all the spectral
measured features produced significantly higher accuracy compared to the conventional
energy-integrating one. The accuracy was improved up to ≈ 35% for the threat
detection and up to ≈ 55% for the material classification. It was found a higher
robustness when using the weighted energy-resolved LAC as the material feature for
classification, compared with the ones estimated with the SRZE method. This is due
to the high sensitivity of the method to the low energy channels, which are more
unstable due to lower photon statistics and detector distortion effects. Nonetheless,
both methods produce similar results.

Limitations and Outlook

The performance of this technique at its current state and the methods presented
is limited by the relatively high cost and restricted amount of the photon counting
detectors in the market, which are compulsory in the instrumentation. The accuracy
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of the estimation of the material properties revealed using spectral X-ray CT highly
depends on the efficiency of the detector in the measurement of the spectrum of
the incoming radiation at different flux densities. While correction algorithms can
overcome most of the spectrum distortions that these detectors suffer from, advances
in hardware in terms of spectral resolution and performance, especially in the low
energy domain, will also improve results in the accuracy and precision.
As ideas for future work, I identify and list:

• Improvement of the training data for the CNN correction methods. This can be
done by including more complex and realistic shapes and more different material
properties, and increasing the overall amount of training data.

• Further development of the spectral CNN architecture. This could be done by
implementing energy-dependent loss functions, to overcome the fact that the
value difference between images is higher at low energies due to the characteristics
of the LAC. Another aspect would be the use of objective function, to incorporate
material segmentation and prevent blurring and loss of feature resolution.

• Implementation of spectral reconstruction techniques, which can better utilize
the additional information in the spectral domain, rather than an elementary
channel-by-channel approach.

• Direct benchmarking of the characterization and classification accuracy, under
the same experimental conditions, using spectral X-ray CT and the current state-
of-the-art technology, Dual-Energy CT.

The first spectral X-ray applications in the literature and in industry are not older
than a decade. Since the technology is at such an early stage, the results of this study
demonstrate that spectral techniques are indubitably the future of X-ray imaging.
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Abstract. Spectral computed tomography is an emerging imaging method that involves using recently devel-
oped energy discriminating photon-counting detectors (PCDs). This technique enables measurements at iso-
lated high-energy ranges, in which the dominating undergoing interaction between the x-ray and the sample is
the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has
proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte
Carlo simulations can utilize a physical model to estimate the scattering contribution to the signal, at the cost of
high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict
the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the
tool through measurements using a CdTe single PCD (Multix ME-100) and use it for scattering correction in
a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the recon-
structed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination,
especially in the high-energy range, where the incoherent scattering interactions become prevailing (>50 keV).
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.3.037105]

Keywords: computed tomography; spectral computed tomography; multienergy computed tomography; x-ray scattering; Monte Carlo
simulations; scattered radiation; fan-beam computed tomography; incoherent scattering.
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1 Introduction
X-ray computed tomography (CT) is an imaging technique
that has been developed since the 1970s and is used daily for
many purposes, such as medical diagnostics, airport security
screening, and food quality.1–3 An x-ray CT acquisition con-
sists in measuring the ratio between the transmitted and inci-
dent photons on an object under investigation from multiple
angles. To achieve high-quality imaging of the object, it is of
key importance to have a good model of the physical inter-
actions between the x-ray photons and the sample. Most of
the reconstruction techniques implemented in conventional
CT scanners are based on the Bouguer–Beer–Lambert law,
where the interactions are assumed to be fully described by
an exponential attenuation model. Moreover, the detectors
adopted by these instruments are typically based on single
or dual energy methods, in which the incoming radiation sig-
nal is integrated in the full energy interval, losing the energy-
dependent features. Consequently, in standard commercial
x-ray CT scanners, there are two main effects deteriorating
the quality of the reconstructions.

First, the x-ray source is typically emission from an anode
that generates a polychromatic beam. However, materials
absorb the low-energy photons more efficiently than high-
energy photons, resulting in cupping and streaking artifacts
in the reconstructions due to such beam hardening. Monte
Carlo (MC) simulations have been used to predict and cor-
rect such effects.4 However, it turns out to be challenging in
fields, where the sample is complex and the materials have

a wide range of attenuating materials. An emerging tech-
nique involves the use of single photon-counting detectors
(PCDs)5 capable of discriminating the energy of the incom-
ing photons. In this way, under the assumption that the
energy resolution is good enough, each measurement can be
considered a set of monochromatic acquisitions in what is
called spectral CT.

Second, the reconstruction models do not consider that
the detected total signal is not only composed of the primary
radiation, the photons reaching the detector along a linear
path from the source, but also of the scattered radiation,
the photons having undergone scattering events within the
sample volume. Johns and Yaffe6 have shown that this scat-
tering contribution can produce significant cupping artifacts
in fan-beam geometry CT acquisitions. Nevertheless, com-
pared to the cone-beam CT, its impact is substantially
decreased due to a reduced volume of the sample being irra-
diated and the detection solid angle being restricted to the
fan-beam plane. For an overview of the recent approaches
to correct for this effect, the reader is referred to a review
by Rührnschopf and Klingenbeck.7 At present, however,
most of the solutions for the scattering correction adopted in
commercial scanners are based on simple Poisson models of
the scattering contribution, which may lead into bias artifacts
in the reconstruction.

A more accurate approach is to obtain a direct estimate of
the scattered radiation, based on the physical interactions
between photons and matter in the CT instrument by an
MC simulation of the measurement. A simulation method

*Address all correspondence to: Matteo Busi, E-mail: mbusi@fysik.dtu.dk 0091-3286/2018/$25.00 © 2018 SPIE
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providing spectral scattering estimate in fast time scales has
recently been developed and validated, based on a hybrid
MC and deterministic approach.8 In the latter, the scattering
points in the sample are computed by MC simulations, and
then deterministic calculations set the particle fractions
reaching each detector pixel. Another limitation of current
MC simulation methods is that samples are typically
rendered as simple polygons or triangle meshes. Therefore,
samples of complex shapes and overlapping between each
other would dramatically increase computational costs.
Last, most of the MC simulation tools proposed at present
are based on energy integrating detectors, which are not
compatible with spectral CT.

In this work, we present a fully stochastic MC simulation
tool for spectral CT x-ray tracing featuring an estimation of
the scattered radiation, based on volumetric discretized phan-
toms, which allows the computation of complex sample
geometries without an impact on the time efficiency. Our
preliminary investigations of this technique have been pre-
sented elsewhere,9 the pseudocode for our algorithm is there-
fore not in the main text but deferred to the Appendix. In
Sec. 2, we show the methods implemented in the simulation
tool and the technique adopted to experimentally detect the
scattered radiation contribution. In Sec. 3, we validate the
simulation tool by comparing the scattering signal obtained
by simulation and real acquisitions. Finally, in Sec. 4, we
present a simulation study carried out to estimate and correct
for the scattered radiation contribution to spectral CT and
we draw some conclusions in Sec. 5.

2 Methods
In spectral CT, the total detected signal Stð~r; EÞ is a function
of the pixel position ~r and energy E and can be written as
follows:

EQ-TARGET;temp:intralink-;e001;63;377Stð~r; EÞ ¼ Spð~r; EÞ þ Ssð~r; EÞ þ Sbkgð~r; EÞ; (1)

where Spð~r; EÞ is the primary signal, which is the detected
photons not undergoing interactions with the object; Ssð~r; EÞ
is the scattered signal, composed of the photons being
scattered by the sample. Last, Sbkgð~r; EÞ is the background
contribution, composed of the photons being scattered or
reflected from the environment and collimating components.
In this work, the latter term is not included in the simulation
framework as it is highly dependent on the setup of the
instrument, and we assume that the system can be optimized
to minimize its contribution. Furthermore, in spectral CT, the
total signal suffers distortions of the spectral distribution due
to detector effects causing the photons to be detected with
a certain energy shift. Such effects (e.g., charge sharing,
escape peaks, weighting potential, etc.) can be modeled
using a unified detector response matrix (DRM), which is
applied to each of the real acquisitions on a pixel-by-pixel
basis.10 Effects such as pile-up that depend on the flux of
the x-ray beam are not efficiently accounted for by the DRM
approach and need to be dealt independently.11 Christensen
et al.12 introduced an accurate correction method, adopted in
this work, for real acquisitions. This is time efficient and
reliable for systems working with a high x-ray flux, up to
5 Mph∕s∕mm2.

2.1 Monte Carlo Simulation Tool

The simulations framework adopted for this work is
McXtrace,13 a software package for MC simulation of x-ray
experiments by ray-tracing methods. Rather than tracing
individual photons, in this framework, rays are represented
by photon entities, and their interactions are simulated by
probabilistic weight factors and tracing parameters, such
as direction, wave-vector, polarization vector, and phase.
The individual parts composing the instrument (e.g., sources,
slits, detectors, samples, etc.) are identified as so-called com-
ponents that can be separately implemented in comparatively
few lines of simple code and interact with each sampled ray
by applying weight factors operation or altering their param-
eters. For this work, we have developed a sample component
suitable for spectral CT with explicit treatment of the differ-
ent physical interactions of x-rays incident on objects com-
posed of multiple materials of a given shape. The sample is
initialized by loading a volumetric discretized phantom of
the object that is made up of a finite number of voxels of
a defined size in a 3-D rectangular parallelepiped grid rep-
resenting the bounding box. In this way, samples composed
of objects of complex shape require the same computational
cost as simple geometries. Moreover, since the reconstruc-
tion images rendered and employed in the forward and
back projections of iterative methods are discretized in the
same way, the format is well suited for reconstruction algo-
rithms and their parameter optimization. The value in each
voxel holds an integer number i ¼ 0;1; 2; : : : ; N, which
labels a specific material. For each material, lookup tables
are required as input, visualized in Fig. 1.

The first lookup table is composed of the energy parame-
trized cross-sections for the possible interactions between
the x-ray beam and the sample; i.e., photoelectric absorp-
tion σiphðEÞ, coherent (Rayleigh) σicohðEÞ, and incoherent
(Compton) σiincðEÞ. These values are used to determine
the likelihood of each interaction in the component and
could, for instance, be loaded from the database adminis-
trated by the National Institute of Standards and Technology
(NIST).14 In a simplified approach, assuming that the scat-
tered radiation is deflected out of the detector’s range, the
total attenuation cross-section can be used ignoring the fol-
lowing component treatment of the scattering. However, as it
can be observed in Fig. 1, above 50-keV incoherent scatter-
ing interaction is dominant, whereas photoelectric absorption
is prevailing for lower energies. Coherent scattering is about
2 orders of magnitude lower than the total attenuation, and
only influent in the low energy range.

The remaining two lookup tables are used to sample the
coherent and incoherent angular deflection of the ray trajec-
tory when a scattering event occurs and is made up of the
coherent and incoherent scattering functions IicohðQÞ and
IiincðQÞ of each material. The scattering function is treated
as the probability distribution function (PDF) of the scatter-
ing vector ~Q of amplitude:

EQ-TARGET;temp:intralink-;e002;326;155Q ¼ j ~Qj ¼ 4π

λ
sin

�
2θ

2

�
; (2)

where λ is the wavelength of the incident x-ray and 2θ is the
detected scattering angle (i.e., between the incident and the
scattered ray). In this way, the scattering vector’s amplitude
Q can be sampled by the inversion method,15 which involves
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computing the cumulative distribution function (CDF) of the
distribution and then inverting that function. Since the latter
is discrete, the computation of the CDF is simply done by
adding up the individual probabilities (normalized to sum
1) for various points of the distribution. The detected scatter-
ing angle 2θ is derived from the sampled Q using Eq. (2)
since the energy of the incident ray is a known parameter.
The distributions used for IicohðQÞ in this work have been
experimentally determined by the energy dispersive x-ray
diffraction method, as described by Kehres et al.16 and
entered into a database of common materials. The state-
of-the-art coherent scattering distribution used for water,
shown in Fig. 1, is the one presented by Skinner et al.17

that was made available for download.
To model the distribution of incoherent scattering IiincðQÞ,

we have adopted the parametrization presented by Hajdu18

and Palinkas.19 As an alternative, the angular deviation of
scattering events can be sampled as modeled by the
Thomson and Klein-Nishina functions.20 The azimuthal
angle ϕ is uniformly sampled in the interval ð0;2πÞ, since
the radiation emitted by a conventional x-ray tube is almost
fully unpolarized. Finally, when the scattering event is deter-
mined to be of Compton type, the ray’s energy parameter is
updated to Einc, according to the Compton energy shift rela-
tion:21

EQ-TARGET;temp:intralink-;e003;63;261Einc ¼
E

1þ E
511 keV

½1 − cosðθÞ� : (3)

The projections’ runtime of the simulations performed in
the upcoming sections is 2 min on a standard laptop,
equipped with i7-6600U quad-core CPUs at 2.60 GHz.
The speed performance of the scattering estimator is similar
and, in some instances, faster than what is reported in some
previous recent works for a sample of similar geometrical
size.8 For the simulation of CT experiments, as presented
in Sec 4, several projections can be simulated in parallel
in multicore architectures to increase efficiency.

2.2 Instrumentation

The instrumentation used for the validation of the scattering
estimation of the new scattering component was designed for

spectral CT measurements. The x-ray beam was generated
by a tungsten anode, and the acceleration voltage and fila-
ment current were set to 160 kV and 0.5 mA, respectively.
For these operating parameters, the focal spot was 75 μm.
The detector was made up of two 1-D PCD Multix-
ME1005 modules, composed of 1 × 128 pixels of size 0.8 ×
0.8 mm2 and each with 128 energy bins of width 1.1 keV,
evenly distributed between 20 and 160 keV. The energy res-
olution of the detector under high x-ray fluxes is of 6.5%
(8 keV) at 122 keV.22 A 3-mm thick aluminum filter was
placed in front of the source to reduce the beam hardening
effects and to suppress the photons with energy below the
spectral range of the detector. An energy distribution of
the source, shown later in Fig. 5, was obtained by an acquis-
ition of the direct beam (i.e., without the sample being
inserted). The characteristic x-ray peaks of the tungsten tar-
get are smeared due to the limited detection energy resolu-
tion,12,23 resulting in a smoother spectrum compared to what
is theoretically expected. The source spectrum is used in the
simulation as the PDF of the ray’s energy parameter. In this
way, we simulate a polychromatic beam with the same fea-
tures as we can measure. The sample used in the work pre-
sented here was composed of four glass (SiO2) bottles filled
with, respectively, water (H2O), hydrogen peroxide (H2O2),
powdered sugar (C12H22O11), a powdered PETN explosive
simulant, and an aluminum rod. The sample, sketched in
Fig. 2, was designed to highlight the challenge of automated
accurate threat detection in security screening,2 as they are
innocuous and harmful materials, which have very close val-
ues of efficient atomic number (Zeff ) and density relative to
water (ρrel).

3 Experimental Validation
The method adapted to experimentally measure the detected
radiation being scattered from the sample Ssð~r; EÞ was the
collimator shadow. The latter was shown to be an accurate
empirical technique24 and suits our beam collimation choice
of a fan-beam. This technique, sketched in Fig. 2, combines
a fan-beam collimation with a 2-D flat detector, to obtain
considerably extended surfaces in which only the scattered
radiation is present. The collimation was obtained by
a vertical slit composed of two tungsten blades. The 2-D
flat detector was reproduced by sequentially translating in

Fig. 1 The lookup tables used by the sample component, exemplified for water. (a) The NIST cross-
sections are represented for each type of interaction: photoelectric absorption (Ph. Abs.), Rayleigh
scattering (Coh.), Compton scattering (Inc.) and total attenuation (total), the sum of the three. Note
the logarithmic scale to emphasize each contribution to the total attenuation. (b) and (c) The coherent
and incoherent, respectively, scattering functions’ probability distribution function (PDF) and their respec-
tive cumulative distribution function (CDF) are represented. Note the different scales for the y -axis.
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70 steps vertically our linear detector, resulting in an array of
70 × 256 pixels 2-D detector. We restricted the detection
energy range to the interval between 40 and 160 keV to dis-
regard energy channels with low photon statistics, as they
would display accentuated distortions in the spectral shape
due to insufficient signal to noise ratio.

