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Abstract. Deep learning-based algorithms have shown great promise
for assisting pathologists in detecting lymph node metastases when eval-
uated based on their predictive accuracy. However, for clinical adoption,
we need to know what happens when the test set dramatically changes
from the training distribution. In such settings, we should estimate the
uncertainty of the predictions, so we know when to trust the model (and
when not to). Here, we i) investigate current popular methods for im-
proving the calibration of predictive uncertainty, and ii) compare the
performance and calibration of the methods under clinically relevant
in-distribution dataset shifts. Furthermore, we iii) evaluate their perfor-
mance on the task of out-of-distribution detection of a different histolog-
ical cancer type not seen during training. Of the investigated methods,
we show that deep ensembles are more robust in respect of both per-
formance and calibration for in-distribution dataset shifts and allows us
to better detect incorrect predictions. Our results also demonstrate that
current methods for uncertainty quantification are not necessarily able to
detect all dataset shifts, and we emphasize the importance of monitoring
and controlling the input distribution when deploying deep learning for
digital pathology.

Keywords: Deep learning · Digital pathology · Predictive uncertainty

1 Introduction

Motivated by the predictive performance of deep learning (DL) in research [3,
21] and grand challenges [2], clinical-grade DL-tools for assisting pathologists in
detection of lymph node metastases are now being developed. In clinical settings
where algorithms can potentially affect medical decisions, it is crucial to know
how well-calibrated the underlying model is, such that the model gives a reliable
estimate of the quality of the predictions. However, there exists only limited
research [4, 20, 22] on how different distributional shifts in pathology affect the
accuracy of DL-based algorithms, and these do not consider predictive uncer-
tainty. Dataset shifts are especially relevant in pathology as pre-analytical steps
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can introduce large variability, and the spectrum of the target indication of an al-
gorithm can also be broad. This makes it difficult to include the whole spectrum
within the training set. Rare incidental findings, which are clinically relevant,
may also be missed by an algorithm because they are outside the distribution of
the training set.
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Fig. 1: Overview of experimental setup. Slides from 6 different sites are used as
development data (Dtrain and Dval), where blue (5 sites) represents Cam16-
train and Cam17-train and red (one site) is Dataset2. Cam16-test defines the
internal test set (Dtest,int.) as the 2 sites are also used as development data.
Dataset3 (green) is denoted as the external test set (Dtest,ext.) as this site is
not included in the development data. Slides from Dataset4 and Dataset5
(orange) with colon adenocarcinoma (Dcolon) and head and neck squamous cell
carcinoma (DSCC) are used to test on different organ origin and different cancer
sub-type than the original target task of detecting adenocarcinoma from breast
cancer.

Our contribution is a thorough investigation of several state-of-the-art meth-
ods’ ability to quantify uncertainty while keeping high accuracy. We focus on
the problem of detecting cancerous tissue in digital pathology, specifically for the
task of detecting lymph node metastases. This has not been covered in previ-
ous investigations such as [9, 17], because the appearance and variation resulting
from distributional shifts of histopathology images is very different from that of
natural images. Therefore, we i) extend our evaluation to a unique real-world
pathology setting with a multi-hospital single indication training set and perform
an extensive evaluation on both internal and external test sets and clinically plau-
sible distributional shifts. We ii) compare the methods in terms of performance
and calibration in addition to iii) how accurate their predictive uncertainty can
detect both incorrect predictions and out-of-distribution (OOD) inputs.
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1.1 Related work

Multiple popular methods have been proposed for quantifying predictive un-
certainty for better calibration and robustness under distributional shifts and
OOD inputs in deep neural networks (DNNs). Deep ensemble [13] is arguably
the simplest method where multiple networks are trained individually and their
predictions are averaged during inference. Monte Carlo Dropout (MC-Dropout)
[6] is an approximate Bayesian method that uses dropout [19] during multiple
forward passes during inference. Temperature scaling [7] is different as it serves
as a post-processing method that learns a scaling parameter on a validation set
but its performance has shown to be limited under distributional shifts [17].
Mixup [25] combines random pairs of images and their labels during training,
originally aimed at increased performance but it has recently shown to improve
the calibration of DNNs [23]. All methods have their advantages and limitations
with regard to their complexity during training or inference.

