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Thirty complete Streptomyces 
genome sequences for mining novel 
secondary metabolite biosynthetic 
gene clusters
Namil Lee1,6, Woori Kim1,6, Soonkyu Hwang1, Yongjae Lee1, Suhyung Cho1, 
Bernhard Palsson   3,4,5 & Byung-Kwan Cho   1,2,5 ✉

Streptomyces are Gram-positive bacteria of significant industrial importance due to their ability to 
produce a wide range of antibiotics and bioactive secondary metabolites. Recent advances in genome 
mining have revealed that Streptomyces genomes possess a large number of unexplored silent 
secondary metabolite biosynthetic gene clusters (smBGCs). This indicates that Streptomyces genomes 
continue to be an invaluable source for new drug discovery. Here, we present high-quality genome 
sequences of 22 Streptomyces species and eight different Streptomyces venezuelae strains assembled 
by a hybrid strategy exploiting both long-read and short-read genome sequencing methods. The 
assembled genomes have more than 97.4% gene space completeness and total lengths ranging from 
6.7 to 10.1 Mbp. Their annotation identified 7,000 protein coding genes, 20 rRNAs, and 68 tRNAs on 
average. In silico prediction of smBGCs identified a total of 922 clusters, including many clusters whose 
products are unknown. We anticipate that the availability of these genomes will accelerate discovery of 
novel secondary metabolites from Streptomyces and elucidate complex smBGC regulation.

Background & Summary
With the rapid emergence of antibiotic microbial resistance (AMR) to all major classes of antibiotics and the 
decline in number of potential candidates for new antibiotics, there is a pressing need for the discovery of novel 
antibacterial compounds1. Streptomyces, soil dwelling gram-positive bacteria, continue to be promising micro-
organisms for the production of clinically important secondary metabolites, including not only antibiotics, but 
also antiviral, antifungal, and antiparasitic agents, and antitumorals and immunosuppressant compounds2. 
Streptomyces are distinguished by their complex life cycle and high G + C content (often over 70%) in their linear 
genomes3,4. Traditionally, drug discovery from Streptomyces has been based on bioactivity screening followed 
by mass spectrometry and NMR-based molecular identification5. However, recent advances in genomics-based 
approaches revealed that most of the secondary metabolite biosynthetic gene clusters (smBGCs) of streptomy-
cetes are inactive under laboratory conditions, suggesting that the ability of streptomycetes to produce second-
ary metabolites has been under-estimated5,6. Each Streptomyces species has the genetic potential to produce 
more than 30 secondary metabolites on average, which are diverse and differ between species7,8. Considering 
Streptomyces is the largest genus of actinobacteria with approximately 900 species characterized so far, streptomy-
cetes are a valuable resource for the discovery of novel secondary metabolites9.

SmBGCs, especially polyketide and non-ribosomal peptide synthetase types, are often composed of extraor-
dinarily long genes (>5 kb) encoding multi-modular enzymes with repetitive domain structures. Therefore, 
accurate gene annotations based on high quality genome sequences are essential for the precise identification 
of smBGCs10. Gene annotation with the high quality genome of S. clavuligerus revealed that 30% out of a total 
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of 7,163 protein coding genes were incorrectly annotated in the previous draft genome of S. clavuligerus con-
taining ambiguous and inaccurate nucleotides, indicating the importance of high quality genome sequences11. 
In addition, high quality genome sequences are essential for multi-omics analysis, which facilitates the under-
standing of the complex regulation on smBGCs and rational engineering for increasing secondary metabolites 
production11,12.

Among the 1,614 streptomycetes genomes that have been deposited in the NCBI Assembly database to date 
(as of 9th December 2019), only 189 and 35 assemblies were designated as complete genome level and chro-
mosome level, respectively. More than 86% of assemblies were draft-quality genome sequences, which contain 
fragmented multiple contigs or ambiguous sequences4,13–15. One of the main obstacles to obtaining high quality 
genomic information of streptomycetes is the low fidelity of sequencing techniques when dealing with high G w 
C genomes and frequently repetitive sequences such as terminal inverted repeats13. In addition, since streptomy-
cetes have linear chromosome, it is difficult to confirm the completeness of the assembled chromosome.