In this technique, in the shadows cast by the collimator
(i.e., outside of the fan-beam plane), the primary signal is
absent, Spð~r; EÞ ¼ 0. Assuming absence of air scattering,
the isolation of the sample scattering contribution Ssð~r; EÞ
can therefore be obtained by the subtraction between the
acquisition with and without the sample, Sð~r; EÞ and
S0ð~r; EÞ, respectively, to reduce the environmental noise:

EQ-TARGET;temp:intralink-;sec3;63;364Ssð~r; EÞ ¼ Sð~r; EÞ − S0ð~r; EÞ
¼ Ssð~r; EÞ þ Sbkgð~r; EÞ − Sbkgð~r; EÞ:

A mathematical phantom of the sample of 150 × 150 ver-
tically homogeneous voxels of size 0.667 mm was generated
and loaded into the simulation component described in
Sec. 2, to estimate the total signal S̃ð~r; EÞ and its respective
sample scattering contribution S̃sð~r; EÞ. The geometrical
setup of the instrumentation in the simulations was set to
match the experimental setup.

3.1 Simulation Output

The runtime for simulating each projection, sampling 106

rays, was 2 min. To reduce further the computational efforts
of the MC simulations, we applied a 3-D Gaussian blurring
to the spectral scattering projections S̃sð~r; EÞ, inspired by the
accelerated simulation method presented by Colijn and
Beekman.25 The method consists in filtering the projections
with a 2-D Gaussian smoothing kernel, with standard
deviation σ being the blurring width. We introduce a trade-
off between noise and blur (variance and bias) in the
simulation output using fixed bandwidth kernel density esti-
mation with a Gaussian kernel.26 We use a 3-D Gaussian ker-
nel and vectorial form of the blurring width ~σ ¼ ðσz; σy; σEÞ,
composed of the individual blurring widths in the z- and

y-axes and the energy domain. The optimal choice of ~σ
depends on the number of rays being sampled and the geo-
metrical parameters of the system. For this work, the blurring
width has been found by the minimization of the combined
root mean squared error, RMSEðσz; σy; σEÞ, with a reference
considered as true image:

EQ-TARGET;temp:intralink-;sec3.1;326;441RMSEðσz; σy; σEÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNz

i¼1

XNy

j¼1

XNE

k¼1

ðS̃sðzi; yj; EkÞ − S̃refðzi; yj; EkÞÞ2
NzNyNE

vuut ;

therefore, S̃refð~r; EÞ is the scattering projection used as true
reference, obtained by simulating 109 rays;Nz andNy are the
numbers of pixels in the z- and y-direction, respectively; and
NE is the number of energy bins of the detector. Figure 3
shows S̃sðzi; yj; EkÞ, S̃refðzi; yj; EkÞ, and the filtering result,
for blurring width ~σ ¼ ð9; 4.14; 1.71Þ. For a better visualiza-
tion of the results, the scattering projections shown in the
following figures have been energy integrated into S̃sðz; yÞ ¼PNE

k¼1 S̃sð~r; EkÞ and spatially integrated into S̃sðEÞ ¼PNx
i¼1

PNy

j¼1 S̃sðzi; yj; EÞ. The drop in intensity that can be
observed within the fan-beam plane indicates that the pho-
tons being scattered to the fan-beam plane are less likely than
the one being scattered out of it. This is the reason underlying
the apparition of the two lobes of high intensity in the vicin-
ity that would not be obtained by rather having a cone-beam
collimation.

Figure 4 shows the output of the simulation, displaying
the individual types of scattering events contributing to
the total scattering signal, and their respective spectral and
spatial distribution. It can be observed that both the incoher-
ent and multiple scattering (i.e., when the photons are scat-
tered more than once in the same path tracing) are heavily
spread in a broad range of angles centered in the proximity of
the sample, indicating that information about the geometrical
structure of the sample is completely lost. A comparison
between the coherent and incoherent scattering instead

Fig. 2 Collimator shadowmethod: the x-ray beam is collimated into a fan-beam geometry. The sample is
placed at a source-to-axis distance (SAD) = 300 mm from the detector, whereas the 1-D detector, placed
at an axis-to-detector distance (ADD) = 280 mm from the sample, was composed of 256 pixels in the
z-direction and is vertically translated in the y -direction to reproduce a 2-D detector. In the detector area
shadowed by the collimator, the signal is only composed of the scattered radiation.
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Fig. 4 Simulation output of the scattering contributions to the total signal St ð~r ; EÞ. (a)–(d) Energy
integrated incoherent, coherent, single and multiple scattering profiles. (e)–(h) Spatial integrated and
energy integrated distribution of the individual x-ray scattering profiles. The dashed black line is the
total scattering signal, whereas the blue and red lines are its incoherent and coherent contributions
in (e,f), and its single and multiple contributions in (g,h). Note that the intensity scale of (b) is three
times lower than (a), whereas the intensity scale of panel (d) is four times lower than panel (c).

Fig. 3 Visualization of the effect of the 3-D Gaussian blurring. (a) Starting from the top frame toward
the bottom are shown the energy integrated scattering estimate S̃sð~r Þ, the result of the filtering and
the reference S̃refð~r Þ. (b) The spectral distribution of the respective spatial integrated scattering projec-
tions S̃sð ~EÞ.
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suggests that the former contributes largely to the low-energy
part of the energy spectrum and, despite that, is heavily cen-
tered toward the small angles compared to the latter. It is also
evident that above 50 keV, the scattering profile is dominated
by the incoherent scattering events. A look at the multiple
scattering profiles suggests that it can be treated as a constant
offset relative to the single scattering, if the purpose is to
employ fast and simplified computational models. Last, it
should be noted that the simulation output is on an arbitrary
scale since it is a probability map. Therefore, the data should
be interpreted after it has been properly rescaled according to
the beam flux, which could be, for example, determined by
placing a virtual monitor before the sample. However, for
most applications, this procedure is not necessary as it is
the case of the reconstruction techniques, in which the data-
sets are normalized in the preprocessing of the attenuation
Að~r; EÞ according to Eq. (4):

EQ-TARGET;temp:intralink-;e004;63;346Að~r; EÞ ¼ − log
Sð~r; EÞ
S0ð~r; EÞ

: (4)

3.2 Comparisons

Figure 5 displays the comparisons of the scattered radiation
obtained by both the simulation and experiment, and their
respective spatial and energy profiles. The spatial profile
of the two signals shows a qualitative good match, which
does not completely hold for the energy distribution. Avisual
comparison of the experimental and simulated spectral
distributions indicates an overestimation of the high-energy
and, thus, supposedly the incoherent scattering events.
Concurrently, the experimental spectral distribution displays
sharper peaks centered around the characteristic peaks of
tungsten. This indicates a relatively large environmental
noise in addition to the scattering signal, which can be
caused, for example, by the scattering of the slits used for
the front collimation of the beam since they are made of
tungsten. That can be due to direct beam reflection or scat-
tering from other parts composing the instrument. Therefore,
we attribute the reason for the discrepancy to the experimen-
tal complexity in achieving the ideal collimation of a fan-
beam and in reducing the background radiation incoming

from the system environment. A more accurate detection
of the spectral distribution of the scattered radiation could
be achieved by a better shielding of the background radia-
tion, which was beyond the purpose of this work.

Another limitation of the simulation tool is the depend-
ence on the quality of the models used for the coherent scat-
tering angular deviation sampling. For certain samples, for
instance, the noise removal can be challenging due to the
relatively low count rate of the technique, leading to impre-
cisions in the measured distribution. Furthermore, the instru-
mental constraints prevent the determination of the coherent
scattering functions IicohðQÞ in the low-Q limit, due to the
presence of the direct beam. Last, the analytical approxima-
tions used for the incoherent scattering functions are required
to satisfy the validity range sinðθÞ∕λ < 1.218,19 posing a limit
to the high angles.

4 Computed Tomography Scattering Correction
In the last part of the work, we have simulated a spectral CT
experiment of 101 projections evenly distributed between
ω ¼ ð0;2πÞ. For each projection, 106 rays are traced fol-
lowed by the Gaussian blurring of the scattering projections.
The specifications of the instrumentation and of the sample
are sketched in Fig. 2 and described in Sec. 2. The
reconstruction method adopted was simultaneous iterative
reconstruction technique (SIRT), implemented in the
ASTRA reconstruction toolbox.27 The latter maps the attenu-
ation simulated projections into volumetric representation of
the linear attenuation of the sample μð~r; EÞ. To assess the
impact of the scattered radiation, we have performed slice
reconstructions μtð~r; EÞ and μpð~r; EÞ of, respectively, the
total attenuation projections Atð~r; EÞ and of the scattering
corrected primary attenuation projections Apð~r; EÞ. These are
obtained by inserting the simulated total signal S̃tð~r; EÞ and
primary radiation S̃pð~r; EÞ ¼ S̃tð~r; EÞ − S̃sð~r; EÞ, respec-
tively, in Eq. (4). It must be noted that following Eqs. (1)
and (4), since the total signal is corrupted by the scattered
radiation, the total attenuation yields a lower value compared
to the true attenuation.

The reconstructions shown in Fig. 6 were carried out by
first merging the energy channels between 92.7 and 160 keV.
That is a considerably high-energy interval, such as the

Fig. 5 Validation of the simulation tool. (a) The normalized estimated (simulation) and measured (experi-
ment) scattering signal, integrated over the energy and the y -axis area shadowed by the collimator are
plotted. (b) Their respective spectral distribution and the source spectrum (source spectrum) are plotted.
The error bars are shown every 20th point.
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ones often implemented in dual-energy CT techniques for
nondestructive testing and security applications, especially
for the retrieval of a material’s electron density ρe.28 The sim-
ulation method holds valid for lower energies, even though
the correction impact becomes less significant due to a
reduced number of scattering events. In Fig. 6, the attenua-
tion profiles have been spatially integrated in a similar way
as the scattering projections for a better display of the results.
Since the corrected attenuation μpð~r; EÞ should always be
greater than the uncorrected μtð~r; EÞ, we have introduced
a correction percentile relative gain Cð~r; EÞ:

EQ-TARGET;temp:intralink-;e005;63;176Cð~r; EÞ ¼ 100%
μpð~r; EÞ − μtð~r; EÞ

μtð~r; EÞ
; (5)

to quantify the relative change of the scattering correction in
the reconstruction of the linear attenuation value μðEÞ.

4.1 Discussion of Results

It was found that for this energy interval, the correction
Cðx; yÞ accounts for an amplification in μðEÞ that can be

up to 7% and increases as the center of mass of the entire
sample is approached. It was also observed that it becomes
slightly higher for liquid materials, due to their lower linear
attenuation, as compared to other materials composing our
sample. This indicates that treating the scattering contribu-
tion as a mere scaling factor applied to the total attenuation
may lead to artifacts, especially in the high-energy range,
where the scattering influence becomes increasingly rel-
evant. It is also evident that, by comparing the aluminum
and the glass content values, the scattering contribution is
highly dependent on the volume covered by each object.
Despite the fact that the larger objects of the sample are sub-
ject to more significant loss of contrast, the reconstructions
do not exhibit the otherwise commonly occurring cupping
artifacts. The reason for this is the relatively limited size
of the sample and the collimation of the fan-beam.

To evaluate the impact of the scattering correction in the
energy domain, we have performed a slice reconstruction of
each individual energy channel. The surface covered by each
material i was segmented and used to retrieve energy
resolved mean linear attenuation μiðEÞ reconstructed by

Fig. 6 (a,b) SIRT reconstruction of the total and scattering corrected primary attenuation. (c) Sample
phantom used in the simulations. The color scale in frames (a–c) represents the linear attenuation μ
value held by the voxel. (d) Percentile amplification of the reconstruction value using the corrected
attenuation. (e,f) Spatially integrated horizontal and vertical profiles of the images, obtained by summing
the values of each row and column, respectively.
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using the total and scattering corrected primary attenuation.
Both energy distributions are shown in Fig. 7 for powdered
sugar and compared to its respective tabulated values, used in
the look-up tables. It was observed that the correction aids in
reconstruction of the linear attenuation μ, as it is brought
closer to the tabulated linear attenuation. It has to be noted,
however, that the scattering signal subtraction correction
method used here is merely a preliminary procedure. A
more refined approach would include the scattering estima-
tor in the forward model of iterative reconstruction tech-
niques. In this way, the illposedness of the reconstruction
problem would be reduced and the gap observed in Fig. 7,
which is due to counting statistics and missing data, will be
further closed leading to a more robust solution.

The energy distribution of the correction relative gain
CðEÞ was then derived for each material and is shown in
Fig. 7. A comparison between the correction relative gain
CðEÞ for aluminum and the glass contents suggests that
larger volumes are more subject to scatter artifacts. Further-
more, the latter increases with the energy reaching values up
to 6%, indicating that CT scanners operating in high-energy
regimes require scattering correction algorithms for an
adequate reconstruction of the linear attenuation. On the
other hand, CT reconstruction of low-energy projections
with fan-beam collimation seems to be only slightly influ-
enced by the scattered radiation, regardless of the volume
and composition of the material.

5 Conclusions
We have presented a fully stochastic simulation tool for
x-ray spectral CT, featuring a computationally fast estimate
of the scattered radiation, which is particularly compatible
with objects of complex shape. The tool is open access
and runs in the well-established McXtrace software
package.13 It has been validated by an experiment designed
to detect the radiation being scattered by the sample only. We
have discussed the current limitations of the simulation tool
and possible strategies to overcome them. In a preliminary
approach, we have shown how the scattering estimate can
improve the attenuation reconstruction by a restoration of
the primary radiation S̃pð~r; EÞ, performed as a simple sub-
traction of the estimated scattering contribution S̃sð~r; EÞ.
It was found that especially at high energies, where the

incoherent scattering events are dominant, the correction
is useful to reconstruct a more accurate linear attenuation
value and, therefore, improves the contrast between different
materials. This is expected to aid the automated segmenta-
tion procedures leading to an advance in the material

Fig. 7 (a) Mean value of the energy resolved reconstructed attenuation value in the sugar surface, using
the total attenuation (total), the primary attenuation (corrected), and the theoretical expected attenuation
(true). (b) Spectral profiles of the correction relative gain for each material.

Algorithm 1 Pseudocode of the McXtrace object component.

Data: Object’s phantom and material densities ρi , cross sections
σi ðEÞ and scattering functions I icohðQÞ and I iincðQÞ

Result: Energy resolved total and scattering signal from the
interaction between x-rays and the object

initialize system’s geometry and variables;

set the step length sl ;

while ray is within the object do

if ray is scattered then

if Compton scattering then

sample scattering angle θ from I iincðQÞ;

update ray direction according to θ;

update to Compton energy with Eq. (3);

else

sample scattering angle θ from I icohðQÞ;

update ray direction according to θ;

end

end

read photoelectric absorption attenuation μðEÞ ¼ ρiσiphðEÞ;

ray travels the step length sl ;

increment the cumulative photoelectric absorption attenuation
along the trace μðEÞl ¼ μðEÞl þ μðEÞsl ;

end

apply final photoelectric absorption attenuation to the ray: e−μðEÞl ;
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classification. In future work, we aim to incorporate the scat-
tering estimation in the forward model of a model-based iter-
ative reconstruction technique, to improve even further the
efficiency of the algorithm. This could be done, for instance,
by, after a certain iteration number of the CT reconstruction,
retrieving a preliminary volumetric representation of the
object. The latter would be then used by the MC simulation
tool to obtain the direct estimate of the scattering contribution.

Appendix: Sample Component Pseudocode
The pseudocode of the sample component developed for
McXtrace is shown in Algorithm 1. Therefore, the step
length sl represents the rate at which the interaction proba-
bilities are checked while the ray is traced through the

sample up to the final length l. In our simulations, sl was
set to a value three times smaller than the voxel size. At the
first step of each ray traced, the step length was additionally
multiplied by a random generated number to reduce artifacts
induced by the tracing regularity.29 μðEÞ represent the photo-
electric absorption linear attenuation, whereas ρi and σiphðEÞ
are, respectively, the density relative to water and the photo-
electric absorption cross-section of each material.