Table 1: Details on data. * and ** denote adenocarcinoma and SCC, respectively.
† [14], ‡ [3]
Dataset Purpose No. of slides Site

Cam16-train Development (Dtrain,Dval) 270 (160 normal, 110 tumor*) 2 hospitals†
Cam16-test Evaluation (Dtest,int.) 129 (80 normal, 49 tumor*) 2 hospitals†
Cam17-train Development (Dtrain,Dval) 46 (0 normal, 46 tumor*) 5 hospitals‡
Dataset2 Development (Dtrain,Dval) 56 (41 normal, 15 tumor*) Hospital-A
Dataset3 Evaluation (Dtest,ext.) 135 (67 normal, 68 tumor*) Hospital-B
Dataset4 Evaluation (Dcolon) 81 (43 normal, 38 tumor*) Hospital-C
Dataset5 Evaluation (DSCC) 60 (40 normal, 20 tumor**) Hospital-C

2 Methods

2.1 Experimental setup

To study a relevant application in pathology, we define the primary target task
as detection of adenocarcinoma in hematoxylin and eosin (H&E) lymph node
sections from breast cancer. To enable the development, we obtain datasets from
public [2, 3, 14] and non-public sources (see details in Table 1) and evaluate both
predictive accuracy and uncertainty using relevant metrics (see below).

In-distribution shift To evaluate whether we can trust the predictions on
images not derived from the hospitals used in the development, we use Dataset3
as an external test set (Dtest,ext.) and Cam16test internal test set (Dtest,int.). The
methods are evaluated based on their ability to generalize in terms of predictive
accuracy and uncertainty.
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As the same cancer sub-type can originate from different organs and metas-
tasize to lymph nodes regardless of origin, we investigate the methods’ ability to
generalize to other organs than included in the training set. To enable this, we
collect lymph node sections with adenocarcinoma from colon cancer (Dcolon).

Misclassification detection The ability to indicate incorrect classifications
is attractive from a clinical automation perspective, so pathologists can better
interfere and assess results when needed, especially when the input distribution
change from the intended indication. It is easy to formulate as a binary classi-
fication problem using only the uncertainty as the prediction score, hence it is
a popular downstream task to evaluate predictive uncertainty [10]. We hypoth-
esize that current methods are better at detecting incorrect predictions when
the dataset is more similar to the training distribution. To test the hypothesis,
we use Dtest,int., Dtest,ext. and Dcolon to assess the performance of the binary
classification (correct vs. incorrect) on each dataset.

Out-out-distribution shift When pathologists assess lymph node sections for
metastases, they are also aware of other clinically relevant abnormalities than
the primary task. To mimic this setting, we collect slides that contain another
histology sub-type (squamous cell carcinoma (SCC)) from head and neck cancer
(DSCC), which includes both well- and un-differentiated SCCs. Since SCCs, espe-
cially well-differentiated cases, are morphological different than adenocarcinoma,
we consider DSCC a realistic out-of-distribution dataset because it contains un-
seen abnormalities from the same domain as the training set.

Here, our evaluation is two-fold: generalization to another cancer sub-type
and the ability to detect novel classes using its predictive uncertainty. To achieve
the latter, we denote all tumor regions from DSCC as Dout and the in-distribu-
tion Dtest,ext. as Din. We then compare each method to discriminate between
Dout and Din.

Since poorly differentiated SCC can look morphologically similar to adeno-
carcinoma, we also take a subset of DSCC diagnosed as well-differentiated SCC
(N = 5) and treat only samples from these as OOD inputs in a final experiment.

Reference standard Similar to the Camelyon dataset, all ground truth anno-
tations on the non-public datasets were carefully prepared under the supervision
of expert pathologists with additional slides stained with cytokeratin immuno-
histochemistry (IHC). All work related to the non-public datasets was approved
by their institutional review board.

2.2 Evaluation metrics

We employ Accuracy, Area Under the Receiver Operating Characteristics curve
(AUROC) and Precision-Recall curve (AUPR) to report classification perfor-
mance (normal vs. tumor). As suggested by Guo et al. [7], we use the Expected
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Calibration Error ECE [16] to measure the calibration for each model. First, we
compute the confidence of each of N observation denoted p(ŷn), and bin these
into H bins. We then calculate the ECE by comparing the content of each bin
to its average accuracy. Let Bh be the set of indices for bin h. We calculate the
bin accuracy

acc(Bh) = |Bh|−1
∑
n∈Bh

δ(ŷn − y∗n) (1)

and the bin confidence

conf(Bh) = |Bh|−1
∑
n∈Bh

pn(ŷ) . (2)

Then we get

ECE =
1

N

H∑
h=1

|Bh| · |acc(Bh)− conf(Bh)| (3)

