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Abstract: Natural phenolic compounds are important classes of plant, microorganism, and algal
secondary metabolites. They have well-documented beneficial biological activities. The marine
environment is less explored than other environments but have huge potential for the discovery of
new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical
industries. To survive in a very harsh and challenging environment, marine organisms like several
seaweed (macroalgae) species produce and accumulate several secondary metabolites, including
marine phenolics in the cells. Traditionally, these compounds were extracted from their sample
matrix using organic solvents. This conventional extraction method had several drawbacks such
as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a
huge volume of one or more organic solvents, which consequently results in environmental pollution.
To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction
(EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized
liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from
researchers around the world. Therefore, in this review, the most recent and emerging technologies
are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and
other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck
for upscaling of these technologies are also presented.

Keywords: marine phenolics; emerging technologies; extraction

1. Introduction

Phenolic compounds are secondary metabolites produced by plants, microorganisms, and algae.
The marine environment is an excellent source of bioactive compounds, and this includes phenolic
compounds. There are many theories about why marine plant (seaweeds) tissues produce and
accumulate phenolic compounds, and one of the most widely accepted theories states that phenolic
compounds are produced as a defense mechanism to protect from biotic and abiotic factors. To adapt
and survive in a very competitive and challenging marine environment, seaweeds (macroalgae) need
to produce defense mechanisms from their metabolic pathways that protect them against the harsh
environment and biological agents like UV protectant, anti-herbivory, and antioxidant [1]. The most
pronounced environmental stress is that seaweeds often grow in intertidal locations where they
are exposed to a frequently changing environment with high fluctuation of sunlight and oxygen,
demanding from them a strong antioxidative defense system [1,2]. Nevertheless, the type and
level of compounds vary from species to species, e.g., the geographic location, the growing season,
and the environmental stress [3,4]. For instance, phlorotannins are phenolic compounds that are
exclusively found in brown seaweeds [5], which grow in the mentioned harsh environments, and their
concentration is highly variable across the different seasons [6,7].
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Several types of phenolic compounds were isolated and characterized from brown, green, and red
seaweed. Both the type and composition of the phenolic compounds vary across the different genera of
seaweed [8]. The most commonly reported phenolic compounds are simple phenolic compounds like
gallic acid, epicatechin, epigallocatechin, catechin gallate, protocatechuic acid, hydroxybenzoic acid,
chlorogenic acid, caffeic acid, and vanillic acid [9,10]. Several flavonoids like quercetine, hesperidin,
myricetin, and rutin were also reported in marine seaweeds [10–13] (Figure 1). Phlorotannins
are the most commonly reported complex phenolic compounds in several brown seaweed species.
Phlorotannins are oligomers of a phloroglucinol (1,3,5-trihydroxy benzene) monomer unit, with a large
molecular size ranging from 126 Da to several thousand Da. Depending on the nature of the linkage
between the aromatic units, there are four different classes of phlorotannins. When the linkage between
the phloroglucinol unit is aryl-ether (C-O-C), they are called phloroethols and fuhalols; those with
phenyl linkage (C-C) are fucols; fucophloroethols have both phenyl and aryl-ether linkages, and ecols
with a benzodioxin linkage [14] (Figure 2). As secondary metabolites, phlorotannins play a series of
recognized roles in the cell, such as anti-herbivory defense, antifouling activity, and UV protectants [15].
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Marine phenolics show several biological activities [16], such as antioxidants [10,17],
anti-inflammation [18–20], antimicrobial [21–23], anticoagulant [24], plant growth promoters [25],
anticancer agents [26,27], angiotensin I-converting enzyme (ACE) inhibiting activity [28], antidiabetic [29],
and antiproliferative [30]. To get all these benefits of the marine phenolics and use them in different
delivery systems, such as food, pharmaceuticals, and cosmetics, the compounds need to be extracted
from the sample matrix, characterized, and purified. Traditionally, marine phenolic compounds were
extracted from marine resources using organic solvents. However, this extraction method had several
drawbacks, including the use of a large volume of solvents, long extraction time, low extraction
yield, degradation of extracted compounds, and difficulty of separating the extract from the solvent.
In order to mitigate these challenges, several newly emerging technologies were used to extract
phenolics from marine resources. Therefore, this review aimed to summarize the most frequently used
emerging and sustainable technologies in the extraction of marine phenolics from seaweed. Moreover,
the opportunities and challenges are discussed for the upscaling of these technologies.

2. Traditional Extraction of Marine Phenolics

Traditional extraction, commonly known as solvent extraction or solid–liquid extraction (SLE),
is the most commonly and frequently used extraction technique. SLE can be done in several ways,
such as; refluxing using soxhlet; boiling the sample and solvent with or without stirring for a
certain duration; or maceration with continuous stirring (often for long duration, and sometimes
even overnight). Several kinds of solvents and a mixture of solvents with wide polarity ranges are
used to extract marine phenolics. The solvents include methanol, ethanol, acetone, ethyl acetate,
trichloromethane, a mixture of water and organic solvents like ethanol, acetone, and acetonitrile,
and methanol, at different mixing ratios [31–36]. When a mixture of solvents like water and ethanol is
used, the extraction yield of phenolic compounds is reported to be higher than each of the solvents
used individually, due to different optimums of extractability of compounds of different polarities,
for the different solvents in a mix [37]. However, conventional extraction methods usually involve the
use of a large volume of solvents, longer extraction time, and high temperature. Such harsh extraction
conditions lead to the possibility of oxidation and hydrolysis of the phenolic compounds. Moreover,
the upscaling of this technology at an industrial level would be difficult, owing to practicality, energy,
economic, and environmental considerations [38]. Thus, to overcome the challenges associated with
the method, several newly emerging extraction technologies were introduced.