In this method, the photoelectric absorption interaction
is taken into account by incrementing at each step the out-
going photoelectric linear absorption. The scattering interac-
tion type is determined by generating a random number
ξ ¼ Uð0;1Þ, with Uð−n; nÞ being the uniform distribution
between −n and n, and comparing it with the tabulated scat-
tering cross-sections:

EQ-TARGET;temp:intralink-;x1;63;571Scattering type ¼
�
Compton; if ξ < ½1 − e−ρ·sl·σ

i
inc
ðEÞ�

Rayleigh; if ð1 − e−ρ·sl·σ
i
inc
ðEÞÞ < ξ < ½1 − e−ρ·sl·ðσ

i
coh

ðEÞþσi
inc
ðEÞÞ� :
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Abstract. Compared to the dual-energy scintillator detectors widely used today, energy-resolved photon-count-
ing x-ray detectors show the potential to improve material identification in various radiography and tomography
applications used for industrial and security purposes. However, detector effects, such as charge sharing and
photon pileup, distort the measured spectra in pixelated, photon-counting detectors operating under high flux.
These effects result in a significant performance degradation of the detectors when used for material identifi-
cation where accurate spectral measurements are required. We have developed a semianalytical, postdata
acquisition, computational algorithm that corrects the measured attenuation curve for severe spectral distortions
caused by the detector. The calibration of the algorithm is based on simple attenuation measurements of com-
mercially available materials using standard laboratory sources, enabling the algorithm to be used in any x-ray
setup. The algorithm is developed for correcting spectral data acquired with the MultiX ME100 CdTe x-ray detec-
tor but could be adapted with small adjustments to other photon-counting, energy-resolved detectors with CdTe
sensors. The validation of the algorithm has been done using experimental data acquired with both a standard
laboratory source and synchrotron radiation. The experiments show that the algorithm is fast, reliable at x-ray flux
up to 5 Mph∕s∕mm2 and greatly improves the accuracy of the measured spectrally resolved linear attenuation,
making the algorithm useful for both security and industrial applications where photon-counting detectors are
used. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.5.054117]

Keywords: CdTe detectors; compensation of spectral distortions; photon-counting detector; MultiX ME100 detector; pulse pileup
correction; charge sharing correction.
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1 Introduction
Photon-counting x-ray detectors with spectroscopic proper-
ties (multispectral x-ray detectors) and CdTe sensors show
great potential for improving material identification in
hard x-ray applications,1 and methods to utilize the increased
information obtained with multispectral data are still under
development.2,3 This has led to a large interest in multispec-
tral detectors within security4,5 and medical applications.6–8

These applications typically require a large field of view, a
difficulty which has been addressed by the development of
multilevel polycrystalline (thin film) detectors9,10 as well as
detectors with a line array of multiple single crystals.8,11

However, detector effects, such as charge sharing and
pulse pileup, severely distort the measured spectrum of
multispectral detectors.6 Spectral distortion might be miti-
gated through the implementation of advanced digital pulse
processing techniques in the field-programmable gate
array.12,13 However, the recorded spectra from commercially
available multispectral detectors are still severely distorted.

A common spectral correction approach is to empirically
determine a photon flux density-dependent fitting function,
which translates each energy bin’s measured signal into
a corrected signal.14 Unfortunately, this method typically
corrects the count rate of each energy bin independently of

the others, whereas the spectral distortion, such as pulse
pileup,15 effect on an energy bin’s count rate is largely cor-
related with the count rate in all other energy bins. Therefore,
the empirical fitting function-based approach is not ideal for
applications, such as luggage screening, where large varia-
tions in density and effective atomic number among the mea-
sured objects result in large variation in the measured x-ray
spectra. An alternative method is to correct the recorded
spectra using analytical or empirical models of the individual
spectral distorting effects. Comprehensive models of the
spectral distortion in multispectral x-ray detectors have been
proposed numerous times,16–19 and algorithms that correct
the measured spectrum for the specific effects of pulse
pileup and escape peaks based on analytical models are
already in use.15,20 Furthermore, it has been shown that using
a comprehensive model to add distortions to the expected
x-ray spectrum improves the ability to estimate the thickness
of attenuating materials in simulated experiments.21

In this paper, we present a comprehensive semianalytical
correction algorithm (CA) that directly corrects recorded
x-ray spectra for charge sharing, weighting potential (WP)
cross talk, pulse pileup, incomplete charge collection (ICC),
and x-ray fluorescence, with the purpose of improving
the accuracy of the measured material x-ray attenuation
coefficients. Our CA is designed with the primary scope to
correct data acquired with the MultiX ME100 v2 CdTe

*Address all correspondence to: Erik Schou Dreier, E-mail: erik.dreier@nbi.ku
.dk 0091-3286/2018/$25.00 © 2018 SPIE
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line array detector,22 which suffers from severe spectral
distortion.11 However, the CA is based on spectral distortion
models that with small adjustment could be applied to any
pixelated, multispectral CdTe detector. We aim with this CA
to gain the possibility to correct the measured x-ray attenu-
ation coefficient for distorting effects in an efficient, fast, and
reliable way making the CA applicable in nondestructive
testing (NDT) and security applications.

The MultiX ME100 detector was chosen for this study,
as it is suitable for security and NDT applications where a
high flux, large field of view, and sensitivity for x-ray energies
between 20 and 160 keVare required. Furthermore, the detec-
tor has shown to improve material identification as compared
to conventional dual-energy sandwich detectors.23–26 The
MultiX’s read-out architecture is constructed to perform
well at high count rates (>1 Mph∕s∕mm2) and is capable
of reconstructing the measured x-ray spectra in up to 256
energy bins.12,27 The detector has a 3-mm-thick CdTe sensor
with a collective cathode on the photons’ incident side of the
sensor and a segmented anode on the backside as shown in
Fig. 1. A single MultiX detector has 128 pixels with a pitch
of 800 μm and is made up of an array of 4 sensor crystals with
each 32 pixels. The detectors can further be daisy chained in
up to 20 modules forming a more than 200-cm-long detec-
tor array.

In the rest of the paper, we will first introduce our CA in
Sec. 2. In Sec. 3, we validate and adjust the CA’s individual
correction models based on experimental data from a mono-
chromatic synchrotron source; next, we will show how the
CA is calibrated using laboratory experiments in Sec. 4.
Finally, we will validate the effectiveness of the full CA in
Sec. 5, before discussing in Sec. 6 and concluding in Sec. 7,
on our work.

2 Correction Algorithm for Spectral Distortion
The spectral response of multispectral, pixelated, CdTe
detectors is typically severely distorted by a range of effects,
as illustrated by the MultiX detector’s recorded spectrum
when irradiated by a monochromatic beam in Fig. 2. To
correct for the spectral distortion, we follow the method
proposed by Cammin et al.18 and separate our distortion
models into flux-dependent and flux-independent models.
In our CA, we first correct the spectrum for the flux-indepen-
dent phenomena, such as charge sharing, WP cross talk, etc.
Next, we correct for the pulse pileup and then ICC, which as
we shall show later is clearly flux dependent. Last, we

recalibrate each pixel’s energy scale. In the rest of this sec-
tion, the models constituting our CA are presented.

2.1 Flux-Independent Correction—The Simulated
Detector Response Matrix

Our CA aims to correct the spectrum for the following flux-
independent effects:15,16,28

• X-ray fluorescence: Due to the high photon energy of
the K-shell fluorescence in CdTe, the self-absorption
length is so large that it is probable for the fluorescence
photons to escape into a neighboring pixel or even to
escape the detector’s sensor crystal altogether. When
such an escape occurs, the incident photon is registered
by the detector at an energy lowered by the energy of
the fluorescence photon.

• Charge sharing: If an x-ray photon is absorbed close to
a pixel border, the created electron charge cloud can
split onto both pixels resulting in the absorbed photon
being counted as two photons with lower energy. This
gives rise to a broad continuum of counts with an
energy lower than the actual photon energy.

• WP cross talk: Charge carriers that are solely recorded
by one pixel-anode might still induce a signal in the
neighboring anode. The effect is seen as an upturn
in the spectrum at low energies (seen at E < 30 keV
in Fig. 2).

• Other flux-independent effects: In addition to the WP
cross talk, charge sharing, and escape peaks, other
effects, such as Compton scattering of the incident
photon in the sensor crystal and electronic noise,27

can contribute to the background.

To perform a fast correction of these flux-independent
effects, we create an inverse detector response matrix MC
of dimension Eb × Eb, where Eb is the number of energy
bins. When MC is applied to a raw spectrum from N pixels,
described as a matrix IR of dimension Eb × N, it results
in the corrected spectrum for each pixel described by the
matrix

Fig. 1 Simplified layout of the MultiX detector. Fig. 2 The spectrum recorded with a MultiX ME100 v2 detector irra-
diated with a monochromatic x-ray beam of E ¼ 70 keV. The “pileup
box” shows a zoom-in on the pileup peak at double energy of the pri-
mary peak. The dashed red line shows the ideal response of the
MultiX ME100 detector with a finite energy resolution. The primary
peak’s center is placed at slightly higher energy than the expected
due to a slightly wrong energy calibration of the detector.
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EQ-TARGET;temp:intralink-;e001;63;752IC ¼ MC · IR: (1)

The inverse response matrix is found from a simplified
simulation of the detector’s response to x-ray irradiation.
To simplify the simulation, the WP cross talk, charge shar-
ing, and electronic noise/Compton scattering are calculated
independently. Therefore, this approach results in three
response matrices, which all show to be numerically invert-
ible, and hence

EQ-TARGET;temp:intralink-;e002;63;653MC ¼ ðDC · DE · DWPÞ−1; (2)

where DC, DE, and DWP are the detector response matrices
due to charge sharing, electron noise and Compton scatter-
ing, and WP cross talk, respectively. ApplyingMC according
to Eq. (1), we first correct for the WP cross talk, then the
electronic noise and Compton scattering, and last the charge
sharing. The order was chosen to remove the low-energy
distortion effects before correcting for charge sharing.

The full detector response matrix is computed through a
Monte Carlo simulation of a single pixel’s response to x-ray
irradiation as function of position and energy of the incom-
ing photon. The simulation computes x-ray fluorescence
before calculating DC, DE, and DWP matrices independently.

The amount of charge shared between two pixels is
calculated by assuming that the excited charge clouds have
a Gaussian charge density distribution.29 The charge cloud
width σt at the anode is calculated taking the charge diffusion
and the charge repulsion perpendicular to the electric field
into account. Combined with the initial width of the excited
charge cloud σi that is assumed to be 5 μm,30 the total width
of the electron cloud is given as

EQ-TARGET;temp:intralink-;e003;63;402σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBTzd
qU

þ
�
zdNq
10πϵU

�
1ffiffiffi
5

p
σi

þ σ2i

s
; (3)

where z is the electron cloud position above the anode,
d is the depth of the crystal layer, and U is the bias voltage.
The number of charges per photon is given as N ¼ Ee∕ΔE,
where ΔE ¼ 4.43 eV∕ehp31 is the energy per electron–hole
pair (ehp) for CdTe and Ee is the energy deposited in the
detector by the absorbed photon.

The amount of WP cross talk between the irradiated and
neighboring pixel is based on the model described by Guerra
et al.,16 which assumes that the charge cloud has no geomet-
ric expansion. In the model, the anode is assumed rectangu-
lar with a and b being the width and length of the anode,
respectively.

Both Compton scattering and electronic noise should con-
tribute with a small signal in the low-energy part of the spec-
trum, which should increase with incoming photon energy.
The detector response matrix,DE, that accounts for these two
effects is calculated through a simplified model that is based
on synchrotron experiments as described in Sec. 3.

In the simulation of the MultiX ME100 detector, the pixel
is set to an area of 0.8 × 0.8 mm2, with an active crystal layer
thickness of 3 mm,23 and a bias voltage of around 1200 V.27

The energy range of the simulation is set to 20 to 160 keV
corresponding to the energy bin interval of the MultiX
ME100. The WP cross talk model’s anode size parameters
a and b are found from finding the best correction of the

experimental data as described in Sec. 4. The combined
response matrix MC ¼ DWP · DE · DC is shown in Fig. 3.

A more detailed description of the simulation and models
can be found in Appendix A.

2.2 Incomplete Charge Collection

CdTe suffers from a large difference in the drift mobility
of the electrons, μe ¼ 1000 cm2∕V, and holes, μh ¼
80 cm2∕V.31 To mitigate this problem, CdTe detectors typ-
ically take advantage of the small pixel effect, where the ICC
is reduced by having the segmented anode pads significantly
smaller than the depth of the detector crystal. This minimizes
the holes contribution to the signal formation and, thereby,
reduces the problem with ICC due to trapping of the slow
holes.32 Despite this, ICC still occurs resulting in photons
being registered with lower energy than their actual one,
causing a skew of the measured spectrum toward lower
energy.20 Furthermore, effects such as polarization from
the buildup of charge over time will cause ICC as well.33

A common description of the ICC’s effect on the recorded
spectrum of an incoming photon with energy Ei comes from
modeling it as20

EQ-TARGET;temp:intralink-;e004;326;291SðEÞ ¼ HðEÞ � KðEÞ; (4)

where HðEÞ is a Gaussian function with mean equal to Ei
and standard deviation equal to the spectral resolution of
the detector. The convolution kernel is given as

EQ-TARGET;temp:intralink-;e005;326;227KEk
ðEÞ ¼

�
erf

�
E − Ekffiffiffi
2

p
σICC

�
þ 1

�
· χ0ðEÞ; (5)

for which Ek ¼ medianðEÞ and χ0ðEÞ ¼
�
1; if E ≤ Ek

0 Otherwise
.

σICC is a scalable constant found empirically from laboratory
data, which we show in Sec. 3, and is flux dependent.

2.3 Pulse Pileup Model

Pulse pileup occurs due to the overlapping of electrical
pulses generated in an anode by two photons arriving close
in time in the same pixel. To correct for the effect of pulse
pileup, we use the iterative model developed by Plagnard,15

Fig. 3 The simulated detector response matrix DWP · DE · DC as
function of the incoming photon’s energy Ei and the recorded energy
Eo . The color scale shows the probability density of recording an
event.
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as described in Appendix B. To account for the photon flux-
dependent pileup probability, Plagnard uses a coefficient
CPU , which is determined by the operator. We instead pro-
pose an automatic fitting approach using the attenuation
curve of aluminum to find CPU. This approach is described
in Sec. 4.

2.4 Energy Calibration

Fluctuations in the measured energy in the order of a few
keV might occur between the pixels in the detector. To cal-
ibrate the detector for these variations, the spectrum of the
radioactive isotope 57Co was measured. For each pixel’s
measured spectrum, the peak center of the primary and sec-
ondary radiation lines of the isotope as well as the escape
peaks can be found. By fitting a first-degree polynomial
to the expected peak centers as a function of the measured
peak centers, a conversion from the measured to the actual
energy is found.

3 Synchrotron Experiments
The synchrotron experiments presented in this paper were
conducted at the materials science beamline ID11 at the
European Synchrotron Radiation Facility (ESRF). The aim
of these experiments was to evaluate our models’ prediction
of the distorting effects. At the ID11 beamline, the MultiX
ME100 detector’s response to monochromatic x-ray radia-
tion was measured at 8 different energies between 24 and
138 keV. The x-ray energy selection was provided by dou-
ble-bent crystal monochromator operating in horizontal
focusing Laue geometry. The MultiX detector was mounted
on the camera stage in the EH3 hutch allowing for movement
in the plane perpendicular to the beam. The beam size onto
the detector was controlled using slits placed just in front of
the EH3 sample stage, and the beam position on the detector
was changed by moving the detector stage. To obtain a refer-
ence measurement to validate the energy of the monochro-
matic beam, a high-energy resolution Amptek XR100T
CdTe PIN-diode detector was mounted on the sample
stage. The monochromatic x-ray beam’s energy distribution
FWHM was determined to be below the 1.4-keV resolution
limit of the Amptek detector. An x-ray beam energy distri-
bution FWHM of 1.4 keV is well below the energy resolution

of the MultiX detector (estimated to be 8 keV at E ¼
122 keV at fluxes below 2 Mph∕s∕mm2).27

3.1 Evaluating the Flux-Independent Models

The MultiX ME100’s response to a monochromatic x-ray
beam of FWHM 5 × 5 μm2 was measured as a function
of beam position on the detector. The detector was moved
parallel and perpendicular to the pixel array in steps of
∼20 μm. The scan parallel to the pixel array was made across
two pixels starting from approximately the center of a pixel.
The detector response was measured for 2 s at each beam
position before moving the detector. In Fig. 4(a), the result
of a scan at E ¼ 123 keV can be seen as a function of beam
position and recorded energy.

The detector response of different sensor crystals (each
MultiX module has 128 pixels and uses 4 tiled CdTe crystals)
was evaluated by making an additional scan across 50 pixels
with 5 steps per pixel. The result of this scan showed no sig-
nificant change in spectral behavior among the individual
pixels, except for the 2 pixels closest to the MultiX sensor
crystal borders. In these border pixels, the count efficiency
drops and the measured spectrum is pushed toward lower
energies. In the rest of this paper, we, therefore, exclude
the spectra of the 2 pixels closest to the crystal borders
from all experiments and expect each of the remaining pixels
to behave alike.

To evaluate the flux-independent models of our CA,
the pencil beam position scan was simulated by adjusting
the position and area of the simulated incoming photons’
position in accordance with the experiment. The result of
the simulation is shown in Fig. 4(b).