=
1

N

H∑
h=1

∣∣∣∣∣ ∑
n∈Bh

pn(y)−
∑
n∈Bh

δ(ŷn − y∗n)

∣∣∣∣∣ (4)

where δ(x) = 1 if x = 0 or δ(x) = 0 if x 6= 0, and y∗n is the true label.
For misclassification and OOD detection, we use also AUROC and AUPR

but on the classification performance of correct vs. incorrect and in- vs. out-of-
distribution, respectively. We use False Positive Rate at 95% True Positive Rate
(FPR95) to compare method at a certain operating point. As noted by [1], these
metrics are more reliable to compare for OOD detection as the task remains the
same regardless of method.

2.3 Overview of methods

We focus on methods that model p(y|x) as these are the most popular in medical
image analysis [3, 15] and are known to scale well [12, 13]. As a baseline, we
use the softmax of a standard DNN to obtain posterior probabilities. For all
methods, we obtain the prediction as ŷ = arg maxy p(y|x, θ) and the confidence
as the maximum softmax probability p(ŷ) = maxy p(y|x, θ).

MC-Dropout We train using dropout [19] with rate p and apply L forward
passes during inference with dropout enabled as described in Gal et al. [6].

Deep ensemble We train M standard DNNs independently of each other fol-
lowing [13] and combine the predictions as

p(y = k|x, θ) =
1

M

M∑
m=1

pm(y = k|x, θm) (5)
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Mixup Recently proposed as a simple method by [25] for training better DNNs
where two random input samples (xi, xj) and their corresponding labels (yi, yj)
are combined using:

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

(6)

where λ ∈ [0, 1] determines the mixing ratio of the linear interpolation. λ is drawn
from a symmetric Beta distribution Beta(α, α), where α controls the strength of
the input interpolation and the label smoothing. We train a DNN with mixup
using standard cross-entropy calculated on the soft-labels instead of the hard
labels. We refer to [25] for the full details on mixup.

Table 2: Evaluation of predictive performance. *α = 0.3
Dtest,int. Dtest,ext. Dcolon

Acc. AUROC AUPR Acc. AUROC AUPR Acc. AUROC AUPR

Baseline 90.5 96.5 95.1 94.3 97.9 94.3 79.0 90.7 92.8
Ensemble 90.1 97.3 95.9 94.3 98.1 96.8 78.1 92.3 94.2

MC-Dropout 91.0 97.0 95.7 93.8 97.7 96.2 78.0 90.9 93.4
Mixup* 86.5 95.6 94.2 93.4 97.1 94.6 75.8 91.0 92.6

2.4 Implementation and training details

We perform a train/validation split on the development dataset and use these
to train and select hyper-parameters for all methods. All datasets are sampled
in patches (512×512 pixels) at 20× magnification with 50% (strided) and 150%
(overlapping) sampling fraction for normal and tumor, respectively. We employ
a ResNet-50 [8] architecture as the backbone for all methods because there are
negligible changes between different image classifiers [9]. We use M = 5 to cre-
ate the ensemble as reported by [17] to be sufficient. For MC-dropout, initial
experiments of different implementation variations showed no performance dif-
ferences. Hence, we add a dropout before the logit layer similar to [12] with
p = 0.5 and use L = 50. All models are trained for 15 epochs with ADAM [11]
(β = (0.9, 0.999)) with weight decay (0.0005) using a mini-batch size of 16. We
use an initial learning rate of 0.01 and drop it with factor 10 every 5th epoch
for all methods except mixup which required a lower initial learning rate of
0.001 to converge. For mixup, we experimented with α ∈ [0.1, 0.3, 0.5, 1.0] and
we report results with α = 0.3 as this performed best on Dval. In all exper-
iments, we apply data augmentation similar to [15] and use Pytorch [18] and
Pytorch-Lightning [5].
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Fig. 2: ROC-curves for predictive performance. Left shows each methods with
ROC curves averaged across all datasets. Right shows each dataset with ROC
curves averaged across all methods.

3 Results

3.1 Evaluating predictive performance under dataset shifts

First, we evaluate the predictive performance on the primary task of detecting
adenocarcinoma in lymph node sections. We summarize the results in Table 2,
and the ROC-curves for all methods and dataset shifts are shown in Figure 2.
The results show that all methods can archive high predictive performance on
both the internal and external test sets. All methods perform significantly worse
when evaluated on the colon dataset Dcolon with mixup performing worst. In-
terestingly, all methods have higher AUROC on DSCC (see Table 4) compared
to Dcolon even though the cancer sub-type is histological different, especially in
the well-differentiated cases. In general, deep ensemble slightly outperforms all
other methods on threshold independent metrics like AUROC and AUPR.