3. Emerging Technologies for Extraction of Marine Phenolics

The newly emerging technologies could be based on the energy/mechanism they use for the
extraction, such as ultrasound-assisted extraction (UAE); microwave-assisted extraction (MAE);
based on the use of biological agents such as enzymes, enzyme-assisted extraction (EAE); based on the
use of new type of solvents like pressurized solvent extraction (PLE); and supercritical fluid extraction
(SFE). There are also less frequently used technologies, such as pulsed electric field-assisted extraction
(PEF) and ohmic heating, where an electrical current is passed through the material and generates
heat. Moreover, in recent years, there are new types of solvents, which are increasingly used for the
extraction of phenolic compounds, and these solvents include, ionic liquids and deep eutectic solvents
utilizing the different melting points of the constituents. Additionally, two or more of these methods
were also used in combination [39,40]. Recent advances in the use of these extraction methods to
extract marine phenolics from seaweeds are discussed below.

3.1. Enzyme-Assisted Extraction (EAE)

EAE offers several advantages, as compared to conventional extraction methods, including low
operation temperature and the use of environment-friendly solvent. EAE is not a new extraction
method to recover bioactives from a marine organism, however, ever-increasing research in the
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extraction process optimization and intensification coupled with a constant study in the discovery of
new robust enzymes makes it an emerging technology.

Phenolic compounds can exist in several forms in the plant, microorganism, and algal material,
such as in free soluble form or as insoluble complex forms [41]. Most marine phenolic compounds
either make a complex with other macromolecules like protein and carbohydrate, or inside the cell,
surrounded by a thick cell wall polysaccharide like alginate. Some phenolics are, however, easily
accessible when located in the outer cell walls in physodes [8,42]. The discovery and application
of cell wall degrading enzymes are based on their ability to degrade polysaccharides like alginate.
For instance, phlorotannins, the most abundant form of phenolic compounds in brown seaweeds,
usually form a covalent bond with proteins to produce a protein–polyphenol complex. To release these
bound phenolic compounds, and make them available for extraction, an enzyme that is capable of
hydrolyzing the protein–polyphenol bond is required [41]. In recent years, several novel enzymes
were discovered from marine organisms. Most of the enzymes are cell wall polysaccharides degrading
enzymes like alginate-lyases, glucuronan-lyases, carrageenases, laminarinases, and agarases [43].
When such structural and cell wall polysaccharides are degraded, the contents of the cell, including the
phenolic compounds are released into the extraction medium, and thus increases the extraction yield.
Some recently discovered enzymes had a higher activity, as compared to the commercially available
enzymes. Ihua et al. [44] used extracts from enzyme-active bacterial isolate, which was obtained from
decaying Ascophyllum nodosum for EAE of phenolic compounds from Fucus vesiculosus. They reported
that the yield of phenolic compounds extracted, even at a low temperature of 28 ◦C, was higher than
all three types of commercial enzymes (cellulase, proteases, and xylanase) used in the study. From the
three commercial enzymes studied, xylanase yielded the best phenolic compounds (35.7 mg PGE/g dry
weight (DW)), whereas enzyme active bacterial isolate yielded 44.8 mg PGE/g DW. However, most of
such enzymes are isolated and tested at laboratory scale and are not currently available for industrial
applications [45]. Thus, this research indicated that new types of robust and efficient enzymes are yet to
be discovered from the marine environment and more integrated research is needed to accomplish this.

Although there is a problem in attacking specific cell wall polysaccharides, nonspecific enzymes
that can degrade the polysaccharide and protein are available in large quantities for use in labs, pilots,
and even at an industrial scale. Several researchers reported the use of such enzymes to recover
marine phenolics from seaweed (Table 1). As shown in Table 1, the yield of phenolic compounds
was affected by different factors, including the type of enzyme used, the enzyme concentration,
temperature, the pH of the media, and the treatment duration. The type of enzymes used for the
extraction process is very important. Generally, when comparing the yield of phenolic compounds
produced by carbohydrases and proteases, most reports showed that those treated with carbohydrases
had higher phenolic compounds [39,46,47]. The reason could be the differences in their attacking
targets. Carbohydrases attack the cell wall polysaccharides and release the cell contents into the
extraction medium to increase the extraction yield of the phenolic compounds. In contrast, proteases
attack the protein and increase the concentration of protein in the extraction medium, which might
subsequently react with phenolic compounds to form a protein–polyphenol complex in the extraction
medium. The produced complex eventually makes aggregates and precipitates, and thereby results in
a possible reduction of the phenolic compounds extraction yield [48]. Therefore, a careful selection of
enzymes and optimizing the extraction parameters is a fundamental part of EAE. EAE is reported by
itself or with the combination of other types of extraction technologies like UAE, MAE, PLE, and SFE.
When EAE is combined with PLE and SFE, the pretreatment of biomass, together with the enzyme
degrades the cell wall, and subsequently, the phenolic compounds are easily available for extraction by
the solvents [48].
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Table 1. Enzyme-assisted extraction (EAE) of marine phenolics.