In the center of the pixel (x ∼ 585 μm), the experimental
result in Fig. 4(a) shows a tail on the primary peak
(E ∼ 123 keV) toward lower energy and a small signal at
E < 50 keV.

To incorporate the low-energy signal in the center of the
pixel in the simulation, an additional noise term was required
on top of charge sharing, WP cross talk, and x-ray fluores-
cence. As explained in Sec. 2, we assume that Compton scat-
tering of the incoming photon in the sensor crystal as well as
electronic noise can generate such a low-energy noise signal.
Hence, the new noise term was collected in the response
matrix DE. To simulate this effect, a very simple model

Fig. 4 The (a) measured and (b) simulated detector response as function of readout energy and
the position of the monochromatic (E ¼ 123 keV) pencil beam on the detector. Both simulation and
experiment show two pixel border crossings positioned at x ≈ 195 and 975 μm. The simulated spectra
were convolved with KEk

described in Eq. (5) to account for the peak broadening and ICC. Both color
scales are normalized to peak intensity.
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was developed. The effect is assumed to be position indepen-
dent and modeled by including a probability, Pn, for a charge
signal to be recorded subsequent to a photon being recorded.
The charge signal is assumed to be a fraction of the charge
deposited by the absorbed photon, with a probability distri-
bution modeled as Gaussian with mean μn and width σn. This
is done to ensure that the noise contribution’s importance
will increase as the photon energy increases, providing
that the amount of excited charge is proportional to the
absorbed energy.

The low-energy noise seen in the center of the pixel in the
simulated detector response in Fig. 4(b) solely comes from
the detector response matrix DE. We notice that the simula-
tion overestimates the low-energy signal slightly. The value
of the parameters used for this model was found from labo-
ratory experiments as shown in Sec. 4.

The tailing effect on the primary peak shown in Fig. 4(a)
was included in the simulated spectrum by convolving the
simulation result with the kernel KEk

, described in Eq. (5).
We notice that this model slightly underestimates the extent
of the primary peak’s energy tail as best seen from the differ-
ence between estimated and measured signal at E ∼ 80 keV.

Figure 4 clearly shows the incorrect recorded energy
around the pixel borders due to the effect of charge sharing,
x-ray fluorescence, and WP cross talk. To evaluate the sim-
ulation models, we take the sum of the measured intensity of
each pixel at each position, as shown in Fig. 5(a) for a mono-
chromatic beam with E ¼ 123 keV. For each border, the
cross talk intensity, i.e., the intensity that is measured in
the neighboring pixel to the one being irradiated, can be
fitted with a double Gaussian distribution

EQ-TARGET;temp:intralink-;e006;63;411gðxÞ ¼ Ag;1 exp

�ðx − μgÞ2
2σ2g;1

�
þ Ag;2 exp

�ðx − μgÞ2
2σ2g;2

�
; (6)

where the identical mean of the two Gaussian distributions
μg is forced equal to the border position, and the height Ag;i
and width σg;i are scalable fit variables. Similar fits were
made for all eight energies for both of the two pixel borders
reached in the parallel scans. The resulting widths σg;1 and
σg;2 are shown for all energies and both borders in Fig. 5(b).

Figure 5(b) shows that the narrowest width of the
Gaussian distribution σg;2 corresponds to the expected charge

cloud size estimated from Eq. (3). The broad distribution σg;1
seems to be well accounted for by the simulated extent of the
WP cross talk and fluorescence photons into the neighboring
pixel. However, a discrepancy is seen at energies below the
K-edge of cadmium (ECd ¼ 26.7 keV), where a long ranged
cross talk of the order of 100 μm is seen in the experimental
result but not refound in the simulated model.

As a final remark, we notice that the read-out energy of
the primary peak in Fig. 4(a) is shifted slightly across
the pixel as function of position, an observation that was
reproduced in the neighboring pixels as well. This effect
was found to become more pronounced at low energies but
was not studied further.

3.2 Flux-Dependent ICC

The flux dependence of the MultiX detector was evaluated
using flux scans at ID11 at different energies with a beam
positioned at the center of a pixel. The flux scans were
made through increasing the beam cross section by opening
the slits in steps from 5 × 5 μm2 to 65 × 65 μm2. In Fig. 6(a),
the result of such a scan is shown for a E ¼ 50 keV mono-
chromatic beam. From the position scans and simulation
in Fig. 4, it was estimated that the cross talk among pixels
did not extend far enough into the pixel to affect the flux
dependence measurement, and that Compton scattering
and electronic noise were negligible at incoming photons
with E < 90 keV. In Fig. 6(a), the escape peak around E ¼
25 keV and the main pulse pileup peak at E ¼ 100 keV are
clearly seen. As expected, the relative amplitude of the main
peak decreases as the pileup peak increases with flux.

In Fig. 6(a), the spectra are clearly distorted toward lower
energies as the beam flux is increased. This resembles the
expected distortion from ICC, described by Eq. (4), and
it, therefore, seems that the ICC increases with flux. To
evaluate this effect, the main peak of the raw spectrum
was fitted with SðEÞ described by Eq. (4), with σICC being
the only parameter allowed to change with increased flux.
Due to the possibility of a highly noisy spectrum, deconvolv-
ing the image with the full SðEÞ is numerically difficult due
to the Gaussian function. However, it is possible to correct
for the skewness of the peak by deconvolving each spectrum
with KðEeÞ using the σICC found from fitting SðEÞ. The
deconvolution was done using MATLAB™’s34 built-in

(a) (b)

Fig. 5 Evaluating the spatial extent of the pixel cross talk. (a) The summed measured intensity of each
pixel (numbered −1, 0, and 1) as function of the incoming monochromatic (E ¼ 123 keV) pencil beam’s
position fitted with gðxÞ, Eq. (6), around the pixel borders (x ≈ 200 and 975 μm). (b) The obtained widths
σg;1 and σg;2 of gðxÞ plotted as function of incoming photon energy with the theoretical estimated charge
cloud width (charge sharing), and the width of the WP cross talk’s and x-ray fluorescence’s intensity
distribution (other effects) superimposed.
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Richardson–Lucy algorithm.35,36 The result of a Richardson–
Lucy deconvolution is shown in Fig. 6(b). The deconvolution
works well in correcting the spectra for the peak skew as
function of flux, as seen when comparing Figs. 6(a) and 6(b).
To utilize this deconvolution in a correction model, a lookup
table of σICC as function of flux needs to be made. In Sec. 4,
we show how this is done using the attenuation of aluminum
measured with a laboratory source.

4 Laboratory Experiments
In this section, we show the laboratory measurements nec-
essary for calibrating our CA. The x-ray laboratory experi-
ments presented in this paper were performed in the energy
dispersive x-ray diffraction (EDXRD) setup at Technical
University of Denmark (DTU),37 with a COMET MXR-
160HP/11 tube that has a tungsten (W) target and a
COMET MXR generator capable of operating with a voltage
up to 160 kVp at a power of up to 1800 W. The x-ray flux
from the source was adjusted by changing the current.
Tungsten slits were used to collimate the beam and reduce
the sample and environment scattering background. The
scattering background from the sample in this setup was
estimated to be insignificant using the simulation model
described in Ref. 38.

4.1 Optimizing the Flux-Independent Models

The CA’s flux-independent models, collected in the response
matrix MC presented in Eq. (2), were optimized through a
simple experiment. A series of x-ray spectra were acquired
by changing the source voltage and inserting different filters
to attenuate the beam. For all generated spectra, the x-ray
flux was kept low (Φ < 0.4 Mph∕s∕mm2) to minimize the
effect of the flux-dependent distortions. As a reference, the
same spectra were measured with the Amptek XR100T CdTe
PIN-diode detector (at a count rate <10 kph∕s), which due to
its high-energy resolution at low count rates can be assumed
to describe the true x-ray spectra. The flux-independent mod-
els contain the scalable parameters a and b in Eq. (18), as
well as μn, σn, and Pn, which are used for the low-energy
noise response matrix DE. The optimal flux-independent
correction of the MultiX data was found by varying these
parameters in a randomized search for the minimum χ2

value between the corrected MultiX data and the Amptek
reference data.

The best correction of the MultiX data was found
for a ¼ b ¼ 0.72 mm; Pn ¼ 22.2%, μn ¼ 0.174Ei, and
σn ¼ 0.2Ei, where Ei is the simulated incoming photon
energy. At these values, the low-energy noise model predicts
that a recordable signal (E > 20 keV) from this contribution
first exceeds 10% of the primary signal at incoming photon
energies above 90 keV.

Two corrected spectra are shown in Fig. 7. The Amptek
spectrum is convoluted with a Gaussian kernel of width
σ ¼ 4 keV corresponding to the upper energy resolution of
the MultiX ME100 detector, to compare the two detectors’
recorded spectra. As shown in the figure, the correction
showed good correspondence to the reference measurement.
Qualitatively, this was the case for all spectra we tested.

4.2 Optimizing the Flux-Dependent Coefficients

The proposed flux-dependent coefficients CPU and σICC pre-
sented in Eqs. (5) and (19), respectively, need to be identified
from experiments. To do this, we used a measurement of
the linear attenuation coefficient given as

EQ-TARGET;temp:intralink-;e007;326;303μðEÞ ¼ −
1

x
log

�
IðEÞ
I0ðEÞ

�
; (7)

where IðEÞ is the measured x-ray spectrum of the x-ray beam
that has passed through the material, I0ðEÞ is the incident
spectrum measured at the detector (flat field), and x is the
thickness of the material. Since the linear attenuation coef-
ficient is a material constant independent of thickness, it can
be used as a reference measure of how well the CA performs.

The measurement of the linear attenuation was done by
placing aluminum plates of six different thicknesses between
the detector and the source. An example of the result from
such an experiment is shown in Fig. 8. The experiment was
repeated for four different incident fluxes. By adjusting CPU
and σICC for both IðEÞ and I0ðEÞ spectra, we obtain a best-fit
between any measured attenuation curve of aluminum and
the theoretically expected curve,39 using the χ2 value as a
measure of the quality of the fit. The measured linear attenu-
ation is fitted to the theoretical for the n different thicknesses
of aluminum for each flat field flux. By doing so, nCPU and
σICC values are obtained for both the flat field and attenuated

(a) (b)

Fig. 6 Deconvolving the measured spectrum at different detector count rates (color scale) with a K ðEeÞ
kernel presented in Eq. (5). (a) The raw normalized spectrum In was fitted with SðEÞ, Eq. (4), from which
the parameter σICC was acquired. (b) Using the found σICC for each spectrum, the spectral skew effect
described by K ðEeÞ can be removed through a Richardson–Lucy deconvolution and a corrected
spectrum obtained. The inset box shows a zoom-in on the pileup peaks at E ¼ ½60;100� keV.
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spectra. Afterward, the n different flat field CPU and σICC are
averaged. The linear attenuation fitting is then repeated, but
this time using the average CPU and σICC to correct the flat
field spectrum as an initial guess. Repeating this procedure
ensures that the flat field spectrum correction is similar for all
thicknesses.

In Fig. 9, the CPU and σICC values that result in the best-fit
between measured and theoretical linear attenuation coeffi-
cient are shown for 28 spectra from 4 sets of measurement,
each containing a flat field spectrum I0ðEÞ and 6 attenuated
spectra IðEÞ. The CPU and σICC coefficients are fitted with a
first-order polynomial. The polynomials are used to generate
fast lookup tables for correcting the spectra.

5 Final Validation of the Full Correction Algorithm
To test the full CA, a second dataset was acquired in the
EDXRD setup at DTU, containing the measured linear
attenuation coefficient of different thicknesses of PVC, alu-
minum, copper, and tantalum at different flat field fluxes. By
applying the CA to the flat field and attenuated spectra and
calculating the linear attenuation coefficient from these, we
obtain the corrected linear attenuation curve. The measured
and the corrected linear attenuation curves can be seen for a
flat field flux Φ0 ¼ 4.7 Mph∕s∕mm2 in Fig. 10. In the fig-
ure, it can be seen that correcting the attenuation curve for
spectral distortion improves the similarity between the mea-
sured and the theoretical expected attenuation. Particularly,
at E < 50 keV, the CA clearly gives a much better fit
between theory and data. It has to be noted that the corrected
curves do not extend to 20 keV for the heavier elements,

)

(a) (b)

Fig. 7 Comparison between a MultiX spectrum corrected with the CA (corrected), a raw MultiX spectrum
(raw), and a reference spectrum obtained with Amptek XR100 (reference). The reference spectrum is
scaled to fit the corrected data. The shown spectra were obtained using (a) a filter of 19.9-mm aluminum
at a source voltage of U ¼ 50 kV and (b) 5.96-mm copper and 0.2-mm tantalum at U ¼ 140 kV.

Fig. 8 Comparison between the measured linear attention curves
(blue circles highlight every third point) of aluminum at different thick-
nesses given in the color scale, and the theoretical expected39 (solid
red line). The flat field flux was 3.7 Mph∕s∕mm2.

(a) (b)

Fig. 9 (a) Pileup, CPU and (b) ICC, σICC coefficients found from fitting the linear attenuation curve of
aluminum measured with the MultiX ME100 to the theoretical expected. Each point represents a cor-
rected spectrum. The colored circles represent the correction coefficient used for the 4 × 6 attenuated
spectra from the 6 different thicknesses of aluminum at 4 different flat field fluxes. The black circles
represent the coefficients used for the 4 flat field spectra. The black lines are the CPU and σICC lookup
tables, explained in the main text.

Optical Engineering 054117-7 May 2018 • Vol. 57(5)

Dreier et al.: Spectral correction algorithm for multispectral CdTe x-ray detectors

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 1/25/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



copper and tantalum. This is due to the signal-to-noise ratio
converging to zero when the corrected energy bins contain
close to zero photons.

The performance of the CA is quantified by calculating
the weighted correlation coefficient among the different
curves. To account for statistical noise, the correlation
weights were set equal to the inverse variance of the raw
attenuation curve as measured by the variation between
different pixels’ data for both the raw and the corrected data.
In Fig. 11, each material’s average weighted self-correlation
coefficient among the N attenuation curves is shown as func-
tion of flat field flux. Using Fisher’s transform to compute
the average correlation,40 we define the average weighted

self-correlation as r1;j ¼ tanh
h

1
N−1
P

N
j¼2 tanh

−1ðr1;jÞ
i
, where

r1;j is the correlation coefficient between the thinnest sheet of
material, 1, and the j’th thickest. Furthermore, the figure also
shows the average correlation coefficient between theory

rt;j ¼ tanh
h
1
N

P
N
j¼1 tanh

−1ðrt;jÞ
i
and the j’th thickest sheet.

To compare raw and corrected data equally, in both cases, the
correlation coefficient is only calculated in the energy range,
where the corrected data contain noninfinite values due to
zero counts in the attenuated spectra. As can be seen
from the figure, the average correlation coefficient of the cor-
rected data with theory decreases very little across the full
range of flat field flux, whereas the correlation between
the raw curves and theory falls with increasing flux.
Further, the average correlation coefficient between theoreti-
cal attenuation and the attenuation curves from the corrected
data remains above, or in the case of tantalum close to, 0.95
even at high flux. Likewise, the average self-correlation coef-
ficient of the corrected attenuation curves remains above

0.95, whereas this is only the case for aluminum in the
raw dataset.

6 Discussion
The CA presented in this paper is made to correct the x-ray
attenuation coefficient measured with the pixelated, multi-
spectral detectors for multiple spectral distorting effects.
The CA corrects the attenuation curve by correcting the mea-
sured flat field and attenuated x-ray spectra with the use
semianalytical interpretations based on the physical origin
of the different effects. Figure 10 clearly shows that the
CA qualitatively improves the linear attenuation compared
to theory. In particular, the CA improves the low-energy
part of the attenuation, which is typically important for
material identification.

In Fig. 11, we quantified that the CA improves the mea-
sured attenuation curve, both in respect to the correlation
between measured and theoretical expected, but more impor-
tantly, the self-correlation between curves of different thick-
nesses. The latter means that the CA gives a more consistent
result of the linear attenuation coefficient between different
material thicknesses compared to the raw data. Furthermore,
the results shown in Fig. 11 show that the CA improves the
measured attenuation curves across a range of thicknesses,
effective atomic number, and flat field fluxes up to at
least 5 Mph∕s∕mm2. This shows that the algorithm is reli-
able in security and other NDT applications, where unknown
and largely varying samples are measured.