In this study, we present the high-quality genome sequences of 30 streptomycetes, increasing the total number 
of reported complete Streptomyces genome by about 10%. The target streptomycetes were 22 Streptomyces type 
strains and eight different Streptomyces venezuelae strains, most of which are currently used as industrial strains 
for producing various bioactive compounds. We applied hybrid assembly strategy with long-read (PacBio) and 
short-read (Illumina) sequencing techniques to obtain complete genome sequences. PacBio sequencing provides 
long reads of several kb in length which allows the readthrough of regions with low complexity, enabling the 
assembly of repetitive regions, which are difficult to assemble by using Illumina sequencing reads, even with 
the high coverage data16. However, Illumina sequencing provides reads with a lower error rate compared to the 
PacBio sequencing, and assembled contigs based on the Illumina sequencing reads are not simply a subset of 
the contigs from PacBio sequencing reads13,17. Therefore, reconciling PacBio and Illumina sequencing meth-
ods enables one to generate more complete genomes by overcoming the shortcomings of each method. During 
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Fig. 1  Quality of the genome sequencing data. (a) Distribution of Illumina reads quality based on Phred score. 
(b) Read quality distribution of PacBio reads. Black line indicates total number of bases in the reads which have 
greater read quality than the corresponding read quality value on x-axis.
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the genome assembly using reads from PacBio (0.46~5.18 Gbp) and Illumina (0.5~3.0 Gbp) sequencing, we 
constructed 6.7 to 10.1 Mbp of streptomycetes genomes, most of which consist of single chromosomes with 
72% G + C contents on average. Inaccurate sequences in the assembled genome were corrected using Illumina 
sequencing reads. The complete streptomycetes genomes have more than 97.4% gene space completeness and 
on average 7,000 protein coding genes, 20 rRNAs, and 68 tRNAs were annotated. Finally, based on the com-
plete genome sequences and annotations, we predicted a total of 922 smBGCs. The complete genome sequences 
and newly determined smBGCs in this study should prove to be a fundamental resource for understanding the 
genetic basis of streptomycetes and for discovering novel secondary metabolites.

Methods
Genomic DNA (gDNA) extraction.  Total 30 streptomycetes were purchased from Korean Collection for 
Type Cultures (KCTC, Korea). A stock of streptomycetes were inoculated to 50 mL of liquid culture medium with 
0.16 g mL−1 of glass beads (3 ± 0.3 mm diameter) in 250 mL baffled flask and grown at 30 °C in a 200 rpm orbital 
shaker. Each streptomycetes was grown in one of four different culture medium, R5(–) medium (25 mM TES 
(pH 7.2), 103 g L−1 sucrose, 1% (w/v) glucose, 5 g L−1 yeast extract, 10.12 g L−1 MgCl2∙6H2O, 0.25 g L−1 K2SO4, 
0.1 g L−1 casamino acids, 0.08 g L−1 ZnCl2, 0.4 mg L−1 FeCl3, 0.02 mg L−1 CuCl2∙2H2O, 0.02 mg L−1 MnCl2∙4H2O, 
0.02 mg L−1 Na2B4O7∙10H2O, and 0.02 mg L−1 (NH4)6Mo7O24∙4H2O), 1 × sporulation medium (3.33 g L−1 glucose, 

No. Species

Final 
scaffolds 
(No.)

Scaffold 
length before 
correction 
(bp)

Mapped 
Illumina 
reads (%)

Conflict 
positions 
(No.)

Added 
bases 
(No.)

Deleted 
bases 
(No.)

Scaffold 
length after 
correction 
(bp)

G + C 
contets 
(%)