Seaweed Type
State of the Seaweed

(Wet/Dry/Particle
Size)

Type of Enzyme Used
Extraction Conditions

Enzyme Conc./Temperature
(◦C)/Time (min)/pH

Yield (mg GAE/g DW) Application of the
Extract Reference

Sargassum boveanum,
Sargassum

angustifolium
Padina gymnospora,

Canistrocarpus
cervicornis

Colpomenia sinuosa,
Iyengaria stellata

Feldmannia irregularis

Freeze
dried/powdered

Viscozyme
AMG 300 L
Cellucclast
Termamyl
Ultraflo L

Flavourzyme
Alcalase
Neutrase

0.1%/50/1200/4.5
0.1%/60/1200/4.5
0.1%/50/1200/4.5
0.1%/60/1200/6
0.1%/40/1200/6
0.1%/50/1200/7
0.1%/50/1200/8
0.1%/50/1200/8

32.4–74.8 *
50.0–84.0
22.3–63.8
26.1–43.0
16.7–32.0
9.5–38.4
28.2–82.5

Antioxidant
Antimicrobial [46]

Lessonia nigrescens
Macrocystis pyrifera
Durvillaea antarctica

Air dried/powdered
(100 µm)

Cellulase
α-Amylase 10%/50/1020/4.5

17.38–19.31
21.3
~13

Angiotensin
I-converting enzyme

(ACE) activity
[28]

Enteromorpha prolifera Dried/pulverized

AMG 300 L
Celluclast

Dextrozyme,
Maltogenase,
Promozyme,
Viscozyme
Termamyl
Alcalase

Flavourzyme
Neutrase
Protamex

2% (w/w, DW)/-/480/-

2.47
1.5
2.02
1.24
1.83
2.53
2.02
8.44
6.43
6.98
1.83

Antioxidant
Anti-acetylcholinesterase

Anti-Inflammatory
[47]

Sargassum muticum,
Osmundea pinnatifida
Codium tomentosum

Oven dried (60
◦C)/Powdered (<1.0

mm)

Alcalase
Flavourzyme

Cellulase
Viscozyme L

5% (w/w, DW)/50/8.0
5% (w/w, DW)/50/7.0
5% (w/w, DW)/50/4.5
5% (w/w, DW)/50/4.5

0.2–0.3 mg CE/g LE
0.1–0.12 mg CE/g LE
0.11–0.16 mg CE/g LE

Antioxidant
Antidiabetic [39]

Ulva armoricana Wet/grounded

Neutral endo-protease
A mix of neutral and alkaline endo-proteases

A multiple-mix of carbohydrases
Mix of endo-1,4-β-xylanase/endo-1,3(4)-β-glucanase

Cellulase
Exo-β-1,3(4)-glucanase

6% (w/w, DW)/50/240/6.2

9
11
7
6
4
7

Antioxidant and
antiviral [45]

* When multiple samples are treated with multiple enzymes, the yield of phenolic contents is described in ranges of minimum to maximum values. Further detailed values can be found in
the respective references; CE—catechetol equivalent, and LE—lyophilized extracts.
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3.2. Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction is an emerging potential technology that can accelerate heat and
mass transfer and was successively used in extraction. Ultrasound waves alter the physical and
chemical properties after interaction with the exposed material. The cavitational effect of the ultrasound
waves facilitates the release of extractable compounds, and furthermore, enhances the mass transfer by
disrupting the plant cell walls. UAE is a clean method that avoids the use of a large quantity of solvent,
along with cutting down in the working time. Ultrasounds are successfully employed in the extraction
field [49,50], and is well-known to have a significant effect on the rate of various processes in the
chemical and food industry. Much attention is given to the application of ultrasound for the extraction
of natural products that typically need hours or days to reach completion with conventional methods.
With the use of ultrasound, full extractions can now be completed in minutes, with high reproducibility,
reducing the consumption of solvent, simplifying manipulation and work-up, and yielding higher
purity of the final product. This also eliminates post-treatment of wastewater and consumes only a
fraction of the fossil energy normally needed for a conventional extraction method like the Soxhlet
extraction, maceration, or steam distillation. Several classes of food components like aromas, pigments,
polyphenols, and other organic and mineral compounds were extracted and analyzed efficiently from
a variety of matrices, such as oils from garlic, phenolics from citrus peel and wheat bran, aromas from
tea, and lycopene/pigment from tomatoes [49].

In more detail, the UAE is based on cavitation, i.e., the creation, growth, and sudden implosion
(collapse) of bubbles with tremendous energy release from each of them, sometimes referred to as
hot spots [51,52]. In the bulk solvent, the bubble collapse is symmetrical, but near to the surface, it is
asymmetrical and generates a high-speed jet of liquids. In the case of cavitation in an extraction system,
the jet hits the surface of the sample matrix and provides a continuous circulation of new solvents
at the surface, producing deep penetration of solvent into the sample particle, continuous solvent
mixing, and sometimes particle size reduction. The deep penetration of the solvent coupled with size
reduction, enhances the extraction efficiency of the phenolic compounds [53]. UAE is used to extract
phenolic compounds from marine resources. Several researchers extracted phenolics from brown
algae (Phaeophyceae); Ascophyllum nodosum [54], Laminaria japonica, Fucus vesiculosus [55], green algae
(Chlorophyceae); Codium tomentosum [39], and the red alga (Rhodophyceae); Laurencia obtusa [56] (Table 2).
The extraction yield of phenolic compounds using UAE could be significantly affected by several
experimental parameters. The parameters include the ultrasound energy/power, the sample-to-solvent
ratio, a combined ratio of different solvents, the extraction temperature, time, and the particle size of
the sample. To investigate the effect of each parameter, and the combination of two or more parameters
on the extraction efficiency of marine phenolics using UAE, several statistical models were evaluated.

In their optimization study for extraction of phenolic compounds from red seaweed L. obtusa using
UAE, Topuz et al. [56] determined the optimum extraction conditions of solvent—seaweed ratio, 24.3:1;
extraction temperature, 45.3 ◦C; and the extraction time of 58 min, to recover a maximum yield of
TPC 26.2 mg GAE/g seaweed. Dang et al. [57] also optimized the UAE of phenolic compounds from
brown seaweed Hormosira banksii, using response surface methodology, and reported that the optimum
conditions for maximum phenolic content were temperature, 30 ◦C; time, 60 min; and power, 150 W.
According to this study, the application of UAE at the optimal conditions increased the yield of TPC by
143%, as compared to the conventional extraction method. In another study, Vázquez-Rodríguez et al. [58]
optimized the extraction parameters, namely, extraction temperature (50–65 ◦C), ultrasound power
density (1.2–3.8 W cL−1), solvent/seaweed ratio (10–30 mL g−1), and ethanol concentration (25–100%
ethanol in water), to recover phlorotannins from brown seaweed Silvetia compressa. They reported a
maximum of 7.3 mg PGE/g dry seaweed at (X1 = 50 ◦C, X2 = 3.8 W cL−1, X3 = 30 mL g−1 seaweed
meal, and X4 = 32.3%). Moreover, the study showed that the ultrasound power density was the most
influential parameter for the extraction of the phlorotannins.