6.1 Possible Improvements of the CA

The individual models of our CA can easily be adjusted inde-
pendently of each other if better models are found for any of

Fig. 10 Comparison between raw (blue circles) and corrected (green triangles) attention curves of
(a) PVC, (b) aluminum, (c) copper, and (d) tantalum at a flat field flux of Φ0 ¼ 4.7 Mph∕s∕mm2.
Every fifth data point is highlighted with a large marker. The color scales of the raw (left) and corrected
(right) attenuation curves show the thickness of the measured material. The theoretical curves (solid red)
are convoluted with a Gaussian kernel with σ ¼ 4 keV.
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the effects. Even though the CA clearly improves the mea-
sured attenuation curve, several of the CA’s models do
not fully describe the measured distortions and could be
improved.

A significant distortion that is not correct by our CA is the
clear drop in attenuation coefficient around E ¼ 59 keV and
the smaller drop around E ¼ 65 keV observed in both
Figs. 8 and 10. The two coincide with the tungsten Kα
and Kβ peaks (Eα ¼ 59.3 keV and Eβ ¼ 67.2 keV, respec-
tively)41 from the source. We expect that the drop in attenu-
ation is due to a distortion of the tungsten peaks from the
flux-dependent ICC and a general decrease of energy reso-
lution with photon flux.27

Figure 4 showed that the expected MultiX detector
response function could not fully account the distortion’s
effect in the center of the pixel. A better model than our sim-
ple empirical model of the Compton scattering in the sensor
crystal and electronic noise could be added to the CA to
improve the modeling of these effects. Such a new model
might be part of the MultiX detector simulation and include
the angular cross section of the Compton scattering and a
model of the readout electronics. It is likely that Compton
scattering could contribute with a loss of recorded energy
of the incoming photon, resembling an ICC in addition to
the recorded low-energy Compton electron signal.

The CA presented in this paper corrects the pixels spectra
independently, assuming that the incident flux on two neigh-
boring pixels is similar. The model could be improved by
taking the neighboring pixels’ intensity into account in
cross talk models. In addition to this, the CA could be

improved by developing a correction method applicable to
the pixels surrounding the sensor crystal borders. In the
present model designed for the MultiX ME100 detector,
4 pixels are removed for every crystal (32 pixels) corre-
sponding to 12.4%.

6.2 Computation Time

The CA is based on MATLAB™ R2016a, and an extensive
optimization of computing time has not yet been performed.
The algorithm takes advantages of MATLAB™’s fast matrix
multiplication, meaning that correcting multiple spectra
together is faster than correcting them individually. At
present, using a standard laptop equipped with an Intel i7-
6600U quad-core CPUs at 2.60 GHz, the CA is capable
of correcting the spectra of a full MultiX ME100 detector
(128 pixels) in 50� 0.5 ms whereas a single pixel correction
takes 7� 1 ms. It is in particular the two flux-dependent,
ICC and the pileup correction, models that add to the com-
putation time. The ICC and pileup models take around
42.7% and 42.3% of the computational time, respectively.
There is, therefore, a great potential to reduce the computa-
tion time by optimizing these two flux-dependent models of
the CA.

Furthermore, the present algorithm could easily be run in
parallel, correcting each pixel independently, which without
any further optimization would reduce the correction time to
that of a single pixel, i.e., 7� 1 ms. By correcting a batch of
acquisition frames, e.g., 50 frames of each 1 ms, the correc-
tion time could be reduced to <0.5 ms per frame. This means

(a) (b)

(c) (d)

Fig. 11 The average weighted correlation coefficient as function of flat field flux, for both corrected and
raw linear attenuation curves of (a) PVC, (b) aluminum, (c) copper, and (d) tantalum. The figure shows
both the average weighted self-correlation coefficient between measured attenuation curves from differ-
ent thicknesses of material and the average weighted correlation coefficient between the curves and the
theoretical expected. Both correlation coefficients are explained in the main text. The gray straight lines
mark r ¼ 0.9, r ¼ 0.95, and r ¼ 0.98.
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that the present CA, if run in parallel, could correct the mea-
sured spectra in real time even at a frame rate of 1 ms and,
hence, be used in applications where material identification
needs to be fast, e.g., luggage screening in airports.

6.3 Setup Compatibility

The CA presented in this paper is optimized and tested for
the MultiX ME100 v2, but the models are directly convert-
ible to any CdTe line array detector and could with small
adjustments be used for two-dimensional (2-D) CdTe flat
panel or even CZT detectors. The calibration of the CA only
requires a measurement of the attenuation coefficient of a
well-defined material, such as aluminum, at different thick-
nesses and at different flat field fluxes. This means that
the CA can easily be used in other experimental setups.
In addition to this, an energy calibration measurement
might be needed. This can be done with x-ray fluorescence
from metals or a well-known radioactive isotope source.

7 Conclusion
We have in this paper shown an effective algorithm for cor-
recting the material-dependent x-ray attenuation for effects,
such as charge sharing, WP cross talk, pulse pileup, etc. The
presented algorithm is designed and tested on data acquired
with the MultiX ME100 but could be adapted to other
formats of pixelated CdTe and CZT detectors with small
adjustments. Using synchrotron and laboratory sources, the
different correction models have been verified and the algo-
rithm has been tested. The results from calculating the linear
attenuation curves from the corrected flat field and attenuated
spectra indicate that a better correspondence to data from
theoretical reference tables is possible if the CA is applied
to the raw data. Furthermore, the corrected measurements
give significantly more consistent data, which should enable
a more reliable material identification in various applications.
The algorithm is applicable in any setup requiring only a few
calibration measurements using easily accessible materials.
The present algorithm is reasonably fast, correcting 128 pix-
els’ spectra (contain 128 energy bins) in 50� 0.5 ms, and it
could easily be improved by one or two orders of magnitude,
making it useful in application, such as luggage screening in
airports and other high-throughput NDT setups.

Appendix A: Simulating the Response Matrix
In the following, the simulation of the detector response due
to escape peaks, charge sharing, electronic noise and
Compton scattering, and WP cross talk is presented in detail.
The models are designed to account for one-dimensional
(1-D) pixelarray detector but could be extended to 2-D
flat panel detectors.

The simulation is based on a single-photon Monte Carlo
simulation of a pixel irradiated with x-rays. The photon’s
absorption position as a function of depth in the crystal is
simulated according to the probability distribution given
by the expected attenuation of CdTe.39

A.1 Escape Peak and X-Ray Fluorescence
The effect of escape peaks is taken into account by including
x-ray fluorescence in the simulation. X-ray fluorescence
occurs when the energy of the photon is larger than the K

1s shell binding energy (ECd ¼ 26.711 keV for Cd and
ETe ¼ 31.814 keV for Te42). The refilling of the K-shell
results the emission of a photon as either Kα or Kβ fluores-
cence, with a probability given by the fluorescence
yield. The energy of the fluorescence lines is for cadmium
Eα ¼ 23.2 keV and Eβ ¼ 26.1 keV and tellurium Eα ¼
27.5 keV and Eβ ¼ 31.0 keV.42 In the simulation, each
absorbed photon with energy Ei and absorption location
ri has a probability to emit a Kα or Kβ fluorescence photon
from either Cd or Te with energy Ef governed by the value
of Ei compared to the energy of the K 1s shell of Cd
and Te:

• Ei < ECd: No fluorescence photon is emitted.
• ECd < Ei < ETe: A fluorescence photon is emitted with

an 84% probability equaling the fluorescence yield of
cadmium.43 The energy Ef of the created fluorescence
photon is set to either Ef ¼ 23.2 keV (Pf ¼ 0.18) or
Ef ¼ 26.1 keV (Pf ¼ 0.82), where Pf is the probabil-
ity of each energy.

• Ei > ETe: A fluorescence photon is created with prob-
ability of 85.8% equaling the average fluorescence
yield of cadmium and tellurium.43 The energy of the
created fluorescence photon is set to Ef ¼ 23.2 keV
(Pf ¼ 0.09), Ef ¼ 26.1 keV (Pf ¼ 0.41), Ef ¼
27.5 keV (Pf ¼ 0.09), or Ef ¼ 31.0 keV (Pf ¼ 0.41).

The Kα or Kβ fluorescence probability for the cadmium
and tellurium used above is calculated according to the val-
ues reported in Ref. 43. In the simulation, the fluorescence
photons are emitted in a random direction and absorbed at rf.
The fluorescence photon’s travel distance before absorption
jrf − rij is simulated according to the probability distribution
function given by the attenuation in CdTe. If a fluorescence
photon is emitted, the energy deposited at ri is set to Ed ¼
Ei − Ef and the remaining energy Ef is absorbed in rf, else
Ed ¼ Ei. If rf lies outside the detector volume, the energy
contained in the fluorescence photon is removed from the
simulation and, hence, not detected. This creates an escape
peak.

In the simulation, the initially absorbed photon and the
fluorescence photon will be recorded at the same time, mean-
ing that the recorded energy will be the sum of the energy
deposited in a pixel from both photons.

A.2 Charge Sharing
The final DC, DWP, and DN response matrices are calculated
by making 2-D histograms of all simulated photons’
recorded and their respective incoming energy. The calcula-
tion of charge sharing and WP cross talk both result in an
amount of energy being recorded on the pixels neighboring
the center pixel where the photon was initially absorbed.
Energy recorded in a neighboring pixel will be included
in the final response matrices, by including them as separate
events in the histograms. In the following, the energy depos-
ited in a location r0 ¼ ðx0; y0; z0Þ will be denoted E0 (and is
either E0 ¼ Ed or E0 ¼ Ef). Pixelated, multispectral CdTe
detectors typically have a segmented anode collecting the
electrons responsible for the spatial resolution of the detector
and a common cathode collecting the holes. Therefore, the
charge sharing and WP cross talk are in the simulation
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assumed to be coursed only by the drift of the excited
electrons.

The amount of electrons shared between two pixels is cal-
culated for each photon by assuming that the excited electron
cloud is a 1-D Gaussian distribution parallel to the pixel
array. In this model, the deposited energy recorded in the
neighboring pixels to the “left” or “right” of the primary
pixel is given by29

EQ-TARGET;temp:intralink-;e008;63;664

Eright ¼
E0

2

�
1 − erf

�
dx∕2 − x0

σ
ffiffiffi
2

p
��

;

Eleft ¼
E0

2

�
1 − erf

�
dx∕2þ x0

σ
ffiffiffi
2

p
��

; (8)

where dx is the width of the pixel and σ is the standard
deviation of the electron cloud distribution. The energy
recorded in the center pixel is given by Ecenter ¼ E0 −
Eright − Eleft. It is noted that in the simulation r0 will be con-
fined to the central pixel for the original absorbed photon, but
in the case of fluorescence photon, it can be in either the left
or right neighbor pixel. The electron cloud at the anode,
where the electrons are recorded, is assumed to be given by

EQ-TARGET;temp:intralink-;e009;63;503σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2t þ σ2i

q
; (9)

where σi ¼ 5 μm30 is the initial width of the excited charge
cloud and σt can be calculated from the diffusion equation

EQ-TARGET;temp:intralink-;e010;63;441σ2t ¼ 2Dτ; (10)

where D is the diffusion constant and τ is the charge carrier
lifetime.28 To include the charge repulsion in this model, an
effective diffusion constant is used30

EQ-TARGET;temp:intralink-;e011;63;377Deff ¼ Dþ 1

15

�
3μeNq
4πϵ

�
1ffiffiffi
5

p
σi
; (11)

where μe is the electron mobility, q is the elementary charge,
and ϵ is the permittivity. The number of charges per photon is
given by N ¼ Ee∕ΔE, where ΔE ¼ 4.43 eV∕ehp31 is the
energy per ehp for CdTe and Ee is the energy deposited
in the detector by the absorbed photon. The additional con-
tribution to the charge cloud distribution due to reabsorbed
fluorescence photons creating two cloud centers is thereby
not taken into account. This choice was made to simplify
calculations of the charge sharing effect.

By combining Eqs. (10) and (11), we obtain an expression
for the cloud width due to repulsion and diffusion

EQ-TARGET;temp:intralink-;e012;63;210σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τDþ 2τ

15

�
3μeNq
4πϵ

�
1ffiffiffi
5

p
σi

s
: (12)

According to the Einstein relation D ¼ μekBT
q , where T is

the temperature and kB is the Boltzmann’s constant.
Assuming parallel plate electrodes with bias voltage U,
we can rewrite the drift time in terms of detector depth d
and interaction point compared to the anode z, such that
μeτ ¼ zd

U .
44 By combining the latter with Eqs. (9) and

(12), we find

EQ-TARGET;temp:intralink-;e013;326;752σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBTzd
qU

þ
�
zdNq
10πϵU

�
1ffiffiffi
5

p
σi

þ σ2i

s
: (13)

A.3 WP Cross Talk
According to the description presented in Ref. 12, the WP
cross talk originates from current induced in the neighboring
pixels to the pixel where the excited charge cloud is moving.
The induced current in neighboring pixels integrates to zero
along the charge clouds drift path; however, if the induced
current becomes large enough, it might still trigger a signal in
the detector. The induced chargeQðrÞ on an electrode due to
moving charges in the active detector volume is described by
the Shockley–Ramo theorem28,45,46

EQ-TARGET;temp:intralink-;e014;326;602QðrÞ ¼ N0 · q · ϕðrÞ; (14)

where N0 is the number of charge carrier, q is the charge of
the carriers, and ϕðrÞ is the WP. The WP cross talk induced
from each photon is in our simulation modeled by rewriting
Eq. (14) into

EQ-TARGET;temp:intralink-;e015;326;527ΔE ¼ E0 · Δϕjðr0Þ; (15)

where ΔE is the recorded energy from the charge induced in
pixel j, and E0 is the energy of the photon absorbed in pixel
jþ 1, and Δϕj is the difference in the WP of pixel j from
the start of the charge drift path at the absorption point r0
to the point where the maximum charge is induced (i.e.,
where the current reverses on the j pixel). The model is
a simplification as it assumes a point shape charge cloud
containing all charge induced from a photon.

A simple model of the WP ϕjðrÞ is described in Ref. 16,
where it is assumed that the detector consists of two infinite
parallel plates. This model is taken as a simple approxima-
tion of the WP cross talk in the MultiX ME100, and it is
repeated here for the ease of the reader. The model uses
the method of mirror charges, where the WP can be
described by an infinite sum of charge mirrors

EQ-TARGET;temp:intralink-;e016;326;330ϕjðrÞ ¼
X∞
k¼−∞

ϕ0ðx; y; z − 2kd; a; bÞ; (16)

where d is the depth of the CdTe crystal, and a and b are the
dimensions of the anode pad, which is assumed rectangular.
Under this assumption, the mirror potential is given by
EQ-TARGET;temp:intralink-;e017;326;249
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ðξ2 þ ðb − ηÞ2 þ z2

p
!

þ arctan

 
ξη

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2 þ z2

p
!#

; (17)

with
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EQ-TARGET;temp:intralink-;e018;63;752

ξ ¼ ðx − x1Þðx2 − x1Þ þ ðy − y1Þðy2 − y1Þ
a

;

η ¼ −ðx − x1Þðy2 − y1Þ þ ðy − y1Þðx2 − x1Þ
b

: (18)

In the above, the corners of the anode are placed at ðxi; yiÞ for
i ¼ 1: : : 4 and x, y, z, are the simulated interaction points of
the charge above pixel j − 1 with respect to the center of
anode j. A way to determine a and b is described in
Sec. 4 in the main paper. Equation (16) should be evaluated
as an infinite sum, however, in the simulation, the sum is
only evaluated in k ¼ ½−2;2�, as it has been shown to be
a reasonable approximation.47

A.4 Compton Scattering and Electrical Noise
As explained in the main text, the detector response due
to Compton scatter and electronic noise, contained in the
response matrix DE, is calculated through a simplified
model.

In the model, we assume that either the Compton electron
or the scattered photon is recorded in the same pixel, i.e., the
recorded energy will be equal to the incoming photon’s
energy or the scattered photon escapes the detector leaving
only the Compton electron to be recorded. There is a finite
probability that the Compton electron and the scattered pho-
ton will be recorded in different pixels, resulting in the scat-
tered photon being recorded with energy lower than its
incident when entering the crystal. This effect is not included
in the model. However, this effect resembles that of the ICC,
which is corrected for by the ICC model, and, hence,
mitigates the effect of Compton scattering on the primary
recorded photon energy.