Assembly accession 
number

1 Streptomyces clavuligerus 2 6,748,589 and 
1,795,496

71.16 and 
14.03 7 4 3 6,748,591 and 

1,795,495 72.5 GCA_005519465.1

2 Streptomyces tsukubaensis 1 7,963,727 95.13 15 15 0 7,963,742 71.9 GCA_003932715.1

3 Streptomyces galilaeus 1 7,756,176 90.56 51 34 16 7,756,194 71.4 GCA_008704575.1

4 Streptomyces nitrosporeus 1 7,581,543 93.50 51 35 16 7,581,562 72.2 GCA_008704555.1

5 Streptomyces subrutilus 1 7,604,705 96.41 286 269 0 7,604,974 73.4 GCA_008704535.1

6 Streptomyces viridosporus T7A 1 7,280,447 90.44 90 89 0 7,280,536 72.6 GCA_008704515.1

7 Streptomyces kanamyceticus 1 10,133,525 99.09 376 375 3 10,133,897 71.0 GCA_008704495.1

8 Streptomyces aureofaciens 1 7,757,873 84.86 16 9 5 7,757,877 72.6 GCA_008704475.1

9 Streptomyces prasinus 1 7,646,576 89.70 1,025 1,021 5 7,647,592 72.0 GCA_008704445.1

10 Streptomyces fradiae 1 6,725,574 97.63 5 5 0 6,725,579 74.7 GCA_008704425.1

11 Streptomyces alboniger 1 7,962,594 99.12 193 193 1 7,962,786 71.2 GCA_008704395.1

12 Streptomyces coeruleorubidus 1 9,334,399 99.67 1,297 1,299 0 9,335,698 71.1 GCA_008705135.1

13 Streptomyces cinereoruber 1 7,516,474 99.74 178 178 0 7,516,652 72.9 GCA_009299385.1

14 Streptomyces nodosus 1 7,772,564 99.51 26 25 2 7,772,587 70.9 GCA_008704995.1

15 Streptomyces vinaceus 1 7,673,329 92.46 180 180 0 7,673,509 72.3 GCA_008704935.1

16 Streptomyces platensis 1 8,500,673 99.75 354 352 13 8,501,012 71.1 GCA_008704855.1

17 Streptomyces spectabilis 1 9,806,222 95.30 934 938 0 9,807,160 72.4 GCA_008704795.1

18 Streptomyces chartreusis 1 9,911,637 98.42 461 461 0 9,912,098 71.0 GCA_008704715.1

19 Stretpomyces rimosus 1 9,361,132 96.22 22 22 0 9,361,154 72.0 GCA_008704655.1

20 Streptomyces albofaciens 2 4,757,761 and 
4,494,336

53.36 and 
45.53 504 501 3 4,757,978 and 

4,494,617 72.3 GCA_008634025.1

21 Streptomyces filamentosus 2 5,742,252 and 
2,129,928

75.22 and 
24.28 3,218 3,228 1 5,744,022 and 

2,131,385 73.6 GCA_008634015.1

22 Streptomyces venezuelae ATCC 
10712 1 8,223,439 99.84 96 81 15 8,223,505 72.5 GCA_008639165.1

23 Streptomyces venezuelae ATCC 
21113 1 7,893,622 99.85 173 181 0 7,893,803 72.5 GCA_008639045.1

24 Streptomyces venezuelae ATCC 
10595 1 7,871,449 95.50 35 34 3 7,871,480 72.5 GCA_008705255.1

25 Streptomyces venezuelae ATCC 
15068 1 8,557,615 99.71 587 587 0 8,558,202 71.9 GCA_008642375.1

26 Streptomyces venezuelae ATCC 
14583 1 8,018,461 87.17 29 27 4 8,018,484 71.3 GCA_008642355.1

27 Streptomyces venezuelae ATCC 
14584 1 8,941,823 99.00 255 255 0 8,942,078 71.2 GCA_008642315.1

28 Streptomyces venezuelae ATCC 
14585 1 8,048,139 82.34 64 41 26 8,048,154 71.3 GCA_008642335.1

29 Streptomyces venezuelae ATCC 
21782 1 7,525,235 90.50 87 87 0 7,525,322 71.9 GCA_008642295.1

30 Streptomyces venezuelae ATCC 
21018 1 7,746,214 91.61 59 57 4 7,746,267 72.1 GCA_008642275.1

Table 1.  The statistics of genome assembly and correction.
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1 g L−1 yeast extract, 1 g L−1 beef extract, 2 g L−1 tryptose, and 0.006 g L−1 FeSO4∙7H2O), YEME medium (340 g L−1 
sucrose, 10 g L−1 glucose, 3 g L−1 yeast extract, 5 g L−1 bacto peptone, and 3 g L−1 oxoid malt extract), and MYM 
medium (4 g L−1 maltose, 4 g L−1 yeast extract, 10 g L−1 malt extract). For gDNA extraction, 25 mL cultured cells 
were harvested at the exponential growth phase and washed twice with same volume of 10 mM EDTA, followed 
by the lysozyme (10 mg mL−1) treatment at 37 °C for 45 min. gDNA was extracted using a Wizard Genomic DNA 
Purification Kit (Promega, Madison, WI, USA) according to the manufacturer’s instruction. Quality and quantity 
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Fig. 2  Genome assembly of 30 streptomycetes. (a) Strategy for genome assembly and corrections. (b) Profile 
of Illumina reads mapped on assembled genomes. Data were visualized using SignalMap (Roche NimbleGen, 
Inc.). Red line indicates the average Illumina read coverage of all genomic positions.
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of extracted gDNA samples were evaluated using 1% agarose gel electrophoresis and Nanodrop (Thermo Fisher 
Scientific, Waltham, MA, USA), respectively.