Mar. Drugs 2020, 18, 389 7 of 22

3.3. Microwave-Assisted Extraction (MAE)

Microwave heating or microwave-assisted extraction (MAE) is used extensively to extract valuable
materials from plant and animal resources. In details, microwave heating is generated by dipole
rotation of a polar solvent and ionic condition of dissolved ions and this rapid volumetric heating
leads to effective cell rupture, releasing the compounds into the solvent. MAE is used to extract
phenolic compounds from several seaweed species (Table 3). Yuan et al. [59] applied microwave
irradiation at 110 ◦C for 15 min, to extract phenolic compounds from four economically important brown
seaweed species Ascophyllum nodosum, Laminaria japonica, Lessonia trabeculate, and Lessonia nigrecens.
They also conducted the conventional method, agitation at room temperature for 4 h, for comparison.
They found a TPC concentration of 139.8, 73.1, 74.1, and 107.1, GAE mg/100 g dry weight of each
seaweed, respectively, which were much higher than the TPC obtained through the conventional
extraction technique of 51.5, 38.5, 49.8, and 78.1 GAE mg/100 g DW, respectively, for the same set of
seaweed samples.

The advantage of MAE over the conventional method, is getting a higher amount of TPC at
a very short time, at a temperature, as high as 110 ◦C, which normally degrades and reduces the
yield of phenolic compounds. Manusson et al. [60] conducted a comparison study of MAE extraction
with conventional solid–liquid extraction of phloroglucinol from several brown seaweed species,
and reported that the yield of polyphenols using MAE increased up to 70%, as compared to SLE.
According to this study, the high amount of phenolic compounds in MAE, as compared to SLE is due to
the accessibility of up to 40% of cell-wall bound polyphenols by MAE, which was not possible with SLE.
Li et al. [61] optimized MAE of phenolic compounds from green seaweed species Caulerpa racemose,
using an L18(3)5 orthogonal experimental array. In this study, a maximum of 67.9 mg GAE/100 g dried
sample was obtained at optimum conditions of microwave power, 200 W; ethanol concentration, 60%;
extraction time, 40 min; extraction temperature, 50 ◦C; and solvent-to-material ratio, 40 mL/g. In general,
the efficiency of MAE was affected by several factors, including the microwave power, the type of
solvents, the composition of solvents used, extraction time, temperature, and the sample-to-solvent
ratio. Microwave power was found to be effective in increasing the extraction yield. However, too much
power, on the contrary, would result in overheating of the system and lead to the degradation of
heat-labile compounds such as polyphenols. The effect of temperature was also observed to be similar
to microwave power. Another important factor affecting the yield of MAE is the type of solvent used
in the extraction process. Water is a good solvent to absorb the microwave energy, and distribute
the energy evenly in the extraction medium. However, the solubility of phenolic compounds in
water is low, as compared to other organic solvents like ethanol. To overcome such problems, several
researchers tested a mixture of water and ethanol in different mixing ratios. Several studies optimized
the extraction parameters using statistical models, so that they could get the maximum polyphenol
compounds with a possible combination of extraction parameters [26,27,61–64].
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Table 2. Ultrasound-assisted extraction (UAE) of marine phenolics.

Seaweed Type State of the Seaweed (Wet/Dry/Particle
Size)

Extraction
Conditions Power
(W)/Temperature
(◦C)/Time (min)

Solvent Used Yield (TPC mg GAE/g
DW)

Application of the
Extract Reference

Ascophyllum nodosum,
Laminaria hyperborea Freeze dried/powdered 750/-/15 Distilled water 0.365 mg PGE/g DW

0.156 mg PGE/g DW Antioxidant [65]

Ecklonia cava Far infrared radiation dried (40 ◦C)/
grounded (300 µm) 200/30/720

Water
Methanol: water

50:50
Methanol

47.7
63.5
57.9

Antioxidant [66]

Laurencia obtuse Oven dried (50 ◦C)/Powdered (1.55 mm) 250/30–50/30–60 95% ethanol 26.23 Antioxidant [56]

Hormosira banksii Freeze dried/powdered (≤0.6 mm) 150–200/30–50/20–60 70% (v/v) Ethanol 23.12 Antioxidant [57]

Sargassum muticum,
Osmundea pinnatifida,
Codium tomentosum

Oven dried (60 ◦C)/powdered (<1.0 mm) 400/50/60 Deionized water
235.0 ± 5.57 µg CE/g LE
103.7 ± 1.67 µg CE/g LE
141.1 ± 9.79 µg CE/g LE

antioxidant [39]

Note: CE—catechetol equivalent, LE—lyophilized extracts; PEG—phloroglucinol equivalent.
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3.4. Pressurized Liquid Extraction (PLE)

Pressurized liquid extraction (PLE) is also known as accelerated solvent extraction (ASE) or
subcritical water extraction (SWE), when the solvent used is only water in a temperature range of
boiling point of water (100 ◦C) and critical temperature of water (374 ◦C). This is a newly emerging
technology for the extraction of marine phenolics. This technology has several advantages over
many other extraction technologies. This extraction takes a very short time, uses a relatively lower
amount of solvents, and hence requires minimum consumption of solvent, and since the extraction
is conducted in the absence of light and oxygen, the degradation of phenolic compounds is very
low [67]. For SWE, we can easily modify the polarity of water by tuning the extraction temperature.
For instance, increasing the temperature of water from room temperature to 200–250 ◦C, reduces the
dielectric constant of water, which is a measure of the polarity of water from 80 to 30–25. This value is
close to the dielectric constant of those of organic solvents like ethanol and methanol. These properties
of water, at subcritical conditions, would enable water to extract some of the organic compounds that
are otherwise not extractable by water at normal conditions. Thus, this could make SWE, the greenest
process of all PLEs [68].