Both the Compton scattering cross section and Compton
edge (maximum energy transferred to the scattered electron)
increase with energy.28 The Compton edge becomes larger
than 20 keV at photon incoming energies Ei > 82 keV.
Hence, the low-energy spectrum is only affected by the pho-
ton above 82 keV. In addition to this, electronic noise, which
arises as example from fluctuations in the leakage current,
can contribute with a signal at low energies as well.
To include these effects, we assume that the absorption of
a photon would generate an electronic noise or Compton
scattering charge signal with a probability Pn, described by
a distribution modeled as Gaussian with mean μn and width
σn. As the noise is added as a fraction of the original charge
deposited in the detector, the noise contribution’s importance
will increase as the photon energy increases, since the
amount of charge excited by the absorbed photon energy
is proportional to the absorbed energy. Thereby, the noise
term will have almost no importance at low energy where
it will create a signal below the detection limit of the
MultiX ME100 of 20 keV. The exact values of the param-
eters used to describe the noise term were found empirically
as described in the experimental section.

Appendix B: Pulse Pileup Model
To correct for pulse pileup, we use the method developed
by Plagnard,15 which we present below for the ease of the
reader. The model is based on the assumption that two pho-
tons with energy E1 and E2 will be counted as one with the
combined energy of the two Et ¼ E1 þ E2, if the time

between the two is small enough. The effect of the pulse
pile up on the measured spectrum IRðEÞ is described by
the pileup spectrum IPUðEnxÞ. The pileup correction model
needs to calculate IPUðEnxÞ for all values of En and Ex,
with En and Ex being the center energy of the MultiX
ME100’s n and x energy bin, respectively. For each n,
the pileup spectrum is calculated for the whole range of x by

EQ-TARGET;temp:intralink-;e019;326;675IPUðEnxÞ ¼
IRðEnÞP
e
IRðEeÞ

· CPU · IRðExÞ: (19)

Afterward, the obtained spectrum IPUðEÞ is subtracted
from the raw spectrum, and the summed contribution is
added to ICðEnÞ of the n energy bin to obtain the corrected
spectrum
EQ-TARGET;temp:intralink-;e020;326;579

ICðEÞ ¼ IRðEÞ − IPUðEÞ;
ICðEnÞ ¼ ICðEnÞ þ

X
e

IPUðEeÞ: (20)

At this point, n is increased and the procedure is repeated.
Plagnard lets the coefficient CPU in Eq. (19) be determined
by the operator.
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A B S T R A C T

We propose a method for material characterization using Spectral X-ray Computed Tomography (SCT). Our SCT
method takes advantage of recently-developed MultiX ME 100 photon counting detectors to simultaneously
measure the energy dependence of a material's linear attenuation coefficient (LAC). Relative electron density (ρe)
and effective atomic number (Ze) are estimated directly from the energy-dependent LAC measurements. The
method employs a spectral correction algorithm and automated selection and weighting of the energy bins for
optimized performance. When examining materials with Ze≤ 23, this method achieves accuracy comparable to
traditional dual-energy CT, which is often realized through consecutive data acquisitions, and is compatible with
any spectral detector. The method disregards data in photon starved energy channels improving the detection of
highly attenuating materials, compared to techniques that use energy integrating detectors.

1. Introduction

Laboratory or industrial based X-ray radiography and Computed
Tomography (CT) provide structural images of an object (airline bag-
gage, human body, etc.), but do not typically measure quantitative
material properties such as electron density or effective atomic number
[1,2]. One reason is because the polychromatic nature of the incident X-
rays obscures quantification due to non-linearities in how the radiation
is attenuated. Moreover, analysis using the effective linear attenuation
coefficient (LAC) to classify materials may result in a system-dependent
solution [3]. Recently, a method was presented for material char-
acterization using dual-energy computed tomography (DECT), called
System Independent ρ Z/e e (SIRZ) [4], which demonstrated accurate and
precise results for a set of materials with Ze between 6 and 20. The
results were shown to be consistent between different DECT systems
used to perform the acquisitions. However, this method requires col-
lection of two distinct datasets, and includes a set of reference materials
for calibration of the detector's spectral response.

Advances in cadmium telluride (CdTe) energy-discriminating pixe-
lated detectors have enabled the possibility of Spectral X-ray Computed
Tomography (SCT) which incorporates spectroscopic information into
CT. Theoretical and experimental studies examining photon counting
detectors (PCDs) have suggested that SCT outperforms conventional

energy-integrating CT in material discrimination and detection tasks
[5–10]. MultiX ME100 (MultiX, Neuilly-sur-Seine, France) is a PCD that
has been shown to be able to efficiently handle photon fluxes up to 7
Mphotons/pixel [10], making it a suitable candidate for real scanning
applications. Brambilla et al. presented a basis material decomposition
method using MultiX ME100 PCD [11]. The method requires a cali-
bration step in which a set of reference material (polyethylene and
polyvinyl chloride) is measured. The scanned objects are characterized
into thicknesses relative to the reference materials. From these, the
effective atomic number, Ze, of the unknown materials is interpolated
or extrapolated. In this work, we present a new method for the esti-
mation of system independent material features (ρe and Ze) from SCT
acquisitions. The method estimates material features directly from
measured energy resolved LACs. The formulation of the method makes
it compatible with an arbitrary number of energy bins.

2. Materials and methods

In this section, we define the system-independent physical proper-
ties we have used to characterize materials. We then describe the in-
strumentation and the samples used to conduct the experiments. Lastly,
we present the algorithm to estimate the system independent features
from experimental data.
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2.1. Physical properties of materials under investigation

The interactions between photons with energy <E 1.022 MeV and a
single element with atomic number Z are described in terms of total
mass attenuation cross section, σ Z E( , ) (cm /g)2 , which consists of con-
tribution from the photoelectric absorption (σabs), coherent scattering
(σcoh), and incoherent scattering (σinc) [12]. An illustration of the re-
lative contribution of each component of the mass attenuation cross
sections as a function of energy is shown in Fig. 1. Note that for the
elements commonly found in organic compounds (C, H, N, O), the
photoelectric absorption is the dominant contribution for energies
below 60 keV; however, the photo-electric absorption increases with Ze.
Also at energies below 60 keV coherent (Rayleigh) scattering is present
and accounts for a contribution to the total attenuation of approxi-
mately 10%. Above these energies, incoherent (Compton) scattering
becomes predominant.

We convert total mass cross section into electronic cross section
( −cm /e mol2 ), as:

=σ Z E A Z
Z

σ Z E( , ) ( ) ( , ),e (1)

where A(Z) is the atomic mass (g/mole) of the element Z. Likewise, we
convert the bulk density ρ (g/cm )3 into electron density −ρ (e mol/cm )e

3 ,
using the relation:

=ρ Z
A Z

ρ
( )

.e (2)

For a compound material, consisting of a number ni: of N distinct
elements i, the electronic density is extended from eq. (2) as:

=
∑

∑

=

=

ρ
n Z

n A
ρ.e

i
N

i i

i
N

i i

1

1 (3)

To approximate the atomic number of such a compound we use the
definition of effective atomic number, Ze, presented by Azevedo et al.
[4] defined as a non-integer atomic number that corresponds to an
artificial element, for which the interactions are assumed to be modeled
by the X-ray attenuation cross sections. The cross sections for the arti-
ficial element Ze are obtained by a linear interpolation between the
cross section of the two adjacent elements in the periodic table:

= − ′ + ′ +σ Z E σ Z E σ Z E( , ) (1 ε) ( , ) ε ( 1, ).e e e e (4)

Therein, Z′ is the lower adjacent element ′ =Z floor Z( ) and ε is the
difference = ′ −Z Zε .

In terms of the effective atomic number and electronic density
presented above, we express the LAC of a material m as:

=μ E ρ σ Z E( ) ( , ).m
e
m

e e
m (5)

Investigated materials are tabulated in Table 1. The material prop-
erties were calculated from their respective measured bulk densities ρ
using the paper by Bond et al. [13]. Note that a set of materials was
scanned simultaneously within a carousel [14], while a set of other
materials, with larger diameter or attenuation were scanned in-
dividually. The material features listed in Table 1 will be considered as
the ground truth for the remainder of the paper.

2.2. MultiX ME 100 V2 detector array

The MultiX ME 100 V2 consists of a linear array of CdTe-based
photon-counting X-ray detectors capable of recording energies from 20
to 160 keV in 1.1 keV energy bin increments, maximum number of
energy bins =N 128E . Optionally, for custom applications, two to six
independently tunable energy bins can be specified within the full en-
ergy range. In this alternative mode, bins can be separated by a gap or
they can overlap. Each module consists of 4 continuous pixelated CdTe
crystals approximately 2.5 cm in length. Each crystal is divided into 32
detector elements. Each detector element is 3−mm thick, 0.8−mm
wide and 0.8−mm high. Up to 20 modules can be daisy-chained to
form a 200−cm linear detector array. An interface board connected to
a host computer acquires and transfers the data from the modules via an
Ethernet link. The detectors can have integration times from 0.5ms to
100ms (in μ10 s increments). MultiX ME100 V2 is a pulse-counting
detector, thus each count measured in the image refers to one detected
photon. The energy resolution of the detector under high X-ray fluxes is
of 6.5% (8 keV) at 122 keV. A lead collimator built into the module
and surrounding the detector elements provides some X-ray collimation
and radiation shielding. To implement a robust experimental tool, an
enclosure was designed to hold and align, as well as safely store and
transport, the detector modules.

For system control and acquisition of the MultiX radiography and
CT data, we developed an automated software utility. The manu-
facturer provided an Application Programming Interface (API) to en-
able control of the detector array that was then incorporated into the
software. To accommodate the need for computed tomography cap-
abilities, the software was designed to control a Newport XPS motion
controller driving a rotary stage (Newport Corporation, Irvine,
California). An API from Newport was used to interface the software
with the motion controller. Individual digital line radiographs using
selected integration times can be acquired and saved in a raw binary file
format. The software allows for a computed tomography scan over a
selected angular range and integration time to be automatically

Figure 1. The NIST cross sections look-up tables, exemplified for silicon. The
total cross section (solid black), is the sum of the individual photoelectric ab-
sorption (solid green), coherent (dashed red) line and incoherent scattering
(dash-dotted blue) cross sections. The vertical dashed black line near 60 keV
denotes the intersection between σabs and σinc. Note the logarithmic scale in the

−y axis.

Table 1
All the materials composing the samples and their respective physical proper-
ties. Note that the values of Ze were calculated with ZeCalc [13], setting the kV
to 160 kV. Measurement uncertainties were ± 0.15% for ρ, leading to un-
certainties of about ± 0.5% for ρe and Ze The density measurement were taken
from Ref. [4] as the same materials were used. † Materials placed in the six
samples carousel. ‡ Materials scanned individually.

Material Formula Diameter (mm) ρ (g/cm3) ρe ( −e mol/cm3) Ze

‡Graphite A C 50 1.70 0.846 6
†Graphite B C 12.7 1.85 0.924 6
†POM (CH2O)n 12.7 1.40 0.749 7.01
†Water H2O 12.7 1.00 0.554 7.45
†PTFE (C2F4)n 12.7 2.17 1.042 8.43
†Magnesium Mg 12.7 1.74 0.857 12
‡Aluminum Al 25 2.70 1.300 13
†Silicon Si 12.7 2.33 1.162 14
‡Titanium Ti 12.7 4.54 2.085 22

M. Busi, et al. NDT and E International 107 (2019) 102136
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acquired and saved for later analysis.

2.3. Experimental setup

An YXLON 450-D11 (YXLON International, Hudson, Ohio) X-ray
source was used with an acceleration voltage of 160 kV, anode filament
current of 0.5mA and 1mm focal spot. The spectrum was filtered with
2mm of aluminum. The detector was made up of two linear array PCD
MultiX ME100 modules. For all the SCT scans performed in this work
360 projections were acquired, by rotating the sample stage at ∘1 in-
crements. For each projection, the total exposure time was set to 5 s.
The source to detector distance (SDD) was set to 3000mm whereas the
source to sample distance (SOD) was set to 2830mm.

2.4. Correction steps

The raw data collected by photon counting detectors is distorted by
physical interactions such as charge sharing, weighting potential, es-
cape peaks, pulse pile-up and insufficient charge collection [14–18].
These effects lead to a skewing of the measured spectrum from the
central energies towards low- and high-energy tails. Since these effects
are energy and flux dependent, different samples yield different dis-
tortions, and hence, errors in their LAC retrieval. To correct for these
distortions, we employ a correction algorithm presented by Dreier et al.
[19]. In contrast to other algorithms, this approach is flux dependent
and fast (milliseconds per pixel), making it a suitable candidate for
applications with high throughput demand. A plot of the X-ray source
spectrum, before and after the correction has been applied is shown in
Fig. 2.

Another relevant source of distortions in data acquisition is the ra-
diation scattered by the sample and the environment. Low angle scat-
tered photons which do not escape the detectors contribute to the
transmitted radiation in Lambert-Beer's law resulting in a lowering of
the measured LAC. The effect in the reconstructed volumes is a global
loss of contrast between different materials and can lead to severe
cupping artifacts. The influence of the scattered radiation on the ac-
quisition depends on the size of the detectors and samples, material
composition of the sample and the distance between the sample and the
detectors. Lastly, it depends on the source spectrum and the materials'
scattering cross sections. In an SCT acquisition, where the source's po-
tential is typically set up to 160 kV, scattering becomes the dominant
interaction of high-energy photons (see Fig. 1), lowering the attenua-
tion measured at the high-energy bins of the PCD. It is therefore im-
portant to adopt methods to suppress X-ray scattering. In this work, the
X-ray scattering was estimated using a deep learning convolutional
neural network (CNN) introduced by Maier et al. [20]. The training

datasets were obtained with a Monte Carlo (MC) simulation framework
for scattering estimates presented by Busi et al. [21] A random sample
generator was created with the aid of a software tool presented by
Kazantsev et al. [22], to reproduce artificial samples composed of dif-
ferent materials. In contrast with the gold standard MC simulation, once
trained, the CNN can provide scattering estimates in a few hundreds of
milliseconds, while MC simulations usually take at least several minutes
to converge, depending on the desired resolution. Note that the en-
vironmental X-ray scattering is not included in the model.

2.5. LAC volume reconstruction and energy selection

After the spectral and scattering corrections are performed on the
spectra of each projection of the CT scan, the data is rebinned from

=N 128E energy bins into =N 64E to increase photons statistics of each
energy bin, while preserving flexibility in the energy selection and
spectral resolution. The merging is done by summing the radiation I
detected in pairs of adjacent energy bins as follows:

′ = + = …−I I I k, 1, , 64.E E Ek
k k2 1 2 (6)

The energy values assigned to the new energy bins ′E k are calcu-
lated by taking the weighted mean according to the source spectrum as
follows:
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⋅ + ⋅
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−
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I E I E
I I

k, 1, , 64.k

E
k

E
k

E E
0 2 1 0 2
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2 1 2 (7)

Therein, I0 is the corrected flat-field measurement, i.e. the projec-
tion without the sample being inserted, and corresponds to the source
spectrum as measured by the detectors, also referred as the system's
spectral response. We note that the merging procedure similarly can be
done for a power of 2 of new energy bins (i.e. =N 1,2,4,8,16,32E ). For
the remainder of the paper we denote the new energy bins as ≡ ′E Ek k,
for practical reasons.

The energy resolved projections I are converted to linear attenua-
tion coefficients, μ, using the Lambert-Beer's law:

→ = −
→

→ = …μ x log I x
I x

k( ) ( )
( )

, 1, , 64;E
E

E
0

k
k

k (8)

where →x is the detector pixel array. Note that in this work we perform
2D slice reconstructions with fan-beam collimation since the detector is
a linear array. The slice reconstructions are performed individually for
each energy bin using the Filter Back Projection (FBP) routines included
in Livermore Tomography Tools, a software package developed at LLNL
[23]. An example of the slice reconstructions at four different energies
is shown in Fig. 3. The reconstruction at =E 27.3 keVk shows strek
artifacts induced by photon starvation from the high attenuation of
silicon at low energies. We also note that the contrast between the
different materials varies as a function of energy. For example, the
contrast between graphite and magnesium is higher at 44.8 keV than
139.6 keV, whereas the opposite behavior is found in the contrast be-
tween graphite and POM.

For each material, the LAC mean value and standard deviation
within a region of interest (ROI) are calculated for each energy resolved
reconstruction. In Fig. 4, we show an example of silicon's LAC measured
with and without the correction steps discussed in Section 2.4, as well
as the corresponding ground truth.