Short-read (Illumina) genome sequencing.  For construction of short-read genome sequencing library, 
2.5 μg of gDNA was sheared to approximately 350 bp by a Covaris instrument (Covaris Inc., Woburn, MA, USA) 
with the following conditions; Power 175, Duty factor 20%, C. burst 200, Time 23 s, 8 times. The library was 
constructed using a TruSeq DNA PCR-Free LT kit (Illumina Inc., San Diego, CA, USA) following manufac-
turer’s instruction. Briefly, the fragmented DNA samples were cleaned and end-repaired, followed by the adap-
tor ligation and bead-based size selection ranging from 400 to 500 bp. Quantity of final libraries was measured 
using Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific) and the library size was determined using Agilent 
2200 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Among the constructed sequencing libraries, 
29 libraries were sequenced with the HiSeq. 2500 (Illumina Inc.) as 100 bp single-end reads and remaining one 
library for S. tsukubaensis was sequenced with the Miseq v.2 (Illumina Inc.) with 50 bp single-read recipe. Finally, 
0.46 to 5.18 Gbp of raw sequence data were obtained and the read qualities were examined by creating sequencing 
QC reports function of CLC genomic workbench version 6.5.1 (CLC bio, Denmark) (Online-only Table 1 and 
Fig. 1a).

Long-read (PacBio) genome sequencing.  A total of 5 μg gDNA was used as input for PacBio genome 
sequencing library preparation. The sequencing library was constructed with the PacBio SMRTbellTM Template 
Prep Kit (Pacific Biosciences, Menlo Park, CA, USA) following manufacturer’s instructions. Fragments smaller 
than 20 kbp were removed using the Blue Pippin Size selection system (Sage Science, Beverly, MA, USA) and 
the constructed libraries were validated using Agilent 2100 Bioanalyzer (Agilent Technologies). Final SMRTbell 
libraries were sequenced using one or two SMRT cells with P6-C4-chemistry (DNA Sequencing Reagent 4.0) on 
the PacBio RS II sequencing platform (Pacific Biosciences). Approximately, 0.5 to 3.0 Gbp of raw sequence data 
were generated (Online-only Table 1).

Genome assembly.  Among the raw PacBio sequencing reads, only the reads with a read quality value 
greater than 0.75 and a length longer than 50 bp were filtered (Fig. 1b). Post filtered reads were assembled by 

No. Species
Complete and 
single-copy

Complete and 
duplicated Fragmented Missing Total

Gene space 
completeness (%)