In recent years, several researchers reported the extraction of phenolic compounds from a variety
of seaweed species, using SWE (Table 5). Different solvents such as ethanol, hexane, ethyl acetate,
acetone, and a mixture of different solvents, like water and ethanol at different ratios, were used to
extract marine phenolics from seaweed [69]. The extraction yield of phenolic compounds using PLE
is affected by numerous factors, including temperature, pressure, the type of the solvent, the ratio
between the sample and solvent, the extraction time, and the particle size of the sample. Among these
factors, the temperature is by far the most influential one determining the extraction yield. Increasing
the temperature reduces the viscosity and surface tension, and increases the diffusivity of the solvent,
which consequently increases the mass transfer of the solvent into the sample matrix, to enhance the
extraction yield. However, high extraction temperature might not always favor the extraction yield.
High temperatures could potentially lead to decomposition of heat-sensitive compounds like phenolics
and hence reduce the yield [70]. Pangestuti et al. [71] investigated the effect of temperature (120–270 ◦C),
solid-to-liquid ratio (1:150 to 1:50), and static extraction time of 10 min, on total phenolic content
of tropical red seaweed Hypnea musciformis extracts, obtained using SWE. In this study, the authors
observed that increasing the solid-to-liquid ratio, increased the TPC at all extraction temperatures.
Similarly, increasing temperature, also linearly increased the TPC content until it reached 210 ◦C,
and after 210 ◦C, the TPC started to decline. The possible reason mentioned in this study for the
reduction of TPC at higher temperatures was the thermal degradation of the phenolic compound
beyond 210 ◦C. The maximum TPC reported in this study was 39.75 ± 0.2 mg GAE/g dried seaweed
and this was recorded at solid-to-liquid ratio of 1:50 and a temperature of 210 ◦C. In another study,
Gereniu et al. [72] studied pressurized hot water extraction (PHWE) of Kappaphycus alvarezii at different
temperatures (150 to 300 ◦C) and pressure (1 MPa to 10 MPa), and reported the maximum TPC content
at 270 ◦C and 8 MPa.

The type of solvent or mixture of solvents and their polarity is another type of very important parameter
that significantly affect the yield of phenolic compounds. Otero, López-Martínez, and García-Risco [69]
applied four different solvents that had wide polarity ranges, like hexane, ethyl acetate, ethanol, and
ethanol:water (1:1), to extract phenolic compounds from brown alga Laminaria ochroleuca, using PLE.
They reported that PLE extract with ethanol:water (1:1, v/v) showed the highest 173.7 mg GAE/g extract
TPC, whereas the hexane extract showed the least TPC, with only 6 mg GAE/g extract. This indicated that
careful selection of solvent is very important in PLE to get the best possible extraction yield and quality of
phenolic compounds.
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Table 3. Microwave-assisted extraction (MAE) of marine phenolics.

Seaweed Type State of the Seaweed
(Wet/Dry/Particle Size)

Extraction Conditions
Power (W) Temperature

(◦C)/Time (min)

Solvent
Used/Solid:Solvent

Ratio (g/mL)

Yield * (TPC mg
GAE/g DW)

Application of the
Extract Reference

Sargassum vestitum Freeze dried/powdered (≤600 µm) 720–1200/-/0.42–1.25 Ethanol: water
(30–70%)/1:50 58.2 Antioxidant [62]

Cystoseira sedoides Shade dried/Powdered (200–500 µm) -/-/0.17–3 Ethanol: water
(0–100%)/1:10–1:60 0.38 mg PGE/g DW Anticancer Activity [27]

Ascophyllum nodosum Oven dried/Powdered (1 mm) 250,600,1000/-/2–5 0.1 M HCl/1:10 17.9 Antioxidant [40]

Chaetomorpha sp. Shade dried/powdered (60µm) 200–600/-/4–12 Acetone: water
(0–100%)/1:20 0.98 mg TAE/g DW [64]

Enteromorpha prolifera Shade dried (40 ◦C)/powdered 300–700/-/5–40 (1–4
cycles)

Ethanol: water
(10–60%)/1:10–1:35 0.923 Antioxidant [73]

Saccharina japonica Dried/powdered (40 µm) 400–600/45–65/5–25 Ethanol: water
(50–70%)/1:8–1:12 0.644 mg PGE/g DW Inhibitory effects on

HepG2 cancer cells [26]

Caulerpa racemose Oven dried (35 ± 2 ◦C)/Powdered 100–600/20–70/5–60 Ethanol: water
(20–100%)/1:10–1:50 6.8 Antioxidant [61]

* Some of the extraction processes were optimized to get the maximum possible phenolic compounds yield. In such cases, the yield indicated here is the maximum yield. For detailed
processes, the readers of this paper are advised to refer to the respective references. PGE—Phloroglucinol equivalent; TAE—Tannic acid equivalent.
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3.5. Supercritical Fluid Extraction (SFE)