The correction algorithm helps correct the LAC towards the ground
truth values at the low energies, where the contrast between organics
compounds (e.g. PTFE and POM) is highest. The error increases towards
the low- and high-energies due to spectral distortions, which cannot be
completely restored by the correction algorithms. At certain energies,
the LAC values deviate from the expectation due to complete attenua-
tion of the radiation by the sample, resulting in photon starvation. To
estimate the ρe and Ze of each material, the method requires an auto-
mated selection of the low- and high-energy thresholds, Ei and Ef,

Figure 2. The raw (solid light blue) and spectral corrected (solid dark blue) X-
ray source spectra, as measured by the MultiX ME100. The mean flux density
per pixel was approximately 26000 Photons⋅s−1/pixel. Note that for this flux
density the pile-up effect is not visible in the spectra but appears in the mea-
sured LAC (see Fig. 4).
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which correspond to energy thresholds that exclude bins in which the
LAC is affected by low photon statistics and pulse pile-up. For all the
materials scanned in this work, these two thresholds were calculated by
assuming the LAC to be monotonically decreasing, and with no inflec-
tion points in the incoherent scattering regime ( >E 60 keV). This as-
sumption is useful, in case of a PCD, for materials (i.e. ≤ ≤Z1 42e )
that do not have a K-edge within the detector's energy range. For MultiX
ME100 that is between 20 and 160 keV. The low-energy threshold Ei is
determined by taking the first derivative of the estimated LAC
(δμ E δE( )/ ) and locating the nearest zero intercept closest to the lowest-
energy bin, as it corresponds to a relative maximum with a change from
increasing to decreasing. The high-energy threshold Ef is determined by
taking the second derivative of the estimated LAC (δ μ E δE( )/2 2), and
locating the bin nearest the zero intercept, closest to the highest energy
bin, as it corresponds to an inflection point. The determination of the
energy thresholds is illustrated in Fig. 4 for silicon.

2.6. Spectral ρe/Ze estimation (SRZE)

We introduce a method that estimates the physical properties (ρe
and Ze) of a material from its corrected LAC measurements. The esti-
mation is performed by solving a constrained minimization of a cost
function g(E):

g Earg min ( ). (9)

We define the cost function = −g E μ E μ E( ) ˜ ( ) ( ) 2, as the squared
distance between the measured LAC, μ E˜ ( ), and its relative theoretical
definition μ E( ), parametrized by ρe and Ze as in eq. (5). Therefore, for a
spectral acquisition eq. (9) becomes:

∑ −
=

λ μ E ρ σ Z Earg min ˜ ( ) ( , ) .
ρ Z k i

f

E k e e e k
{ , }

2

e e
k

(10)

Therein, λEk are the energy weights, computed as the reciprocal of
the variance (s2) of each material's LAC in their ROI, =λ s μ1/ ( ˜ )E E

2
k k .

These can be interpreted as the weight given to each energy bin Ek into
the estimation of the material's features. Note that the summation runs
from the low- and high-energy thresholds Ei and Ef, found as described
in the previous section. The minimization process in this work was
performed with MATLAB®‘s routine function FMINCON with solution
boundaries = − −ρ 0 15 e mol/cme

3 and = −Z 1 99e and initial guesses
= −ρ 1 e mol/cme

0 3 and =Z 7e
0 . No particular dependency on the starting

values was observed. Note that in the case of materials presenting a K-
edge in the attenuation coefficients, the energy bins below the edge
would be truncated making it compatible with estimation method,
however none of the materials presented here have a K-edge within the
energies in the PCDs range.

3. Results and discussion

In this section we present the experimental results obtained with the
SRZE method presented in Section (2.6), for all the materials scanned
(see Table 1). The accuracy of the estimation is calculated as the per-
cent relative deviation from the ground truth for the effective atomic
number as:

= ⋅
−

Z
Z Z

Z
Δ 100% ,e

rel e
est

e
gt

e
gt (11)

and similarly, for the electron density by substituting Ze with ρe, where
superscripts est and gt refer to estimated and ground truth, respectively.
The ground truth values for the material features are listed in Table 1.
All the results are plotted in Fig. 5 and listed with comparisons to the
results reported in a previous study [24] in Table 2.

Fig. 3. Four individual energy LAC resolved slice reconstructions of the mate-
rials in the carousel, at the energies =E 27.3, 44.8, 84.5, 139.6 keVk . The axes'
unit corresponds to the pixel size (0.8mm). The scale unit is the linear at-
tenuation ( −cm 1).

Figure 4. Energy resolved LAC, exemplified for Silicon. The solid black line is
the ground truth obtained by using the ground truth values of ρe and Ze in
Table 1, using NIST cross-sections. The dark and light blue lines are the ROI
mean LAC calculated as described in Section 2.5, with and without the cor-
rection steps of Section 2.4 being applied respectively. The error-bars represent
the respective standard deviation values. The vertical red dash-dotted lines are
the low- and high-energy thresholds Ei and Ef found by the energy selection step
given in Section 2.5.

Fig. 5. Scatter plot of the ρ Z,e e results obtained using the SRZE method.
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3.1. Discussion of results

The accuracy of the SRZE method in Fig. 5 and Table 2 shows
promising results in the calculation of the effective atomic number,
with an overall mean relative error value of 1.79%. It is observed that
the estimation of Ze worsens for smaller Ze, due to lower performance of
the detector in terms of spectral resolution at the lower-energy bins and
lower contrast between LAC curves of adjacent Ze values. Moreover, the
spectral distortions in the low-energy reconstructions lead to higher
standard deviations, and hence less energy weight λEk in the estimation
method. However, the highest contrast of low-Ze materials is found at
lower energies.

The estimation of ρe on the other hand shows a 4% negative bias in
the mean relative error value, perhaps due to an overall under-
estimation of the measured energy resolved attenuation coefficient, also
visible in Fig. 4. One reason for this may be due to a high amount of
environmental X-ray scattering, not considered in the analysis. For
these experiments, except for the titanium, aluminum, and graphite A
scans, the source was not collimated into a fan-beam geometry and a
large portion of the beam hit the sample stage, mostly composed of
metal parts. The small distance between the sample stage and the de-
tector permitted a large portion of the environmental scattering to
reach the detectors. The large error in the estimation of silicon's elec-
tron density (ρe) may be due to the use of monocrystalline silicon, which
is known to exhibit a different X-ray cross section than polycrystalline
silicon [4,24]. The results are comparable to the ones reported in a
previous work using state-of-the-art Dual-Energy CT [24], besides the
significant lower performance on the estimation of ρe, which is due to
the reasons discussed above.

3.2. Energy selection analysis

To test the robustness and sensitivity of the Ei and Ef thresholds
selection procedure described in Section 2.5 we ran the SRZE estima-
tion method over a range of values of the low- and high-energy
thresholds Ei and Ef. Fig. 6 shows the relative percent deviation of the
estimated material features for aluminum. Note that the diagonal ele-
ments correspond to taking only two adjacent energy bins and the va-
lues below the diagonal are not calculated as they have no physical
representation. The thick dark areas show that the key factor for ac-
curate estimation of the LAC, and thus ρe and Ze is the selection of the
low-energy threshold Ei. The optimal performance is reached by trun-
cating the low-energy bins, for which the spectral distortions and
photon starvation cause a distortion of the measured LAC. On the other
hand, choosing a higher threshold for the low-energy bins yields a poor
estimation, as the bulk of the material properties is revealed by the low
energy bins.

It is also shown in Fig. 6 that the selection of the high-energy
threshold Ef has less impact on the estimation of the LAC, and thus ρe
and Ze. The large areas in which the accuracy is below 2% indicate that
the estimation method is overdetermined and there may be a material
dependent optimal choice of the energy bins, that would lead to opti-
mized results. The difference, in shape, between the dark areas for ρe
and Ze, suggests that there may be an optimized choice of energy bins
for an independent estimation of ρe and Ze.

4. Conclusions

We have presented a method for the estimation of system-in-
dependent physical properties of materials, from Spectral CT mea-
surements. In contrast to other methods, this does not require a cali-
bration step using reference materials and can be used with any number
of energy bins. However, it relies on the accurate measurement of the
energy dependence of the attenuation coefficients. We found the
method to be more robust to the variety of material samples using 64-
energy bins, followed by a detection and truncation of the low- and
high-energy bins where the spectral distortions cannot be fully cor-
rected. Our assumption for the selection of the energy bin thresholds is
supported by the physical properties of the attenuation coefficients of
materials not presenting a K-edge, however the method is expected to
be able to operate in this condition as well. The accuracy results are
comparable to the ones obtained with the state-of-the-art techniques
employing dual-energy CT scans, while our method is done with a
single scan and it has a better performance for highly attenuating ma-
terials. Photon counting detectors are still under development there-
fore, improvements in the detector's response will lead to a better es-
timation of the material's features. Further experiments will test the
robustness of the method to materials with larger range of effective
atomic number Ze, and presence of K-edges. Additional experiments
will test the precision and accuracy of the method using different
scanning parameters such as source potential, filament current and
different source filters as well as better environmental X-ray scattering
reduction.
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ABSTRACT
We present Spectral X-ray Computed Tomography (SCT) estimations of material properties directly from energy-
dependent measurements of linear attenuation coefficients (LAC). X-ray Computed Tomography (CT) is com-
monly utilized to characterize the internal properties of an object of interest. Dual-Energy X-ray CT allows
material characterization into energy-independent physical properties such as Ze and electron density ρe. How-
ever, it is not robust in presence of dense materials and metal artifacts. We report on the performance of a
method for system-independent characterization of materials that introduces a spectroscopic detector into X-ray
CT, called spectral ρe/Ze estimation (SRZE). We benchmark the SRZE method against energy-integrated mea-
surements in material classification tests, finding superior accuracy in the predictions. The advantage of this
technique, over other methods for material characterization using x-ray CT, is that it does not require a set of
reference materials for calibration. Moreover, the simultaneous detection of spectral features makes it robust to
highly attenuating materials, since the energy intervals for which the attenuation is photon limited can easily be
detected and excluded from the feature estimation.

Keywords: Spectral X-ray CT, X-ray Characterization, Effective atomic number, Electron density, MULTIX-
ME100, Threat Detection, Security Screening

1. INTRODUCTION
For decades, X-ray Computed Tomography (CT) has been adopted as one of the standard techniques for non-
destructive tests and evaluations, for example in the screening of luggage for threats.1 Since laboratory-scale
X-ray sources generate a polychromatic beam (Fig. 1), conventional CT does not measure a single-energy value
of the linear attenuation coefficient (LAC), but measures but its weighted average through multiple energies.
Therefore, using this technique the characterization of a material’s LAC is complicated by polychromatic effects
such as beam hardening2 and photon starvation from metals or dense materials,3 and require an accurate model
of the detector’s spectral response. Moreover, different materials yield different contrast, in terms of intensity
values in the reconstructions, when probed at different mean energies; therefore their classification might be not
optimized depending on the choice of the source parameters of kilovoltage peak and filtration.

To overcome these limitations, researchers have recently developed methods to estimate energy-independent
physical parameters of the materials, using Dual-Energy CT (DECT).4,5 With a DECT acquisition, the LAC of
materials is probed at two different X-ray spectra (as the low- and high- energy pair in Fig. 1) and converted
into the energy-independent physical parameters of electron density ρe and effective atomic number Ze, as in
the System-Independent ρe/Ze (SIRZ) method proposed by Azevedo et al.6 and further developed by Champley
et al.7 This can be technically achieved, for example with a consecutive scan with different source filtration
and kilovoltage peaks, or using dual-energy sandwich detectors.8 However, the performance of these techniques
depend on the choice of the pair of spectra used for the DECT acquisitions and the estimation of their respective
detector spectral responses. These techniques will be accurate and precise for a group of materials within a
limited range of Ze, but will have lower performance for materials outside this range. This limitation can be
overcome using spectral X-ray CT (SCT). SCT can be considered as an extension of DECT where the signal is
simultaneously collected in multiple non-overlapping energy ranges. This would extend the range of materials
for which the characterization is accurate.
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With the advent of single photon counting detectors (PCD) able to discriminate the energy of the detected
photons (Fig. 1), the interest towards spectral X-ray CT (SCT) has grown significantly, for the superior contrast
to noise ratio9–13 and for enabling k-edge CT.14,15 In this work we use an extension of the SIRZ method for SCT,
called Spectral ρe/Ze Estimation (SRZE),16 to estimate the physical parameters of a large dataset of innocuous
materials commonly found in checked-in luggage, and threat materials which we want to be able to detect. The
SRZE characterization’s impact on the classification task accuracy is benchmarked against more direct methods
for a set of different samples with including both innocuous and threat materials in a random order. For all
cases studied in this work, we found superior accuracy in the classification task when using SRZE method for
material characterization.

Figure 1: Left. In conventional X-ray CT, the signal is integrated over all energies. Center. In Dual-Energy
X-ray CT, two different spectra are used to probe the sample attenuation at a low- and high- mean energy.
Right. In Spectral X-ray CT, single photon counting detectors discriminate the incoming radiation in distinct
energy bins with mean energy depending on the set energy thresholds.

2. THEORY AND METHODS
In this section, we define the system-independent physical properties we have used to characterize materials and
the methods we have adopted in this work to estimate them from SCT measurements.

2.1 Dual-Energy X-ray CT Characterization
As described in the Lambert-Beer’s law,17 X-ray CT measures the Linear Attenuation Coefficient (LAC) of
materials. However, LAC is a function of the energy and therefore conventional CT, which use acquisitions with
energy integrating detectors, is not a robust method for the characterization of materials since it depends on the
source spectrum and polychromatic effects such as beam hardening that cause distortions in the reconstruction.
Alvarez and Macovski showed in 1976 that the LAC could be approximated as linear combination of a dual set
of basis functions:4

µ(E) = a1fph.abs.(E) + a2fKN (E), (1)

where fph.abs.(E) = 1/E3 models the photoelectric absorption interactions of photons with matter, and fKN (E)
is the Klein-Nishina function, which approximately models the incoherent (Compton) scattering interactions of
photons with matter:

fKN (E = E′/511keV) = 1 + E

E2

[
2(1 + E)
1 + 2E − 1

E
ln(1 + 2E)

]
+ 1

2E ln(1 + 2E)− 1 + 3E
(1 + 2E)2 . (2)

The coefficients a1 and a2 are proportional to the physical parameters of bulk density ρ and atomic number Z,
which are energy-independent. Based on this concept, Azevedo et al. presented a method6 using Dual-Energy
X-ray CT for the system-independent characterization of materials into their features of electron density (ρe)
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and effective atomic number (Ze). For a compound material, consisting of a number ni of N distinct elements
i, the electronic density is defined as:

ρe =
∑N
i=1 niZi∑N
i=1 niAi

ρ, (3)

where A(Z) is the atomic mass (g/mole) of the element Z. To approximate the atomic number of such a compound
Azevedo et al.6 used the effective atomic number, Ze, defined as a non-integer atomic number that corresponds
to an artificial element, for which the interactions are assumed to be modeled by the X-ray attenuation cross
sections. The cross sections for the artificial element Ze are obtained by a linear interpolation between the cross
section of the two adjacent elements in the periodic table:

σe(Ze, E) = (1− ε)σe(Z ′, E) + εσe(Z ′ + 1, E). (4)

Therein, Z ′ is the lower adjacent element, Z ′ = floor(Z) and ε is the difference, ε = Z ′ − Z. In terms of the
effective atomic number and electronic density presented above, we express the LAC of a material m as:

µm(E) = ρme σe(Zme , E). (5)

In their study, Azevedo et al.6 demonstrated system-independence of the method and very good accuracy and
precision for a set of standard materials with Ze < 15 with well-known physical parameters.

2.2 Spectral X-ray CT Characterization
We briefly describe the method presented in detail by Busi et al.16 to estimate the effective atomic number
and electron density from SCT acquisitions. The measured raw data undergoes a spectral detector correction
algorithm presented by Dreier et al.,18 which corrects for the spectral distortions caused by the interactions
between photons and the PCDs. This step is followed by the spectral scattering corrections method, from
Monte Carlo X-ray simulations, presented by Busi et al.19 The energy resolved sinograms are converted into
attenuation using Lambert-Beer’s law, and reconstructed using Livermore Tomography Tools (LTT) software20
using the filtered back projection algorithm. The energy-dependent LACs are obtained by taking the mean values
in the manually segmented regions respective to each material, for each energy bin. The respective variance of
the mean values in the segmented regions is calculated as well, as it will be used in the feature estimation step.
At this stage, an automated energy thresholding is used to disregard energy bins in which the reconstructions
are corrupted by photon starvation caused by highly dense materials. The estimation of the physical parameters
is performed by solving a constrained minimization of the squared distance between the measured LAC, µ̃(E),
and its relative theoretical definition µ(E), parametrized by ρe and Ze as in eq. (5) :

arg min
{ρe,Ze}

f∑
k=i

λEk
|µ̃(Ek)− ρeσe(Ze, Ek)|2. (6)

Therein, λEk
are the energy weights, computed as the reciprocal of the variance (s2) of each material’s LAC

in their ROI, λEk
= 1/s2(µ̃Ek

). These can be interpreted as the weight given to each energy bin Ek into the
estimation of the material’s features. The minimization process in this work was performed with MATLAB R©’s
routine function fmincon with solution boundaries ρe = 0− 15 e−mol/cm3 and Ze = 1− 99 and initial guesses
ρ0
e = 1 e−mol/cm3 and Z0

e = 7. No particular dependency on the starting values was observed.