1 Streptomyces clavuligerus 343 0 0 9 352 97.4

2 Streptomyces tsukubaensis 350 0 0 2 352 99.4

3 Streptomyces galilaeus 351 0 0 1 352 99.7

4 Streptomyces nitrosporeus 352 0 0 0 352 100.0

5 Streptomyces subrutilus 349 0 0 3 352 99.1

6 Streptomyces viridosporus T7A 351 0 0 1 352 99.7

7 Streptomyces kanamyceticus 352 0 0 0 352 100.0

8 Streptomyces aureofaciens 350 0 0 2 352 99.4

9 Streptomyces prasinus 350 0 0 2 352 99.4

10 Streptomyces fradiae 351 0 0 1 352 99.7

11 Streptomyces alboniger 351 0 0 1 352 99.7

12 Streptomyces coeruleorubidus 351 0 0 1 352 99.7

13 Streptomyces cinereoruber 351 0 0 1 352 99.7

14 Streptomyces nodosus 350 0 1 1 352 99.4

15 Streptomyces vinaceus 349 0 1 2 352 99.1

16 Streptomyces platensis 351 0 0 1 352 99.7

17 Streptomyces spectabilis 350 0 1 1 352 99.4

18 Streptomyces chartreusis 351 0 0 1 352 99.7

19 Stretpomyces rimosus 351 0 0 1 352 99.7

20 Streptomyces albofaciens 346 4 0 2 352 99.4

21 Streptomyces filamentosus 351 0 0 1 352 99.7

22 Streptomyces venezuelae ATCC 10712 352 0 0 0 352 100.0

23 Streptomyces venezuelae ATCC 21113 352 0 0 0 352 100.0

24 Streptomyces venezuelae ATCC 10595 352 0 0 0 352 100.0

25 Streptomyces venezuelae ATCC 15068 351 0 0 1 352 99.7

26 Streptomyces venezuelae ATCC 14583 351 0 0 1 352 99.7

27 Streptomyces venezuelae ATCC 14584 351 0 0 1 352 99.7

28 Streptomyces venezuelae ATCC 14585 351 0 0 1 352 99.7

29 Streptomyces venezuelae ATCC 21782 349 0 0 3 352 99.1

30 Streptomyces venezuelae ATCC 21018 350 0 0 2 352 99.4

Table 2.  Gene space completeness of completed genomes.
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the hierarchical genome assembly process workflow (HGAP, Version 2.3), including consensus polishing with 
Quiver18. For each assembled contig, error correction was performed based on their estimated genome size and 
average coverage. Raw reads from the Illumina sequencing were quality trimmed using CLC genomic work-
bench version 6.5.1 (ambiguous limit 2 and quality limit 0.05) and assembled using de novo assembly function of 
CLC genomic workbench version 6.5.1 with default parameters. To expand the assembled contigs, all of assem-
bled PacBio and Illumina contigs were aligned using MAUVE 2.4.019 and linked using GAP5 program (Staden 
package)20.

Genome correction.  Quality trimmed Illumina sequencing reads were mapped to the assembled genome using 
CLC genomic workbench version 6.5.1 (mismatch cost 2, insertion cost 3, deletion cost 3, length fraction 0.9, and simi-
larity fraction 0.9). Conflicts showing more than 80% frequency for Illumina reads were corrected as Illumina sequence 
(Table 1). In addition, percentage of mapped Illumina reads on to the assembled genome represents degree of complete-
ness (Table 1 and Fig. 2b). Completeness of gene space was estimated using the BUSCO v3 (Table 2)21.

Genome annotation and secondary metabolite biosynthetic gene cluster prediction.  The com-
plete genome sequences of streptomycetes were submitted to the NCBI GenBank database and annotated by the 
latest updated version of NCBI Prokaryotic Genome Annotation Pipeline (PGAP)22. Using the GenBank formatted 
files of each genomes as input, secondary metabolite biosynthetic gene clusters were predicted by antiSMASH 4.023.

Data Records
Raw reads from short-read (Illumina) and long-read (PacBio) sequencing were deposited in the NCBI Sequence 
Read Archive (SRA) (Online-only Table 1)24,25. 30 complete genome sequences were deposited in GenBank via 
the NCBI’s submission portal (Table 3)26–55. Detailed information on the predicted 922 smBGCs in 30 streptomy-
cetes genomes has been deposited in FigShare56.

No. Species
CDS 
(No.)

16s rRNA 
(No.)

tRNA 
(No.)