3.2 Evaluating predictive uncertainty under dataset shifts

We present results of calibration and detection of incorrect classified examples
together in Table 3. In terms of ECE, deep ensemble and mixup improve calibra-
tion compared to the baseline method, whereas MC-dropout performs worse for
the external and colon dataset. When using each method’s predictive uncertainty
to detect misclassifications on the test set, deep ensemble and MC-dropout have
higher AUROC and AUPR on all three datasets than baseline and mixup. How-
ever, the quality of the predictive uncertainty for decreases slightly when dataset
shift increases.

3.3 Evaluating on different cancer sub-type

The left part of Table 4 shows the performance on DSCC , while the right side
summarizes the result of the OOD experiment. All methods show strong predic-
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Table 3: Evaluation of calibration and misclassification detection. *α = 0.3
Dtest,int. Dtest,ext. Dcolon

ECE AUROC AUPR ECE AUROC AUPR ECE AUROC AUPR

Baseline 4.9 82.6 35.7 2.1 77.7 28.6 11.8 76.7 42.0
Ensemble 2.1 83.9 35.6 0.6 82.3 30.2 7.5 78.6 44.5

MC-Dropout 4.6 84.0 35.3 2.6 79.8 29.7 13.3 77.2 43.5
Mixup* 4.2 79.1 36.5 0.9 80.9 29.3 9.7 71.5 41.4

tive accuracy, but fail to recognize SCC as an unseen class. Here, both ensemble
and mixup outperform the baseline and MC-dropout methods.

Table 4: Evaluation of performance and OOD detection on DSCC . *α = 0.3
Performance OOD ODD (only well-diff.)

Acc. AUROC AUPR AUROC AUPR FPR95 AUROC AUPR FPR95

Baseline 89.3 95.4 88.4 64.1 37.3 97.6 70.6 5.2 90.9
Ensemble 89.7 96.3 91.8 73.2 46.2 92.6 81.6 7.4 71.1

MC-Dropout 89.0 95.9 91.5 59.8 35.6 99.3 67.5 4.7 84.8
Mixup* 87.5 95.8 89.2 86.3 53.6 47.5 86.5 8.1 44.6

4 Discussion and Conclusion

We have evaluated current popular methods for predictive uncertainty on clini-
cally relevant dataset shifts for the detection of lymph node metastases in pathol-
ogy slides. All methods can generalize predictive accuracy from the internal test
set to the external dataset while maintaining the quality of the predictive un-
certainty. When applied to another organ, all investigated methods show both
decreased performance and increased overconfidence. We have shown similar
behavior when evaluated on the different cancer sub-type even-though the per-
formance decrease was smaller than under organ shift.

As site-specific variations such as sectioning, staining and scanning variability
are present in the experimental internal and external setup, we have shown that
current methods are able to generalize to these sources of variability. We leave
it to future work to quantify how site-specific pre-analytical variations affect the
current methods as it requires a more controlled data acquisition scheme.

Our experiments show minimal benefits of MC-Dropout compared to the
baseline method, and it can hurt the calibration performance on all dataset
shifts. We contribute this to MC-Dropout being a too weak ensemble to achieve
the same effect as a true ensemble. In general, deep ensemble increases predictive
performance but also shows robustness in calibration under distributional shifts.
It also displays decent capability in detecting incorrect predictions, but none of
the methods are sufficient on this task. Based on the results and its simplicity,
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deep ensemble is an attractive method for predictive uncertainty but it comes
with a computational overhead during both training and inference. Here, mixup
might seem to be a cheaper alternative as our results show better calibration
than baseline and MC-Dropout with a slight decrease in performance. We leave it
to future work to investigate effects of different implementation of MC-Dropout
and mixup extensions such as [24].

The ODD experiments indicate that adenocarcinoma and SCC, especially
moderate and undifferentiated, are too similar in their morphological patterns
to be treated as OOD. However, when we only assume well-differentiated SCC
as an unseen class, ensemble and mixup are better to indicate the dataset shift
without being sufficient for ODD detection.

Based on our results, we recommend that deep learning-based algorithms
are ready for clinical implementation with reliable uncertainty estimates if used
within the indication and organ included in the training set, but one should not
expect current methods to alarm novel abnormalities.
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