3. EXPERIMENTS
3.1 Instrumental setup
The instrumentation used for the characterization of the materials into their physical properties was designed
for SCT measurements and briefed in Table 1. The X-ray beam was generated by a Hamamatsu source with
a tungsten anode and the acceleration voltage and filament current set to 160kV and 0.5mA, respectively. For
these operating parameters the focal spot was 75µm. The detector was made up of two 1D PCD Multix-ME10021
modules, composed of 1×128 pixels of size 0.8×0.8 mm2 and each with 128 energy bins of width 1.1 keV, evenly

3

Proc. of SPIE Vol. 10999  1099903-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



distributed between 20 and 160 keV. The energy resolution of the detector under high X-ray fluxes is 6.5% (8 keV
at 122 keV).22 A 2−mm−thick aluminum filter was placed in front of the source to reduce the beam hardening
effects and to suppress the photons with energy below the spectral range of the detector. The characteristic
X-ray peaks of the tungsten target are smeared due to the limited detection energy resolution,18,23 resulting in
a smoother spectrum compared to what is theoretically expected. For all the SCT scans performed, the total
acquisition time per scan was 30 minutes with the rotation stage continuously rotating. Each scan was rebinned
into 5 seconds frames to form 360 projections evenly distributed between 0◦ and 359◦. The source to detector
distance (SDD) was set to 1115 mm whereas the source to object distance (SOD) was set to 575 mm.

Table 1: Experimental parameters.

Source parameters 160 keV, 0.5 mA
Focal spot 75 µm
Number of pixels 1× 256 1D array
Pixel size 0.8× 0.8 mm2

Detector’s resolution 6.5%(8 keV) at 122 keV
Number of energy bins 128 (1.1 keV width)
Number of projections 360
Exposure time per projection 5 seconds
SDD 1115 mm
SOD 575 mm

3.2 Characterization results
We used the SCT characterization method described in Section 2.2 to estimate the physical parameters of a set
of 73 different materials listed in Table 3 in Appendix A. The results are displayed in a ρe/Ze chart, in Fig 2.
The choice of the materials in this work focus on the threat detection in airport luggage. It consists of a varied
selection of organic innocuous compounds, mostly in water solutions, and a selection of explosive or precursor
threat materials. We found a good contrast in the two physical parameters of ρe and Ze for threat and innocuous
materials, except for a few materials. Ethanol 96% (index: 25) for example, will have a high chance of being
detected as a false positive for its proximity to acetone (index: 3). Among the threats, the hydrazine solution
in water (index: 7) and nitromethane (index: 12) are also challenging, due to their similarity with water (index:
48).

3.3 Singular Value Decomposition analysis
We estimate material physical parameters from their LAC using the model in Eq. 5. To confirm that this
model matches with the experimental findings, we performed a Singular Value Decomposition (SVD) analysis
procedure, similar to the one proposed by Eger et al.24 for synthetic data. We constructed a matrixM with the
linear attenuation coefficients measured of all the materials listed in Appendix A. The matrixM has dimensions
(Eb × Nmat) where Eb is the number of energy bins for which the LAC is probed and Nmat is the number of
materials. The SVD decomposition aims to find a set of linearly independent vectors that can express the LAC,
and can be expressed as:

SVD(M) ≡M = USV T , (7)

where U is a (Eb ×Nmat) matrix where each column i compose the set of linearly independent vectors Ui(E), S
is a (Nmat×Nmat) diagonal matrix where the magnitude of each element Si,i describes the relative contribution
of the corresponding vector Ui to the model. The first singular values Si,i and the first six singular vectors Ui
are shown in Fig. 3. A qualitative look at these vectors indicate the two dominant singular vectors, U1 and
U2 are corresponding to the basis functions for incoherent scattering and photoelectric absorption, as in Eq. 1.
These observations were confirmed by finding a linear proportionality between U1 and the Klein-Nishina function
fKN , and a linear trend of the inversion 1/ 3

√
U2(E). The remaining singular vectors are dominated by noise

components and the oscillations in the measured LAC due to the poor spectral resolution of the detector around
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Figure 2: Charts of the effective atomic number and electron density (Ze,ρe) of the materials scanned, estimated
through the SRZE method. The numbers labeling the data points are referring to the index in Table 3 in
Appendix A. Note that to avoid overlap of the material labelled indexes, a magnified version of the left frame is
displayed in the right frame.

the characteristic peaks of the X-ray source, as indicated by the wiggles around the energy of the Kα1 (59.3 keV)
and Kβ1 (67.2 keV) tungsten emission lines. The third singular vector U3, displays a sharp rise and consecutive
relaxation, and is required to fully represent all the materials LACS. One would find the same behavior of the
third significant singular vector, when running the same procedure on standard reference LAC curves from NIST
database.25 We found, however, that the first two vectors are sufficient to approximate all the materials studied.
This was confirmed by calculating the autocorrelation values of the singular vectors, which were below the value
of 0.526 except for U1,2,3 and a few more U4,5,6, as seen in Fig. 3 (b), with the same behavior as U3 but different
modulation of the peaks.

(a) (b)
Figure 3: Singular Value Decomposition analysis of the reference materials LACs. (a) Singular values of the
diagonal i-elements (blue-squares). Note logarithmic scale in the y-axis. (b) Singular vectors Ui respective of
the diagonal singular values si. The scale is in arbitrary units.
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4. CLASSIFICATION BENCHMARKING
4.1 Materials and prediction models
In this work, we have tested three different methods for the material classification from SCT data acquisitions.
In the first method, we used as the material’s feature the energy integrated LAC, µ̃(E′), obtained by summing
the signal over all the 128 energy channels of the detector. The effective energy (E′) corresponding to µ̃ was
calculated using the source spectrum as measured by the flat field acquisition (i.e. without the sample) as a model
for the detector’s response. The second method, utilizes as the material’s feature the energy-dependent LAC, i.e.
the attenuation coefficient probed at the 128 energy values corresponding to the specifics of the detector (µ(Ek)
with k = 1, 2, 3, ..., 128). In the third method, we used the SRZE characterization method described in Section 2.
For each of these methods, a look-up table library of materials features such as the one in Appendix A, has been
built by using single slice fan-beam SCT of individual materials in ideal condition (i.e. without metal artifacts
and center-offset).

In the following scans, we have measured 30 samples composed of four glass bottles filled with different
materials (found in Appendix A) and aluminum pin of 4mm diameter placed in a sample holder. Of these
samples, 10 of them were with the sample holder centered with the sample’s rotation stage, 10 of them were with
an offset between the sample holder and rotation stage centers, and the remainder 10 with an aluminum slab of
10× 30 mm as well. Examples of the CT reconstructions of the different groups are shown in Fig. 4.

Figure 4: Reconstruction examples of the three types of dataset reproduced. Left: the samples are placed
centered in respect to the center of rotation. Center: the samples are placed offset in respect to the center
of rotation. Right: the samples are placed offset in respect to the center of rotation and an aluminum plate
10× 30 mm wide is inserted to provoke metal artifacts and photon starvation.

For each of the four materials in the samples, we have benchmarked the classification accuracy, as the ratio
between successful predictions and total cases, of the three methods. The prediction models in the equations
below have been used for the material classification to find the labels (i.e. the type of materials) from the
ground truth library obtained using SRZE method listed in Table 3 in Appendix A. A similar library has been
constructed for the other two methods.

• Integrated LAC discrimination:
label = arg min

label

√
(µest − µ̂label)2. (8)

• Spectral LAC discrimination:

label = arg min
label

√√√√ 128∑
k=1

(
µestEk
− µ̂labelEk

)2
. (9)
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• SRZE discrimination:

label = arg min
label

√√√√wZe

(
Zeste − Ẑe

label

< Ẑe
label

>

)2

+ wρe

(
ρeste − ρ̂e

label

< ρ̂e
label >

)2

. (10)

The hat sign refers to the values stored in the libraries whereas the <> operator corresponds to the mean,
applied to all reference values of Ze and ρe. That is done to have the physical parameters in the same scale and
with same importance. The weights wρe

and wZe
are assigned to the individual features to tune the significance

given to each of them. In this work both have been set to w = 0.5.

4.2 Results
The results of the benchmarking are reported in Table 2 for the different prediction methods and sample groups.
In the material classification, the prediction is successful when the individual material label is found correctly,

Table 2: The accuracy results (%) obtained for the different sample groups. In the exact material classification,
the prediction is successful when the specific materials are classified correctly. In the binary classification, the
discrimination is only performed between threats and innocuous materials.

Material classification
Integrated LAC (µ̃) Spectral LAC (µ(E)) SRZE (ρe/Ze)

Centered 24.0% 72.0% 72.0%
Offset 28.0% 68.0% 72.0%
Offset with Al plate 40.0% 38.3% 58.3%
Mean 30.7% 59.4% 67.4%

Binary classification (Threat/Innocuous)
Integrated LAC (µ̃) Spectral LAC (µ(E)) SRZE (ρe/Ze)

Centered 60% 100% 100%
Offset 64% 98% 100%
Offset with Al plate 75% 66.7% 78.3%
Mean 66.3% 88.2% 92.8%

whereas in the binary classification the discrimination is only done between innocuous and threat materials. Both
the spectral characterization methods (LAC and SRZE) show an overall improved prediction accuracy when
compared to integrated LAC method (which is corresponding to conventional integrating detectors). Samples
with metal artifacts induced by the aluminum plate show a significant decrease in the accuracy of the direct
LAC discrimination method, whereas the accuracy increases with the SRZE method. That is due to the energy
thresholds selection step of the SRZE method, which allows data affected by photon starvation induced by
the Aluminum plate to be disregarded. We remark that such a relatively low accuracy in the exact material
classification was expected as most of the innocuous materials in the library are water-based compounds and
some of them are varieties of the same specimens (e.g. 5 types of beer, 4 sun lotions etc.). On the other hand,
the SRZE method shows perfect accuracy in the binary classification for samples without the aluminum plate.
Nevertheless, the relatively low result obtained in the presence of metal artifacts suggests a demand for a further
optimization of the data pre-processing step, possibly with the introduction of a metal artifact removal step.

5. CONCLUSIONS
We have demonstrated feasibility of material characterization into system-independent physical parameters (ρe,
Ze) using spectral X-ray CT. We have shown that the spectral methods have overall superior accuracy in the
material classification, when compared to the conventional CT techniques. Spectral LAC method shows a 28.7%
and 21.9% increase in material and binary overall mean classification, respectively. The SRZE method shows a
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36.7% and 26.5% increase in material and binary overall mean classification, respectively. The SRZE method is
free of calibration steps and system-independent, which makes it suitable for a standard method estimation of a
material’s physical properties ρe, Ze. Moreover, the SRZE method presents higher robustness in the presence of
high-Z materials due to the capability to omit photon starved data. Further developments in the metal artifact
removal algorithms for SCT, and advances in the hardware technologies of the PCD, decreasing their spectral
distortions, should increase the screening of threats even further, using this method.

APPENDIX A. MATERIALS ESTIMATED FEATURES LIBRARY
The library of materials, for which the physical parameters were estimated, includes innocuous materials, which
are commonly found in checked-in luggage, and explosive or precursor materials, which are aimed to be screened
by the SCT inspection. Note that it is composed of mostly organic and liquid materials without a k-edge
discontinuity and with 6 ≤ Ze ≤ 10. Table 3 provides a summary of all the materials scanned by themselves,
their type and their estimated physical parameters, using the SRZE method described in Section 2. This table
was used as the ground truth for material classification when the materials are scanned in groups of 4.

Table 3: The list of all the 73 materials scanned and processed through the SRZE method, and their estimated
physical parameters ρe(e−mol/cm3) and Ze.

Index Material label Type Ze ρe
1 2-Butanone Threat 6.64 0.440
2 2,4-Dinitrotoluene Threat 8.16 0.316
3 Acetone Threat 6.12 0.442
4 Ethylenediamine Threat 6.31 0.506
5 H2O2 50% Threat 7.24 0.661
6 Hexamethylenetetramine Threat 5.59 0.461
7 Hydrazine solution Threat 7.07 0.575
8 Methanol Threat 7.17 0.439
9 N,N-Dimethylhydrazine Threat 6.36 0.454
10 Nitric acid 65% Threat 7.21 0.744
11 Nitrobenzene Threat 6.70 0.621
12 Nitromethane Threat 7.09 0.586
13 Wine Innocuous 7.16 0.557
14 Cream Liquor Innocuous 7.19 0.580
15 Balsamic Vinegar Innocuous 6.98 0.640
16 Bromhexin DAK Innocuous 7.24 0.608
17 Baby Shampoo Innocuous 7.39 0.614
18 Aftersun Lotion 1 Innocuous 6.69 0.560
19 Brandy Innocuous 7.51 0.537
20 Hand cream Innocuous 7.01 0.545
21 Sun Lotion 1 Innocuous 6.74 0.579
22 Body Lotion 1 Innocuous 6.93 0.566
23 Beer 1 (Wheat) Innocuous 7.14 0.566
24 Ethanol 40% Innocuous 6.81 0.541
25 Ethanol 96% Innocuous 6.08 0.463
26 Shampoo Innocuous 7.36 0.589
27 Beer 2 (Brown Ale) Innocuous 7.35 0.564
28 Porto Wine Innocuous 7.26 0.568
29 Aftersun Lotion 2 Innocuous 6.95 0.567
30 Sun Lotion 2 Innocuous 6.61 0.572
31 Neutral Hand Soap Innocuous 6.50 0.585
32 Sun Lotion 3 Innocuous 7.19 0.580
33 Sun Baby Lotion Innocuous 8.73 0.606

Continued on next page
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Table 3 – Continued from previous page
Index Material label Type Ze ρe
34 Antiperspirant Innocuous 6.05 0.340
35 Beer 3 (Pale Ale) Innocuous 7.55 0.556
36 Olive Oil Innocuous 5.41 0.510
37 Alcohol Drink Innocuous 7.27 0.583
38 Rapeseed Oil Innocuous 5.40 0.516
39 Simple Eye Makeup Remover Innocuous 7.00 0.576
40 Body Lotion 2 Innocuous 6.92 0.563
41 Sugar Innocuous 6.49 0.524
42 Sun lotion 4 Innocuous 8.57 0.595
43 Hairspray 1 Innocuous 7.11 0.568
44 Beer 4 (IPA Ale) Innocuous 7.35 0.563
45 Beer 5 (Danish Christmas Beer) Innocuous 7.42 0.560
46 Whiskey Innocuous 7.27 0.524
47 Beautifying Anti-Blemish Care Innocuous 7.15 0.582
48 Water Innocuous 7.05 0.562
49 Energy Drink Innocuous 7.10 0.586
50 Hairspray 2 Innocuous 8.10 0.391
51 Shaving Foam Innocuous 8.12 0.542
52 Toothpaste 1 Innocuous 8.19 0.665
53 Ammonia Nitrate Threat 6.73 0.490
54 Book Innocuous 9.74 0.419
55 C4 Simulant Threat 8.02 0.855
56 C4 Threat 6.44 0.497
57 Chocolate Innocuous 6.68 0.700
58 Comp B Threat 6.54 0.897
59 Crystal Sugar Innocuous 6.63 0.531
60 DVD Bomb Simulant Threat 7.49 0.878
61 Hard Cheese Innocuous 7.41 0.619
62 Marzipan Innocuous 6.47 0.648
63 Nitromethane Threat 6.86 0.575
64 PETN Simulant Threat 7.72 0.719
65 Peanut Butter Innocuous 6.94 0.636
66 PETN Threat 6.73 0.839
67 Shampoo Innocuous 7.37 0.582
68 Soap Bar Innocuous 6.13 0.595
69 Soft Cheese Innocuous 7.35 0.604
70 Sun Cream Innocuous 7.32 0.571
71 TNT (chunks) Threat 6.63 0.434
72 Toothpaste 2 Innocuous 8.26 0.678
74 Vinegar Innocuous 7.13 0.639
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