A supercritical fluid is any substance that is kept at a temperature above its critical point (Tc)
and critical pressure (Pc). When a substance is kept at such conditions, it has different physical and
thermodynamic properties. The physical properties like viscosity, diffusibility, dielectric constant,
density, and surface tension, all significantly change, compared to the substance at its standard
atmospheric conditions. Moreover, we can tune these physical properties by changing the temperature
and pressure. The most commonly used supercritical fluid in the food, pharmaceutical, and cosmetic
industries is carbon dioxide (ScCO2). This is because carbon dioxide has a low critical temperature
(31.4 ◦C) and pressure (73.8 bar), is not toxic, is easily available at high purity, and it is very easy
to separate the gas from the extract [74]. ScCO2 can be used as the only solvent to extract marine
phenolics or in a combination of organic solvents as entrainer. Several researchers reported the
extraction of phenolic compounds from marine resources using ScCO2 [75–79]. Different extraction
conditions were reported like temperature (30–60 ◦C) [76], pressure (10–37.9 MPa) [79,80], extraction
time, (60–240 min) [77,79], CO2 flow rate (6.7–56.7 g/min) [77,80], and the use of different types of
co-solvents in several compositions with respect to CO2 (0.5–12%, w/w) [79,81] (Table 4).

In SFE, controlling the above extraction parameters is very important to maximize the extraction
yield and minimize the operation cost. Understanding the interaction of temperature and pressure is
a fundamental part of the SFE, as both affect the physical properties, like viscosity, diffusivity, and
density of the solvent, ScCO2. For instance, increasing extraction pressure, increases the density of
the solvent and the solvating power of the ScCO2, which then easily penetrates the sample matrix
to facilitate the extraction rate. However, too high a pressure is not good, because it might result
in compacting the extraction bed, and it could restrict the flow of CO2, reduce the diffusivity of the
solvent, and create channels within the extraction bed, which subsequently reduce the extraction
yield [82]. The effect of temperature is inconsistent, especially when we are dealing with the solute that
is in the form of a single compound. In such cases, increasing temperature increases the volume of the
solvent, and decreases the density and solvating power of the solvent, which subsequently reduces
the extraction yield. On the contrary, low extraction temperature reduces the vapor pressure of the
solute and volume of the solvent, while increasing the density and solvating power, which results in
a higher extraction yield. This unique phenomenon is called the “crossover effect”. Depending on
the nature of the solute, the crossover region of the compound in the extraction curve varies [83].
This phenomenon might not be applicable for plant material, where the solute is in the form of a
crude extract with several kinds of phenolic compounds. Therefore, conducting several extraction
experiments is required to understand the effect of the temperature and pressure, and their interaction
effect on the overall extraction yield.

Increasing the flow rate of CO2, enhances the mass transfer of the solvent into the sample matrix
to facilitate the extraction of the phenolic compound. The increase in mass transfer can consequently
shorten the time needed for the extraction. However, a very high flow rate could negatively affect
extraction efficiency by flowing around the sample matrix and limiting the mass transfer [84]. Most of
the time, SFE of phenolic compounds is conducted in the presence of co-solvents like ethanol, because the
solubility of phenolic compounds in ScCO2 is low, compared to nonpolar compounds. Enma et al. [79]
observed an increase in the yield of phenolic compound extraction from Sargassum muticum by 1.5 times,
as compared to pure ScCO2, when they used ethanol as a co-solvent at 10% (w/w). They also investigated
other solvent flow rates (ranging from 0.5–10%), but only 10% of ethanol showed the highest result.
Therefore, careful selection and optimization of the solvent flow is important.
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Table 4. Supercritical CO2 extraction (SFE) of marine phenolics.

Seaweed Type State of the Seaweed
(wet/dry/particle size)

Co-Solvent
Used/Co-Solvent Flow
Rate (mL/min/%CO2

flow rate)

Extraction Conditions
Temperature

(◦C)/Pressure (MP)/CO2
Flow Rate (g/min)/Time

Yield (mg GAE/g
DW)

Application of the
Extract Reference

Gracilaria mammillaris Vacuum oven dried (45
◦C)/Powdered (0.15–0.6 mm) Ethanol (2–8%, w/w) 40–60/15–30/6.7/240 3.79 Antioxidant [77]

Sargassum muticum Freeze dried/powdered (250 µm) Ethanol (12% w/w) 60/15.2/-/90 34.5 mg PGE/g DE Antioxidant [81]

Sargassum muticum Freeze dried/Powdered (<0.5
mm) Ethanol (0.5–10%, w/w) 30–50/10–30/25/60 - Antioxidant [79]

Undaria pinnatifida Freeze dried/Powdered (500 µm) Ethanol/2 30–60/10–30/28.17/60 - - [76]

Laminaria digitata
Undaria pinnatifida
Porphyra umbilicalis

Eucheuma denticulatum
Gelidium pusillum

Dried/Powdered - 50/37.9/56.7/120

23 mg GAE/g DE
4
3
2

15

Antifungal [80]

PGE—phloroglucinol equivalent; and DE—dry extract.
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SFE is used less frequently for the extraction of marine phenolics from seaweeds, compared to
other emerging technologies reviewed in this paper, and the number of publications is very limited.
However, the technology is used extensively for the extraction of phenolic compounds from plant
materials. More details and a comprehensive review on the application of supercritical fluid for
extraction of phenolic compounds from several types of terrestrial plant materials, were presented
by Katarzyna at al. [89]. Some information in these studies could be extrapolated for optimizing the
extraction of marine phenolics.

3.6. Other Emerging Technologies

The need for an efficient, green, and sustainable method to recover plant and marine bioactives
has encouraged researchers to develop several new techniques, with some of them still in development
stages. These techniques are based on the energy sources they use for extraction, such as pulsed electric
field extraction (PEF), ohmic heating [90], and the use of a centrifugal field for the case of centrifugal
partition extraction (CPE) [81]. Based on the use of surfactants to facilitate the extraction (SME) and
based on the type of extraction medium they use, such as extraction using a new type of “designer
solvents”; including, ionic liquids (IL), deep eutectic solvents (DES), and natural deep eutectic solvents
(NDES).