Genome 
accession 
number

BioProject 
accession 
number

1 Streptomyces clavuligerus 6,880 18 66 CP027858 PRJNA414136

2 Streptomyces tsukubaensis 6,376 18 66 CP020700 PRJNA382016

3 Streptomyces galilaeus 6,725 18 76 CP023703 PRJNA412292

4 Streptomyces nitrosporeus 6,364 18 74 CP023702 PRJNA412292

5 Streptomyces subrutilus 6,431 21 68 CP023701 PRJNA412292

6 Streptomyces viridosporus T7A 6,211 18 70 CP023700 PRJNA412292

7 Streptomyces kanamyceticus 8,384 18 66 CP023699 PRJNA412292

8 Streptomyces aureofaciens 6,453 33 71 CP023698 PRJNA412292

9 Streptomyces prasinus 6,263 18 68 CP023697 PRJNA412292

10 Streptomyces fradiae 5,465 18 65 CP023696 PRJNA412292

11 Streptomyces alboniger 6,613 18 67 CP023695 PRJNA412292

12 Streptomyces coeruleorubidus 8,058 18 67 CP023694 PRJNA412292

13 Streptomyces cinereoruber 6,392 18 69 CP023693 PRJNA412292

14 Streptomyces nodosus 6,491 18 68 CP023747 PRJNA412292

15 Streptomyces vinaceus 6,603 21 68 CP023692 PRJNA412292

16 Streptomyces platensis 7,032 21 67 CP023691 PRJNA412292

17 Streptomyces spectabilis 8,212 18 65 CP023690 PRJNA412292

18 Streptomyces chartreusis 8,396 18 71 CP023689 PRJNA412292

19 Stretpomyces rimosus 7,756 21 68 CP023688 PRJNA412292

20 Streptomyces albofaciens 7,520 21 67 PDCM00000000 PRJNA412292

21 Streptomyces filamentosus 6,832 24 70 PDCL00000000 PRJNA412292

22 Streptomyces venezuelae ATCC 10712 7,377 21 67 CP029197 PRJNA454547

23 Streptomyces venezuelae ATCC 21113 6,987 21 67 CP029196 PRJNA454547

24 Streptomyces venezuelae ATCC 10595 6,942 21 67 CP029195 PRJNA454547

25 Streptomyces venezuelae ATCC 15068 7,700 21 69 CP029194 PRJNA454547

26 Streptomyces venezuelae ATCC 14583 7,154 18 66 CP029193 PRJNA454547

27 Streptomyces venezuelae ATCC 14584 7,832 18 65 CP029192 PRJNA454547

28 Streptomyces venezuelae ATCC 14585 7,096 18 66 CP029191 PRJNA454547

29 Streptomyces venezuelae ATCC 21782 6,655 18 69 CP029190 PRJNA454547

30 Streptomyces venezuelae ATCC 21018 6,769 21 71 CP029189 PRJNA454547

Table 3.  Summary of genome annotation.
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Technical Validation
Streptomyces have drawn considerable attention because of their ability to produce various clinically important 
secondary metabolites. Total 30 streptomycetes genomes were sequenced by using both PacBio and Illumina 
sequencing methods to elucidate their biosynthetic potential. After cleaning the reads, on average 98,380 PacBio 
reads with 11,725 bp length and 18,223,235 Illumina reads with 100 bp length (50 bp for S. tsukubaensis) were 
generated (Fig. 1a,b and Online-only Table 1). Through the assembly of reads from two sequencing platforms 
using HGAP, CLC workbench, MAUVE, and GAP5 programs, single linear scaffolds ranging from 6.7 to 10.1 
Mbp in length with 72% G + C contents were obtained for 27 streptomycetes, whereas two scaffolds were finally 
constructed for three remaining streptomycetes, S. clavuligerus (6.7 and 1.8 Mbp), S. albofaciens (4.8 and 4.5 
Mbp), and S. filamentosus (5.7 and 2.1 Mbp) (Table 1). S. clavuligerus has been reported to have a large linear 
plasmid with a length of 1.8 Mbp, so the genome was correctly assembled into a single chromosome, while the 
S. albofaciens and S. filamentosus genomes appear to be assembled into two divided scaffolds11,57. To increase the 
accuracy of the assembled genome sequences, Illumina sequences showing more than 80% coverage at the con-
flict sites were taken as the corrected ones (Table 1). Approximately, 96.32% of Illumina sequencing reads were 
successfully mapped to the corresponding genomes (Table 1 and Fig. 2b). The completeness of the genomes were 
assessed using the BUSCO approach with a total of 352 orthologue groups from the Actinobacteria Dataset21. 
Results showed that 29 genomes have more than 99.1% gene space completeness and the S. clavuligerus genome 
has 97.4% gene space completeness (Table 2). Following NCBI PGAP, 30 genomes were annotated with 7,000 pro-
tein coding genes, 20 rRNAs, and 68 tRNAs on average (Table 3). Finally, based on the annotation, a total of 922 
smBGCs were predicted in 30 streptomycetes genomes (Fig. 3). Detailed information, such as genomic positions, 
types, and putative products of each smBGC are publicly available in Figshare56.

Code availability
The version and parameter of all bioinformatics tools used in this work are described in the Methods section.
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