In PEF applications, high voltages (kV range) are applied in pulses of short duration (nano or
micro-seconds) with the main objective of causing electro-permeabilization and destroying the cell
membranes to accelerate the extraction rate [91]. PEF is used extensively for the extraction of phenolic
compounds from terrestrial plants [92–94]. There is very limited information on the application of PEF
marine resources, however, since the method is proven to be effective for the extraction of phenolic
compounds from land plants, it should also be replicated for the extraction of marine phenolics,
including seaweeds.

CPE is a multi-stage liquid–liquid extraction technique conducted under a centrifugal field.
The extraction of the specific components is based on its partition coefficients between the two liquid
phases [95]. This technique is used most frequently for the purification of phenolic compounds
from marine resources [96–98]. However, Anaëlle et al. [81] used CPE to extract bioactive phenolic
compounds from brown seaweed Sargassum muticum, and compared the yield and activity of the
extracts with two green techniques, SFE and PLE. The result of their study showed that the total
phenolic content of the CPE extract was higher than both the PLE and SFE extracts. The concentration
of the total phenolic compounds in CPE was twice that of PLE, which gave the second-highest
concentration. This study indicated that more studies are needed to explore such kind of alternative
techniques, optimize the operation conditions, and apply to other seaweed species.

The use of surfactants in surfactant-mediated extraction (SME) is also a promising, newly emerging
technology for the extraction of phenolic compounds [99]. Surfactants can form monomolecular layers
on the surface of a liquid, decreasing the interfacial tension between two liquids, allowing the miscibility
of two liquid. This could enable SME to be used in the isolation of compounds with a wide range of
polarities and complex chemical structures [100]. Yılmaz et al. [100] have conducted a comparative
study of SME with EAE and PLE, for isolation of total phenolic compounds and phlorotannins
from brown seaweed Lobophora variegata. They reported that the yield of both total phenolics and
phlorotannins were higher for SME, than EAE and PLE.

Ionic liquids (ILs) are types of simple molten salts, containing a relatively large organic cation
and an inorganic anion, which are liquid at or near room temperature. Compared to common
organic solutions, ionic liquids have potential advantages like a low melting point, broad liquid
temperature, negligible vapor pressure, and extended, specific, solvent properties [101]. In recent
years, ILs-based extraction techniques were used for the extraction of phenolic compounds from plant
materials [102–104]. However, the use of ILs-based extraction of phenolic compounds from the marine
resources like seaweeds is scarce [86,105].
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Table 5. Pressurized liquid extraction (PLE) of marine phenolics.

Seaweed Type State of the Seaweed
(Wet/Dry/Particle Size) Extraction Solvent

Extraction Temperature
(◦C)/Pressure (MPa)/Time

(min)

Solid: Liquid
Ratio (g/mL)

Yield (mg GAE/g
DW)

Application of
the Extract Reference

Sargassum muticum Freeze dried/powdered
(250 µm)

Ethanol: water (25:75, and
75:25) 120/10.3/20 1:5 101.8 Antioxidant [81]

Gracilaria chilensis Oven dried (50 ◦C)/
Powdered (0.5 mm) Water

100/-/5 (3 extraction cycles)
150/-/5 (3 extraction cycles)
200/-/30 (3 extraction cycles)

-
2.06
0.78

10.17
Antioxidant [85]

Saccharina japonica Freeze dried/Powdered
(710 µm)

Water + 0.25 M
1-Butyl-3-methylimidazolium

tetrafluoroborate
175/5/5 1:32 58.92 mg PGE/g

DW Antioxidant [86]

Laminaria ochroleuca Freeze dried/Powdered
(<500 µm)

Hexane
Ethyl Acetate

Ethanol
Ethanol: Water (1:1)

80,120,160/10/10 1:20

6
-

83
173.65

Bioactive [69]

Fucus serratus,

Laminaria digitata,

Gracilaria gracilis,

Codium fragile

Freeze dried/powdered

Ethanol: water (80:20)
Methanol: water (70:30)
Ethanol: water (80:20)

Methanol: water (70:30)
Ethanol: water (80:20)

Methanol: water (70:30)
Ethanol: water (80:20)

Methanol: water (70:30)

100/6.9/25
90/6.9/25

100/6.9/25
90/6.9/25

100/6.9/25
90/6.9/25

100/6.9/25
90/6.9/25

-

75.96
80.70
1.39
2.93
2.40
0.93
4.76
5.36

Antioxidant [87]

Ascophyllum nodosum,

Pelvetia canaliculata,

Fucus spiralis

Ulva intestinalis

Freeze dried/powdered

Water
Ethanol: water (80:20)
Acetone: water (80:20)

Water
Ethanol: water (80:20)
Acetone: water (80:20)

Water
Ethanol: water (80:20)
Acetone: water (80:20)

Water
Ethanol: water (80:20)
Acetone: water (80:20)

120/10.3/60
120/10.3/60

60/6.9/60
120/10.3/60
120/10.3/60

60/6.9/60
120/10.3/60
120/10.3/60

60/6.9/60
120/10.3/60
120/10.3/60

60/6.9/60

-

70.4 mg PGE/g DW
66.26

155.95
41.13
40.07

168.82
90.79

124.30
204.40
33.75
20.95
48.56

Antioxidant [88]



Mar. Drugs 2020, 18, 389 15 of 22

Deep eutectic solvents (DESs) as a system formed from a mixture of two or more Lewis acids
and bases or Brønsted-Lowry acids and bases that has the lowest freezing point, compared to its
starting constituents. The formation of DES results from the complexation of a halide salt, which acts
as hydrogen-bond acceptor and a hydrogen-bond donor (HBD). The physical structure of some DESs is
thought to be similar to that of the ILs. However, generally, DESs are different in terms of the source of
the starting ingredients and the chemical formation process. Hence, the applications of their chemical
characteristics are different in many ways [106]. DESs were used extensively for the extraction of
phenolic compounds from terrestrial plants [107–110]. They have already found an application in the
extraction of hydrocolloids from the red seaweed Kappaphycus alvarezii [111]. However, unlike ILs,
to the best of our knowledge, there is no single published article on the use of DESs for the extraction
of marine phenolics. Therefore, as these solvents are considered “green”, more research is needed to
utilize the potentials of their unique properties for the extraction of phenolic compounds from marine
resources for a sustainable future.

3.7. Combination of Different Emerging Technologies

A combination of two or more emerging technologies was applied to enhance the extractability of
marine phenolics from seaweeds. Thus far, several researchers reported the use of a combination of
the emerging technologies, MAE with PLE, UAE with EAE, MAE with EAE, EAE with SFE, and a
combination of UAE with MAE. In a recent study, Garcia-Vaquero et al. [40], combined UAE with
MAE, for the extraction of bioactive compounds from Ascophyllum nodosum. They reported a 30.3%
and 10.2% increase of phenolic compounds yield, when a combination of the two methods was used at
the same time, as compared to UAE and EAE alone, respectively.

A combination of two different extraction methods might not always result in the high content
of phenolic compounds. Sánchez-Camargo et al. [48] pretreated Sargassum muticum with different
carbohydrases and proteases, to evaluate the effect of phlorotannins extraction, using PLE. The total
phenolic contents of all PLE extracts, which were pretreated with enzymes, were lower than the extracts
obtained with PLE alone. As described by the authors, the possible reason for the lower result in the
total phenolic content of enzyme-pretreated samples is that when the algal cell wall is degraded by
proteases or carbohydrases, intracellular contents like proteins are released in the extraction medium.
The released proteins bind to phenolic compounds to form complexes, i.e., polyphenols–protein,
which further leads to aggregation and eventually precipitation. Therefore, careful selection of the
extraction methods to use them in a combined extraction systems is crucial to minimize the cost of
extraction and increase the extraction yield and quality of the extracts.

4. Opportunities and Challenges with Emerging Technologies

Although the newly emerging technologies show promising opportunities in terms of increasing
the extraction efficiency of phenolic compounds, minimizing the extraction time, improving the
quality of the extracts, and minimization of the generation of hazardous waste and its associated
impact on the environment, the new technologies also have some challenges, especially in terms of
industry applications. If we consider EAE, the most commonly available enzymes are nonspecific
enzymes like carbohydrases and proteases, which could result in the co-extraction of other components.
This could be solved by using specific enzymes like alginate–lyases, glucuronan–lyases, carrageenases,
laminarinases, and agarases, specifically targeting the cell wall polysaccharides; alginate, glucuronic
acid, laminarian, and agars, respectively. However, most of these enzymes are under laboratory
research stage, produced in lower quantity, and have high prices. Thus, further biotechnological
and bioengineering techniques, like cloning, are required to produce these enzymes in large quantity,
and at a reasonable price, to use them at an industrial level. Technologies like PLE and SFE require
state-of-the art equipment like high-pressure pumps, stainless steel extraction vessels, pipes, fittings,
valves, pressure regulators, condensers, and process control systems. Therefore, upscaling these
technologies would require very high equipment fixed capital and make the technologies expensive
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to implement at an industrial level. However, once the equipment is installed, the use of cheap and
widely available solvents, like CO2 and water, and the possibility of recycling the solvents would make
the operational costs relatively low. Moreover, the sustainable nature of these processes creates more
opportunities to use them at the industrial level.

Similarly, UAE and MAE also have challenges and opportunists, when we consider them for
upscaling, and there are some success as well as failure stories on trials for upscaling for extraction of
phenolic compounds from other kinds of biomasses. These success stories can be reproduced here
for upscaling of phenolics from marine biomass. The authors refer to the work by Belwal et al. [112],
which recently published a comprehensive review of scholarly articles on the scaling up of emerging
technologies for extraction process, such as EAE, MAE, PEE, PLE SFE, and UAE. In this review
work, several lessons learned from the successes and failures stories were critically evaluated and
presented to show the opportunities and possible challenges associated with the non-conventional
extraction methods. Nevertheless, the opportunities associated with these technologies far outweighed
the challenges, especially considering when their impact on the environment, and this makes them
preferable and a more applicable technology for a sustainable future.

5. Conclusions

Phenolics are a diverse group of compounds found in seaweeds with several biological activities
that attract interest from the food, pharmaceutical, and cosmetic industries. To benefit from the
marine organisms and more specifically the seaweeds as a potential source of unique and diverse
phenolic compounds, extraction plays a crucial role, especially when it is green. Traditional extraction
involves the use of organic solvents and requires a longer extraction time. The newly emerging
technologies avoid the challenges associated with conventional extraction methods and are considered
to be green. They are not only green, but perform better in terms of maximizing the extraction yield,
as compared to the conventional methods. A combination of these methods further increase the yield.
These techniques act differently to extract the phenolic compounds, depending on their energy source
and the extraction mechanism. Some generate heat during the extraction process, which might degrade
the phenolic compounds, some others require further purification and cleaning steps. Some of the
emerging technologies were tested and upscaled to extract interesting compounds from terrestrial
plants, however, more attention is needed to study the phenolics of seaweeds. In most of the extracts
reviewed in this study, the phenolics are reported as the total phenolic content. Information regarding
the individual phenolics content of seaweed extracts obtained using emerging extraction technologies
is very scarce. Such information is important to understand the influence of each emerging extraction
technologies on the individual phenolic contents. Thus, in future, researchers working this area should
consider including this important information.
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